Knowledge

Fundamental theorem of arithmetic

Source 📝

1749: 4861: 1046: 1744:{\displaystyle {\begin{alignedat}{2}a\cdot b&=2^{a_{1}+b_{1}}3^{a_{2}+b_{2}}5^{a_{3}+b_{3}}7^{a_{4}+b_{4}}\cdots &&=\prod p_{i}^{a_{i}+b_{i}},\\\gcd(a,b)&=2^{\min(a_{1},b_{1})}3^{\min(a_{2},b_{2})}5^{\min(a_{3},b_{3})}7^{\min(a_{4},b_{4})}\cdots &&=\prod p_{i}^{\min(a_{i},b_{i})},\\\operatorname {lcm} (a,b)&=2^{\max(a_{1},b_{1})}3^{\max(a_{2},b_{2})}5^{\max(a_{3},b_{3})}7^{\max(a_{4},b_{4})}\cdots &&=\prod p_{i}^{\max(a_{i},b_{i})}.\end{alignedat}}} 42: 3308: 4337:
The famous physicist and mathematician Kamal al-Din al-Farisi compiled a paper in which he set out deliberately to prove the theorem of Ibn Qurra in an algebraic way. This forced him to an understanding of the first arithmetical functions and to a full preparation which led him to state for the first
4165:
Any commutative Möbius monoid satisfies a unique factorization theorem and thus possesses arithmetical properties similar to those of the multiplicative semigroup of positive integers. Fundamental Theorem of Arithmetic is, in fact, a special case of the unique factorization theorem in commutative
253: 4440:
has been translated from Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.
3273:
Therefore, there cannot exist a smallest integer with more than a single distinct prime factorization. Every positive integer must either be a prime number itself, which would factor uniquely, or a composite that also factors uniquely into primes, or in the case of the integer
4283:, p. 5): "Even in Euclid, we fail to find a general statement about the uniqueness of the factorization of an integer into primes; surely he may have been aware of it, but all he has is a statement (Eucl.IX.I4) about the l.c.m. of any number of given primes." 2423: 985: 735: 3750: 540:
of several prime numbers is not a multiple of any other prime number.) Book IX, proposition 14 is derived from Book VII, proposition 30, and proves partially that the decomposition is unique – a point critically noted by
97: 4306:
One could say that Euclid takes the first step on the way to the existence of prime factorization, and al-Farisi takes the final step by actually proving the existence of a finite prime factorization in his first
4488:
The two monographs Gauss published on biquadratic reciprocity have consecutively numbered sections: the first contains §§ 1–23 and the second §§ 24–76. Footnotes referencing these are of the form "Gauss, BQ, §
2971: 2319: 3527: 374: 3616: 4689: 410:. The implicit use of unique factorization in rings of algebraic integers is behind the error of many of the numerous false proofs that have been written during the 358 years between 2733: 311: 3429:, that the non-zero, non-unit numbers fall into two classes, primes and composites, and that (except for order), the composites have unique factorization as a product of primes ( 2684: 3951: 3911: 3867: 3793: 2588: 2314: 2788: 17: 2831: 2635: 262:
be represented as a product of primes, and second, that no matter how this is done, there will always be exactly four 2s, one 3, two 5s, and no other primes in the product.
4108: 4067: 3976: 3560: 3423: 4033: 4002: 3657: 3473: 3184: 2526: 3807:
must be a unit. This is the traditional definition of "prime". It can also be proven that none of these factors obeys Euclid's lemma; for example, 2 divides neither (1 +
3045: 847: 2860: 3214: 3114: 2483: 599: 3268: 3241: 3141: 3084: 3005: 2453: 3292: 2306: 2282: 2262: 2237:
The fundamental theorem of arithmetic can also be proved without using Euclid's lemma. The proof that follows is inspired by Euclid's original version of the
4320: 3665: 440:
If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.
3325: 522:
If a number be the least that is measured by prime numbers, it will not be measured by any other prime number except those originally measuring it.
248:{\displaystyle 1200=2^{4}\cdot 3^{1}\cdot 5^{2}=(2\cdot 2\cdot 2\cdot 2)\cdot 3\cdot (5\cdot 5)=5\cdot 2\cdot 5\cdot 2\cdot 3\cdot 2\cdot 2=\ldots } 1758:, especially of large numbers, is much more difficult than computing products, GCDs, or LCMs. So these formulas have limited use in practice. 415: 4804: 496:(In modern terminology: every integer greater than one is divided evenly by some prime number.) Proposition 31 is proved directly by 4151:, special subsets of rings. Multiplication is defined for ideals, and the rings in which they have unique factorization are called 774:
are positive integers. This representation is commonly extended to all positive integers, including 1, by the convention that the
4713: 2868: 2264:
is the smallest positive integer which is the product of prime numbers in two different ways. Incidentally, this implies that
5212: 4698: 4602: 4561: 4461: 4267:, the factorization into prime elements may be non unique, but one can recover a unique factorization if one factors into 1051: 4472:
Untersuchungen über hohere Arithmetik (Disquisitiones Arithemeticae & other papers on number theory) (Second edition)
323: 4528:, Vol II, pp. 65–92 and 93–148; German translations are pp. 511–533 and 534–586 of the German edition of the 3573: 3478: 4678: 4479: 4395: 4330: 3347: 5047: 4453: 553: 426:
The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of
35: 4860: 4755: 3329: 31: 4797: 5217: 4733: 545:. Indeed, in this proposition the exponents are all equal to one, so nothing is said for the general case. 56: 2689: 2418:{\displaystyle {\begin{aligned}s&=p_{1}p_{2}\cdots p_{m}\\&=q_{1}q_{2}\cdots q_{n}.\end{aligned}}} 272: 4436: 4113: 2643: 565: 383: 47: 5001: 5037: 4264: 3916: 3876: 3832: 3758: 3621:
However, it was also discovered that unique factorization does not always hold. An example is given by
2531: 1772:
Many arithmetic functions are defined using the canonical representation. In particular, the values of
4447: 2738: 5022: 2793: 2597: 497: 4751: 3795:
it can be proven that if any of the factors above can be represented as a product, for example, 2 =
4790: 4741: 4737: 4072: 4038: 3982:
a prime must be irreducible. Euclid's classical lemma can be rephrased as "in the ring of integers
3956: 3532: 3394: 407: 5166: 4728: 4007: 3985: 3624: 3447: 3146: 2488: 980:{\displaystyle n=2^{n_{1}}3^{n_{2}}5^{n_{3}}7^{n_{4}}\cdots =\prod _{i=1}^{\infty }p_{i}^{n_{i}},} 5176: 5042: 4966: 4775: 4632: 4594: 3822: 3361: 3318: 3010: 1777: 1017: 406:. This failure of unique factorization is one of the reasons for the difficulty of the proof of 5222: 5027: 4986: 4129: 730:{\displaystyle n=p_{1}^{n_{1}}p_{2}^{n_{2}}\cdots p_{k}^{n_{k}}=\prod _{i=1}^{k}p_{i}^{n_{i}},} 387: 1990:
Suppose, to the contrary, there is an integer that has two distinct prime factorizations. Let
518:
Proposition 32 is derived from proposition 31, and proves that the decomposition is possible.
4956: 4825: 4175: 2836: 1755: 1021: 537: 3189: 3089: 2458: 317: 5130: 5032: 4612: 3246: 3219: 3119: 3062: 2983: 2431: 560: 432: 52: 4620: 8: 5191: 5186: 4981: 4976: 4961: 4900: 4586: 4549: 4268: 4148: 4121: 3826: 3441: 2238: 1767: 556:
took the final step and stated for the first time the fundamental theorem of arithmetic.
399: 379: 5115: 5110: 5071: 4991: 4971: 4159: 3567: 3360:
The first generalization of the theorem is found in Gauss's second monograph (1832) on
3277: 2291: 2267: 2247: 570: 4782: 2217:. We now have two distinct prime factorizations of some integer strictly smaller than 5151: 5091: 4694: 4674: 4657: 4636: 4598: 4582: 4557: 4542: 4475: 4457: 4391: 4326: 3437: 2122: 1789: 1773: 475: 403: 4112:
The rings in which factorization into irreducibles is essentially unique are called
320:: if 1 were prime, then factorization into primes would not be unique; for example, 5181: 5156: 5076: 5062: 4996: 4880: 4840: 4616: 4144: 4125: 3369: 2285: 1817: 838: 411: 391: 266: 3745:{\displaystyle 6=2\cdot 3=\left(1+{\sqrt {-5}}\right)\left(1-{\sqrt {-5}}\right).} 265:
The requirement that the factors be prime is necessary: factorizations containing
5161: 5086: 5080: 5017: 4915: 4905: 4835: 4718: 4608: 4181: 4152: 4117: 3979: 1800:
the product of two integers, then it must divide at least one of these integers.
1005: 395: 5171: 5125: 4951: 4935: 4925: 4895: 4294: 3373: 4763: 5206: 5120: 4920: 4910: 4890: 4653: 3870: 3563: 775: 3913:(if it divides a product it must divide one of the factors). The mention of 542: 5135: 5052: 4930: 4875: 4845: 4745: 4722: 4590: 4574: 4140: 4136: 478:, and it is the key in the proof of the fundamental theorem of arithmetic. 84: 4771: 4570: 3365: 1780:
functions are determined by their values on the powers of prime numbers.
64: 1836:
is prime, there is nothing more to prove. Otherwise, there are integers
552:
took the first step on the way to the existence of prime factorization,
3332: in this section. Unsourced material may be challenged and removed. 4162:, though it requires some additional conditions to ensure uniqueness. 4885: 4690:
Number Theory: An Approach through History from Hammurapi to Legendre
4671:
Prime Numbers and Computer Methods for Factorization (second edition)
2594:
and has two distinct prime factorizations. One may also suppose that
1032:
can be expressed simply in terms of the canonical representations of
41: 3307: 837:). In fact, any positive integer can be uniquely represented as an 3755:
Examples like this caused the notion of "prime" to be modified. In
1004:
Allowing negative exponents provides a canonical form for positive
593:
can be represented in exactly one way as a product of prime powers
55:
proved the unique factorization theorem and used it to prove the
4830: 4640: 4292: 1797: 581: 258:
The theorem says two things about this example: first, that 1200
80: 4661: 4388:
Why Prove it Again? Alternative Proofs in Mathematical Practice.
504:
Any number either is prime or is measured by some prime number.
4537: 549: 427: 4295:"A Historical Survey of the Fundamental Theorem of Arithmetic" 5101: 4553: 3430: 88: 4184: – Multiset of prime exponents in a prime factorization 83:
greater than 1 can be represented uniquely as a product of
4474:(in German), translated by Maser, H., New York: Chelsea, 2980:
have been supposed to have a unique prime factorization,
4714:
Why isn’t the fundamental theorem of arithmetic obvious?
4449:
Disquisitiones Arithemeticae (Second, corrected edition)
2966:{\displaystyle s-p_{1}Q=(q_{1}-p_{1})Q=p_{1}(P-Q)<s.} 4812: 4517:
Theoria residuorum biquadraticorum, Commentatio secunda
482:
Any composite number is measured by some prime number.
4729:
PlanetMath: Proof of fundamental theorem of arithmetic
4693:, Modern Birkhäuser Classics, Boston, MA: Birkhäuser, 3481: 4508:
Theoria residuorum biquadraticorum, Commentatio prima
4075: 4041: 4010: 3988: 3978:
Using these definitions it can be proven that in any
3959: 3919: 3879: 3835: 3761: 3668: 3627: 3576: 3535: 3450: 3397: 3280: 3249: 3222: 3192: 3149: 3122: 3092: 3065: 3013: 2986: 2871: 2839: 2796: 2741: 2692: 2646: 2600: 2534: 2491: 2461: 2434: 2317: 2294: 2270: 2250: 1049: 850: 602: 326: 275: 100: 3425:
He showed that this ring has the four units ±1 and ±
2232: 4648:Pettofrezzo, Anthony J.; Byrkit, Donald R. (1970), 2183:, we may cancel these two factors to conclude that 1820:, assume this is true for all numbers greater than 4541: 4519:, Göttingen: Comment. Soc. regiae sci, Göttingen 7 4510:, Göttingen: Comment. Soc. regiae sci, Göttingen 6 4199: 4197: 4102: 4061: 4027: 4004:every irreducible is prime". This is also true in 3996: 3970: 3953:is required because 2 is prime and irreducible in 3945: 3905: 3861: 3787: 3744: 3651: 3610: 3554: 3522:{\textstyle \omega ={\frac {-1+{\sqrt {-3}}}{2}},} 3521: 3467: 3417: 3286: 3262: 3235: 3208: 3178: 3135: 3108: 3078: 3039: 2999: 2965: 2854: 2825: 2782: 2727: 2678: 2629: 2582: 2520: 2477: 2447: 2417: 2300: 2276: 2256: 1743: 979: 729: 369:{\displaystyle 2=2\cdot 1=2\cdot 1\cdot 1=\ldots } 368: 305: 247: 4647: 4361: 4239: 3611:{\displaystyle \pm 1,\pm \omega ,\pm \omega ^{2}} 2637:by exchanging the two factorizations, if needed. 1808:It must be shown that every integer greater than 1001:are positive integers, and the others are zero. 569:is an early modern statement and proof employing 5204: 4734:Fermat's Last Theorem Blog: Unique Factorization 4552:(Second Edition Unabridged ed.), New York: 4178: – Decomposition of a number into a product 1812:is either prime or a product of primes. First, 1700: 1642: 1603: 1564: 1525: 1451: 1393: 1354: 1315: 1276: 1246: 778:is equal to 1 (the empty product corresponds to 4194: 3364:. This paper introduced what is now called the 3059:, must have a unique prime factorization, and 1016:The canonical representations of the product, 841:taken over all the positive prime numbers, as 827:may be inserted without changing the value of 582:Canonical representation of a positive integer 318:reasons why 1 is not considered a prime number 18:Canonical representation of a positive integer 4798: 4719:GCD and the Fundamental Theorem of Arithmetic 4452:, translated by Clarke, Arthur A., New York: 4322:Encyclopedia of the History of Arabic Science 3869:(only divisible by itself or a unit) but not 3821:) even though it divides their product 6. In 2528:then there would exist some positive integer 4548:, vol. 2 (Books III-IX), Translated by 4569: 4536: 4420: 4373: 4338:time the fundamental theorem of arithmetic. 4251: 3116:The former case is also impossible, as, if 528: 510: 488: 474:or both.) Proposition 30 is referred to as 446: 4805: 4791: 3007:must occur in the factorization of either 4077: 4043: 4012: 3990: 3961: 3921: 3881: 3837: 3763: 3629: 3452: 3399: 3348:Learn how and when to remove this message 402:. However, the theorem does not hold for 27:Integers have unique prime factorizations 4629:Elementary Introduction to Number Theory 4579:An Introduction to the Theory of Numbers 3433:the order and multiplication by units). 1011: 40: 4293:A. Goksel Agargun and E. Mehmet Özkan. 1761: 91:the order of the factors. For example, 14: 5205: 4668: 4385: 4318: 3618:and that it has unique factorization. 2223:, which contradicts the minimality of 4786: 4514: 4505: 4469: 4445: 4409: 4215: 4203: 3570:, and he proved it has the six units 2177:. Returning to our factorizations of 4736:, a blog that covers the history of 4686: 4626: 4349: 4280: 4227: 3436:Similarly, in 1844 while working on 3330:adding citations to reliable sources 3301: 3051:. The latter case is impossible, as 2728:{\displaystyle Q=q_{2}\cdots q_{n},} 1996:be the least such integer and write 454:(In modern terminology: if a prime 306:{\displaystyle 12=2\cdot 6=3\cdot 4} 4813:Divisibility-based sets of integers 4752:"Fundamental Theorem of Arithmetic" 3391:are integers. It is now denoted by 2976:As the positive integers less than 2679:{\displaystyle P=p_{2}\cdots p_{m}} 24: 4544:The thirteen books of the Elements 3297: 2125:. Without loss of generality, say 947: 788:This representation is called the 25: 5234: 4851:Fundamental theorem of arithmetic 4761: 4707: 4497:are of the form "Gauss, DA, Art. 4160:unique factorization for ordinals 4147:(1876) into the modern theory of 4143:, which was developed further by 3946:{\displaystyle \mathbb {Z} \left} 3906:{\displaystyle \mathbb {Z} \left} 3862:{\displaystyle \mathbb {Z} \left} 3788:{\displaystyle \mathbb {Z} \left} 2583:{\displaystyle t=s/p_{i}=s/q_{j}} 2233:Uniqueness without Euclid's lemma 1929:are products of primes. But then 378:The theorem generalizes to other 269:may not be unique (for example, 69:fundamental theorem of arithmetic 4859: 3306: 2783:{\displaystyle s=p_{1}P=q_{1}Q.} 2161:are both prime, it follows that 1873:. By the induction hypothesis, 316:This theorem is one of the main 4778:from the original on 2021-12-11 4414: 4403: 4379: 4367: 4355: 4343: 3317:needs additional citations for 2826:{\displaystyle p_{1}<q_{1},} 2630:{\displaystyle p_{1}<q_{1},} 576: 36:Fundamental theorem of calculus 4756:Wolfram Demonstrations Project 4515:Gauss, Carl Friedrich (1832), 4506:Gauss, Carl Friedrich (1828), 4470:Gauss, Carl Friedrich (1965), 4446:Gauss, Carl Friedrich (1986), 4362:Pettofrezzo & Byrkit (1970 4312: 4286: 4274: 4257: 4245: 4240:Pettofrezzo & Byrkit (1970 4233: 4221: 4209: 4094: 4081: 4053: 4047: 4022: 4016: 3646: 3633: 3462: 3456: 3409: 3403: 2951: 2939: 2920: 2894: 1729: 1703: 1671: 1645: 1632: 1606: 1593: 1567: 1554: 1528: 1510: 1498: 1480: 1454: 1422: 1396: 1383: 1357: 1344: 1318: 1305: 1279: 1261: 1249: 194: 182: 170: 146: 32:Fundamental theorem of algebra 13: 1: 4493:". Footnotes referencing the 4429: 4319:Rashed, Roshdi (2002-09-11). 4103:{\displaystyle \mathbb {Z} .} 4062:{\displaystyle \mathbb {Z} ,} 3971:{\displaystyle \mathbb {Z} .} 3555:{\displaystyle \omega ^{3}=1} 3418:{\displaystyle \mathbb {Z} .} 3294:, not factor into any prime. 3186:it must be also a divisor of 1985: 990:where a finite number of the 5213:Theorems about prime numbers 4120:over the integers or over a 4114:unique factorization domains 4028:{\displaystyle \mathbb {Z} } 3997:{\displaystyle \mathbb {Z} } 3652:{\displaystyle \mathbb {Z} } 3468:{\displaystyle \mathbb {Z} } 3179:{\displaystyle q_{1}-p_{1},} 2521:{\displaystyle p_{i}=q_{j},} 2455:must be distinct from every 1803: 384:unique factorization domains 73:unique factorization theorem 57:law of quadratic reciprocity 7: 4631:(2nd ed.), Lexington: 4495:Disquisitiones Arithmeticae 4437:Disquisitiones Arithmeticae 4169: 3040:{\displaystyle q_{1}-p_{1}} 566:Disquisitiones Arithmeticae 77:prime factorization theorem 48:Disquisitiones Arithmeticae 10: 5239: 4593:. (6th ed.), Oxford: 4325:. Routledge. p. 385. 4265:ring of algebraic integers 4139:introduced the concept of 2284:, if it exists, must be a 1765: 536:(In modern terminology: a 421: 29: 5144: 5100: 5061: 5048:Superior highly composite 5010: 4944: 4868: 4857: 4818: 4650:Elements of Number Theory 4116:. Important examples are 4945:Constrained divisor sums 4742:Diophantus of Alexandria 4627:Long, Calvin T. (1972), 4421:Hardy & Wright (2008 4390:, Springer, p. 45, 4386:Dawson, John W. (2015), 4374:Hardy & Wright (2008 4252:Hardy & Wright (2008 4188: 1982:is a product of primes. 1783: 790:canonical representation 30:Not to be confused with 4633:D. C. Heath and Company 4595:Oxford University Press 4130:principal ideal domains 3823:algebraic number theory 3659:. In this ring one has 3362:biquadratic reciprocity 3216:which is impossible as 2855:{\displaystyle Q<P.} 1018:greatest common divisor 586:Every positive integer 388:principal ideal domains 4673:, Boston: Birkhäuser, 4158:There is a version of 4104: 4063: 4029: 3998: 3972: 3947: 3907: 3863: 3789: 3746: 3653: 3612: 3566:. This is the ring of 3556: 3523: 3469: 3419: 3288: 3264: 3237: 3210: 3209:{\displaystyle q_{1},} 3180: 3137: 3110: 3109:{\displaystyle q_{j}.} 3080: 3041: 3001: 2967: 2856: 2827: 2784: 2729: 2680: 2631: 2584: 2522: 2479: 2478:{\displaystyle q_{j}.} 2449: 2419: 2302: 2278: 2258: 2068:is prime. We see that 1745: 981: 951: 731: 701: 554:Kamāl al-Dīn al-Fārisī 534: 516: 494: 452: 370: 307: 249: 60: 4826:Integer factorization 4764:"1 and Prime Numbers" 4738:Fermat's Last Theorem 4687:Weil, André (2007) , 4669:Riesel, Hans (1994), 4524:These are in Gauss's 4176:Integer factorization 4105: 4064: 4030: 3999: 3973: 3948: 3908: 3864: 3790: 3747: 3654: 3613: 3557: 3524: 3470: 3420: 3289: 3270:are distinct primes. 3265: 3263:{\displaystyle q_{1}} 3238: 3236:{\displaystyle p_{1}} 3211: 3181: 3138: 3136:{\displaystyle p_{1}} 3111: 3081: 3079:{\displaystyle p_{1}} 3055:, being smaller than 3042: 3002: 3000:{\displaystyle p_{1}} 2968: 2862:It then follows that 2857: 2828: 2785: 2730: 2681: 2632: 2590:that is smaller than 2585: 2523: 2480: 2450: 2448:{\displaystyle p_{i}} 2420: 2303: 2279: 2259: 1796:VII, 30): If a prime 1756:integer factorization 1746: 1024:(LCM) of two numbers 1022:least common multiple 1012:Arithmetic operations 982: 931: 732: 681: 538:least common multiple 520: 502: 480: 438: 408:Fermat's Last Theorem 371: 308: 250: 44: 4652:, Englewood Cliffs: 4302:Historia Mathematica 4073: 4039: 4008: 3986: 3957: 3917: 3877: 3833: 3759: 3666: 3625: 3574: 3533: 3479: 3448: 3444:introduced the ring 3395: 3326:improve this article 3278: 3247: 3220: 3190: 3147: 3120: 3090: 3063: 3011: 2984: 2869: 2837: 2794: 2739: 2690: 2644: 2598: 2532: 2489: 2459: 2432: 2315: 2292: 2268: 2248: 1816:is prime. Then, by 1762:Arithmetic functions 1047: 848: 600: 458:divides the product 380:algebraic structures 324: 273: 98: 79:, states that every 5218:Uniqueness theorems 5038:Colossally abundant 4869:Factorization forms 4550:Thomas Little Heath 4410:Gauss, BQ, §§ 31–34 3568:Eisenstein integers 3086:differs from every 2239:Euclidean algorithm 1768:Arithmetic function 1733: 1484: 1238: 973: 763:are primes and the 723: 677: 652: 630: 5023:Primitive abundant 5011:With many divisors 4100: 4059: 4025: 3994: 3968: 3943: 3903: 3859: 3785: 3742: 3649: 3608: 3552: 3519: 3465: 3415: 3284: 3260: 3233: 3206: 3176: 3133: 3106: 3076: 3037: 2997: 2963: 2852: 2823: 2780: 2725: 2676: 2627: 2580: 2518: 2485:Otherwise, if say 2475: 2445: 2415: 2413: 2298: 2274: 2254: 1741: 1739: 1690: 1441: 1204: 977: 952: 727: 702: 656: 631: 609: 571:modular arithmetic 404:algebraic integers 366: 303: 245: 71:, also called the 61: 5200: 5199: 4754:by Hector Zenil, 4700:978-0-817-64565-6 4604:978-0-19-921986-5 4583:D. R. Heath-Brown 4563:978-0-486-60089-5 4463:978-0-387-96254-2 4126:Euclidean domains 4092: 3937: 3897: 3853: 3814:) nor (1 − 3779: 3732: 3706: 3644: 3514: 3508: 3438:cubic reciprocity 3372:, the set of all 3370:Gaussian integers 3358: 3357: 3350: 3287:{\displaystyle 1} 2301:{\displaystyle 1} 2277:{\displaystyle s} 2257:{\displaystyle s} 511:Elements Book VII 489:Elements Book VII 447:Elements Book VII 392:Euclidean domains 267:composite numbers 16:(Redirected from 5230: 5177:Harmonic divisor 5063:Aliquot sequence 5043:Highly composite 4967:Multiply perfect 4863: 4841:Divisor function 4807: 4800: 4793: 4784: 4783: 4779: 4744:to the proof by 4703: 4683: 4664: 4643: 4623: 4566: 4547: 4520: 4511: 4484: 4466: 4424: 4418: 4412: 4407: 4401: 4400: 4383: 4377: 4371: 4365: 4359: 4353: 4347: 4341: 4340: 4316: 4310: 4309: 4299: 4290: 4284: 4278: 4272: 4261: 4255: 4249: 4243: 4237: 4231: 4225: 4219: 4213: 4207: 4201: 4166:Möbius monoids. 4153:Dedekind domains 4118:polynomial rings 4109: 4107: 4106: 4101: 4093: 4085: 4080: 4068: 4066: 4065: 4060: 4046: 4034: 4032: 4031: 4026: 4015: 4003: 4001: 4000: 3995: 3993: 3977: 3975: 3974: 3969: 3964: 3952: 3950: 3949: 3944: 3942: 3938: 3930: 3924: 3912: 3910: 3909: 3904: 3902: 3898: 3890: 3884: 3868: 3866: 3865: 3860: 3858: 3854: 3846: 3840: 3820: 3819: 3813: 3812: 3794: 3792: 3791: 3786: 3784: 3780: 3772: 3766: 3751: 3749: 3748: 3743: 3738: 3734: 3733: 3725: 3712: 3708: 3707: 3699: 3658: 3656: 3655: 3650: 3645: 3637: 3632: 3617: 3615: 3614: 3609: 3607: 3606: 3561: 3559: 3558: 3553: 3545: 3544: 3528: 3526: 3525: 3520: 3515: 3510: 3509: 3501: 3489: 3474: 3472: 3471: 3466: 3455: 3424: 3422: 3421: 3416: 3402: 3353: 3346: 3342: 3339: 3333: 3310: 3302: 3293: 3291: 3290: 3285: 3269: 3267: 3266: 3261: 3259: 3258: 3242: 3240: 3239: 3234: 3232: 3231: 3215: 3213: 3212: 3207: 3202: 3201: 3185: 3183: 3182: 3177: 3172: 3171: 3159: 3158: 3143:is a divisor of 3142: 3140: 3139: 3134: 3132: 3131: 3115: 3113: 3112: 3107: 3102: 3101: 3085: 3083: 3082: 3077: 3075: 3074: 3058: 3054: 3050: 3046: 3044: 3043: 3038: 3036: 3035: 3023: 3022: 3006: 3004: 3003: 2998: 2996: 2995: 2979: 2972: 2970: 2969: 2964: 2938: 2937: 2919: 2918: 2906: 2905: 2887: 2886: 2861: 2859: 2858: 2853: 2832: 2830: 2829: 2824: 2819: 2818: 2806: 2805: 2789: 2787: 2786: 2781: 2773: 2772: 2757: 2756: 2734: 2732: 2731: 2726: 2721: 2720: 2708: 2707: 2685: 2683: 2682: 2677: 2675: 2674: 2662: 2661: 2636: 2634: 2633: 2628: 2623: 2622: 2610: 2609: 2593: 2589: 2587: 2586: 2581: 2579: 2578: 2569: 2558: 2557: 2548: 2527: 2525: 2524: 2519: 2514: 2513: 2501: 2500: 2484: 2482: 2481: 2476: 2471: 2470: 2454: 2452: 2451: 2446: 2444: 2443: 2424: 2422: 2421: 2416: 2414: 2407: 2406: 2394: 2393: 2384: 2383: 2368: 2364: 2363: 2351: 2350: 2341: 2340: 2307: 2305: 2304: 2299: 2286:composite number 2283: 2281: 2280: 2275: 2263: 2261: 2260: 2255: 2228: 2222: 2216: 2182: 2176: 2160: 2151: 2142: 2133: 2120: 2109: 2100: 2076: 2067: 2056: 2045: 1995: 1981: 1928: 1900: 1872: 1857: 1847: 1841: 1835: 1829: 1823: 1818:strong induction 1815: 1811: 1750: 1748: 1747: 1742: 1740: 1732: 1728: 1727: 1715: 1714: 1698: 1680: 1675: 1674: 1670: 1669: 1657: 1656: 1636: 1635: 1631: 1630: 1618: 1617: 1597: 1596: 1592: 1591: 1579: 1578: 1558: 1557: 1553: 1552: 1540: 1539: 1483: 1479: 1478: 1466: 1465: 1449: 1431: 1426: 1425: 1421: 1420: 1408: 1407: 1387: 1386: 1382: 1381: 1369: 1368: 1348: 1347: 1343: 1342: 1330: 1329: 1309: 1308: 1304: 1303: 1291: 1290: 1237: 1236: 1235: 1223: 1222: 1212: 1194: 1189: 1188: 1187: 1186: 1174: 1173: 1159: 1158: 1157: 1156: 1144: 1143: 1129: 1128: 1127: 1126: 1114: 1113: 1099: 1098: 1097: 1096: 1084: 1083: 1006:rational numbers 1000: 986: 984: 983: 978: 972: 971: 970: 960: 950: 945: 924: 923: 922: 921: 907: 906: 905: 904: 890: 889: 888: 887: 873: 872: 871: 870: 839:infinite product 836: 832: 826: 806:. For example, 797: 784: 773: 762: 736: 734: 733: 728: 722: 721: 720: 710: 700: 695: 676: 675: 674: 664: 651: 650: 649: 639: 629: 628: 627: 617: 592: 532: 531:, Proposition 14 529:Elements Book IX 514: 513:, Proposition 32 498:infinite descent 492: 491:, Proposition 31 450: 449:, Proposition 30 396:polynomial rings 382:that are called 375: 373: 372: 367: 312: 310: 309: 304: 254: 252: 251: 246: 142: 141: 129: 128: 116: 115: 21: 5238: 5237: 5233: 5232: 5231: 5229: 5228: 5227: 5203: 5202: 5201: 5196: 5140: 5096: 5057: 5028:Highly abundant 5006: 4987:Unitary perfect 4940: 4864: 4855: 4836:Unitary divisor 4814: 4811: 4710: 4701: 4681: 4605: 4589:. Foreword by 4587:J. H. Silverman 4564: 4482: 4464: 4432: 4427: 4419: 4415: 4408: 4404: 4398: 4384: 4380: 4372: 4368: 4360: 4356: 4348: 4344: 4333: 4317: 4313: 4297: 4291: 4287: 4279: 4275: 4262: 4258: 4250: 4246: 4238: 4234: 4226: 4222: 4214: 4210: 4202: 4195: 4191: 4182:Prime signature 4172: 4084: 4076: 4074: 4071: 4070: 4042: 4040: 4037: 4036: 4011: 4009: 4006: 4005: 3989: 3987: 3984: 3983: 3980:integral domain 3960: 3958: 3955: 3954: 3929: 3925: 3920: 3918: 3915: 3914: 3889: 3885: 3880: 3878: 3875: 3874: 3845: 3841: 3836: 3834: 3831: 3830: 3817: 3815: 3810: 3808: 3771: 3767: 3762: 3760: 3757: 3756: 3724: 3717: 3713: 3698: 3691: 3687: 3667: 3664: 3663: 3636: 3628: 3626: 3623: 3622: 3602: 3598: 3575: 3572: 3571: 3540: 3536: 3534: 3531: 3530: 3500: 3490: 3488: 3480: 3477: 3476: 3451: 3449: 3446: 3445: 3398: 3396: 3393: 3392: 3374:complex numbers 3354: 3343: 3337: 3334: 3323: 3311: 3300: 3298:Generalizations 3279: 3276: 3275: 3254: 3250: 3248: 3245: 3244: 3227: 3223: 3221: 3218: 3217: 3197: 3193: 3191: 3188: 3187: 3167: 3163: 3154: 3150: 3148: 3145: 3144: 3127: 3123: 3121: 3118: 3117: 3097: 3093: 3091: 3088: 3087: 3070: 3066: 3064: 3061: 3060: 3056: 3052: 3048: 3031: 3027: 3018: 3014: 3012: 3009: 3008: 2991: 2987: 2985: 2982: 2981: 2977: 2933: 2929: 2914: 2910: 2901: 2897: 2882: 2878: 2870: 2867: 2866: 2838: 2835: 2834: 2814: 2810: 2801: 2797: 2795: 2792: 2791: 2768: 2764: 2752: 2748: 2740: 2737: 2736: 2716: 2712: 2703: 2699: 2691: 2688: 2687: 2670: 2666: 2657: 2653: 2645: 2642: 2641: 2618: 2614: 2605: 2601: 2599: 2596: 2595: 2591: 2574: 2570: 2565: 2553: 2549: 2544: 2533: 2530: 2529: 2509: 2505: 2496: 2492: 2490: 2487: 2486: 2466: 2462: 2460: 2457: 2456: 2439: 2435: 2433: 2430: 2429: 2412: 2411: 2402: 2398: 2389: 2385: 2379: 2375: 2366: 2365: 2359: 2355: 2346: 2342: 2336: 2332: 2325: 2318: 2316: 2313: 2312: 2293: 2290: 2289: 2269: 2266: 2265: 2249: 2246: 2245: 2235: 2224: 2218: 2215: 2206: 2199: 2190: 2184: 2178: 2175: 2168: 2162: 2159: 2153: 2150: 2144: 2141: 2135: 2132: 2126: 2119: 2111: 2108: 2102: 2099: 2090: 2084: 2078: 2075: 2069: 2066: 2058: 2055: 2047: 2044: 2035: 2029: 2022: 2013: 2007: 1997: 1991: 1988: 1980: 1971: 1965: 1959: 1950: 1944: 1930: 1927: 1918: 1912: 1902: 1899: 1890: 1884: 1874: 1859: 1849: 1843: 1837: 1831: 1825: 1821: 1813: 1809: 1806: 1788:The proof uses 1786: 1770: 1764: 1738: 1737: 1723: 1719: 1710: 1706: 1699: 1694: 1679: 1665: 1661: 1652: 1648: 1641: 1637: 1626: 1622: 1613: 1609: 1602: 1598: 1587: 1583: 1574: 1570: 1563: 1559: 1548: 1544: 1535: 1531: 1524: 1520: 1513: 1489: 1488: 1474: 1470: 1461: 1457: 1450: 1445: 1430: 1416: 1412: 1403: 1399: 1392: 1388: 1377: 1373: 1364: 1360: 1353: 1349: 1338: 1334: 1325: 1321: 1314: 1310: 1299: 1295: 1286: 1282: 1275: 1271: 1264: 1243: 1242: 1231: 1227: 1218: 1214: 1213: 1208: 1193: 1182: 1178: 1169: 1165: 1164: 1160: 1152: 1148: 1139: 1135: 1134: 1130: 1122: 1118: 1109: 1105: 1104: 1100: 1092: 1088: 1079: 1075: 1074: 1070: 1063: 1050: 1048: 1045: 1044: 1014: 999: 991: 966: 962: 961: 956: 946: 935: 917: 913: 912: 908: 900: 896: 895: 891: 883: 879: 878: 874: 866: 862: 861: 857: 849: 846: 845: 834: 828: 821: 816:1001 = 7×11×13. 793: 779: 772: 764: 761: 754: 747: 741: 716: 712: 711: 706: 696: 685: 670: 666: 665: 660: 645: 641: 640: 635: 623: 619: 618: 613: 601: 598: 597: 587: 584: 579: 533: 526: 515: 508: 493: 486: 466:divides either 451: 444: 424: 325: 322: 321: 274: 271: 270: 137: 133: 124: 120: 111: 107: 99: 96: 95: 39: 28: 23: 22: 15: 12: 11: 5: 5236: 5226: 5225: 5220: 5215: 5198: 5197: 5195: 5194: 5189: 5184: 5179: 5174: 5169: 5164: 5159: 5154: 5148: 5146: 5142: 5141: 5139: 5138: 5133: 5128: 5123: 5118: 5113: 5107: 5105: 5098: 5097: 5095: 5094: 5089: 5084: 5074: 5068: 5066: 5059: 5058: 5056: 5055: 5050: 5045: 5040: 5035: 5030: 5025: 5020: 5014: 5012: 5008: 5007: 5005: 5004: 4999: 4994: 4989: 4984: 4979: 4974: 4969: 4964: 4959: 4957:Almost perfect 4954: 4948: 4946: 4942: 4941: 4939: 4938: 4933: 4928: 4923: 4918: 4913: 4908: 4903: 4898: 4893: 4888: 4883: 4878: 4872: 4870: 4866: 4865: 4858: 4856: 4854: 4853: 4848: 4843: 4838: 4833: 4828: 4822: 4820: 4816: 4815: 4810: 4809: 4802: 4795: 4787: 4781: 4780: 4762:Grime, James, 4759: 4749: 4731: 4726: 4716: 4709: 4708:External links 4706: 4705: 4704: 4699: 4684: 4679: 4666: 4645: 4624: 4603: 4567: 4562: 4530:Disquisitiones 4522: 4521: 4512: 4486: 4485: 4480: 4467: 4462: 4431: 4428: 4426: 4425: 4413: 4402: 4396: 4378: 4366: 4354: 4342: 4331: 4311: 4285: 4273: 4256: 4244: 4232: 4220: 4208: 4192: 4190: 4187: 4186: 4185: 4179: 4171: 4168: 4099: 4096: 4091: 4088: 4083: 4079: 4058: 4055: 4052: 4049: 4045: 4024: 4021: 4018: 4014: 3992: 3967: 3963: 3941: 3936: 3933: 3928: 3923: 3901: 3896: 3893: 3888: 3883: 3857: 3852: 3849: 3844: 3839: 3799:, then one of 3783: 3778: 3775: 3770: 3765: 3753: 3752: 3741: 3737: 3731: 3728: 3723: 3720: 3716: 3711: 3705: 3702: 3697: 3694: 3690: 3686: 3683: 3680: 3677: 3674: 3671: 3648: 3643: 3640: 3635: 3631: 3605: 3601: 3597: 3594: 3591: 3588: 3585: 3582: 3579: 3551: 3548: 3543: 3539: 3518: 3513: 3507: 3504: 3499: 3496: 3493: 3487: 3484: 3464: 3461: 3458: 3454: 3414: 3411: 3408: 3405: 3401: 3356: 3355: 3314: 3312: 3305: 3299: 3296: 3283: 3257: 3253: 3230: 3226: 3205: 3200: 3196: 3175: 3170: 3166: 3162: 3157: 3153: 3130: 3126: 3105: 3100: 3096: 3073: 3069: 3034: 3030: 3026: 3021: 3017: 2994: 2990: 2974: 2973: 2962: 2959: 2956: 2953: 2950: 2947: 2944: 2941: 2936: 2932: 2928: 2925: 2922: 2917: 2913: 2909: 2904: 2900: 2896: 2893: 2890: 2885: 2881: 2877: 2874: 2851: 2848: 2845: 2842: 2822: 2817: 2813: 2809: 2804: 2800: 2779: 2776: 2771: 2767: 2763: 2760: 2755: 2751: 2747: 2744: 2724: 2719: 2715: 2711: 2706: 2702: 2698: 2695: 2673: 2669: 2665: 2660: 2656: 2652: 2649: 2626: 2621: 2617: 2613: 2608: 2604: 2577: 2573: 2568: 2564: 2561: 2556: 2552: 2547: 2543: 2540: 2537: 2517: 2512: 2508: 2504: 2499: 2495: 2474: 2469: 2465: 2442: 2438: 2426: 2425: 2410: 2405: 2401: 2397: 2392: 2388: 2382: 2378: 2374: 2371: 2369: 2367: 2362: 2358: 2354: 2349: 2345: 2339: 2335: 2331: 2328: 2326: 2324: 2321: 2320: 2297: 2273: 2253: 2234: 2231: 2211: 2204: 2195: 2188: 2173: 2166: 2157: 2148: 2139: 2130: 2123:Euclid's lemma 2115: 2106: 2095: 2088: 2082: 2073: 2062: 2051: 2040: 2033: 2027: 2018: 2011: 2005: 1987: 1984: 1976: 1969: 1963: 1955: 1948: 1942: 1923: 1916: 1910: 1895: 1888: 1882: 1824:and less than 1805: 1802: 1790:Euclid's lemma 1785: 1782: 1778:multiplicative 1766:Main article: 1763: 1760: 1752: 1751: 1736: 1731: 1726: 1722: 1718: 1713: 1709: 1705: 1702: 1697: 1693: 1689: 1686: 1683: 1681: 1678: 1673: 1668: 1664: 1660: 1655: 1651: 1647: 1644: 1640: 1634: 1629: 1625: 1621: 1616: 1612: 1608: 1605: 1601: 1595: 1590: 1586: 1582: 1577: 1573: 1569: 1566: 1562: 1556: 1551: 1547: 1543: 1538: 1534: 1530: 1527: 1523: 1519: 1516: 1514: 1512: 1509: 1506: 1503: 1500: 1497: 1494: 1491: 1490: 1487: 1482: 1477: 1473: 1469: 1464: 1460: 1456: 1453: 1448: 1444: 1440: 1437: 1434: 1432: 1429: 1424: 1419: 1415: 1411: 1406: 1402: 1398: 1395: 1391: 1385: 1380: 1376: 1372: 1367: 1363: 1359: 1356: 1352: 1346: 1341: 1337: 1333: 1328: 1324: 1320: 1317: 1313: 1307: 1302: 1298: 1294: 1289: 1285: 1281: 1278: 1274: 1270: 1267: 1265: 1263: 1260: 1257: 1254: 1251: 1248: 1245: 1244: 1241: 1234: 1230: 1226: 1221: 1217: 1211: 1207: 1203: 1200: 1197: 1195: 1192: 1185: 1181: 1177: 1172: 1168: 1163: 1155: 1151: 1147: 1142: 1138: 1133: 1125: 1121: 1117: 1112: 1108: 1103: 1095: 1091: 1087: 1082: 1078: 1073: 1069: 1066: 1064: 1062: 1059: 1056: 1053: 1052: 1013: 1010: 995: 988: 987: 976: 969: 965: 959: 955: 949: 944: 941: 938: 934: 930: 927: 920: 916: 911: 903: 899: 894: 886: 882: 877: 869: 865: 860: 856: 853: 833:(for example, 818: 817: 814: 811: 768: 759: 755:< ... < 752: 745: 738: 737: 726: 719: 715: 709: 705: 699: 694: 691: 688: 684: 680: 673: 669: 663: 659: 655: 648: 644: 638: 634: 626: 622: 616: 612: 608: 605: 583: 580: 578: 575: 559:Article 16 of 524: 506: 484: 476:Euclid's lemma 442: 423: 420: 414:statement and 365: 362: 359: 356: 353: 350: 347: 344: 341: 338: 335: 332: 329: 302: 299: 296: 293: 290: 287: 284: 281: 278: 261: 256: 255: 244: 241: 238: 235: 232: 229: 226: 223: 220: 217: 214: 211: 208: 205: 202: 199: 196: 193: 190: 187: 184: 181: 178: 175: 172: 169: 166: 163: 160: 157: 154: 151: 148: 145: 140: 136: 132: 127: 123: 119: 114: 110: 106: 103: 26: 9: 6: 4: 3: 2: 5235: 5224: 5223:Factorization 5221: 5219: 5216: 5214: 5211: 5210: 5208: 5193: 5190: 5188: 5185: 5183: 5180: 5178: 5175: 5173: 5170: 5168: 5165: 5163: 5160: 5158: 5155: 5153: 5150: 5149: 5147: 5143: 5137: 5134: 5132: 5131:Polydivisible 5129: 5127: 5124: 5122: 5119: 5117: 5114: 5112: 5109: 5108: 5106: 5103: 5099: 5093: 5090: 5088: 5085: 5082: 5078: 5075: 5073: 5070: 5069: 5067: 5064: 5060: 5054: 5051: 5049: 5046: 5044: 5041: 5039: 5036: 5034: 5033:Superabundant 5031: 5029: 5026: 5024: 5021: 5019: 5016: 5015: 5013: 5009: 5003: 5002:Erdős–Nicolas 5000: 4998: 4995: 4993: 4990: 4988: 4985: 4983: 4980: 4978: 4975: 4973: 4970: 4968: 4965: 4963: 4960: 4958: 4955: 4953: 4950: 4949: 4947: 4943: 4937: 4934: 4932: 4929: 4927: 4924: 4922: 4919: 4917: 4914: 4912: 4911:Perfect power 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4887: 4884: 4882: 4879: 4877: 4874: 4873: 4871: 4867: 4862: 4852: 4849: 4847: 4844: 4842: 4839: 4837: 4834: 4832: 4829: 4827: 4824: 4823: 4821: 4817: 4808: 4803: 4801: 4796: 4794: 4789: 4788: 4785: 4777: 4773: 4769: 4765: 4760: 4757: 4753: 4750: 4747: 4743: 4739: 4735: 4732: 4730: 4727: 4724: 4720: 4717: 4715: 4712: 4711: 4702: 4696: 4692: 4691: 4685: 4682: 4680:0-8176-3743-5 4676: 4672: 4667: 4663: 4659: 4655: 4654:Prentice Hall 4651: 4646: 4642: 4638: 4634: 4630: 4625: 4622: 4618: 4614: 4610: 4606: 4600: 4596: 4592: 4588: 4584: 4581:, Revised by 4580: 4576: 4575:Wright, E. M. 4572: 4568: 4565: 4559: 4555: 4551: 4546: 4545: 4539: 4535: 4534: 4533: 4531: 4527: 4518: 4513: 4509: 4504: 4503: 4502: 4500: 4496: 4492: 4483: 4481:0-8284-0191-8 4477: 4473: 4468: 4465: 4459: 4455: 4451: 4450: 4444: 4443: 4442: 4439: 4438: 4422: 4417: 4411: 4406: 4399: 4397:9783319173689 4393: 4389: 4382: 4375: 4370: 4364:, p. 55) 4363: 4358: 4352:, p. 45) 4351: 4346: 4339: 4334: 4332:9781134977246 4328: 4324: 4323: 4315: 4308: 4303: 4296: 4289: 4282: 4277: 4270: 4266: 4260: 4253: 4248: 4242:, p. 53) 4241: 4236: 4230:, p. 44) 4229: 4224: 4217: 4212: 4205: 4200: 4198: 4193: 4183: 4180: 4177: 4174: 4173: 4167: 4163: 4161: 4156: 4154: 4150: 4146: 4142: 4138: 4133: 4131: 4127: 4123: 4119: 4115: 4110: 4097: 4089: 4086: 4056: 4050: 4019: 3981: 3965: 3939: 3934: 3931: 3926: 3899: 3894: 3891: 3886: 3872: 3855: 3850: 3847: 3842: 3828: 3824: 3806: 3802: 3798: 3781: 3776: 3773: 3768: 3739: 3735: 3729: 3726: 3721: 3718: 3714: 3709: 3703: 3700: 3695: 3692: 3688: 3684: 3681: 3678: 3675: 3672: 3669: 3662: 3661: 3660: 3641: 3638: 3619: 3603: 3599: 3595: 3592: 3589: 3586: 3583: 3580: 3577: 3569: 3565: 3564:root of unity 3549: 3546: 3541: 3537: 3516: 3511: 3505: 3502: 3497: 3494: 3491: 3485: 3482: 3459: 3443: 3439: 3434: 3432: 3428: 3412: 3406: 3390: 3386: 3382: 3378: 3375: 3371: 3367: 3363: 3352: 3349: 3341: 3331: 3327: 3321: 3320: 3315:This section 3313: 3309: 3304: 3303: 3295: 3281: 3271: 3255: 3251: 3228: 3224: 3203: 3198: 3194: 3173: 3168: 3164: 3160: 3155: 3151: 3128: 3124: 3103: 3098: 3094: 3071: 3067: 3032: 3028: 3024: 3019: 3015: 2992: 2988: 2960: 2957: 2954: 2948: 2945: 2942: 2934: 2930: 2926: 2923: 2915: 2911: 2907: 2902: 2898: 2891: 2888: 2883: 2879: 2875: 2872: 2865: 2864: 2863: 2849: 2846: 2843: 2840: 2820: 2815: 2811: 2807: 2802: 2798: 2777: 2774: 2769: 2765: 2761: 2758: 2753: 2749: 2745: 2742: 2722: 2717: 2713: 2709: 2704: 2700: 2696: 2693: 2671: 2667: 2663: 2658: 2654: 2650: 2647: 2638: 2624: 2619: 2615: 2611: 2606: 2602: 2575: 2571: 2566: 2562: 2559: 2554: 2550: 2545: 2541: 2538: 2535: 2515: 2510: 2506: 2502: 2497: 2493: 2472: 2467: 2463: 2440: 2436: 2408: 2403: 2399: 2395: 2390: 2386: 2380: 2376: 2372: 2370: 2360: 2356: 2352: 2347: 2343: 2337: 2333: 2329: 2327: 2322: 2311: 2310: 2309: 2295: 2288:greater than 2287: 2271: 2251: 2242: 2240: 2230: 2227: 2221: 2214: 2210: 2203: 2198: 2194: 2187: 2181: 2172: 2165: 2156: 2147: 2138: 2129: 2124: 2118: 2114: 2110:divides some 2105: 2098: 2094: 2087: 2081: 2072: 2065: 2061: 2054: 2050: 2046:, where each 2043: 2039: 2032: 2026: 2021: 2017: 2010: 2004: 2000: 1994: 1983: 1979: 1975: 1968: 1962: 1958: 1954: 1947: 1941: 1937: 1933: 1926: 1922: 1915: 1909: 1905: 1898: 1894: 1887: 1881: 1877: 1871: 1867: 1863: 1856: 1852: 1846: 1840: 1834: 1828: 1819: 1801: 1799: 1795: 1791: 1781: 1779: 1775: 1769: 1759: 1757: 1734: 1724: 1720: 1716: 1711: 1707: 1695: 1691: 1687: 1684: 1682: 1676: 1666: 1662: 1658: 1653: 1649: 1638: 1627: 1623: 1619: 1614: 1610: 1599: 1588: 1584: 1580: 1575: 1571: 1560: 1549: 1545: 1541: 1536: 1532: 1521: 1517: 1515: 1507: 1504: 1501: 1495: 1492: 1485: 1475: 1471: 1467: 1462: 1458: 1446: 1442: 1438: 1435: 1433: 1427: 1417: 1413: 1409: 1404: 1400: 1389: 1378: 1374: 1370: 1365: 1361: 1350: 1339: 1335: 1331: 1326: 1322: 1311: 1300: 1296: 1292: 1287: 1283: 1272: 1268: 1266: 1258: 1255: 1252: 1239: 1232: 1228: 1224: 1219: 1215: 1209: 1205: 1201: 1198: 1196: 1190: 1183: 1179: 1175: 1170: 1166: 1161: 1153: 1149: 1145: 1140: 1136: 1131: 1123: 1119: 1115: 1110: 1106: 1101: 1093: 1089: 1085: 1080: 1076: 1071: 1067: 1065: 1060: 1057: 1054: 1043: 1042: 1041: 1039: 1035: 1031: 1027: 1023: 1019: 1009: 1007: 1002: 998: 994: 974: 967: 963: 957: 953: 942: 939: 936: 932: 928: 925: 918: 914: 909: 901: 897: 892: 884: 880: 875: 867: 863: 858: 854: 851: 844: 843: 842: 840: 831: 824: 815: 812: 809: 808: 807: 805: 801: 800:standard form 796: 791: 786: 782: 777: 776:empty product 771: 767: 758: 751: 744: 724: 717: 713: 707: 703: 697: 692: 689: 686: 682: 678: 671: 667: 661: 657: 653: 646: 642: 636: 632: 624: 620: 614: 610: 606: 603: 596: 595: 594: 590: 574: 572: 568: 567: 562: 557: 555: 551: 546: 544: 539: 530: 523: 519: 512: 505: 501: 499: 490: 483: 479: 477: 473: 469: 465: 461: 457: 448: 441: 437: 435: 434: 429: 419: 417: 416:Wiles's proof 413: 409: 405: 401: 397: 393: 389: 385: 381: 376: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 319: 314: 300: 297: 294: 291: 288: 285: 282: 279: 276: 268: 263: 259: 242: 239: 236: 233: 230: 227: 224: 221: 218: 215: 212: 209: 206: 203: 200: 197: 191: 188: 185: 179: 176: 173: 167: 164: 161: 158: 155: 152: 149: 143: 138: 134: 130: 125: 121: 117: 112: 108: 104: 101: 94: 93: 92: 90: 86: 85:prime numbers 82: 78: 74: 70: 66: 58: 54: 50: 49: 43: 37: 33: 19: 5192:Superperfect 5187:Refactorable 4982:Superperfect 4977:Hyperperfect 4962:Quasiperfect 4850: 4846:Prime factor 4767: 4746:Andrew Wiles 4723:cut-the-knot 4688: 4670: 4649: 4628: 4591:Andrew Wiles 4578: 4571:Hardy, G. H. 4543: 4529: 4525: 4523: 4516: 4507: 4498: 4494: 4490: 4487: 4471: 4448: 4435: 4433: 4416: 4405: 4387: 4381: 4369: 4357: 4345: 4336: 4321: 4314: 4307:proposition. 4305: 4301: 4288: 4276: 4259: 4247: 4235: 4223: 4211: 4164: 4157: 4141:ideal number 4134: 4111: 3825:2 is called 3804: 3800: 3796: 3754: 3620: 3435: 3426: 3388: 3384: 3380: 3376: 3359: 3344: 3338:January 2024 3335: 3324:Please help 3319:verification 3316: 3272: 2975: 2790:Also, since 2639: 2427: 2308:. Now, say 2244:Assume that 2243: 2236: 2225: 2219: 2212: 2208: 2201: 2196: 2192: 2185: 2179: 2170: 2163: 2154: 2145: 2136: 2127: 2116: 2112: 2103: 2096: 2092: 2085: 2079: 2070: 2063: 2059: 2052: 2048: 2041: 2037: 2030: 2024: 2019: 2015: 2008: 2002: 1998: 1992: 1989: 1977: 1973: 1966: 1960: 1956: 1952: 1945: 1939: 1935: 1931: 1924: 1920: 1913: 1907: 1903: 1896: 1892: 1885: 1879: 1875: 1869: 1865: 1861: 1854: 1850: 1844: 1838: 1832: 1826: 1807: 1793: 1787: 1771: 1753: 1040:themselves: 1037: 1033: 1029: 1025: 1015: 1003: 996: 992: 989: 835:1000 = 2×3×5 829: 822: 819: 803: 799: 794: 789: 787: 780: 769: 765: 756: 749: 742: 739: 588: 585: 577:Applications 564: 558: 547: 535: 521: 517: 503: 495: 481: 471: 467: 463: 459: 455: 453: 439: 431: 425: 386:and include 377: 315: 264: 257: 76: 72: 68: 62: 46: 5116:Extravagant 5111:Equidigital 5072:Untouchable 4992:Semiperfect 4972:Hemiperfect 4901:Square-free 4772:Brady Haran 4768:Numberphile 4218:, Art. 131) 4216:Gauss (1986 4204:Gauss (1986 4069:but not in 3827:irreducible 1020:(GCD), and 813:1000 = 2×5, 810:999 = 3×37, 65:mathematics 5207:Categories 5152:Arithmetic 5145:Other sets 5104:-dependent 4621:1159.11001 4430:References 4350:Long (1972 4281:Weil (2007 4228:Long (1972 4206:, Art. 16) 3562:is a cube 3442:Eisenstein 1986:Uniqueness 543:André Weil 5182:Descartes 5157:Deficient 5092:Betrothed 4997:Practical 4886:Semiprime 4881:Composite 4641:77-171950 4577:(2008) , 4423:, § 14.6) 4087:− 4051:ω 3932:− 3892:− 3848:− 3774:− 3727:− 3722:− 3701:− 3679:⋅ 3639:− 3600:ω 3596:± 3590:ω 3587:± 3578:± 3538:ω 3503:− 3492:− 3483:ω 3460:ω 3161:− 3025:− 2946:− 2908:− 2876:− 2710:⋯ 2664:⋯ 2396:⋯ 2353:⋯ 1848:, where 1804:Existence 1754:However, 1688:∏ 1677:⋯ 1496:⁡ 1439:∏ 1428:⋯ 1202:∏ 1191:⋯ 1058:⋅ 948:∞ 933:∏ 926:⋯ 798:, or the 683:∏ 654:⋯ 364:… 355:⋅ 349:⋅ 337:⋅ 298:⋅ 286:⋅ 243:… 234:⋅ 228:⋅ 222:⋅ 216:⋅ 210:⋅ 204:⋅ 189:⋅ 180:⋅ 174:⋅ 165:⋅ 159:⋅ 153:⋅ 131:⋅ 118:⋅ 5167:Solitary 5162:Friendly 5087:Sociable 5077:Amicable 5065:-related 5018:Abundant 4916:Achilles 4906:Powerful 4819:Overview 4776:archived 4662:77-81766 4540:(1956), 4454:Springer 4376:, § 1.2) 4254:, Thm 2) 4170:See also 4145:Dedekind 4135:In 1843 3818:−5 3811:−5 3475:, where 2833:one has 2735:one has 2640:Setting 2143:. Since 2134:divides 2077:divides 1794:Elements 1774:additive 820:Factors 527:Euclid, 525:—  509:Euclid, 507:—  487:Euclid, 485:—  445:Euclid, 443:—  433:Elements 412:Fermat's 5172:Sublime 5126:Harshad 4952:Perfect 4936:Unusual 4926:Regular 4896:Sphenic 4831:Divisor 4758:, 2007. 4613:2445243 4304:: 209. 3816:√ 3809:√ 3529:  1860:1 < 1798:divides 462:, then 422:History 398:over a 81:integer 51:(1801) 5121:Frugal 5081:Triple 4921:Smooth 4891:Pronic 4697:  4677:  4660:  4639:  4619:  4611:  4601:  4560:  4538:Euclid 4478:  4460:  4394:  4329:  4269:ideals 4149:ideals 4137:Kummer 3383:where 2428:Every 1858:, and 740:where 591:> 1 550:Euclid 548:While 428:Euclid 394:, and 67:, the 5136:Smith 5053:Weird 4931:Rough 4876:Prime 4740:from 4554:Dover 4526:Werke 4298:(PDF) 4263:In a 4189:Notes 4122:field 3871:prime 3431:up to 2101:, so 1868:< 1830:. If 1784:Proof 748:< 561:Gauss 400:field 89:up to 53:Gauss 5102:Base 4695:ISBN 4675:ISBN 4658:LCCN 4637:LCCN 4599:ISBN 4585:and 4558:ISBN 4476:ISBN 4458:ISBN 4434:The 4392:ISBN 4327:ISBN 4128:and 4035:and 3387:and 3366:ring 3243:and 2955:< 2844:< 2808:< 2686:and 2612:< 2207:... 2191:... 2152:and 2091:... 2057:and 2036:... 2014:... 1972:⋅⋅⋅ 1951:⋅⋅⋅ 1919:⋅⋅⋅ 1901:and 1891:⋅⋅⋅ 1842:and 1776:and 1036:and 1028:and 102:1200 75:and 4721:at 4617:Zbl 4501:". 3873:in 3829:in 3803:or 3368:of 3328:by 3047:or 2241:. 2121:by 1936:a b 1855:a b 1701:max 1643:max 1604:max 1565:max 1526:max 1493:lcm 1452:min 1394:min 1355:min 1316:min 1277:min 1247:gcd 825:= 1 802:of 792:of 785:). 783:= 0 563:'s 470:or 430:'s 313:). 260:can 63:In 45:In 34:or 5209:: 4774:, 4770:, 4766:, 4656:, 4635:, 4615:, 4609:MR 4607:, 4597:, 4573:; 4556:, 4532:. 4456:, 4335:. 4300:. 4196:^ 4155:. 4132:. 4124:, 3797:ab 3440:, 3381:bi 3379:+ 2229:. 2200:= 2169:= 2023:= 2001:= 1938:= 1934:= 1906:= 1878:= 1864:≤ 1853:= 1008:. 573:. 500:. 460:ab 436:. 418:. 390:, 277:12 87:, 5083:) 5079:( 4806:e 4799:t 4792:v 4748:. 4725:. 4665:. 4644:. 4499:n 4491:n 4271:. 4098:. 4095:] 4090:5 4082:[ 4078:Z 4057:, 4054:] 4048:[ 4044:Z 4023:] 4020:i 4017:[ 4013:Z 3991:Z 3966:. 3962:Z 3940:] 3935:5 3927:[ 3922:Z 3900:] 3895:5 3887:[ 3882:Z 3856:] 3851:5 3843:[ 3838:Z 3805:b 3801:a 3782:] 3777:5 3769:[ 3764:Z 3740:. 3736:) 3730:5 3719:1 3715:( 3710:) 3704:5 3696:+ 3693:1 3689:( 3685:= 3682:3 3676:2 3673:= 3670:6 3647:] 3642:5 3634:[ 3630:Z 3604:2 3593:, 3584:, 3581:1 3550:1 3547:= 3542:3 3517:, 3512:2 3506:3 3498:+ 3495:1 3486:= 3463:] 3457:[ 3453:Z 3427:i 3413:. 3410:] 3407:i 3404:[ 3400:Z 3389:b 3385:a 3377:a 3351:) 3345:( 3340:) 3336:( 3322:. 3282:1 3256:1 3252:q 3229:1 3225:p 3204:, 3199:1 3195:q 3174:, 3169:1 3165:p 3156:1 3152:q 3129:1 3125:p 3104:. 3099:j 3095:q 3072:1 3068:p 3057:s 3053:Q 3049:Q 3033:1 3029:p 3020:1 3016:q 2993:1 2989:p 2978:s 2961:. 2958:s 2952:) 2949:Q 2943:P 2940:( 2935:1 2931:p 2927:= 2924:Q 2921:) 2916:1 2912:p 2903:1 2899:q 2895:( 2892:= 2889:Q 2884:1 2880:p 2873:s 2850:. 2847:P 2841:Q 2821:, 2816:1 2812:q 2803:1 2799:p 2778:. 2775:Q 2770:1 2766:q 2762:= 2759:P 2754:1 2750:p 2746:= 2743:s 2723:, 2718:n 2714:q 2705:2 2701:q 2697:= 2694:Q 2672:m 2668:p 2659:2 2655:p 2651:= 2648:P 2625:, 2620:1 2616:q 2607:1 2603:p 2592:s 2576:j 2572:q 2567:/ 2563:s 2560:= 2555:i 2551:p 2546:/ 2542:s 2539:= 2536:t 2516:, 2511:j 2507:q 2503:= 2498:i 2494:p 2473:. 2468:j 2464:q 2441:i 2437:p 2409:. 2404:n 2400:q 2391:2 2387:q 2381:1 2377:q 2373:= 2361:m 2357:p 2348:2 2344:p 2338:1 2334:p 2330:= 2323:s 2296:1 2272:s 2252:s 2226:n 2220:n 2213:k 2209:q 2205:2 2202:q 2197:j 2193:p 2189:2 2186:p 2180:n 2174:1 2171:q 2167:1 2164:p 2158:1 2155:q 2149:1 2146:p 2140:1 2137:q 2131:1 2128:p 2117:i 2113:q 2107:1 2104:p 2097:k 2093:q 2089:2 2086:q 2083:1 2080:q 2074:1 2071:p 2064:i 2060:q 2053:i 2049:p 2042:k 2038:q 2034:2 2031:q 2028:1 2025:q 2020:j 2016:p 2012:2 2009:p 2006:1 2003:p 1999:n 1993:n 1978:k 1974:q 1970:2 1967:q 1964:1 1961:q 1957:j 1953:p 1949:2 1946:p 1943:1 1940:p 1932:n 1925:k 1921:q 1917:2 1914:q 1911:1 1908:q 1904:b 1897:j 1893:p 1889:2 1886:p 1883:1 1880:p 1876:a 1870:n 1866:b 1862:a 1851:n 1845:b 1839:a 1833:n 1827:n 1822:1 1814:2 1810:1 1792:( 1735:. 1730:) 1725:i 1721:b 1717:, 1712:i 1708:a 1704:( 1696:i 1692:p 1685:= 1672:) 1667:4 1663:b 1659:, 1654:4 1650:a 1646:( 1639:7 1633:) 1628:3 1624:b 1620:, 1615:3 1611:a 1607:( 1600:5 1594:) 1589:2 1585:b 1581:, 1576:2 1572:a 1568:( 1561:3 1555:) 1550:1 1546:b 1542:, 1537:1 1533:a 1529:( 1522:2 1518:= 1511:) 1508:b 1505:, 1502:a 1499:( 1486:, 1481:) 1476:i 1472:b 1468:, 1463:i 1459:a 1455:( 1447:i 1443:p 1436:= 1423:) 1418:4 1414:b 1410:, 1405:4 1401:a 1397:( 1390:7 1384:) 1379:3 1375:b 1371:, 1366:3 1362:a 1358:( 1351:5 1345:) 1340:2 1336:b 1332:, 1327:2 1323:a 1319:( 1312:3 1306:) 1301:1 1297:b 1293:, 1288:1 1284:a 1280:( 1273:2 1269:= 1262:) 1259:b 1256:, 1253:a 1250:( 1240:, 1233:i 1229:b 1225:+ 1220:i 1216:a 1210:i 1206:p 1199:= 1184:4 1180:b 1176:+ 1171:4 1167:a 1162:7 1154:3 1150:b 1146:+ 1141:3 1137:a 1132:5 1124:2 1120:b 1116:+ 1111:2 1107:a 1102:3 1094:1 1090:b 1086:+ 1081:1 1077:a 1072:2 1068:= 1061:b 1055:a 1038:b 1034:a 1030:b 1026:a 997:i 993:n 975:, 968:i 964:n 958:i 954:p 943:1 940:= 937:i 929:= 919:4 915:n 910:7 902:3 898:n 893:5 885:2 881:n 876:3 868:1 864:n 859:2 855:= 852:n 830:n 823:p 804:n 795:n 781:k 770:i 766:n 760:k 757:p 753:2 750:p 746:1 743:p 725:, 718:i 714:n 708:i 704:p 698:k 693:1 690:= 687:i 679:= 672:k 668:n 662:k 658:p 647:2 643:n 637:2 633:p 625:1 621:n 615:1 611:p 607:= 604:n 589:n 472:b 468:a 464:p 456:p 361:= 358:1 352:1 346:2 343:= 340:1 334:2 331:= 328:2 301:4 295:3 292:= 289:6 283:2 280:= 240:= 237:2 231:2 225:3 219:2 213:5 207:2 201:5 198:= 195:) 192:5 186:5 183:( 177:3 171:) 168:2 162:2 156:2 150:2 147:( 144:= 139:2 135:5 126:1 122:3 113:4 109:2 105:= 59:. 38:. 20:)

Index

Canonical representation of a positive integer
Fundamental theorem of algebra
Fundamental theorem of calculus

Disquisitiones Arithmeticae
Gauss
law of quadratic reciprocity
mathematics
integer
prime numbers
up to
composite numbers
reasons why 1 is not considered a prime number
algebraic structures
unique factorization domains
principal ideal domains
Euclidean domains
polynomial rings
field
algebraic integers
Fermat's Last Theorem
Fermat's
Wiles's proof
Euclid
Elements
Elements Book VII
Euclid's lemma
Elements Book VII
infinite descent
Elements Book VII

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.