Knowledge

Calabi–Yau manifold

Source 📝

32: 89: 2553:
Connected with each hole in the Calabi–Yau space is a group of low-energy string vibrational patterns. Since string theory states that our familiar elementary particles correspond to low-energy string vibrations, the presence of multiple holes causes the string patterns to fall into multiple groups,
819:
give examples of complex manifolds that have Ricci-flat metrics, but their canonical bundles are not trivial, so they are Calabi–Yau manifolds according to the second but not the first definition above. On the other hand, their double covers are Calabi–Yau manifolds for both definitions (in fact, K3
2569:
have shown that the masses of particles depend on the manner of the intersection of the various holes in a Calabi–Yau. In other words, the positions of the holes relative to one another and to the substance of the Calabi–Yau space was found by Strominger and Witten to affect the masses of particles
1458:
have first Chern class that vanishes as an element of the real cohomology group, but not as an element of the integral cohomology group, so Yau's theorem about the existence of a Ricci-flat metric still applies to them but they are sometimes not considered to be Calabi–Yau manifolds. Abelian
1479:
In three complex dimensions, classification of the possible Calabi–Yau manifolds is an open problem, although Yau suspects that there is a finite number of families (albeit a much bigger number than his estimate from 20 years ago). In turn, it has also been conjectured by
827:, which implies that a compact Kähler manifold with a vanishing first real Chern class has a Kähler metric in the same class with vanishing Ricci curvature. (The class of a Kähler metric is the cohomology class of its associated 2-form.) Calabi showed such a metric is unique. 2466:. Essentially, Calabi–Yau manifolds are shapes that satisfy the requirement of space for the six "unseen" spatial dimensions of string theory, which may be smaller than our currently observable lengths as they have not yet been detected. A popular alternative known as 1102:
Most definitions assume the manifold is non-singular, but some allow mild singularities. While the Chern class fails to be well-defined for singular Calabi–Yau's, the canonical bundle and canonical class may still be defined if all the singularities are
2187: 2558:. Although the following statement has been simplified, it conveys the logic of the argument: if the Calabi–Yau has three holes, then three families of vibrational patterns and thus three families of particles will be observed experimentally. 2269: 1734: 1673: 2077: 2452: 1865: 900: 210:
There are many other definitions of a Calabi–Yau manifold used by different authors, some inequivalent. This section summarizes some of the more common definitions and the relations between them.
1318: 1951: 2561:
Logically, since strings vibrate through all the dimensions, the shape of the curled-up ones will affect their vibrations and thus the properties of the elementary particles observed. For example,
949:
of a Calabi–Yau manifold, such as demanding that it be finite or trivial. Any Calabi–Yau manifold has a finite cover that is the product of a torus and a simply-connected Calabi–Yau manifold.
2342: 2088: 1405: 631:
the following conditions are equivalent to each other, but are weaker than the conditions above, though they are sometimes used as the definition of a Calabi–Yau manifold:
1062: 1448: 1223: 823:
By far the hardest part of proving the equivalences between the various properties above is proving the existence of Ricci-flat metrics. This follows from Yau's proof of the
2529: 2369: 2296: 1991: 1484:
that the number of topological types of Calabi–Yau 3-folds is infinite, and that they can all be transformed continuously (through certain mild singularizations such as
1766: 562: 1801: 1128:
on a projective space which one can restrict to the algebraic variety. By definition, if ω is the Kähler metric on the algebraic variety X and the canonical bundle K
1018: 920: 837:
Most definitions assert that Calabi–Yau manifolds are compact, but some allow them to be non-compact. In the generalization to non-compact manifolds, the difference
1094: 982: 733: 521: 458: 422: 2528:
or 2 supercharges in a compactification of type I. When fluxes are included the supersymmetry condition instead implies that the compactification manifold be a
2389: 1608: 940: 805: 783: 761: 696: 674: 652: 629: 609: 582: 484: 393: 362: 342: 320: 292: 272: 252: 232: 2195: 2546:
compactifications on various Calabi–Yau four-folds provide physicists with a method to find a large number of classical solutions in the so-called
3492:
is an interactive reference which describes many examples and classes of Calabi–Yau manifolds and also the physical theories in which they appear.
1678: 830:
There are many other inequivalent definitions of Calabi–Yau manifolds that are sometimes used, which differ in the following ways (among others):
3979: 1613: 1999: 588:, finite quotients of a complex torus of complex dimension 2, which have vanishing first integral Chern class but non-trivial canonical bundle. 3581: 3538: 3068: 1525:
actions are also Calabi–Yau and have received a lot of attention in the literature. One of these is related to the original quintic by
2394: 1806: 1099:
Most definitions assume that a Calabi–Yau manifold has a Riemannian metric, but some treat them as complex manifolds without a metric.
840: 2509:, compactification on a Calabi–Yau 3-fold (real dimension 6) leaves one quarter of the original supersymmetry unbroken if the 1459:
surfaces are sometimes excluded from the classification of being Calabi–Yau, as their holonomy (again the trivial group) is a
2819: 1231: 1873: 3403: 3359: 3335: 3301: 3163: 3131: 2537: 1132:
is trivial, then X is Calabi–Yau. Moreover, there is unique Kähler metric ω on X such that  =  ∈ 
815:
If a compact Kähler manifold is simply connected, then the weak definition above is equivalent to the stronger definition.
3345: 3066:
Yau, Shing Tung (1978), "On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I",
1993:
are canonically associated with the fibers of the vector bundle. Using this, we can use the relative cotangent sequence
1107:, and so may be used to extend the definition of a smooth Calabi–Yau manifold to a possibly singular Calabi–Yau variety. 3574: 2943: 1196:
furnish the only compact simply connected Calabi–Yau manifolds. These can be constructed as quartic surfaces in
2925: 2587: 75: 53: 46: 3946: 132:
are sometimes conjectured to take the form of a 6-dimensional Calabi–Yau manifold, which led to the idea of
4176: 3911: 2882: 1526: 133: 4769: 4538: 3506: 2309: 2182:{\displaystyle \omega _{V}=\bigwedge ^{3}\Omega _{V}\cong f^{*}\omega _{C}\otimes \bigwedge ^{2}\Omega _{V/C}} 4774: 4118: 3624: 3567: 2630: 2555: 2474:
models, is that the Calabi–Yau is large but we are confined to a small subset on which it intersects a
2646:, Dr. Mossman describes teleporters as working via a 'String-based' technology using 'the Calabi-Yau model.' 2524:) leaves 2 of the original supersymmetry unbroken, corresponding to 2 supercharges in a compactification of 4563: 3888: 3619: 3100:, Surveys in Differential Geometry, vol. 13, Somerville, Massachusetts: Int. Press, pp. 277–318, 2478:. Further extensions into higher dimensions are currently being explored with additional ramifications for 1323: 4764: 4143: 4784: 4064: 3769: 3716: 3244:, Fields, strings and duality (Boulder, CO, 1996), River Edge, NJ: World Sci. Publ., pp. 543–726, 2917: 2635: 2494: 1023: 1424: 1199: 4358: 1568: 4403: 3006: 1567:
More generally, Calabi–Yau varieties/orbifolds can be found as weighted complete intersections in a
191:
and a Ricci-flat metric, though many other similar but inequivalent definitions are sometimes used.
4583: 4503: 4318: 4252: 3614: 1497: 40: 4463: 1579: 1410:
Other examples can be constructed as elliptic fibrations, as quotients of abelian surfaces, or as
4723: 4533: 4247: 4059: 3931: 3800: 3689: 3631: 3495: 3395: 3181: 2547: 2506: 2347: 2274: 1515: 1468: 1125: 4090: 1959: 584:
vanishes. Nevertheless, the converse is not true. The simplest examples where this happens are
4779: 4488: 4229: 4035: 3926: 3898: 3721: 3098:
Geometry, analysis, and algebraic geometry: forty years of the Journal of Differential Geometry
3030:
Tian, Gang; Yau, Shing-Tung (1991), "Complete Kähler manifolds with zero Ricci curvature, II",
3001: 808: 57: 3420:
Tian, Gang; Yau, Shing-Tung (1990), "Complete Kähler manifolds with zero Ricci curvature, I",
1739: 531: 4343: 4283: 4224: 4191: 4186: 3984: 3974: 3941: 3805: 3682: 3677: 3672: 3657: 3647: 3553: 2763: 2525: 2467: 1771: 1455: 1411: 990: 905: 585: 461: 101: 4638: 4728: 4513: 3726: 3711: 3667: 3457: 3311: 3267: 3255: 3226: 3200: 3115: 3089: 3039: 3023: 2955: 2935: 1067: 955: 706: 494: 431: 3489: 398: 8: 4643: 4528: 4181: 4080: 3706: 121: 3461: 3259: 3230: 3204: 3154:, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 10, Berlin, New York: 3043: 2959: 2823: 4688: 4608: 4508: 4468: 4398: 4348: 4313: 4148: 4025: 3921: 3662: 3437: 3245: 3216: 3190: 3055: 2991: 2859: 2838: 2799: 2780: 2736: 2718: 2689: 2639:
in order to illustrate the high-dimensional abilities of the San-Ti alien civilization.
2479: 2463: 2374: 1593: 1572: 925: 790: 768: 746: 681: 659: 637: 614: 594: 567: 469: 378: 347: 327: 305: 277: 257: 237: 217: 125: 97: 4075: 2264:{\displaystyle \Omega _{V/C}\cong {\mathcal {L}}_{1}^{*}\oplus {\mathcal {L}}_{2}^{*}} 1956:
and observing the only tangent vectors in the fiber which are not in the pre-image of
204: 184: 4653: 4558: 4393: 4303: 4273: 4069: 3964: 3916: 3810: 3517: 3514: 3409: 3399: 3365: 3355: 3331: 3315: 3297: 3169: 3159: 3127: 3059: 2967: 2921: 2903: 2784: 2599: 2562: 1503: 1493: 1492:
can. One example of a three-dimensional Calabi–Yau manifold is a non-singular
1181: 1176:
is the trivial group SU(1). A one-dimensional Calabi–Yau manifold is a complex
1153: 1117: 1104: 946: 824: 176: 161: 20: 3501: 1168:, which form a one-parameter family. The Ricci-flat metric on a torus is actually a 4663: 4598: 4568: 4448: 4388: 4353: 4298: 4288: 4201: 4153: 4111: 4016: 4009: 4002: 3995: 3988: 3906: 3696: 3604: 3465: 3429: 3351: 3287: 3101: 3077: 3047: 3011: 2963: 2907: 2772: 2740: 2728: 1464: 1451: 1121: 816: 740: 299: 168: 4268: 2971: 4743: 4698: 4648: 4633: 4623: 4518: 4483: 4308: 3878: 3652: 3373: 3307: 3283: 3263: 3155: 3111: 3085: 3019: 2931: 2911: 2898:
Calabi, Eugenio (1957), "On Kähler manifolds with vanishing canonical class", in
2583: 1489: 1418: 368: 4588: 2858:
Schedler, Travis (2019). "Deformations of algebras in noncommutative geometry".
1096:(in fact trivial) so are not Calabi–Yau manifolds according to such definitions. 1064:. Abelian surfaces have a Ricci flat metric with holonomy strictly smaller than 4718: 4713: 4673: 4613: 4443: 4433: 4428: 4423: 4338: 4333: 4328: 4293: 4278: 4206: 3883: 3746: 3106: 2878: 2617: 1177: 1149: 1145: 372: 200: 153: 141: 4603: 4523: 3470: 3292: 1610:
a quasi-projective Calabi-Yau threefold can be constructed as the total space
4758: 4708: 4693: 4668: 4658: 4628: 4573: 4548: 4478: 4473: 4438: 4413: 4373: 4163: 3815: 3731: 3609: 3590: 3549: 3544: 3387: 3275: 2979: 2942:
Candelas, Philip; Horowitz, Gary; Strominger, Andrew; Witten, Edward (1985),
2622: 2566: 2502: 2486: 1729:{\displaystyle {\mathcal {L}}_{1}\otimes {\mathcal {L}}_{2}\cong \omega _{C}} 425: 4493: 3413: 3369: 3319: 3173: 2688:
Propp, Oron Y. (2019-05-22). "Constructing explicit K3 spectra". p. 4.
4738: 4578: 4458: 4408: 4378: 4363: 4171: 4138: 4030: 3956: 3936: 3873: 3736: 3237: 3147: 3081: 3015: 2485:
In the most conventional superstring models, ten conjectural dimensions in
1668:{\displaystyle V={\text{Tot}}({\mathcal {L}}_{1}\oplus {\mathcal {L}}_{2})} 985: 2732: 2489:
are supposed to come as four of which we are aware, carrying some kind of
2072:{\displaystyle 0\to p^{*}\Omega _{C}\to \Omega _{V}\to \Omega _{V/C}\to 0} 1225:, such as the complex algebraic variety defined by the vanishing locus of 4733: 4703: 4683: 4543: 4498: 4453: 4418: 4368: 4133: 4102: 3863: 3820: 3250: 2643: 2604: 1169: 834:
The first Chern class may vanish as an integral class or as a real class.
188: 3328:
The Calabi–Yau Landscape: From Geometry, to Physics, to Machine Learning
2996: 2798:
Szendroi, Balazs (2016-04-27). "Cohomological Donaldson-Thomas theory".
4678: 4618: 4553: 4216: 4196: 4095: 4054: 3868: 3441: 3051: 2776: 2754: 2471: 1507: 1481: 1193: 172: 117: 2890: 4593: 4383: 4323: 3969: 3843: 3764: 3759: 3754: 3522: 3221: 2913:
Algebraic geometry and topology. A symposium in honor of S. Lefschetz
2899: 2843: 2490: 180: 129: 3433: 4239: 4128: 4123: 3853: 3848: 3785: 3701: 3213:
Desingularizations of Calabi-Yau 3-folds with a conical singularity
3195: 2804: 2723: 2694: 2543: 2510: 2447:{\displaystyle {\text{Tot}}({\mathcal {O}}_{\mathbb {P} ^{2}}(-3))} 1537: 1485: 1460: 1173: 699: 487: 113: 3505:
by Andrew J. Hanson with additional contributions by Jeff Bryant,
2864: 1860:{\displaystyle p^{*}({\mathcal {L}}_{1}\oplus {\mathcal {L}}_{2})} 3858: 3838: 3795: 3790: 2616:
The Calabi-Yau manifold was the subject of a paper coauthored by
2475: 1540:, in the homogeneous coordinates of the complex projective space 19:"Calabi–Yau" redirects here. For the play by Susanna Speier, see 3559: 2941: 137: 952:
Some definitions require that the holonomy be exactly equal to
895:{\displaystyle (\Omega \wedge {\bar {\Omega }}-\omega ^{n}/n!)} 3830: 3096:
Yau, Shing-Tung (2009a), "A survey of Calabi–Yau manifolds",
2501:-folds are important because they leave some of the original 1463:
of SU(2), instead of being isomorphic to SU(2). However, the
1165: 703: 491: 207:
with a vanishing first Chern class, that is also Ricci flat.
88: 1467:
subset do not conform entirely to the SU(2) subgroup in the
152:) who first conjectured that such surfaces might exist, and 2570:
in a certain way. This is true of all particle properties.
528:
These conditions imply that the first integral Chern class
234:-fold or Calabi–Yau manifold of (complex) dimension 3512: 1313:{\displaystyle x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0} 2306:
Using a similar argument as for curves, the total space
1946:{\displaystyle 0\to T_{V/C}\to T_{V}\to p^{*}T_{C}\to 0} 1506:
consisting of all of the zeros of a homogeneous quintic
1164:
In one complex dimension, the only compact examples are
294:
satisfying one of the following equivalent conditions:
2586:
to transport the geometry of a Calabi–Yau manifold to
2301: 1560: = 1 describes an elliptic curve, while for 984:
rather than a subgroup of it, which implies that the
922:
is the Kähler form associated with the Kähler metric,
807:
has a finite cover that is a product of a torus and a
3347:
Calabi–Yau Manifolds: a Bestiary for Physicists
2457: 2397: 2377: 2350: 2312: 2277: 2198: 2091: 2002: 1962: 1876: 1809: 1774: 1742: 1681: 1616: 1596: 1427: 1326: 1234: 1202: 1070: 1026: 993: 958: 928: 908: 843: 793: 785:
has a finite cover that has trivial canonical bundle.
771: 749: 709: 684: 662: 640: 617: 597: 570: 534: 497: 472: 434: 401: 381: 350: 330: 308: 280: 260: 240: 220: 1585: 1518:. Some discrete quotients of the quintic by various 2657: 2516:More generally, a flux-free compactification on an 676:
has a Kähler metric with vanishing Ricci curvature.
3330:, Switzerland: Springer International Publishing, 2982:(2003), "Generalized Calabi–Yau manifolds", 2669: 2629:Imagery based on Calabi-Yau manifolds was used in 2446: 2391:forms a Calabi-Yau threefold. A simple example is 2383: 2363: 2336: 2290: 2263: 2181: 2082:together with the properties of wedge powers that 2071: 1985: 1945: 1859: 1795: 1760: 1728: 1667: 1602: 1552: + 2 variables is a compact Calabi–Yau 1442: 1399: 1312: 1217: 1088: 1056: 1012: 976: 934: 914: 894: 799: 777: 755: 727: 690: 668: 646: 623: 603: 576: 556: 515: 478: 452: 416: 387: 356: 336: 314: 286: 266: 246: 226: 3448:Yau, S. T. (2009b), "Calabi–Yau manifold", 3280:Calabi–Yau manifolds and related geometries 2761: = 0 may nevertheless be irreducible". 1124:is a Kähler manifold, because there is a natural 4756: 2837:Ginzburg, Victor (2007). "Calabi-Yau algebras". 2916:, Princeton Mathematical Series, vol. 12, 2889:, vol. 2, pp. 206–207, archived from 1571:. The main tool for finding such spaces is the 92:A 2D slice of a 6D Calabi–Yau quintic manifold. 3183:Diffeomorphism Classes of Calabi–Yau Varieties 3069:Communications on Pure and Applied Mathematics 1159: 3575: 3539:An overview of Calabi-Yau Elliptic fibrations 2505:unbroken. More precisely, in the absence of 2462:Calabi–Yau manifolds are important in 1514:. Another example is a smooth model of the 1450:equipped with a complex manifold structure. 2711:Bulletin of the London Mathematical Society 2709:Szymik, Markus (2020-02-12). "K3 spectra". 1417:Non simply-connected examples are given by 183:). They were originally defined as compact 3582: 3568: 2757:(1987). "The Moduli space of 3-folds with 2620:in the episode 2 of the seventh season in 3469: 3291: 3249: 3220: 3194: 3105: 3005: 2995: 2863: 2842: 2803: 2722: 2693: 2417: 2337:{\displaystyle {\text{Tot}}(\omega _{S})} 1564: = 2 one obtains a K3 surface. 1430: 1387: 1205: 945:Some definitions put restrictions on the 76:Learn how and when to remove this message 3121: 2944:"Vacuum configurations for superstrings" 2887:Proc. Internat. Congress Math. Amsterdam 2857: 2836: 2797: 2663: 1768:we can find the relative tangent bundle 1187: 1116:The fundamental fact is that any smooth 87: 39:This article includes a list of general 3392:Compact Manifolds with Special Holonomy 3029: 2978: 2675: 2533: 1544:, of a non-singular homogeneous degree 811:manifold with trivial canonical bundle. 16:Riemannian manifold with SU(n) holonomy 4757: 3496:Spinning Calabi–Yau Space video. 3122:Yau, Shing-Tung; Nadis, Steve (2010), 2897: 2877: 2708: 1510:in the homogeneous coordinates of the 149: 145: 3563: 3513: 3242:String theory on Calabi–Yau manifolds 2687: 2573: 654:has vanishing first real Chern class. 199:The motivational definition given by 3980:Bogomol'nyi–Prasad–Sommerfield bound 3532: 3476: 3447: 3095: 2984:The Quarterly Journal of Mathematics 2753: 1867:using the relative tangent sequence 1400:{\displaystyle \in \mathbb {P} ^{3}} 25: 3065: 2820:"The Shape of Curled-Up Dimensions" 2302:Constructed from algebraic surfaces 1144:), a fact which was conjectured by 157: 13: 3282:, Universitext, Berlin, New York: 3140: 2458:Applications in superstring theory 2409: 2245: 2223: 2200: 2162: 2116: 2046: 2033: 2020: 1843: 1826: 1702: 1685: 1651: 1634: 902:must vanish asymptotically. Here, 856: 847: 254:is sometimes defined as a compact 45:it lacks sufficient corresponding 14: 4796: 3589: 3483: 2610: 2588:noncommutative algebraic geometry 1586:Constructed from algebraic curves 1488:) one into another—much as 1057:{\displaystyle 0<i<\dim(M)} 1474: 1443:{\displaystyle \mathbb {T} ^{4}} 1218:{\displaystyle \mathbb {P} ^{3}} 486:has a Kähler metric with global 30: 4177:Eleven-dimensional supergravity 1736:. For the canonical projection 1192:In two complex dimensions, the 698:has a Kähler metric with local 167:Calabi–Yau manifolds are 3507:Wolfram Demonstrations Project 2851: 2830: 2812: 2791: 2747: 2702: 2681: 2441: 2438: 2429: 2403: 2331: 2318: 2063: 2042: 2029: 2006: 1937: 1914: 1901: 1880: 1854: 1820: 1752: 1662: 1628: 1379: 1327: 1083: 1077: 1051: 1045: 971: 965: 889: 859: 844: 722: 716: 551: 545: 510: 504: 447: 441: 411: 405: 194: 179:(i.e. any even number of real 116:which has properties, such as 1: 3625:Second superstring revolution 3550:Fibrations in CICY Threefolds 2883:"The space of Kähler metrics" 2650: 2536:. These models are known as 1548: + 2 polynomial in 611:-dimensional Kähler manifold 274:-dimensional Kähler manifold 4119:Generalized complex manifold 3620:First superstring revolution 2968:10.1016/0550-3213(85)90602-9 2530:generalized Calabi–Yau 364:-form that vanishes nowhere. 171:that are generalizations of 7: 3274:Gross, M.; Huybrechts, D.; 2593: 2520:-manifold with holonomy SU( 2364:{\displaystyle \omega _{S}} 2291:{\displaystyle \omega _{V}} 1532:For every positive integer 1421:, which are real four tori 1160:Calabi–Yau algebraic curves 1111: 136:. Their name was coined by 120:, yielding applications in 10: 4801: 3717:Non-critical string theory 3107:10.4310/SDG.2008.v13.n1.a9 2918:Princeton University Press 2493:with fiber dimension six. 1986:{\displaystyle p^{*}T_{C}} 1582:are Calabi–Yau manifolds. 128:, the extra dimensions of 112:, is a particular type of 18: 4261: 4238: 4215: 4162: 4047: 3955: 3897: 3829: 3778: 3745: 3640: 3597: 3490:Calabi–Yau Homepage 3471:10.4249/scholarpedia.6524 3293:10.1007/978-3-642-19004-9 2532:, a notion introduced by 2371:for an algebraic surface 2271:giving the triviality of 1569:weighted projective space 106:Calabi–Yau manifold 4253:Introduction to M-theory 3947:Wess–Zumino–Witten model 3889:Hanany–Witten transition 3615:History of string theory 3518:"Calabi–Yau Space" 3344:Hübsch, Tristan (1994), 3124:The Shape of Inner Space 2470:, which often occurs in 1761:{\displaystyle p:V\to C} 739:A positive power of the 557:{\displaystyle c_{1}(M)} 3932:Vertex operator algebra 3632:String theory landscape 3396:Oxford University Press 3350:, Singapore, New York: 3211:Chan, Yat-Ming (2004), 2548:string theory landscape 2454:over projective space. 2344:of the canonical sheaf 1796:{\displaystyle T_{V/C}} 1590:For an algebraic curve 1469:String theory landscape 1013:{\displaystyle h^{i,0}} 915:{\displaystyle \omega } 187:with a vanishing first 60:more precise citations. 4230:AdS/CFT correspondence 3985:Exceptional Lie groups 3927:Superconformal algebra 3899:Conformal field theory 3770:Montonen–Olive duality 3722:Non-linear sigma model 3502:Calabi–Yau Space 3082:10.1002/cpa.3160310304 2826:on September 13, 2006. 2664:Yau & Nadis (2010) 2538:flux compactifications 2468:large extra dimensions 2448: 2385: 2365: 2338: 2292: 2265: 2190: 2183: 2080: 2073: 1987: 1954: 1947: 1861: 1797: 1762: 1730: 1669: 1604: 1580:hyper-Kähler manifolds 1456:hyperelliptic surfaces 1444: 1412:complete intersections 1408: 1401: 1314: 1219: 1090: 1058: 1014: 978: 936: 916: 896: 801: 779: 757: 729: 692: 670: 648: 625: 605: 586:hyperelliptic surfaces 578: 558: 517: 480: 454: 418: 389: 358: 338: 316: 288: 268: 248: 228: 138:Candelas et al. (1985) 110:Calabi–Yau space 93: 4770:Differential geometry 4225:Holographic principle 4192:Type IIB supergravity 4187:Type IIA supergravity 4039:-form electrodynamics 3658:Bosonic string theory 3554:complete intersection 3180:Bini; Iacono (2016), 2764:Mathematische Annalen 2676:Tian & Yau (1991) 2526:type IIA supergravity 2449: 2386: 2366: 2339: 2293: 2266: 2184: 2084: 2074: 1995: 1988: 1948: 1869: 1862: 1798: 1763: 1731: 1670: 1605: 1445: 1402: 1315: 1227: 1220: 1188:CY algebraic surfaces 1180:, and in particular, 1091: 1089:{\displaystyle SU(2)} 1059: 1015: 979: 977:{\displaystyle SU(n)} 937: 917: 897: 802: 780: 758: 730: 728:{\displaystyle SU(n)} 693: 671: 649: 626: 606: 579: 559: 518: 516:{\displaystyle SU(n)} 481: 462:special unitary group 455: 453:{\displaystyle SU(n)} 419: 390: 359: 339: 317: 289: 269: 249: 229: 102:differential geometry 91: 4775:Mathematical physics 4144:Hořava–Witten theory 4091:Hyperkähler manifold 3779:Particles and fields 3727:Tachyon condensation 3712:Matrix string theory 3545:Calabi-Yau Landscape 3326:He, Yang-Hu (2021), 3016:10.1093/qmath/hag025 2974:on December 20, 2012 2497:on Calabi–Yau 2395: 2375: 2348: 2310: 2275: 2196: 2089: 2000: 1960: 1874: 1807: 1772: 1740: 1679: 1614: 1594: 1425: 1324: 1232: 1200: 1068: 1024: 991: 956: 926: 906: 841: 791: 769: 747: 707: 682: 660: 638: 615: 595: 568: 532: 495: 470: 432: 417:{\displaystyle U(n)} 399: 395:can be reduced from 379: 348: 328: 306: 278: 258: 238: 218: 4182:Type I supergravity 4086:Calabi–Yau manifold 4081:Ricci-flat manifold 4060:Kaluza–Klein theory 3801:Ramond–Ramond field 3707:String field theory 3462:2009SchpJ...4.6524Y 3422:J. Amer. Math. Soc. 3260:1997hep.th....2155G 3231:2004math.....10260C 3205:2016arXiv161204311B 3044:1991InMat.106...27T 2960:1985NuPhB.258...46C 2733:10.1112/blms/bdp106 2513:is the full SU(3). 2260: 2238: 1516:Barth–Nieto quintic 1303: 1285: 1267: 1249: 1126:Fubini–Study metric 214:A Calabi–Yau 122:theoretical physics 4765:Algebraic geometry 4149:K-theory (physics) 4026:ADE classification 3663:Superstring theory 3515:Weisstein, Eric W. 3152:Einstein manifolds 3052:10.1007/BF01243902 2920:, pp. 78–89, 2904:Spencer, Donald C. 2777:10.1007/bf01458074 2582:was introduced by 2580:Calabi–Yau algebra 2574:Calabi-Yau algebra 2480:general relativity 2464:superstring theory 2444: 2381: 2361: 2334: 2288: 2261: 2242: 2220: 2179: 2069: 1983: 1943: 1857: 1793: 1758: 1726: 1665: 1600: 1573:adjunction formula 1440: 1397: 1310: 1289: 1271: 1253: 1235: 1215: 1086: 1054: 1010: 974: 932: 912: 892: 797: 775: 753: 725: 688: 666: 644: 621: 601: 574: 554: 513: 476: 450: 414: 385: 354: 344:has a holomorphic 334: 312: 284: 264: 244: 224: 177:complex dimensions 154:Shing-Tung Yau 142:Eugenio Calabi 126:superstring theory 124:. Particularly in 108:, also known as a 94: 4785:Complex manifolds 4752: 4751: 4534:van Nieuwenhuizen 4070:Why 10 dimensions 3975:Chern–Simons form 3942:Kac–Moody algebra 3922:Conformal algebra 3917:Conformal anomaly 3811:Magnetic monopole 3806:Kalb–Ramond field 3648:Nambu–Goto action 3533:Beginner articles 3405:978-0-19-850601-0 3361:978-981-02-1927-7 3337:978-3-030-77562-9 3303:978-3-540-44059-8 3165:978-3-540-15279-8 3133:978-0-465-02023-2 2948:Nuclear Physics B 2908:Tucker, Albert W. 2633:of the TV series 2600:Quintic threefold 2563:Andrew Strominger 2401: 2384:{\displaystyle S} 2316: 2160: 2114: 1626: 1603:{\displaystyle C} 1556:-fold. The case 1504:algebraic variety 1494:quintic threefold 1452:Enriques surfaces 1154:Calabi conjecture 1118:algebraic variety 947:fundamental group 935:{\displaystyle g} 862: 825:Calabi conjecture 817:Enriques surfaces 800:{\displaystyle M} 778:{\displaystyle M} 756:{\displaystyle M} 691:{\displaystyle M} 669:{\displaystyle M} 647:{\displaystyle M} 624:{\displaystyle M} 604:{\displaystyle n} 577:{\displaystyle M} 479:{\displaystyle M} 388:{\displaystyle M} 357:{\displaystyle n} 337:{\displaystyle M} 315:{\displaystyle M} 287:{\displaystyle M} 267:{\displaystyle n} 247:{\displaystyle n} 227:{\displaystyle n} 175:in any number of 169:complex manifolds 162:Calabi conjecture 160:) who proved the 86: 85: 78: 21:Calabi-Yau (play) 4792: 4262:String theorists 4202:Lie superalgebra 4154:Twisted K-theory 4112:Spin(7)-manifold 4065:Compactification 3907:Virasoro algebra 3690:Heterotic string 3584: 3577: 3570: 3561: 3560: 3543:Lectures on the 3528: 3527: 3474: 3473: 3444: 3416: 3383: 3382: 3381: 3372:, archived from 3352:World Scientific 3340: 3322: 3295: 3270: 3253: 3251:hep-th/9702155v1 3233: 3224: 3207: 3198: 3188: 3176: 3148:Besse, Arthur L. 3136: 3118: 3109: 3092: 3062: 3026: 3009: 2999: 2975: 2970:, archived from 2938: 2894: 2870: 2869: 2867: 2855: 2849: 2848: 2846: 2834: 2828: 2827: 2822:. Archived from 2816: 2810: 2809: 2807: 2795: 2789: 2788: 2771:(1–4): 329–334. 2751: 2745: 2744: 2726: 2706: 2700: 2699: 2697: 2685: 2679: 2673: 2667: 2661: 2495:Compactification 2453: 2451: 2450: 2445: 2428: 2427: 2426: 2425: 2420: 2413: 2412: 2402: 2399: 2390: 2388: 2387: 2382: 2370: 2368: 2367: 2362: 2360: 2359: 2343: 2341: 2340: 2335: 2330: 2329: 2317: 2314: 2297: 2295: 2294: 2289: 2287: 2286: 2270: 2268: 2267: 2262: 2259: 2254: 2249: 2248: 2237: 2232: 2227: 2226: 2216: 2215: 2211: 2188: 2186: 2185: 2180: 2178: 2177: 2173: 2159: 2151: 2147: 2146: 2137: 2136: 2124: 2123: 2113: 2105: 2101: 2100: 2078: 2076: 2075: 2070: 2062: 2061: 2057: 2041: 2040: 2028: 2027: 2018: 2017: 1992: 1990: 1989: 1984: 1982: 1981: 1972: 1971: 1952: 1950: 1949: 1944: 1936: 1935: 1926: 1925: 1913: 1912: 1900: 1899: 1895: 1866: 1864: 1863: 1858: 1853: 1852: 1847: 1846: 1836: 1835: 1830: 1829: 1819: 1818: 1802: 1800: 1799: 1794: 1792: 1791: 1787: 1767: 1765: 1764: 1759: 1735: 1733: 1732: 1727: 1725: 1724: 1712: 1711: 1706: 1705: 1695: 1694: 1689: 1688: 1674: 1672: 1671: 1666: 1661: 1660: 1655: 1654: 1644: 1643: 1638: 1637: 1627: 1624: 1609: 1607: 1606: 1601: 1490:Riemann surfaces 1465:Enriques surface 1449: 1447: 1446: 1441: 1439: 1438: 1433: 1419:abelian surfaces 1406: 1404: 1403: 1398: 1396: 1395: 1390: 1378: 1377: 1365: 1364: 1352: 1351: 1339: 1338: 1319: 1317: 1316: 1311: 1302: 1297: 1284: 1279: 1266: 1261: 1248: 1243: 1224: 1222: 1221: 1216: 1214: 1213: 1208: 1122:projective space 1095: 1093: 1092: 1087: 1063: 1061: 1060: 1055: 1019: 1017: 1016: 1011: 1009: 1008: 983: 981: 980: 975: 941: 939: 938: 933: 921: 919: 918: 913: 901: 899: 898: 893: 882: 877: 876: 864: 863: 855: 809:simply connected 806: 804: 803: 798: 784: 782: 781: 776: 762: 760: 759: 754: 741:canonical bundle 734: 732: 731: 726: 697: 695: 694: 689: 675: 673: 672: 667: 653: 651: 650: 645: 630: 628: 627: 622: 610: 608: 607: 602: 583: 581: 580: 575: 563: 561: 560: 555: 544: 543: 522: 520: 519: 514: 485: 483: 482: 477: 459: 457: 456: 451: 423: 421: 420: 415: 394: 392: 391: 386: 363: 361: 360: 355: 343: 341: 340: 335: 321: 319: 318: 313: 300:canonical bundle 293: 291: 290: 285: 273: 271: 270: 265: 253: 251: 250: 245: 233: 231: 230: 225: 203:is of a compact 185:Kähler manifolds 81: 74: 70: 67: 61: 56:this article by 47:inline citations 34: 33: 26: 4800: 4799: 4795: 4794: 4793: 4791: 4790: 4789: 4755: 4754: 4753: 4748: 4257: 4234: 4211: 4158: 4106: 4076:Kähler manifold 4043: 4020: 4013: 4006: 3999: 3992: 3951: 3912:Mirror symmetry 3893: 3879:Brane cosmology 3825: 3774: 3741: 3697:N=2 superstring 3683:Type IIB string 3678:Type IIA string 3653:Polyakov action 3636: 3593: 3588: 3535: 3486: 3434:10.2307/1990928 3419: 3406: 3386: 3379: 3377: 3362: 3343: 3338: 3325: 3304: 3284:Springer-Verlag 3273: 3236: 3210: 3186: 3179: 3166: 3156:Springer-Verlag 3146: 3143: 3141:Further reading 3134: 3126:, Basic Books, 3007:10.1.1.237.8935 2997:math.DG/0209099 2928: 2879:Calabi, Eugenio 2874: 2873: 2856: 2852: 2835: 2831: 2818: 2817: 2813: 2796: 2792: 2752: 2748: 2707: 2703: 2686: 2682: 2674: 2670: 2662: 2658: 2653: 2613: 2596: 2584:Victor Ginzburg 2576: 2460: 2421: 2416: 2415: 2414: 2408: 2407: 2406: 2398: 2396: 2393: 2392: 2376: 2373: 2372: 2355: 2351: 2349: 2346: 2345: 2325: 2321: 2313: 2311: 2308: 2307: 2304: 2282: 2278: 2276: 2273: 2272: 2255: 2250: 2244: 2243: 2233: 2228: 2222: 2221: 2207: 2203: 2199: 2197: 2194: 2193: 2169: 2165: 2161: 2155: 2142: 2138: 2132: 2128: 2119: 2115: 2109: 2096: 2092: 2090: 2087: 2086: 2053: 2049: 2045: 2036: 2032: 2023: 2019: 2013: 2009: 2001: 1998: 1997: 1977: 1973: 1967: 1963: 1961: 1958: 1957: 1931: 1927: 1921: 1917: 1908: 1904: 1891: 1887: 1883: 1875: 1872: 1871: 1848: 1842: 1841: 1840: 1831: 1825: 1824: 1823: 1814: 1810: 1808: 1805: 1804: 1783: 1779: 1775: 1773: 1770: 1769: 1741: 1738: 1737: 1720: 1716: 1707: 1701: 1700: 1699: 1690: 1684: 1683: 1682: 1680: 1677: 1676: 1656: 1650: 1649: 1648: 1639: 1633: 1632: 1631: 1623: 1615: 1612: 1611: 1595: 1592: 1591: 1588: 1527:mirror symmetry 1524: 1502:, which is the 1477: 1461:proper subgroup 1434: 1429: 1428: 1426: 1423: 1422: 1391: 1386: 1385: 1373: 1369: 1360: 1356: 1347: 1343: 1334: 1330: 1325: 1322: 1321: 1298: 1293: 1280: 1275: 1262: 1257: 1244: 1239: 1233: 1230: 1229: 1209: 1204: 1203: 1201: 1198: 1197: 1190: 1162: 1131: 1114: 1069: 1066: 1065: 1025: 1022: 1021: 998: 994: 992: 989: 988: 957: 954: 953: 927: 924: 923: 907: 904: 903: 878: 872: 868: 854: 853: 842: 839: 838: 792: 789: 788: 770: 767: 766: 748: 745: 744: 708: 705: 704: 683: 680: 679: 661: 658: 657: 639: 636: 635: 616: 613: 612: 596: 593: 592: 569: 566: 565: 539: 535: 533: 530: 529: 496: 493: 492: 471: 468: 467: 433: 430: 429: 400: 397: 396: 380: 377: 376: 369:structure group 349: 346: 345: 329: 326: 325: 307: 304: 303: 279: 276: 275: 259: 256: 255: 239: 236: 235: 219: 216: 215: 205:Kähler manifold 197: 134:mirror symmetry 82: 71: 65: 62: 52:Please help to 51: 35: 31: 24: 17: 12: 11: 5: 4798: 4788: 4787: 4782: 4777: 4772: 4767: 4750: 4749: 4747: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4696: 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4591: 4586: 4584:Randjbar-Daemi 4581: 4576: 4571: 4566: 4561: 4556: 4551: 4546: 4541: 4536: 4531: 4526: 4521: 4516: 4511: 4506: 4501: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4461: 4456: 4451: 4446: 4441: 4436: 4431: 4426: 4421: 4416: 4411: 4406: 4401: 4396: 4391: 4386: 4381: 4376: 4371: 4366: 4361: 4356: 4351: 4346: 4341: 4336: 4331: 4326: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4271: 4265: 4263: 4259: 4258: 4256: 4255: 4250: 4244: 4242: 4236: 4235: 4233: 4232: 4227: 4221: 4219: 4213: 4212: 4210: 4209: 4207:Lie supergroup 4204: 4199: 4194: 4189: 4184: 4179: 4174: 4168: 4166: 4160: 4159: 4157: 4156: 4151: 4146: 4141: 4136: 4131: 4126: 4121: 4116: 4115: 4114: 4109: 4104: 4100: 4099: 4098: 4088: 4078: 4073: 4067: 4062: 4057: 4051: 4049: 4045: 4044: 4042: 4041: 4033: 4028: 4023: 4018: 4011: 4004: 3997: 3990: 3982: 3977: 3972: 3967: 3961: 3959: 3953: 3952: 3950: 3949: 3944: 3939: 3934: 3929: 3924: 3919: 3914: 3909: 3903: 3901: 3895: 3894: 3892: 3891: 3886: 3884:Quiver diagram 3881: 3876: 3871: 3866: 3861: 3856: 3851: 3846: 3841: 3835: 3833: 3827: 3826: 3824: 3823: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3782: 3780: 3776: 3775: 3773: 3772: 3767: 3762: 3757: 3751: 3749: 3747:String duality 3743: 3742: 3740: 3739: 3734: 3729: 3724: 3719: 3714: 3709: 3704: 3699: 3694: 3693: 3692: 3687: 3686: 3685: 3680: 3673:Type II string 3670: 3660: 3655: 3650: 3644: 3642: 3638: 3637: 3635: 3634: 3629: 3628: 3627: 3622: 3612: 3610:Cosmic strings 3607: 3601: 3599: 3595: 3594: 3587: 3586: 3579: 3572: 3564: 3558: 3557: 3547: 3541: 3534: 3531: 3530: 3529: 3510: 3498: 3493: 3485: 3484:External links 3482: 3481: 3480: 3445: 3428:(3): 579–609, 3417: 3404: 3388:Joyce, Dominic 3384: 3360: 3341: 3336: 3323: 3302: 3276:Joyce, Dominic 3271: 3234: 3208: 3177: 3164: 3142: 3139: 3138: 3137: 3132: 3119: 3093: 3076:(3): 339–411, 3063: 3027: 2990:(3): 281–308, 2980:Hitchin, Nigel 2976: 2939: 2926: 2895: 2872: 2871: 2850: 2829: 2811: 2790: 2746: 2701: 2680: 2668: 2655: 2654: 2652: 2649: 2648: 2647: 2640: 2636:3 Body Problem 2627: 2618:Sheldon Cooper 2612: 2611:In Pop culture 2609: 2608: 2607: 2602: 2595: 2592: 2575: 2572: 2534:Hitchin (2003) 2459: 2456: 2443: 2440: 2437: 2434: 2431: 2424: 2419: 2411: 2405: 2380: 2358: 2354: 2333: 2328: 2324: 2320: 2303: 2300: 2285: 2281: 2258: 2253: 2247: 2241: 2236: 2231: 2225: 2219: 2214: 2210: 2206: 2202: 2176: 2172: 2168: 2164: 2158: 2154: 2150: 2145: 2141: 2135: 2131: 2127: 2122: 2118: 2112: 2108: 2104: 2099: 2095: 2068: 2065: 2060: 2056: 2052: 2048: 2044: 2039: 2035: 2031: 2026: 2022: 2016: 2012: 2008: 2005: 1980: 1976: 1970: 1966: 1942: 1939: 1934: 1930: 1924: 1920: 1916: 1911: 1907: 1903: 1898: 1894: 1890: 1886: 1882: 1879: 1856: 1851: 1845: 1839: 1834: 1828: 1822: 1817: 1813: 1790: 1786: 1782: 1778: 1757: 1754: 1751: 1748: 1745: 1723: 1719: 1715: 1710: 1704: 1698: 1693: 1687: 1664: 1659: 1653: 1647: 1642: 1636: 1630: 1622: 1619: 1599: 1587: 1584: 1522: 1476: 1473: 1437: 1432: 1394: 1389: 1384: 1381: 1376: 1372: 1368: 1363: 1359: 1355: 1350: 1346: 1342: 1337: 1333: 1329: 1309: 1306: 1301: 1296: 1292: 1288: 1283: 1278: 1274: 1270: 1265: 1260: 1256: 1252: 1247: 1242: 1238: 1212: 1207: 1189: 1186: 1178:elliptic curve 1172:, so that the 1161: 1158: 1150:Shing-Tung Yau 1148:and proved by 1146:Eugenio Calabi 1129: 1120:embedded in a 1113: 1110: 1109: 1108: 1100: 1097: 1085: 1082: 1079: 1076: 1073: 1053: 1050: 1047: 1044: 1041: 1038: 1035: 1032: 1029: 1007: 1004: 1001: 997: 973: 970: 967: 964: 961: 950: 943: 931: 911: 891: 888: 885: 881: 875: 871: 867: 861: 858: 852: 849: 846: 835: 813: 812: 796: 786: 774: 764: 752: 737: 724: 721: 718: 715: 712: 687: 677: 665: 655: 643: 620: 600: 591:For a compact 573: 553: 550: 547: 542: 538: 526: 525: 512: 509: 506: 503: 500: 475: 465: 449: 446: 443: 440: 437: 413: 410: 407: 404: 384: 373:tangent bundle 365: 353: 333: 323: 311: 283: 263: 243: 223: 201:Shing-Tung Yau 196: 193: 118:Ricci flatness 84: 83: 38: 36: 29: 15: 9: 6: 4: 3: 2: 4797: 4786: 4783: 4781: 4780:String theory 4778: 4776: 4773: 4771: 4768: 4766: 4763: 4762: 4760: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4729:Zamolodchikov 4727: 4725: 4724:Zamolodchikov 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4590: 4587: 4585: 4582: 4580: 4577: 4575: 4572: 4570: 4567: 4565: 4562: 4560: 4557: 4555: 4552: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4505: 4502: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4445: 4442: 4440: 4437: 4435: 4432: 4430: 4427: 4425: 4422: 4420: 4417: 4415: 4412: 4410: 4407: 4405: 4402: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4365: 4362: 4360: 4357: 4355: 4352: 4350: 4347: 4345: 4342: 4340: 4337: 4335: 4332: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4266: 4264: 4260: 4254: 4251: 4249: 4248:Matrix theory 4246: 4245: 4243: 4241: 4237: 4231: 4228: 4226: 4223: 4222: 4220: 4218: 4214: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4169: 4167: 4165: 4164:Supersymmetry 4161: 4155: 4152: 4150: 4147: 4145: 4142: 4140: 4137: 4135: 4132: 4130: 4127: 4125: 4122: 4120: 4117: 4113: 4110: 4108: 4101: 4097: 4094: 4093: 4092: 4089: 4087: 4084: 4083: 4082: 4079: 4077: 4074: 4071: 4068: 4066: 4063: 4061: 4058: 4056: 4053: 4052: 4050: 4046: 4040: 4038: 4034: 4032: 4029: 4027: 4024: 4021: 4014: 4007: 4000: 3993: 3986: 3983: 3981: 3978: 3976: 3973: 3971: 3968: 3966: 3963: 3962: 3960: 3958: 3954: 3948: 3945: 3943: 3940: 3938: 3935: 3933: 3930: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3908: 3905: 3904: 3902: 3900: 3896: 3890: 3887: 3885: 3882: 3880: 3877: 3875: 3872: 3870: 3867: 3865: 3862: 3860: 3857: 3855: 3852: 3850: 3847: 3845: 3842: 3840: 3837: 3836: 3834: 3832: 3828: 3822: 3819: 3817: 3816:Dual graviton 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3783: 3781: 3777: 3771: 3768: 3766: 3763: 3761: 3758: 3756: 3753: 3752: 3750: 3748: 3744: 3738: 3735: 3733: 3732:RNS formalism 3730: 3728: 3725: 3723: 3720: 3718: 3715: 3713: 3710: 3708: 3705: 3703: 3700: 3698: 3695: 3691: 3688: 3684: 3681: 3679: 3676: 3675: 3674: 3671: 3669: 3668:Type I string 3666: 3665: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3645: 3643: 3639: 3633: 3630: 3626: 3623: 3621: 3618: 3617: 3616: 3613: 3611: 3608: 3606: 3603: 3602: 3600: 3596: 3592: 3591:String theory 3585: 3580: 3578: 3573: 3571: 3566: 3565: 3562: 3555: 3551: 3548: 3546: 3542: 3540: 3537: 3536: 3525: 3524: 3519: 3516: 3511: 3508: 3504: 3503: 3499: 3497: 3494: 3491: 3488: 3487: 3478: 3475:(similar to ( 3472: 3467: 3463: 3459: 3455: 3451: 3446: 3443: 3439: 3435: 3431: 3427: 3423: 3418: 3415: 3411: 3407: 3401: 3397: 3393: 3389: 3385: 3376:on 2010-01-13 3375: 3371: 3367: 3363: 3357: 3353: 3349: 3348: 3342: 3339: 3333: 3329: 3324: 3321: 3317: 3313: 3309: 3305: 3299: 3294: 3289: 3285: 3281: 3277: 3272: 3269: 3265: 3261: 3257: 3252: 3247: 3243: 3239: 3238:Greene, Brian 3235: 3232: 3228: 3223: 3218: 3214: 3209: 3206: 3202: 3197: 3192: 3185: 3184: 3178: 3175: 3171: 3167: 3161: 3157: 3153: 3149: 3145: 3144: 3135: 3129: 3125: 3120: 3117: 3113: 3108: 3103: 3099: 3094: 3091: 3087: 3083: 3079: 3075: 3071: 3070: 3064: 3061: 3057: 3053: 3049: 3045: 3041: 3037: 3033: 3032:Invent. Math. 3028: 3025: 3021: 3017: 3013: 3008: 3003: 2998: 2993: 2989: 2985: 2981: 2977: 2973: 2969: 2965: 2961: 2957: 2953: 2949: 2945: 2940: 2937: 2933: 2929: 2927:9780691079073 2923: 2919: 2915: 2914: 2909: 2905: 2901: 2900:Fox, Ralph H. 2896: 2893:on 2011-07-17 2892: 2888: 2884: 2880: 2876: 2875: 2866: 2861: 2854: 2845: 2840: 2833: 2825: 2821: 2815: 2806: 2801: 2794: 2786: 2782: 2778: 2774: 2770: 2766: 2765: 2760: 2756: 2750: 2742: 2738: 2734: 2730: 2725: 2720: 2716: 2712: 2705: 2696: 2691: 2684: 2677: 2672: 2665: 2660: 2656: 2645: 2641: 2638: 2637: 2632: 2628: 2625: 2624: 2623:Young Sheldon 2619: 2615: 2614: 2606: 2603: 2601: 2598: 2597: 2591: 2589: 2585: 2581: 2571: 2568: 2567:Edward Witten 2564: 2559: 2557: 2551: 2549: 2545: 2541: 2539: 2535: 2531: 2527: 2523: 2519: 2514: 2512: 2508: 2504: 2503:supersymmetry 2500: 2496: 2492: 2488: 2487:string theory 2483: 2481: 2477: 2473: 2469: 2465: 2455: 2435: 2432: 2422: 2378: 2356: 2352: 2326: 2322: 2299: 2283: 2279: 2256: 2251: 2239: 2234: 2229: 2217: 2212: 2208: 2204: 2189: 2174: 2170: 2166: 2156: 2152: 2148: 2143: 2139: 2133: 2129: 2125: 2120: 2110: 2106: 2102: 2097: 2093: 2083: 2079: 2066: 2058: 2054: 2050: 2037: 2024: 2014: 2010: 2003: 1994: 1978: 1974: 1968: 1964: 1953: 1940: 1932: 1928: 1922: 1918: 1909: 1905: 1896: 1892: 1888: 1884: 1877: 1868: 1849: 1837: 1832: 1815: 1811: 1788: 1784: 1780: 1776: 1755: 1749: 1746: 1743: 1721: 1717: 1713: 1708: 1696: 1691: 1657: 1645: 1640: 1620: 1617: 1597: 1583: 1581: 1576: 1574: 1570: 1565: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1530: 1528: 1521: 1517: 1513: 1509: 1505: 1501: 1500: 1495: 1491: 1487: 1483: 1475:CY threefolds 1472: 1470: 1466: 1462: 1457: 1453: 1435: 1420: 1415: 1413: 1407: 1392: 1382: 1374: 1370: 1366: 1361: 1357: 1353: 1348: 1344: 1340: 1335: 1331: 1307: 1304: 1299: 1294: 1290: 1286: 1281: 1276: 1272: 1268: 1263: 1258: 1254: 1250: 1245: 1240: 1236: 1226: 1210: 1195: 1185: 1183: 1179: 1175: 1171: 1167: 1157: 1155: 1151: 1147: 1143: 1139: 1135: 1127: 1123: 1119: 1106: 1101: 1098: 1080: 1074: 1071: 1048: 1042: 1039: 1036: 1033: 1030: 1027: 1005: 1002: 999: 995: 987: 986:Hodge numbers 968: 962: 959: 951: 948: 944: 929: 909: 886: 883: 879: 873: 869: 865: 850: 836: 833: 832: 831: 828: 826: 821: 818: 810: 794: 787: 772: 765: 750: 742: 738: 735: 719: 713: 710: 702:contained in 701: 685: 678: 663: 656: 641: 634: 633: 632: 618: 598: 589: 587: 571: 548: 540: 536: 523: 507: 501: 498: 490:contained in 489: 473: 466: 463: 444: 438: 435: 427: 426:unitary group 408: 402: 382: 374: 370: 366: 351: 331: 324: 309: 301: 297: 296: 295: 281: 261: 241: 221: 212: 208: 206: 202: 192: 190: 186: 182: 178: 174: 170: 165: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 90: 80: 77: 69: 59: 55: 49: 48: 42: 37: 28: 27: 22: 4274:Arkani-Hamed 4172:Supergravity 4139:Moduli space 4085: 4036: 4031:Dirac string 3957:Gauge theory 3937:Loop algebra 3874:Black string 3737:GS formalism 3521: 3500: 3453: 3450:Scholarpedia 3449: 3425: 3421: 3391: 3378:, retrieved 3374:the original 3346: 3327: 3279: 3241: 3222:math/0410260 3212: 3182: 3151: 3123: 3097: 3073: 3067: 3038:(1): 27–60, 3035: 3031: 2987: 2983: 2972:the original 2951: 2947: 2912: 2891:the original 2886: 2853: 2844:math/0612139 2832: 2824:the original 2814: 2793: 2768: 2762: 2758: 2749: 2714: 2710: 2704: 2683: 2671: 2659: 2634: 2621: 2579: 2577: 2560: 2552: 2542: 2521: 2517: 2515: 2498: 2484: 2461: 2305: 2191: 2085: 2081: 1996: 1955: 1870: 1589: 1577: 1566: 1561: 1557: 1553: 1549: 1545: 1541: 1533: 1531: 1519: 1511: 1498: 1478: 1416: 1409: 1228: 1191: 1163: 1141: 1137: 1133: 1115: 829: 822: 814: 590: 527: 213: 209: 198: 166: 109: 105: 95: 72: 63: 44: 4634:Silverstein 4134:Orientifold 3869:Black holes 3864:Black brane 3821:Dual photon 3556:Calabi-Yau) 3456:(8): 6524, 2755:Reid, Miles 2717:: 137–148. 2644:Half-Life 2 2605:G2 manifold 1194:K3 surfaces 1170:flat metric 1020:vanish for 820:surfaces). 763:is trivial. 322:is trivial. 195:Definitions 189:Chern class 173:K3 surfaces 58:introducing 4759:Categories 4654:Strominger 4649:Steinhardt 4644:Staudacher 4559:Polchinski 4509:Nanopoulos 4469:Mandelstam 4449:Kontsevich 4289:Berenstein 4217:Holography 4197:Superspace 4096:K3 surface 4055:Worldsheet 3970:Instantons 3598:Background 3380:2009-02-04 3196:1612.04311 2805:1503.07349 2724:2002.04879 2695:1810.08953 2651:References 2472:braneworld 1508:polynomial 1482:Miles Reid 1105:Gorenstein 181:dimensions 41:references 4689:Veneziano 4569:Rajaraman 4464:Maldacena 4354:Gopakumar 4304:Dijkgraaf 4299:Curtright 3965:Anomalies 3844:NS5-brane 3765:U-duality 3760:S-duality 3755:T-duality 3523:MathWorld 3477:Yau 2009a 3060:122638262 3002:CiteSeerX 2954:: 46–74, 2865:1212.0914 2785:120390363 2631:episode 5 2491:fibration 2433:− 2353:ω 2323:ω 2280:ω 2257:∗ 2240:⊕ 2235:∗ 2218:≅ 2201:Ω 2163:Ω 2153:⋀ 2149:⊗ 2140:ω 2134:∗ 2126:≅ 2117:Ω 2107:⋀ 2094:ω 2064:→ 2047:Ω 2043:→ 2034:Ω 2030:→ 2021:Ω 2015:∗ 2007:→ 1969:∗ 1938:→ 1923:∗ 1915:→ 1902:→ 1881:→ 1838:⊕ 1816:∗ 1753:→ 1718:ω 1714:≅ 1697:⊗ 1646:⊕ 1486:conifolds 1383:∈ 1182:algebraic 1043:⁡ 910:ω 870:ω 866:− 860:¯ 857:Ω 851:∧ 848:Ω 130:spacetime 98:algebraic 66:July 2018 4744:Zwiebach 4699:Verlinde 4694:Verlinde 4669:Townsend 4664:Susskind 4599:Sagnotti 4564:Polyakov 4519:Nekrasov 4484:Minwalla 4479:Martinec 4444:Knizhnik 4439:Klebanov 4434:Kapustin 4399:'t Hooft 4334:Fischler 4269:Aganagić 4240:M-theory 4129:Conifold 4124:Orbifold 4107:manifold 4048:Geometry 3854:M5-brane 3849:M2-brane 3786:Graviton 3702:F-theory 3414:43864470 3390:(2000), 3370:34989218 3320:50695398 3278:(2003), 3240:(1997), 3174:13793300 3150:(1987), 2910:(eds.), 2881:(1954), 2594:See also 2556:families 2544:F-theory 2511:holonomy 1538:zero set 1174:holonomy 1112:Examples 700:holonomy 488:holonomy 140:, after 114:manifold 4674:Trivedi 4659:Sundrum 4624:Shenker 4614:Seiberg 4609:Schwarz 4579:Randall 4539:Novikov 4529:Nielsen 4514:Năstase 4424:Kallosh 4409:Gibbons 4349:Gliozzi 4339:Friedan 4329:Ferrara 4314:Douglas 4309:Distler 3859:S-brane 3839:D-brane 3796:Tachyon 3791:Dilaton 3605:Strings 3458:Bibcode 3442:1990928 3312:1963559 3268:1479700 3256:Bibcode 3227:Bibcode 3201:Bibcode 3116:2537089 3090:0480350 3040:Bibcode 3024:2013140 2956:Bibcode 2936:0085583 2741:1070427 2476:D-brane 371:of the 156: ( 144: ( 54:improve 4739:Zumino 4734:Zaslow 4719:Yoneya 4709:Witten 4629:Siegel 4604:Scherk 4574:Ramond 4549:Ooguri 4474:Marolf 4429:Kaluza 4414:Kachru 4404:Hořava 4394:Harvey 4389:Hanson 4374:Gubser 4364:Greene 4294:Bousso 4279:Atiyah 3831:Branes 3641:Theory 3440:  3412:  3402:  3368:  3358:  3334:  3318:  3310:  3300:  3266:  3172:  3162:  3130:  3114:  3088:  3058:  3022:  3004:  2934:  2924:  2783:  2739:  2507:fluxes 1675:where 1536:, the 460:, the 424:, the 43:, but 4679:Turok 4589:Roček 4554:Ovrut 4544:Olive 4524:Neveu 4504:Myers 4499:Mukhi 4489:Moore 4459:Linde 4454:Klein 4379:Gukov 4369:Gross 4359:Green 4344:Gates 4324:Dvali 4284:Banks 3438:JSTOR 3246:arXiv 3217:arXiv 3191:arXiv 3187:(PDF) 3056:S2CID 2992:arXiv 2860:arXiv 2839:arXiv 2800:arXiv 2781:S2CID 2737:S2CID 2719:arXiv 2690:arXiv 1152:(see 428:, to 4704:Wess 4684:Vafa 4594:Rohm 4494:Motl 4419:Kaku 4384:Guth 4319:Duff 3410:OCLC 3400:ISBN 3366:OCLC 3356:ISBN 3332:ISBN 3316:OCLC 3298:ISBN 3170:OCLC 3160:ISBN 3128:ISBN 2922:ISBN 2565:and 2192:and 1578:All 1454:and 1320:for 1166:tori 1037:< 1031:< 367:The 298:The 158:1978 150:1957 146:1954 104:, a 100:and 4714:Yau 4639:Sơn 4619:Sen 3552:- ( 3466:doi 3430:doi 3288:doi 3102:doi 3078:doi 3048:doi 3036:106 3012:doi 2964:doi 2952:258 2773:doi 2769:278 2729:doi 2642:In 2554:or 2400:Tot 2315:Tot 1803:is 1625:Tot 1496:in 1156:). 1040:dim 743:of 564:of 375:of 302:of 96:In 4761:: 4015:, 4008:, 4001:, 3994:, 3520:. 3479:)) 3464:, 3452:, 3436:, 3424:, 3408:, 3398:, 3394:, 3364:, 3354:, 3314:, 3308:MR 3306:, 3296:, 3286:, 3264:MR 3262:, 3254:, 3225:, 3215:, 3199:, 3189:, 3168:, 3158:, 3112:MR 3110:, 3086:MR 3084:, 3074:31 3072:, 3054:, 3046:, 3034:, 3020:MR 3018:, 3010:, 3000:, 2988:54 2986:, 2962:, 2950:, 2946:, 2932:MR 2930:, 2906:; 2902:; 2885:, 2779:. 2767:. 2735:. 2727:. 2715:42 2713:. 2590:. 2578:A 2550:. 2540:. 2482:. 2298:. 1575:. 1542:CP 1529:. 1512:CP 1499:CP 1471:. 1414:. 1184:. 164:. 148:, 4105:2 4103:G 4072:? 4037:p 4022:) 4019:8 4017:E 4012:7 4010:E 4005:6 4003:E 3998:4 3996:F 3991:2 3989:G 3987:( 3583:e 3576:t 3569:v 3526:. 3509:. 3468:: 3460:: 3454:4 3432:: 3426:3 3290:: 3258:: 3248:: 3229:: 3219:: 3203:: 3193:: 3104:: 3080:: 3050:: 3042:: 3014:: 2994:: 2966:: 2958:: 2868:. 2862:: 2847:. 2841:: 2808:. 2802:: 2787:. 2775:: 2759:K 2743:. 2731:: 2721:: 2698:. 2692:: 2678:. 2666:. 2626:. 2522:n 2518:n 2499:n 2442:) 2439:) 2436:3 2430:( 2423:2 2418:P 2410:O 2404:( 2379:S 2357:S 2332:) 2327:S 2319:( 2284:V 2252:2 2246:L 2230:1 2224:L 2213:C 2209:/ 2205:V 2175:C 2171:/ 2167:V 2157:2 2144:C 2130:f 2121:V 2111:3 2103:= 2098:V 2067:0 2059:C 2055:/ 2051:V 2038:V 2025:C 2011:p 2004:0 1979:C 1975:T 1965:p 1941:0 1933:C 1929:T 1919:p 1910:V 1906:T 1897:C 1893:/ 1889:V 1885:T 1878:0 1855:) 1850:2 1844:L 1833:1 1827:L 1821:( 1812:p 1789:C 1785:/ 1781:V 1777:T 1756:C 1750:V 1747:: 1744:p 1722:C 1709:2 1703:L 1692:1 1686:L 1663:) 1658:2 1652:L 1641:1 1635:L 1629:( 1621:= 1618:V 1598:C 1562:n 1558:n 1554:n 1550:n 1546:n 1534:n 1523:5 1520:Z 1436:4 1431:T 1393:3 1388:P 1380:] 1375:3 1371:x 1367:: 1362:2 1358:x 1354:: 1349:1 1345:x 1341:: 1336:0 1332:x 1328:[ 1308:0 1305:= 1300:4 1295:3 1291:x 1287:+ 1282:4 1277:2 1273:x 1269:+ 1264:4 1259:1 1255:x 1251:+ 1246:4 1241:0 1237:x 1211:3 1206:P 1142:R 1140:, 1138:X 1136:( 1134:H 1130:X 1084:) 1081:2 1078:( 1075:U 1072:S 1052:) 1049:M 1046:( 1034:i 1028:0 1006:0 1003:, 1000:i 996:h 972:) 969:n 966:( 963:U 960:S 942:. 930:g 890:) 887:! 884:n 880:/ 874:n 845:( 795:M 773:M 751:M 736:. 723:) 720:n 717:( 714:U 711:S 686:M 664:M 642:M 619:M 599:n 572:M 552:) 549:M 546:( 541:1 537:c 524:. 511:) 508:n 505:( 502:U 499:S 474:M 464:. 448:) 445:n 442:( 439:U 436:S 412:) 409:n 406:( 403:U 383:M 352:n 332:M 310:M 282:M 262:n 242:n 222:n 79:) 73:( 68:) 64:( 50:. 23:.

Index

Calabi-Yau (play)
references
inline citations
improve
introducing
Learn how and when to remove this message

algebraic
differential geometry
manifold
Ricci flatness
theoretical physics
superstring theory
spacetime
mirror symmetry
Candelas et al. (1985)
Eugenio Calabi
1954
1957
Shing-Tung Yau
1978
Calabi conjecture
complex manifolds
K3 surfaces
complex dimensions
dimensions
Kähler manifolds
Chern class
Shing-Tung Yau
Kähler manifold

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.