Knowledge

Carnot cycle

Source đź“ť

2043:), the gas is in thermal contact with the hot temperature reservoir, and is thermally isolated from the cold temperature reservoir. The gas is allowed to expand, doing work on the surroundings by pushing up the piston (Stage One figure, right). Although the pressure drops from points 1 to 2 (figure 1) the temperature of the gas does not change during the process because the heat transferred from the hot temperature reservoir to the gas is exactly used to do work on the surroundings by the gas. There is no change in the gas internal energy, and no change in the gas temperature if it is an ideal gas. Heat 2348: 2191: 2134: 1998: 2682: 2383: 1967: 31: 1601: 2715: 2766:, is the amount of work energy exchanged by the system with its surroundings. The amount of heat exchanged with the hot reservoir is the sum of the two. If the system is behaving as an engine, the process moves clockwise around the loop, and moves counter-clockwise if it is behaving as a refrigerator. The efficiency to the cycle is the ratio of the white area (work) divided by the sum of the white and red areas (heat absorbed from the hot reservoir). 2369:) Once again the gas in the engine is thermally insulated from the hot and cold reservoirs, and the engine is assumed to be frictionless and the process is slow enough, hence reversible. During this step, the surroundings do work on the gas, pushing the piston down further (Stage Four figure, right), increasing its internal energy, compressing it, and causing its temperature to rise back to the temperature infinitesimally less than 4306: 3093: 3123: 2662:), the isothermal stages follow the isotherm lines for the working fluid, the adiabatic stages move between isotherms, and the area bounded by the complete cycle path represents the total work that can be done during one cycle. From point 1 to 2 and point 3 to 4 the temperature is constant (isothermal process). Heat transfer from point 4 to 1 and point 2 to 3 are equal to zero (adiabatic process). 2166:. The gas continues to expand with reduction of its pressure, doing work on the surroundings (raising the piston; Stage Two figure, right), and losing an amount of internal energy equal to the work done. The loss of internal energy causes the gas to cool. In this step it is cooled to a temperature that is infinitesimally higher than the cold reservoir temperature 4349:
Looking at this formula an interesting fact becomes apparent: Lowering the temperature of the cold reservoir will have more effect on the ceiling efficiency of a heat engine than raising the temperature of the hot reservoir by the same amount. In the real world, this may be difficult to achieve since the cold reservoir is often an existing ambient temperature.
4348:
Rearranging the right side of the equation gives what may be a more easily understood form of the equation, namely that the theoretical maximum efficiency of a heat engine equals the difference in temperature between the hot and cold reservoir divided by the absolute temperature of the hot reservoir.
4384:
In mesoscopic heat engines, work per cycle of operation in general fluctuates due to thermal noise. If the cycle is performed quasi-statically, the fluctuations vanish even on the mesoscale. However, if the cycle is performed faster than the relaxation time of the working medium, the fluctuations of
2899:
which is the amount of heat transferred in the process. If the process moves the system to greater entropy, the area under the curve is the amount of heat absorbed by the system in that process; otherwise, it is the amount of heat removed from or leaving the system. For any cyclic process, there is
2908:
diagrams for a clockwise cycle, the area under the upper portion will be the energy absorbed by the system during the cycle, while the area under the lower portion will be the energy removed from the system during the cycle. The area inside the cycle is then the difference between the two (the
4226:. This time, the cycle remains exactly the same except that the directions of any heat and work interactions are reversed. Heat is absorbed from the low-temperature reservoir, heat is rejected to a high-temperature reservoir, and a work input is required to accomplish all this. The 3088:
diagram is (a) equal to the total work performed by the system on the surroundings if the loop is traversed in a clockwise direction, and (b) is equal to the total work done on the system by the surroundings as the loop is traversed in a counterclockwise direction.
4686:
can improve the thermal efficiency of steam power plants and why the thermal efficiency of combined-cycle power plants (which incorporate gas turbines operating at even higher temperatures) exceeds that of conventional steam plants. The first prototype of the
5171: 2806:). For a simple closed system (control mass analysis), any point on the graph represents a particular state of the system. A thermodynamic process is represented by a curve connecting an initial state (A) and a final state (B). The area under the curve is: 4976:...since the Carnot heat engine, setting an upper bound on the efficiency of a heat engine is an ideal, reversible engine of which a single cycle must be performed in infinite time which is impractical and so the Carnot engine has zero power. 3658: 4213:
This is the Carnot heat engine working efficiency definition as the fraction of the work done by the system to the thermal energy received by the system from the hot reservoir per cycle. This thermal energy is the cycle initiator.
3054: 4583: 4507: 2710:. The vertical axis is the system temperature, the horizontal axis is the system entropy. A-to-B (isothermal expansion), B-to-C (isentropic expansion), C-to-D (isothermal compression), D-to-A (isentropic compression). 1925: 4385:
work are inevitable. Nevertheless, when work and heat fluctuations are counted, an exact equality relates the exponential average of work performed by any heat engine to the heat transfer from the hotter heat bath.
5168: 2470: 3244: 4112: 3442: 2544: 4011: 3341: 4409:. In addition, real engines that operate along the Carnot cycle style (isothermal expansion / isentropic expansion / isothermal compression / isentropic compression) are rare. Nevertheless, Equation 2909:
absorbed net heat energy), but since the internal energy of the system must have returned to its initial value, this difference must be the amount of work done by the system per cycle. Referring to
4187: 1320: 2881: 3916: 1790:
done by the system or engine to the environment per Carnot cycle depends on the temperatures of the thermal reservoirs and the entropy transferred from the hot reservoir to the system
2304: 2126: 4585:
at which the first integral is over a part of a cycle where heat goes into the system and the second integral is over a cycle part where heat goes out from the system. Then, replace
2237:. The surroundings do work on the gas, pushing the piston down (Stage Three figure, right). An amount of energy earned by the gas from this work exactly transfers as a heat energy 2340: 3516: 4511: 2642: 1155: 1100: 1045: 4435: 852: 805: 720: 673: 585: 538: 1762:, merely transferred between the thermal reservoirs and the system without gain or loss. When work is applied to the system, heat moves from the cold to hot reservoir ( 1811: 756: 624: 990: 4300: 4273: 4222:
A Carnot heat-engine cycle described is a totally reversible cycle. That is, all the processes that compose it can be reversed, in which case it becomes the Carnot
4207: 3859: 3830: 3801: 3768: 3739: 3710: 3548: 3538: 2600: 2573: 1952: 1748: 1721: 4352:
In other words, the maximum efficiency is achieved if and only if entropy does not change per cycle. An entropy change per cycle is made, for example, if there is
4312:: A real engine (left) compared to the Carnot cycle (right). The entropy of a real material changes with temperature. This change is indicated by the curve on a 2772:(energy lost to the cold reservoir) can be seen as a direct subtraction, or expressed as the sum of a negative quantity, which can lead to different conventions. 489: 3464: 2068: 1788: 828: 781: 696: 649: 561: 514: 5120:
Kostic, M (2011). "Revisiting The Second Law of Energy Degradation and Entropy Generation: From Sadi Carnot's Ingenious Reasoning to Holistic Generalization".
2393:
to illustrate the work done. 1-to-2 (isothermal expansion), 2-to-3 (isentropic expansion), 3-to-4 (isothermal compression), 4-to-1 (isentropic compression).
1750:(referred to as the hot and cold reservoirs, respectively), and a part of this transferred energy is converted to the work done by the system. The cycle is 2925: 2404: 4728:, the Carnot engine may be thought as the theoretical limit of macroscopic scale heat engines rather than any practical device that could ever be built. 2027:. (The infinitesimal temperature difference allows the heat to transfer into the gas without a significant change in the gas temperature. This is called 3138: 2376:
due solely to the work added to the system, but the entropy remains unchanged. At this point the gas is in the same state as at the start of step 1.
3346: 2475: 4327:). Irreversible systems and losses of energy (for example, work due to friction and heat losses) prevent the ideal from taking place at every step. 1630: 1816: 3251: 5223: 4720:. However, on a macroscopic scale limitations placed by the model's assumptions prove it impractical, and, ultimately, incapable of doing any 4234:
diagram of the reversed Carnot cycle is the same as for the Carnot heat-engine cycle except that the directions of the processes are reversed.
1331: 1219: 4368:, the required dumping of heat into the environment to dispose of excess entropy leads to a (minimal) reduction in efficiency. So Equation 453: 4344:
gives the maximum efficiency possible for any engine using the corresponding temperatures. A corollary to Carnot's theorem states that:
4016: 2162:) the gas in the engine is thermally insulated from both the hot and cold reservoirs, thus they neither gain nor lose heat. It is an 1309: 4336:
No engine operating between two heat reservoirs can be more efficient than a Carnot engine operating between those same reservoirs.
5385: 5021: 1342: 3921: 4415:
is extremely useful for determining the maximum efficiency that could ever be expected for a given set of thermal reservoirs.
5161: 5110: 5084: 5057: 912: 4117: 4725: 4243: 1658: 1623: 1210: 879: 446: 324: 2814: 4742: 4716:. On a practical human-scale level the Carnot cycle has proven a valuable model, as in advancing the development of the 4375: 2398: 1751: 262: 3133:
Evaluation of the above integral is particularly simple for a Carnot cycle. The amount of energy transferred as work is
5216: 3343:
and the total amount of heat transferred from the system to the cold reservoir (in the isothermal compression) will be
2696:), illustrated on a TS (temperature T–entropy S) diagram. The cycle takes place between a hot reservoir at temperature 1394: 1368: 889: 343: 5451: 4223: 3469: 295: 3868: 2008:
expansion. Heat (as an energy) is transferred reversibly from the hot temperature reservoir at constant temperature
1447: 918: 317: 4700: 2198:
Isothermal compression. Heat is transferred reversibly to the low temperature reservoir at a constant temperature
5489: 2777: 2676: 1616: 3248:
The total amount of heat transferred from the hot reservoir to the system (in the isothermal expansion) will be
1547: 79: 2251: 2073: 1654: 1442: 5525: 5209: 1522: 1295: 272: 1770:). When heat moves from the hot to the cold reservoir, the system applies work to the environment. The work 5436: 2917:, mathematically, for a reversible process, we may write the amount of work done over a cyclic process as: 2736: 2145: 907: 110: 100: 4683: 4400: 2653: 115: 105: 2762:|, is the amount of energy exchanged between the system and the cold reservoir. The area in white, 5350: 5240: 2309: 2233:
to allow heat transfer from the gas to the cold reservoir. There is no change in temperature, it is an
2226:, and is thermally isolated from the hot reservoir. The gas temperature is infinitesimally higher than 1399: 1363: 141: 75: 1437: 5504: 1192: 940: 386: 199: 189: 5142: 4822:
Holubec Viktor and Ryabov Artem (2018). "Cycling Tames Power Fluctuations near Optimum Efficiency".
5265: 5484: 5469: 5459: 5415: 2605: 1604: 1432: 1229: 1110: 1055: 1000: 932: 871: 407: 396: 62: 5185: 834: 787: 702: 655: 567: 520: 5137: 2050:> 0 is absorbed from the hot temperature reservoir, resulting in an increase in the entropy 1537: 1254: 338: 92: 67: 5076: 5069: 3653:{\displaystyle \eta ={\frac {W}{Q_{H}}}={\frac {Q_{H}-Q_{C}}{Q_{H}}}=1-{\frac {T_{C}}{T_{H}}}} 3080:, its integral over any closed loop is zero and it follows that the area inside the loop on a 1793: 1457: 738: 603: 5330: 5290: 1674: 1472: 1049: 362: 208: 57: 960: 5474: 5192: 5129: 4902: 4841: 4713: 4278: 4251: 4192: 3837: 3808: 3779: 3771: 3746: 3717: 3688: 3523: 2578: 2551: 1930: 1726: 1699: 1685: 1681:
system in creating a temperature difference through the application of work to the system.
1552: 1477: 1467: 267: 129: 8: 5479: 5380: 5232: 5196: 4914: 2689: 1984: 1650: 1497: 1259: 281: 247: 242: 155: 5133: 4906: 4845: 4346:
All reversible engines operating between the same heat reservoirs are equally efficient.
4248:
It can be seen from the above diagram that for any cycle operating between temperatures
2721:: A generalized thermodynamic cycle taking place between a hot reservoir at temperature 1492: 471: 5336: 5026: 4949: 4918: 4892: 4865: 4831: 4737: 4706: 3449: 3077: 2693: 2234: 2182: 2141: 2053: 1988: 1773: 1759: 1662: 1586: 1249: 1244: 1197: 813: 766: 681: 634: 546: 499: 429: 413: 300: 252: 237: 227: 36: 30: 2219:), the gas in the engine is in thermal contact with the cold reservoir at temperature 1970: 5499: 5321: 5157: 5106: 5080: 5053: 4967: 4963: 4938:"Effects of dark energy on the efficiency of charged AdS black holes as heat engines" 4922: 4857: 3049:{\displaystyle W=\oint PdV=\oint (dQ-dU)=\oint (TdS-dU)=\oint TdS-\oint dU=\oint TdS} 2163: 1693: 1581: 1542: 1532: 1104: 902: 730: 232: 222: 164: 5165: 5039: 4869: 4578:{\displaystyle \langle T_{C}\rangle ={\frac {1}{\Delta S}}\int _{Q_{\text{out}}}TdS} 4394: 5441: 5147: 5034: 4959: 4910: 4853: 4849: 4502:{\displaystyle \langle T_{H}\rangle ={\frac {1}{\Delta S}}\int _{Q_{\text{in}}}TdS} 4361: 2788:
diagram), in which the thermodynamic state is specified by a point on a graph with
1502: 1487: 1427: 1422: 1239: 1234: 884: 352: 217: 4403:
engine. So, real heat engines are even less efficient than indicated by Equation
5464: 5098: 4937: 4790: 2401:
thermodynamic cycle (no net change in the system and its surroundings per cycle)
1452: 1300: 954: 595: 418: 179: 146: 5049: 5431: 5390: 5375: 5360: 5295: 5285: 5280: 5255: 5094: 5030: 4721: 4365: 2347: 2190: 2133: 1997: 1507: 1277: 377: 257: 194: 184: 52: 22: 2776:
The behavior of a Carnot engine or refrigerator is best understood by using a
5519: 5494: 5410: 5365: 5326: 5300: 5270: 4971: 4717: 4688: 4364:
becomes an inequality rather than an equality. Otherwise, since entropy is a
4323: 2248:) to the cold reservoir so the entropy of the system decreases by the amount 1767: 1678: 1576: 894: 463: 424: 136: 5400: 5395: 5370: 5316: 4861: 2681: 2382: 1920:{\displaystyle W=(T_{H}-T_{C})\Delta S=(T_{H}-T_{C}){\frac {Q_{H}}{T_{H}}}} 1527: 1512: 1462: 945: 4320:
diagram. For this figure, the curve indicates a vapor-liquid equilibrium (
3712:< 0 is the heat taken from the system (heat energy leaving the system), 2342:
because the isothermal compression decreases the multiplicity of the gas.
4773: 4772:
Planck, M. (1945). "equations 39, 40 and 65 in sections §90 & §137".
4428:
as the expression of the Carnot efficiency is still useful. Consider the
4378: 4357: 3741:> 0 is the heat put into the system (heat energy entering the system), 1666: 1482: 290: 5405: 5201: 4989: 4679: 2714: 2390: 2005: 1571: 1517: 5151: 5042: 4360:
of work into heat. In that case, the cycle is not reversible and the
3099:: A Carnot cycle taking place between a hot reservoir at temperature 1763: 169: 2465:{\displaystyle \Delta S_{H}+\Delta S_{C}=\Delta S_{\text{cycle}}=0,} 1954:
is heat transferred from the hot reservoir to the system per cycle.
4954: 4836: 4622:
For the Carnot cycle, or its equivalent, the average value ⟨
4353: 3683:
is the work done by the system (energy exiting the system as work),
2602:
are both smaller in magnitude and in fact are in the same ratio as
1285: 1202: 994: 402: 174: 4990:"Power, efficiency, and fluctuations in steady-state heat engines" 4897: 4619:⟩, respectively, to estimate the efficiency a heat engine. 5040:
Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (1963).
4429: 4305: 2789: 2181:= 0) between the system (the gas) and its surroundings. It is an 1755: 391: 4883:
N. A. Sinitsyn (2011). "Fluctuation Relation for Heat Engines".
4399:
Carnot realized that, in reality, it is not possible to build a
3239:{\displaystyle W=\oint PdV=\oint TdS=(T_{H}-T_{C})(S_{B}-S_{A})} 3092: 4821: 4107:{\displaystyle Q_{C}=T_{C}(S_{A}-S_{B})=T_{C}\Delta S_{C}<0} 3437:{\displaystyle Q_{C}=T_{C}(S_{A}-S_{B})=T_{C}\Delta S_{C}<0} 2539:{\displaystyle {\frac {Q_{H}}{T_{H}}}=-{\frac {Q_{C}}{T_{C}}}.} 1689: 1657:
in 1824 and expanded upon by others in the 1830s and 1840s. By
4629:⟩ will equal the highest temperature available, namely 3122: 2244:< 0 (negative as leaving from the system, according to the 3918:
can be derived from the expressions above with the entropy:
2739:, the cycle cannot extend outside the temperature band from 2245: 1670: 367: 4006:{\displaystyle Q_{H}=T_{H}(S_{B}-S_{A})=T_{H}\Delta S_{H}} 3336:{\displaystyle Q_{H}=T_{H}(S_{B}-S_{A})=T_{H}\Delta S_{H}} 4650:. For other less efficient thermodynamic cycles, ⟨ 5066: 5093: 4988:
Benenti, Giuliano; Casati, Giulio; Wang, Jiao (2020).
4182:{\displaystyle \Delta S_{C}=S_{A}-S_{B}=-\Delta S_{H}} 3446:
Due to energy conservation, the net heat transferred,
2900:
an upper portion of the cycle and a lower portion. In
2017:
to the gas at a temperature infinitesimally less than
5005:
However, fluctuations make impractical such engines.
4812:. 7th ed. New York: McGraw-Hill, 2011. p. 299. Print. 4514: 4438: 4281: 4254: 4195: 4120: 4019: 3924: 3871: 3840: 3811: 3782: 3749: 3720: 3691: 3551: 3526: 3472: 3452: 3349: 3254: 3141: 2928: 2817: 2608: 2581: 2554: 2478: 2407: 2312: 2254: 2076: 2056: 1933: 1819: 1796: 1776: 1729: 1702: 1113: 1058: 1003: 963: 837: 816: 790: 769: 741: 705: 684: 658: 637: 606: 570: 549: 523: 502: 474: 4709:
is, ultimately, a theoretical construct based on an
4701:
Carnot heat engine § As a macroscopic construct
4302:, none can exceed the efficiency of a Carnot cycle. 2876:{\displaystyle Q=\int _{A}^{B}dQ=\int _{A}^{B}T\,dS} 4189:, a minus sign appears in the final expression for 5068: 5041: 4577: 4501: 4388: 4294: 4267: 4201: 4181: 4106: 4005: 3910: 3853: 3824: 3795: 3762: 3733: 3704: 3652: 3532: 3510: 3458: 3436: 3335: 3238: 3048: 2875: 2670: 2636: 2594: 2567: 2538: 2464: 2334: 2298: 2120: 2062: 1946: 1919: 1805: 1782: 1742: 1715: 1149: 1094: 1039: 984: 846: 822: 799: 775: 750: 714: 690: 667: 643: 618: 579: 555: 532: 508: 483: 4987: 4691:was based on the principles of the Carnot cycle. 3803:is the absolute temperature of the hot reservoir. 5517: 5075:(3rd ed.). John Wiley & Sons. pp.  2148:) expansion of the gas (isentropic work output). 4678:. This can help illustrate, for example, why a 5048:. Addison-Wesley Publishing Company. pp.  4882: 3911:{\displaystyle \eta =1-{\frac {T_{C}}{T_{H}}}} 2665: 5217: 4694: 1624: 4767: 4765: 4763: 4528: 4515: 4452: 4439: 2647: 2346: 2189: 2132: 1996: 2173:. The entropy remains unchanged as no heat 5224: 5210: 4936:Liu, Hang; Meng, Xin-He (18 August 2017). 2796:) as the horizontal axis and temperature ( 1971:Carnot cycle from The Mechanical Universe 1631: 1617: 29: 5141: 5067:Halliday, David; Resnick, Robert (1978). 4953: 4896: 4835: 4760: 2866: 5231: 4808:Çengel, Yunus A., and Michael A. Boles. 4782: 4304: 4217: 3121: 3091: 2713: 2680: 2381: 2299:{\displaystyle \Delta S_{C}=Q_{C}/T_{C}} 2121:{\displaystyle \Delta S_{H}=Q_{H}/T_{H}} 5386:Homogeneous charge compression ignition 5105:(2nd ed.). W. H. Freeman Company. 5022:Reflections on the Motive Power of Fire 4935: 4810:Thermodynamics: An Engineering Approach 4778:. Dover Publications. pp. 75, 135. 5518: 5119: 4771: 2246:universal convention in thermodynamics 2029:isothermal heat addition or absorption 5205: 5156:American Institute of Physics, 2011. 4788: 1991:, consisting of the following steps: 1677:, or conversely, the efficiency of a 4334:is a formal statement of this fact: 3865:The expression with the temperature 3542: 3106:and a cold reservoir at temperature 2919: 2808: 2728:and a cold reservoir at temperature 2703:and a cold reservoir at temperature 2652:When a Carnot cycle is plotted on a 1661:, it provides an upper limit on the 4929: 4743:Reversible process (thermodynamics) 4237: 3129:: A visualization of a Carnot cycle 3117: 13: 5031:The Steam-Engine and Other Engines 4540: 4464: 4309: 4166: 4121: 4085: 3990: 3415: 3320: 3126: 3096: 2912: 2802: 2718: 2685: 2658: 2440: 2424: 2408: 2389:: A Carnot cycle illustrated on a 2386: 2365: 2359: 2313: 2255: 2215: 2209: 2158: 2152: 2077: 2039: 2033: 1855: 1797: 838: 791: 706: 659: 571: 524: 344:Intensive and extensive properties 14: 5537: 5179: 4798:. Dover Publications. p. 48. 4789:Fermi, E. (1956). "equation 64". 4244:Carnot's theorem (thermodynamics) 4224:heat pump and refrigeration cycle 3466:, is equal to the work performed 2688:: A Carnot cycle as an idealized 2335:{\displaystyle \Delta S_{C}<0} 1965: 1692:in the form of heat between two 1600: 1599: 919:Table of thermodynamic equations 5044:The Feynman Lectures on Physics 4942:The European Physical Journal C 4389:Efficiency of real heat engines 3511:{\displaystyle W=Q=Q_{H}-Q_{C}} 2671:The temperature–entropy diagram 2031:.) During this step (1 to 2 on 1983:A Carnot cycle as an idealized 1395:Maxwell's thermodynamic surface 5124:. AIP Conference Proceedings. 4981: 4964:10.1140/epjc/s10052-017-5134-9 4915:10.1088/1751-8113/44/40/405001 4876: 4854:10.1103/PhysRevLett.121.120601 4815: 4802: 4069: 4043: 3974: 3948: 3399: 3373: 3304: 3278: 3233: 3207: 3204: 3178: 3001: 2980: 2971: 2953: 1890: 1864: 1852: 1826: 1129: 1117: 1074: 1062: 1019: 1007: 979: 967: 1: 4748: 4671:⟩ will be higher than 4422:is an idealization, Equation 4395:Heat Engine § Efficiency 3861:is the minimum system entropy 3832:is the maximum system entropy 1653:proposed by French physicist 1296:Mechanical equivalent of heat 16:Idealized thermodynamic cycle 5188:article on the Carnot cycle. 4657:⟩ will be lower than 4643:⟩ the lowest, namely 4401:thermodynamically reversible 4374:gives the efficiency of any 2737:second law of thermodynamics 2397:In this case, since it is a 2205:(isothermal heat rejection). 908:Onsager reciprocal relations 7: 5291:Stirling (pseudo/adiabatic) 4731: 4601: 4424: 4411: 4405: 4370: 4340: 3666: 3062: 2889: 2778:temperature–entropy diagram 2677:Temperature–entropy diagram 2666:Properties and significance 2637:{\displaystyle Q_{H}/T_{H}} 1400:Entropy as energy dispersal 1211:"Perpetual motion" machines 1150:{\displaystyle G(T,p)=H-TS} 1095:{\displaystyle A(T,V)=U-TS} 1040:{\displaystyle H(S,p)=U+pV} 10: 5542: 4775:Treatise on Thermodynamics 4698: 4695:As a macroscopic construct 4392: 4241: 3774:of the cold reservoir, and 2674: 847:{\displaystyle \partial T} 800:{\displaystyle \partial V} 715:{\displaystyle \partial p} 668:{\displaystyle \partial V} 580:{\displaystyle \partial T} 533:{\displaystyle \partial S} 5450: 5424: 5349: 5309: 5250: 5239: 5193:Carnot Cycle on Ideal Gas 5167:. Full article (24 pages 2753:. The area in red, | 2648:The pressure–volume graph 2150:For this step (2 to 3 on 2070:of the gas by the amount 1978: 1964: 1959: 1669:during the conversion of 1321:An Inquiry Concerning the 5033:edition 3, page 62, via 2800:) as the vertical axis ( 2207:In this step (3 to 4 on 1806:{\displaystyle \Delta S} 1334:Heterogeneous Substances 751:{\displaystyle \alpha =} 619:{\displaystyle \beta =-} 4885:J. Phys. A: Math. Theor 2654:pressure–volume diagram 2355:Isentropic compression. 4579: 4503: 4328: 4296: 4269: 4203: 4183: 4108: 4007: 3912: 3855: 3826: 3797: 3764: 3735: 3706: 3654: 3534: 3512: 3460: 3438: 3337: 3240: 3130: 3114: 3050: 2877: 2773: 2711: 2638: 2596: 2569: 2540: 2466: 2394: 2351: 2336: 2300: 2194: 2137: 2122: 2064: 2001: 1948: 1921: 1807: 1784: 1744: 1717: 1151: 1096: 1041: 986: 985:{\displaystyle U(S,V)} 848: 824: 801: 777: 752: 716: 692: 669: 645: 620: 581: 557: 534: 510: 485: 464:Specific heat capacity 68:Quantum thermodynamics 4612:⟩ and ⟨ 4580: 4504: 4308: 4297: 4295:{\displaystyle T_{C}} 4270: 4268:{\displaystyle T_{H}} 4218:Reversed Carnot cycle 4204: 4202:{\displaystyle \eta } 4184: 4109: 4008: 3913: 3856: 3854:{\displaystyle S_{A}} 3827: 3825:{\displaystyle S_{B}} 3798: 3796:{\displaystyle T_{H}} 3765: 3763:{\displaystyle T_{C}} 3736: 3734:{\displaystyle Q_{H}} 3707: 3705:{\displaystyle Q_{C}} 3655: 3535: 3533:{\displaystyle \eta } 3513: 3461: 3439: 3338: 3241: 3125: 3095: 3051: 2878: 2717: 2684: 2639: 2597: 2595:{\displaystyle T_{C}} 2570: 2568:{\displaystyle Q_{C}} 2541: 2467: 2385: 2350: 2337: 2301: 2193: 2136: 2123: 2065: 2000: 1949: 1947:{\displaystyle Q_{H}} 1922: 1808: 1785: 1745: 1743:{\displaystyle T_{C}} 1718: 1716:{\displaystyle T_{H}} 1684:In a Carnot cycle, a 1332:On the Equilibrium of 1152: 1097: 1050:Helmholtz free energy 1042: 987: 849: 825: 802: 778: 753: 717: 693: 670: 646: 621: 582: 558: 535: 511: 486: 5526:Thermodynamic cycles 5475:Regenerative cooling 5353:combustion / thermal 5252:Without phase change 5243:combustion / thermal 5233:Thermodynamic cycles 4714:thermodynamic system 4512: 4436: 4279: 4252: 4193: 4118: 4017: 3922: 3869: 3838: 3809: 3780: 3772:absolute temperature 3747: 3718: 3689: 3549: 3524: 3470: 3450: 3347: 3252: 3139: 2926: 2815: 2606: 2579: 2552: 2476: 2405: 2310: 2252: 2146:reversible adiabatic 2074: 2054: 1931: 1817: 1794: 1774: 1727: 1700: 1688:or engine transfers 1667:thermodynamic engine 1345:Motive Power of Fire 1111: 1056: 1001: 961: 913:Bridgman's equations 890:Fundamental relation 835: 814: 788: 767: 739: 703: 682: 656: 635: 604: 568: 547: 521: 500: 472: 5197:Wolfram Mathematica 5134:2011AIPC.1411..327K 4907:2011JPhA...44N5001S 4846:2018PhRvL.121l0601H 2862: 2838: 2690:thermodynamic cycle 1985:thermodynamic cycle 1651:thermodynamic cycle 1323:Source ... Friction 1255:Loschmidt's paradox 447:Material properties 325:Conjugate variables 4738:Carnot heat engine 4707:Carnot heat engine 4575: 4499: 4329: 4292: 4265: 4199: 4179: 4104: 4003: 3908: 3851: 3822: 3793: 3760: 3731: 3702: 3650: 3540:is defined to be: 3530: 3508: 3456: 3434: 3333: 3236: 3131: 3115: 3078:exact differential 3046: 2873: 2848: 2824: 2774: 2712: 2694:Carnot heat engine 2634: 2592: 2565: 2536: 2462: 2395: 2352: 2332: 2296: 2235:isothermal process 2195: 2183:isentropic process 2138: 2118: 2060: 2002: 1989:Carnot heat engine 1944: 1917: 1813:per cycle such as 1803: 1780: 1740: 1713: 1694:thermal reservoirs 1587:Order and disorder 1343:Reflections on the 1250:Heat death paradox 1147: 1092: 1037: 982: 844: 820: 797: 773: 748: 712: 688: 665: 641: 616: 577: 553: 530: 506: 484:{\displaystyle c=} 481: 454:Property databases 430:Reduced properties 414:Chemical potential 378:Functions of state 301:Thermal efficiency 37:Carnot heat engine 5513: 5512: 5490:Vapor-compression 5416:Staged combustion 5345: 5344: 5310:With phase change 5162:978-0-7354-0985-9 5152:10.1063/1.3665247 5112:978-0-7167-1088-2 5086:978-0-471-02456-9 5059:978-0-201-02116-5 4997:Physical Review E 4561: 4547: 4485: 4471: 3906: 3674: 3673: 3648: 3615: 3573: 3459:{\displaystyle Q} 3070: 3069: 2897: 2896: 2531: 2501: 2450: 2164:adiabatic process 2063:{\displaystyle S} 1976: 1975: 1915: 1783:{\displaystyle W} 1665:of any classical 1641: 1640: 1582:Self-organization 1407: 1406: 1105:Gibbs free energy 903:Maxwell relations 861: 860: 857: 856: 823:{\displaystyle V} 776:{\displaystyle 1} 731:Thermal expansion 725: 724: 691:{\displaystyle V} 644:{\displaystyle 1} 590: 589: 556:{\displaystyle N} 509:{\displaystyle T} 437: 436: 353:Process functions 339:Property diagrams 318:System properties 308: 307: 273:Endoreversibility 165:Equation of state 5533: 5485:Vapor absorption 5248: 5247: 5226: 5219: 5212: 5203: 5202: 5155: 5145: 5116: 5099:Kroemer, Herbert 5090: 5074: 5063: 5047: 5035:Internet Archive 5008: 5007: 4994: 4985: 4979: 4978: 4957: 4933: 4927: 4926: 4900: 4880: 4874: 4873: 4839: 4819: 4813: 4806: 4800: 4799: 4797: 4786: 4780: 4779: 4769: 4726:Carnot's theorem 4584: 4582: 4581: 4576: 4565: 4564: 4563: 4562: 4559: 4548: 4546: 4535: 4527: 4526: 4508: 4506: 4505: 4500: 4489: 4488: 4487: 4486: 4483: 4472: 4470: 4459: 4451: 4450: 4362:Clausius theorem 4332:Carnot's theorem 4311: 4301: 4299: 4298: 4293: 4291: 4290: 4274: 4272: 4271: 4266: 4264: 4263: 4238:Carnot's theorem 4208: 4206: 4205: 4200: 4188: 4186: 4185: 4180: 4178: 4177: 4159: 4158: 4146: 4145: 4133: 4132: 4113: 4111: 4110: 4105: 4097: 4096: 4084: 4083: 4068: 4067: 4055: 4054: 4042: 4041: 4029: 4028: 4012: 4010: 4009: 4004: 4002: 4001: 3989: 3988: 3973: 3972: 3960: 3959: 3947: 3946: 3934: 3933: 3917: 3915: 3914: 3909: 3907: 3905: 3904: 3895: 3894: 3885: 3860: 3858: 3857: 3852: 3850: 3849: 3831: 3829: 3828: 3823: 3821: 3820: 3802: 3800: 3799: 3794: 3792: 3791: 3769: 3767: 3766: 3761: 3759: 3758: 3740: 3738: 3737: 3732: 3730: 3729: 3711: 3709: 3708: 3703: 3701: 3700: 3682: 3668: 3659: 3657: 3656: 3651: 3649: 3647: 3646: 3637: 3636: 3627: 3616: 3614: 3613: 3604: 3603: 3602: 3590: 3589: 3579: 3574: 3572: 3571: 3559: 3543: 3539: 3537: 3536: 3531: 3517: 3515: 3514: 3509: 3507: 3506: 3494: 3493: 3465: 3463: 3462: 3457: 3443: 3441: 3440: 3435: 3427: 3426: 3414: 3413: 3398: 3397: 3385: 3384: 3372: 3371: 3359: 3358: 3342: 3340: 3339: 3334: 3332: 3331: 3319: 3318: 3303: 3302: 3290: 3289: 3277: 3276: 3264: 3263: 3245: 3243: 3242: 3237: 3232: 3231: 3219: 3218: 3203: 3202: 3190: 3189: 3128: 3118:The Carnot cycle 3098: 3064: 3055: 3053: 3052: 3047: 2920: 2916: 2891: 2882: 2880: 2879: 2874: 2861: 2856: 2837: 2832: 2809: 2761: 2720: 2687: 2643: 2641: 2640: 2635: 2633: 2632: 2623: 2618: 2617: 2601: 2599: 2598: 2593: 2591: 2590: 2574: 2572: 2571: 2566: 2564: 2563: 2548:This is true as 2545: 2543: 2542: 2537: 2532: 2530: 2529: 2520: 2519: 2510: 2502: 2500: 2499: 2490: 2489: 2480: 2471: 2469: 2468: 2463: 2452: 2451: 2448: 2436: 2435: 2420: 2419: 2388: 2341: 2339: 2338: 2333: 2325: 2324: 2305: 2303: 2302: 2297: 2295: 2294: 2285: 2280: 2279: 2267: 2266: 2127: 2125: 2124: 2119: 2117: 2116: 2107: 2102: 2101: 2089: 2088: 2069: 2067: 2066: 2061: 1969: 1968: 1957: 1956: 1953: 1951: 1950: 1945: 1943: 1942: 1926: 1924: 1923: 1918: 1916: 1914: 1913: 1904: 1903: 1894: 1889: 1888: 1876: 1875: 1851: 1850: 1838: 1837: 1812: 1810: 1809: 1804: 1789: 1787: 1786: 1781: 1749: 1747: 1746: 1741: 1739: 1738: 1722: 1720: 1719: 1714: 1712: 1711: 1696:at temperatures 1659:Carnot's theorem 1633: 1626: 1619: 1603: 1602: 1310:Key publications 1291: 1290:("living force") 1240:Brownian ratchet 1235:Entropy and life 1230:Entropy and time 1181: 1180: 1156: 1154: 1153: 1148: 1101: 1099: 1098: 1093: 1046: 1044: 1043: 1038: 991: 989: 988: 983: 885:Clausius theorem 880:Carnot's theorem 853: 851: 850: 845: 829: 827: 826: 821: 806: 804: 803: 798: 782: 780: 779: 774: 761: 760: 757: 755: 754: 749: 721: 719: 718: 713: 697: 695: 694: 689: 674: 672: 671: 666: 650: 648: 647: 642: 629: 628: 625: 623: 622: 617: 586: 584: 583: 578: 562: 560: 559: 554: 539: 537: 536: 531: 515: 513: 512: 507: 494: 493: 490: 488: 487: 482: 460: 459: 333: 332: 152: 151: 33: 19: 18: 5541: 5540: 5536: 5535: 5534: 5532: 5531: 5530: 5516: 5515: 5514: 5509: 5446: 5420: 5352: 5341: 5331:Organic Rankine 5305: 5259: 5256:hot air engines 5253: 5242: 5235: 5230: 5182: 5164:. Abstract at: 5143:10.1.1.405.1945 5113: 5103:Thermal Physics 5095:Kittel, Charles 5087: 5060: 5012: 5011: 4992: 4986: 4982: 4934: 4930: 4881: 4877: 4824:Phys. Rev. Lett 4820: 4816: 4807: 4803: 4795: 4787: 4783: 4770: 4761: 4751: 4734: 4724:. As such, per 4703: 4697: 4676: 4669: 4662: 4655: 4648: 4641: 4634: 4627: 4617: 4610: 4597: 4590: 4558: 4554: 4553: 4549: 4539: 4534: 4522: 4518: 4513: 4510: 4509: 4482: 4478: 4477: 4473: 4463: 4458: 4446: 4442: 4437: 4434: 4433: 4397: 4391: 4338:Thus, Equation 4286: 4282: 4280: 4277: 4276: 4259: 4255: 4253: 4250: 4249: 4246: 4240: 4220: 4212: 4194: 4191: 4190: 4173: 4169: 4154: 4150: 4141: 4137: 4128: 4124: 4119: 4116: 4115: 4092: 4088: 4079: 4075: 4063: 4059: 4050: 4046: 4037: 4033: 4024: 4020: 4018: 4015: 4014: 3997: 3993: 3984: 3980: 3968: 3964: 3955: 3951: 3942: 3938: 3929: 3925: 3923: 3920: 3919: 3900: 3896: 3890: 3886: 3884: 3870: 3867: 3866: 3845: 3841: 3839: 3836: 3835: 3816: 3812: 3810: 3807: 3806: 3787: 3783: 3781: 3778: 3777: 3754: 3750: 3748: 3745: 3744: 3725: 3721: 3719: 3716: 3715: 3696: 3692: 3690: 3687: 3686: 3680: 3642: 3638: 3632: 3628: 3626: 3609: 3605: 3598: 3594: 3585: 3581: 3580: 3578: 3567: 3563: 3558: 3550: 3547: 3546: 3525: 3522: 3521: 3520:The efficiency 3502: 3498: 3489: 3485: 3471: 3468: 3467: 3451: 3448: 3447: 3422: 3418: 3409: 3405: 3393: 3389: 3380: 3376: 3367: 3363: 3354: 3350: 3348: 3345: 3344: 3327: 3323: 3314: 3310: 3298: 3294: 3285: 3281: 3272: 3268: 3259: 3255: 3253: 3250: 3249: 3227: 3223: 3214: 3210: 3198: 3194: 3185: 3181: 3140: 3137: 3136: 3120: 3112: 3105: 2927: 2924: 2923: 2910: 2857: 2852: 2833: 2828: 2816: 2813: 2812: 2771: 2767: 2760: 2754: 2752: 2745: 2734: 2727: 2709: 2702: 2692:performed by a 2679: 2673: 2668: 2650: 2628: 2624: 2619: 2613: 2609: 2607: 2604: 2603: 2586: 2582: 2580: 2577: 2576: 2559: 2555: 2553: 2550: 2549: 2525: 2521: 2515: 2511: 2509: 2495: 2491: 2485: 2481: 2479: 2477: 2474: 2473: 2447: 2443: 2431: 2427: 2415: 2411: 2406: 2403: 2402: 2380: 2374: 2320: 2316: 2311: 2308: 2307: 2290: 2286: 2281: 2275: 2271: 2262: 2258: 2253: 2250: 2249: 2243: 2232: 2225: 2204: 2172: 2112: 2108: 2103: 2097: 2093: 2084: 2080: 2075: 2072: 2071: 2055: 2052: 2051: 2049: 2025: 2016: 1987:performed by a 1981: 1966: 1960:External videos 1938: 1934: 1932: 1929: 1928: 1909: 1905: 1899: 1895: 1893: 1884: 1880: 1871: 1867: 1846: 1842: 1833: 1829: 1818: 1815: 1814: 1795: 1792: 1791: 1775: 1772: 1771: 1734: 1730: 1728: 1725: 1724: 1707: 1703: 1701: 1698: 1697: 1637: 1592: 1591: 1567: 1559: 1558: 1557: 1417: 1409: 1408: 1387: 1373: 1348: 1344: 1337: 1333: 1326: 1322: 1289: 1282: 1264: 1245:Maxwell's demon 1207: 1178: 1177: 1161: 1160: 1159: 1112: 1109: 1108: 1107: 1057: 1054: 1053: 1052: 1002: 999: 998: 997: 962: 959: 958: 957: 955:Internal energy 950: 935: 925: 924: 899: 874: 864: 863: 862: 836: 833: 832: 815: 812: 811: 789: 786: 785: 768: 765: 764: 740: 737: 736: 704: 701: 700: 683: 680: 679: 657: 654: 653: 636: 633: 632: 605: 602: 601: 596:Compressibility 569: 566: 565: 548: 545: 544: 522: 519: 518: 501: 498: 497: 473: 470: 469: 449: 439: 438: 419:Particle number 372: 331: 320: 310: 309: 268:Irreversibility 180:State of matter 147:Isolated system 132: 122: 121: 120: 95: 85: 84: 80:Non-equilibrium 72: 47: 39: 17: 12: 11: 5: 5539: 5529: 5528: 5511: 5510: 5508: 5507: 5502: 5497: 5492: 5487: 5482: 5477: 5472: 5467: 5462: 5456: 5454: 5448: 5447: 5445: 5444: 5439: 5434: 5428: 5426: 5422: 5421: 5419: 5418: 5413: 5408: 5403: 5398: 5393: 5388: 5383: 5378: 5373: 5368: 5363: 5357: 5355: 5347: 5346: 5343: 5342: 5340: 5339: 5334: 5324: 5319: 5313: 5311: 5307: 5306: 5304: 5303: 5298: 5293: 5288: 5283: 5278: 5273: 5268: 5262: 5260: 5251: 5245: 5237: 5236: 5229: 5228: 5221: 5214: 5206: 5200: 5199: 5191:S. M. Blinder 5189: 5181: 5180:External links 5178: 5177: 5176: 5175: 5174: 5128:(1): 327–350. 5122:AIP Conf. Proc 5117: 5111: 5091: 5085: 5064: 5058: 5037: 5024: 5020:Carnot, Sadi, 5016: 5010: 5009: 4980: 4928: 4891:(40): 405001. 4875: 4830:(12): 120601. 4814: 4801: 4792:Thermodynamics 4781: 4758: 4757: 4756: 4755: 4750: 4747: 4746: 4745: 4740: 4733: 4730: 4699:Main article: 4696: 4693: 4674: 4667: 4664:, and ⟨ 4660: 4653: 4646: 4639: 4636:, and ⟨ 4632: 4625: 4615: 4608: 4595: 4588: 4574: 4571: 4568: 4557: 4552: 4545: 4542: 4538: 4533: 4530: 4525: 4521: 4517: 4498: 4495: 4492: 4481: 4476: 4469: 4466: 4462: 4457: 4454: 4449: 4445: 4441: 4432:temperatures, 4420:Carnot's cycle 4390: 4387: 4366:state function 4289: 4285: 4262: 4258: 4242:Main article: 4239: 4236: 4219: 4216: 4198: 4176: 4172: 4168: 4165: 4162: 4157: 4153: 4149: 4144: 4140: 4136: 4131: 4127: 4123: 4103: 4100: 4095: 4091: 4087: 4082: 4078: 4074: 4071: 4066: 4062: 4058: 4053: 4049: 4045: 4040: 4036: 4032: 4027: 4023: 4000: 3996: 3992: 3987: 3983: 3979: 3976: 3971: 3967: 3963: 3958: 3954: 3950: 3945: 3941: 3937: 3932: 3928: 3903: 3899: 3893: 3889: 3883: 3880: 3877: 3874: 3863: 3862: 3848: 3844: 3833: 3819: 3815: 3804: 3790: 3786: 3775: 3757: 3753: 3742: 3728: 3724: 3713: 3699: 3695: 3684: 3672: 3671: 3662: 3660: 3645: 3641: 3635: 3631: 3625: 3622: 3619: 3612: 3608: 3601: 3597: 3593: 3588: 3584: 3577: 3570: 3566: 3562: 3557: 3554: 3529: 3505: 3501: 3497: 3492: 3488: 3484: 3481: 3478: 3475: 3455: 3433: 3430: 3425: 3421: 3417: 3412: 3408: 3404: 3401: 3396: 3392: 3388: 3383: 3379: 3375: 3370: 3366: 3362: 3357: 3353: 3330: 3326: 3322: 3317: 3313: 3309: 3306: 3301: 3297: 3293: 3288: 3284: 3280: 3275: 3271: 3267: 3262: 3258: 3235: 3230: 3226: 3222: 3217: 3213: 3209: 3206: 3201: 3197: 3193: 3188: 3184: 3180: 3177: 3174: 3171: 3168: 3165: 3162: 3159: 3156: 3153: 3150: 3147: 3144: 3119: 3116: 3110: 3103: 3068: 3067: 3058: 3056: 3045: 3042: 3039: 3036: 3033: 3030: 3027: 3024: 3021: 3018: 3015: 3012: 3009: 3006: 3003: 3000: 2997: 2994: 2991: 2988: 2985: 2982: 2979: 2976: 2973: 2970: 2967: 2964: 2961: 2958: 2955: 2952: 2949: 2946: 2943: 2940: 2937: 2934: 2931: 2895: 2894: 2885: 2883: 2872: 2869: 2865: 2860: 2855: 2851: 2847: 2844: 2841: 2836: 2831: 2827: 2823: 2820: 2769: 2758: 2750: 2743: 2732: 2725: 2707: 2700: 2675:Main article: 2672: 2669: 2667: 2664: 2649: 2646: 2631: 2627: 2622: 2616: 2612: 2589: 2585: 2562: 2558: 2535: 2528: 2524: 2518: 2514: 2508: 2505: 2498: 2494: 2488: 2484: 2461: 2458: 2455: 2446: 2442: 2439: 2434: 2430: 2426: 2423: 2418: 2414: 2410: 2379: 2378: 2372: 2344: 2331: 2328: 2323: 2319: 2315: 2293: 2289: 2284: 2278: 2274: 2270: 2265: 2261: 2257: 2241: 2230: 2223: 2202: 2187: 2170: 2130: 2115: 2111: 2106: 2100: 2096: 2092: 2087: 2083: 2079: 2059: 2047: 2021: 2012: 1993: 1980: 1977: 1974: 1973: 1962: 1961: 1941: 1937: 1912: 1908: 1902: 1898: 1892: 1887: 1883: 1879: 1874: 1870: 1866: 1863: 1860: 1857: 1854: 1849: 1845: 1841: 1836: 1832: 1828: 1825: 1822: 1802: 1799: 1779: 1737: 1733: 1710: 1706: 1639: 1638: 1636: 1635: 1628: 1621: 1613: 1610: 1609: 1608: 1607: 1594: 1593: 1590: 1589: 1584: 1579: 1574: 1568: 1565: 1564: 1561: 1560: 1556: 1555: 1550: 1545: 1540: 1535: 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1419: 1418: 1415: 1414: 1411: 1410: 1405: 1404: 1403: 1402: 1397: 1389: 1388: 1386: 1385: 1382: 1378: 1375: 1374: 1372: 1371: 1366: 1364:Thermodynamics 1360: 1357: 1356: 1352: 1351: 1350: 1349: 1340: 1338: 1329: 1327: 1318: 1313: 1312: 1306: 1305: 1304: 1303: 1298: 1293: 1281: 1280: 1278:Caloric theory 1274: 1271: 1270: 1266: 1265: 1263: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1226: 1223: 1222: 1216: 1215: 1214: 1213: 1206: 1205: 1200: 1195: 1189: 1186: 1185: 1179: 1176: 1175: 1172: 1168: 1167: 1166: 1163: 1162: 1158: 1157: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1102: 1091: 1088: 1085: 1082: 1079: 1076: 1073: 1070: 1067: 1064: 1061: 1047: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 992: 981: 978: 975: 972: 969: 966: 951: 949: 948: 943: 937: 936: 931: 930: 927: 926: 923: 922: 915: 910: 905: 898: 897: 892: 887: 882: 876: 875: 870: 869: 866: 865: 859: 858: 855: 854: 843: 840: 830: 819: 808: 807: 796: 793: 783: 772: 758: 747: 744: 734: 727: 726: 723: 722: 711: 708: 698: 687: 676: 675: 664: 661: 651: 640: 626: 615: 612: 609: 599: 592: 591: 588: 587: 576: 573: 563: 552: 541: 540: 529: 526: 516: 505: 491: 480: 477: 467: 458: 457: 456: 450: 445: 444: 441: 440: 435: 434: 433: 432: 427: 422: 411: 400: 381: 380: 374: 373: 371: 370: 365: 359: 356: 355: 349: 348: 347: 346: 341: 322: 321: 316: 315: 312: 311: 306: 305: 304: 303: 298: 293: 285: 284: 278: 277: 276: 275: 270: 265: 260: 258:Free expansion 255: 250: 245: 240: 235: 230: 225: 220: 212: 211: 205: 204: 203: 202: 197: 195:Control volume 192: 187: 185:Phase (matter) 182: 177: 172: 167: 159: 158: 150: 149: 144: 139: 133: 128: 127: 124: 123: 119: 118: 113: 108: 103: 97: 96: 91: 90: 87: 86: 83: 82: 71: 70: 65: 60: 55: 49: 48: 45: 44: 41: 40: 35:The classical 34: 26: 25: 23:Thermodynamics 15: 9: 6: 4: 3: 2: 5538: 5527: 5524: 5523: 5521: 5506: 5503: 5501: 5498: 5496: 5493: 5491: 5488: 5486: 5483: 5481: 5480:Transcritical 5478: 5476: 5473: 5471: 5468: 5466: 5463: 5461: 5460:Hampson–Linde 5458: 5457: 5455: 5453: 5452:Refrigeration 5449: 5443: 5440: 5438: 5435: 5433: 5430: 5429: 5427: 5423: 5417: 5414: 5412: 5409: 5407: 5404: 5402: 5399: 5397: 5394: 5392: 5389: 5387: 5384: 5382: 5381:Gas-generator 5379: 5377: 5374: 5372: 5369: 5367: 5366:Brayton/Joule 5364: 5362: 5359: 5358: 5356: 5354: 5348: 5338: 5335: 5332: 5328: 5325: 5323: 5320: 5318: 5315: 5314: 5312: 5308: 5302: 5299: 5297: 5294: 5292: 5289: 5287: 5284: 5282: 5279: 5277: 5274: 5272: 5271:Brayton/Joule 5269: 5267: 5264: 5263: 5261: 5257: 5249: 5246: 5244: 5238: 5234: 5227: 5222: 5220: 5215: 5213: 5208: 5207: 5204: 5198: 5194: 5190: 5187: 5184: 5183: 5172: 5169: 5166: 5163: 5159: 5153: 5149: 5144: 5139: 5135: 5131: 5127: 5123: 5118: 5114: 5108: 5104: 5100: 5096: 5092: 5088: 5082: 5078: 5073: 5072: 5065: 5061: 5055: 5051: 5046: 5045: 5038: 5036: 5032: 5028: 5025: 5023: 5019: 5018: 5017: 5014: 5013: 5006: 5002: 4998: 4991: 4984: 4977: 4973: 4969: 4965: 4961: 4956: 4951: 4947: 4943: 4939: 4932: 4924: 4920: 4916: 4912: 4908: 4904: 4899: 4894: 4890: 4886: 4879: 4871: 4867: 4863: 4859: 4855: 4851: 4847: 4843: 4838: 4833: 4829: 4825: 4818: 4811: 4805: 4794: 4793: 4785: 4777: 4776: 4768: 4766: 4764: 4759: 4753: 4752: 4744: 4741: 4739: 4736: 4735: 4729: 4727: 4723: 4719: 4718:diesel engine 4715: 4712: 4708: 4702: 4692: 4690: 4689:diesel engine 4685: 4681: 4677: 4670: 4663: 4656: 4649: 4642: 4635: 4628: 4620: 4618: 4611: 4604: 4603: 4598: 4591: 4572: 4569: 4566: 4555: 4550: 4543: 4536: 4531: 4523: 4519: 4496: 4493: 4490: 4479: 4474: 4467: 4460: 4455: 4447: 4443: 4431: 4427: 4426: 4421: 4416: 4414: 4413: 4408: 4407: 4402: 4396: 4386: 4382: 4380: 4377: 4373: 4372: 4367: 4363: 4359: 4355: 4350: 4347: 4343: 4342: 4337: 4333: 4326: 4325: 4324:Rankine cycle 4319: 4315: 4307: 4303: 4287: 4283: 4260: 4256: 4245: 4235: 4233: 4229: 4225: 4215: 4210: 4196: 4174: 4170: 4163: 4160: 4155: 4151: 4147: 4142: 4138: 4134: 4129: 4125: 4101: 4098: 4093: 4089: 4080: 4076: 4072: 4064: 4060: 4056: 4051: 4047: 4038: 4034: 4030: 4025: 4021: 3998: 3994: 3985: 3981: 3977: 3969: 3965: 3961: 3956: 3952: 3943: 3939: 3935: 3930: 3926: 3901: 3897: 3891: 3887: 3881: 3878: 3875: 3872: 3846: 3842: 3834: 3817: 3813: 3805: 3788: 3784: 3776: 3773: 3755: 3751: 3743: 3726: 3722: 3714: 3697: 3693: 3685: 3679: 3678: 3677: 3670: 3663: 3661: 3643: 3639: 3633: 3629: 3623: 3620: 3617: 3610: 3606: 3599: 3595: 3591: 3586: 3582: 3575: 3568: 3564: 3560: 3555: 3552: 3545: 3544: 3541: 3527: 3518: 3503: 3499: 3495: 3490: 3486: 3482: 3479: 3476: 3473: 3453: 3444: 3431: 3428: 3423: 3419: 3410: 3406: 3402: 3394: 3390: 3386: 3381: 3377: 3368: 3364: 3360: 3355: 3351: 3328: 3324: 3315: 3311: 3307: 3299: 3295: 3291: 3286: 3282: 3273: 3269: 3265: 3260: 3256: 3246: 3228: 3224: 3220: 3215: 3211: 3199: 3195: 3191: 3186: 3182: 3175: 3172: 3169: 3166: 3163: 3160: 3157: 3154: 3151: 3148: 3145: 3142: 3134: 3124: 3109: 3102: 3094: 3090: 3087: 3083: 3079: 3075: 3066: 3059: 3057: 3043: 3040: 3037: 3034: 3031: 3028: 3025: 3022: 3019: 3016: 3013: 3010: 3007: 3004: 2998: 2995: 2992: 2989: 2986: 2983: 2977: 2974: 2968: 2965: 2962: 2959: 2956: 2950: 2947: 2944: 2941: 2938: 2935: 2932: 2929: 2922: 2921: 2918: 2915: 2914: 2907: 2903: 2893: 2886: 2884: 2870: 2867: 2863: 2858: 2853: 2849: 2845: 2842: 2839: 2834: 2829: 2825: 2821: 2818: 2811: 2810: 2807: 2805: 2804: 2799: 2795: 2791: 2787: 2783: 2779: 2765: 2757: 2749: 2742: 2738: 2731: 2724: 2716: 2706: 2699: 2695: 2691: 2683: 2678: 2663: 2661: 2660: 2655: 2645: 2629: 2625: 2620: 2614: 2610: 2587: 2583: 2560: 2556: 2546: 2533: 2526: 2522: 2516: 2512: 2506: 2503: 2496: 2492: 2486: 2482: 2459: 2456: 2453: 2444: 2437: 2432: 2428: 2421: 2416: 2412: 2400: 2392: 2384: 2377: 2375: 2368: 2367: 2362: 2361: 2356: 2349: 2345: 2343: 2329: 2326: 2321: 2317: 2291: 2287: 2282: 2276: 2272: 2268: 2263: 2259: 2247: 2240: 2236: 2229: 2222: 2218: 2217: 2212: 2211: 2206: 2201: 2192: 2188: 2186: 2184: 2180: 2176: 2169: 2165: 2161: 2160: 2155: 2154: 2149: 2147: 2143: 2135: 2131: 2129: 2113: 2109: 2104: 2098: 2094: 2090: 2085: 2081: 2057: 2046: 2042: 2041: 2036: 2035: 2030: 2026: 2024: 2020: 2015: 2011: 2007: 1999: 1995: 1994: 1992: 1990: 1986: 1972: 1963: 1958: 1955: 1939: 1935: 1910: 1906: 1900: 1896: 1885: 1881: 1877: 1872: 1868: 1861: 1858: 1847: 1843: 1839: 1834: 1830: 1823: 1820: 1800: 1777: 1769: 1768:refrigeration 1765: 1761: 1757: 1753: 1735: 1731: 1708: 1704: 1695: 1691: 1687: 1682: 1680: 1679:refrigeration 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1643: 1634: 1629: 1627: 1622: 1620: 1615: 1614: 1612: 1611: 1606: 1598: 1597: 1596: 1595: 1588: 1585: 1583: 1580: 1578: 1577:Self-assembly 1575: 1573: 1570: 1569: 1563: 1562: 1554: 1551: 1549: 1548:van der Waals 1546: 1544: 1541: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1473:von Helmholtz 1471: 1469: 1466: 1464: 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1420: 1413: 1412: 1401: 1398: 1396: 1393: 1392: 1391: 1390: 1383: 1380: 1379: 1377: 1376: 1370: 1367: 1365: 1362: 1361: 1359: 1358: 1354: 1353: 1347: 1346: 1339: 1336: 1335: 1328: 1325: 1324: 1317: 1316: 1315: 1314: 1311: 1308: 1307: 1302: 1299: 1297: 1294: 1292: 1288: 1284: 1283: 1279: 1276: 1275: 1273: 1272: 1268: 1267: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1227: 1225: 1224: 1221: 1218: 1217: 1212: 1209: 1208: 1204: 1201: 1199: 1196: 1194: 1191: 1190: 1188: 1187: 1183: 1182: 1173: 1170: 1169: 1165: 1164: 1144: 1141: 1138: 1135: 1132: 1126: 1123: 1120: 1114: 1106: 1103: 1089: 1086: 1083: 1080: 1077: 1071: 1068: 1065: 1059: 1051: 1048: 1034: 1031: 1028: 1025: 1022: 1016: 1013: 1010: 1004: 996: 993: 976: 973: 970: 964: 956: 953: 952: 947: 944: 942: 939: 938: 934: 929: 928: 921: 920: 916: 914: 911: 909: 906: 904: 901: 900: 896: 895:Ideal gas law 893: 891: 888: 886: 883: 881: 878: 877: 873: 868: 867: 841: 831: 817: 810: 809: 794: 784: 770: 763: 762: 759: 745: 742: 735: 732: 729: 728: 709: 699: 685: 678: 677: 662: 652: 638: 631: 630: 627: 613: 610: 607: 600: 597: 594: 593: 574: 564: 550: 543: 542: 527: 517: 503: 496: 495: 492: 478: 475: 468: 465: 462: 461: 455: 452: 451: 448: 443: 442: 431: 428: 426: 425:Vapor quality 423: 421: 420: 415: 412: 410: 409: 404: 401: 398: 394: 393: 388: 385: 384: 383: 382: 379: 376: 375: 369: 366: 364: 361: 360: 358: 357: 354: 351: 350: 345: 342: 340: 337: 336: 335: 334: 330: 326: 319: 314: 313: 302: 299: 297: 294: 292: 289: 288: 287: 286: 283: 280: 279: 274: 271: 269: 266: 264: 263:Reversibility 261: 259: 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 214: 213: 210: 207: 206: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 161: 160: 157: 154: 153: 148: 145: 143: 140: 138: 137:Closed system 135: 134: 131: 126: 125: 117: 114: 112: 109: 107: 104: 102: 99: 98: 94: 89: 88: 81: 77: 74: 73: 69: 66: 64: 61: 59: 56: 54: 51: 50: 43: 42: 38: 32: 28: 27: 24: 21: 20: 5337:Regenerative 5275: 5266:Bell Coleman 5186:Hyperphysics 5125: 5121: 5102: 5070: 5043: 5027:Ewing, J. A. 5004: 5000: 4996: 4983: 4975: 4945: 4941: 4931: 4888: 4884: 4878: 4827: 4823: 4817: 4809: 4804: 4791: 4784: 4774: 4710: 4704: 4672: 4665: 4658: 4651: 4644: 4637: 4630: 4623: 4621: 4613: 4606: 4600: 4599:in Equation 4593: 4586: 4423: 4419: 4417: 4410: 4404: 4398: 4383: 4369: 4351: 4345: 4339: 4335: 4331: 4330: 4321: 4317: 4313: 4247: 4231: 4227: 4221: 4211: 3864: 3675: 3664: 3519: 3445: 3247: 3135: 3132: 3107: 3100: 3085: 3081: 3073: 3071: 3060: 2911: 2905: 2901: 2898: 2887: 2801: 2797: 2793: 2785: 2781: 2775: 2763: 2755: 2747: 2740: 2729: 2722: 2704: 2697: 2657: 2651: 2547: 2396: 2370: 2364: 2363:, D to A on 2358: 2354: 2353: 2238: 2227: 2220: 2214: 2213:, C to D on 2208: 2199: 2197: 2196: 2178: 2174: 2167: 2157: 2156:, B to C in 2151: 2140: 2139: 2044: 2038: 2037:, A to B in 2032: 2028: 2022: 2018: 2013: 2009: 2004: 2003: 1982: 1683: 1649:is an ideal 1647:Carnot cycle 1646: 1644: 1642: 1438:CarathĂ©odory 1369:Heat engines 1341: 1330: 1319: 1301:Motive power 1286: 946:Free entropy 917: 417: 416: / 406: 405: / 397:introduction 390: 389: / 328: 291:Heat engines 78: / 5505:Ionocaloric 5500:Vuilleumier 5322:Hygroscopic 5195:powered by 5170:), also at 4684:regenerator 4605:by ⟨ 4379:heat engine 4358:dissipation 4356:leading to 2357:(4 to 1 on 2177:transfers ( 1655:Sadi Carnot 1260:Synergetics 941:Free energy 387:Temperature 248:Quasistatic 243:Isenthalpic 200:Instruments 190:Equilibrium 142:Open system 76:Equilibrium 58:Statistical 5470:Pulse tube 5442:Mixed/dual 5050:Chapter 44 4955:1704.04363 4948:(8): 556. 4837:1805.00848 4749:References 4393:See also: 4376:reversible 2399:reversible 2391:PV diagram 2142:Isentropic 2006:Isothermal 1752:reversible 1663:efficiency 1572:Nucleation 1416:Scientists 1220:Philosophy 933:Potentials 296:Heat pumps 253:Polytropic 238:Isentropic 228:Isothermal 5465:Kleemenko 5351:Internal 5138:CiteSeerX 4972:1434-6052 4923:119261929 4898:1111.7014 4711:idealized 4551:∫ 4541:Δ 4529:⟩ 4516:⟨ 4475:∫ 4465:Δ 4453:⟩ 4440:⟨ 4418:Although 4197:η 4167:Δ 4164:− 4148:− 4122:Δ 4086:Δ 4057:− 3991:Δ 3962:− 3882:− 3873:η 3624:− 3592:− 3553:η 3528:η 3496:− 3416:Δ 3387:− 3321:Δ 3292:− 3221:− 3192:− 3164:∮ 3149:∮ 3035:∮ 3023:∮ 3020:− 3008:∮ 2993:− 2978:∮ 2963:− 2951:∮ 2936:∮ 2850:∫ 2826:∫ 2735:. By the 2507:− 2441:Δ 2425:Δ 2409:Δ 2314:Δ 2256:Δ 2078:Δ 1878:− 1856:Δ 1840:− 1798:Δ 1764:heat pump 1760:conserved 1553:Waterston 1503:von Mayer 1458:de Donder 1448:Clapeyron 1428:Boltzmann 1423:Bernoulli 1384:Education 1355:Timelines 1139:− 1084:− 872:Equations 839:∂ 792:∂ 743:α 707:∂ 660:∂ 614:− 608:β 572:∂ 525:∂ 233:Adiabatic 223:Isochoric 209:Processes 170:Ideal gas 53:Classical 5520:Category 5432:Combined 5391:Humphrey 5376:Expander 5361:Atkinson 5296:Stoddard 5286:Stirling 5281:Ericsson 5241:External 5101:(1980). 4870:52943273 4862:30296120 4732:See also 4680:reheater 4354:friction 4310:Figure 6 4114:. Since 3127:Figure 5 3097:Figure 4 2913:Figure 1 2803:Figure 2 2719:Figure 3 2686:Figure 2 2659:Figure 1 2387:Figure 1 2366:Figure 2 2360:Figure 1 2216:Figure 2 2210:Figure 1 2159:Figure 2 2153:Figure 1 2040:Figure 2 2034:Figure 1 1927:, where 1605:Category 1543:Thompson 1453:Clausius 1433:Bridgman 1287:Vis viva 1269:Theories 1203:Gas laws 995:Enthalpy 403:Pressure 218:Isobaric 175:Real gas 63:Chemical 46:Branches 5495:Siemens 5411:Scuderi 5327:Rankine 5130:Bibcode 5077:541–548 5071:Physics 5029:(1910) 5015:Sources 4903:Bibcode 4842:Bibcode 4430:average 3770:is the 2790:entropy 1756:entropy 1528:Smeaton 1523:Rankine 1513:Onsager 1498:Maxwell 1493:Massieu 1198:Entropy 1193:General 1184:History 1174:Culture 1171:History 395: ( 392:Entropy 329:italics 130:Systems 5401:Miller 5396:Lenoir 5371:Diesel 5317:Kalina 5301:Manson 5276:Carnot 5160:  5140:  5109:  5083:  5056:  4970:  4921:  4868:  4860:  3676:where 3076:is an 3072:Since 1979:Stages 1754:, and 1690:energy 1686:system 1518:Planck 1508:Nernst 1483:Kelvin 1443:Carnot 733:  598:  466:  408:Volume 323:Note: 282:Cycles 111:Second 101:Zeroth 5425:Mixed 5003:(4). 4993:(PDF) 4950:arXiv 4919:S2CID 4893:arXiv 4866:S2CID 4832:arXiv 4796:(PDF) 4754:Notes 4682:or a 2449:cycle 1673:into 1566:Other 1533:Stahl 1488:Lewis 1478:Joule 1468:Gibbs 1463:Duhem 156:State 116:Third 106:First 5437:HEHC 5406:Otto 5158:ISBN 5126:1411 5107:ISBN 5081:ISBN 5054:ISBN 4968:ISSN 4858:PMID 4722:work 4705:The 4592:and 4322:See 4275:and 4099:< 4013:and 3429:< 2575:and 2472:or, 2327:< 1723:and 1675:work 1671:heat 1538:Tait 368:Heat 363:Work 93:Laws 5148:doi 5001:102 4960:doi 4911:doi 4850:doi 4828:121 4560:out 2746:to 1766:or 1758:is 1381:Art 327:in 5522:: 5146:. 5136:. 5097:; 5079:. 5052:. 4999:. 4995:. 4974:. 4966:. 4958:. 4946:77 4944:. 4940:. 4917:. 4909:. 4901:. 4889:44 4887:. 4864:. 4856:. 4848:. 4840:. 4826:. 4762:^ 4484:in 4381:. 4209:. 3074:dU 2768:Q 2644:. 2306:. 2185:. 2128:. 1645:A 5333:) 5329:( 5258:) 5254:( 5225:e 5218:t 5211:v 5173:. 5154:. 5150:: 5132:: 5115:. 5089:. 5062:. 4962:: 4952:: 4925:. 4913:: 4905:: 4895:: 4872:. 4852:: 4844:: 4834:: 4675:C 4673:T 4668:C 4666:T 4661:H 4659:T 4654:H 4652:T 4647:C 4645:T 4640:C 4638:T 4633:H 4631:T 4626:H 4624:T 4616:C 4614:T 4609:H 4607:T 4602:3 4596:C 4594:T 4589:H 4587:T 4573:S 4570:d 4567:T 4556:Q 4544:S 4537:1 4532:= 4524:C 4520:T 4497:S 4494:d 4491:T 4480:Q 4468:S 4461:1 4456:= 4448:H 4444:T 4425:3 4412:3 4406:3 4371:3 4341:3 4318:S 4316:– 4314:T 4288:C 4284:T 4261:H 4257:T 4232:V 4230:– 4228:P 4175:H 4171:S 4161:= 4156:B 4152:S 4143:A 4139:S 4135:= 4130:C 4126:S 4102:0 4094:C 4090:S 4081:C 4077:T 4073:= 4070:) 4065:B 4061:S 4052:A 4048:S 4044:( 4039:C 4035:T 4031:= 4026:C 4022:Q 3999:H 3995:S 3986:H 3982:T 3978:= 3975:) 3970:A 3966:S 3957:B 3953:S 3949:( 3944:H 3940:T 3936:= 3931:H 3927:Q 3902:H 3898:T 3892:C 3888:T 3879:1 3876:= 3847:A 3843:S 3818:B 3814:S 3789:H 3785:T 3756:C 3752:T 3727:H 3723:Q 3698:C 3694:Q 3681:W 3669:) 3667:3 3665:( 3644:H 3640:T 3634:C 3630:T 3621:1 3618:= 3611:H 3607:Q 3600:C 3596:Q 3587:H 3583:Q 3576:= 3569:H 3565:Q 3561:W 3556:= 3504:C 3500:Q 3491:H 3487:Q 3483:= 3480:Q 3477:= 3474:W 3454:Q 3432:0 3424:C 3420:S 3411:C 3407:T 3403:= 3400:) 3395:B 3391:S 3382:A 3378:S 3374:( 3369:C 3365:T 3361:= 3356:C 3352:Q 3329:H 3325:S 3316:H 3312:T 3308:= 3305:) 3300:A 3296:S 3287:B 3283:S 3279:( 3274:H 3270:T 3266:= 3261:H 3257:Q 3234:) 3229:A 3225:S 3216:B 3212:S 3208:( 3205:) 3200:C 3196:T 3187:H 3183:T 3179:( 3176:= 3173:S 3170:d 3167:T 3161:= 3158:V 3155:d 3152:P 3146:= 3143:W 3113:. 3111:C 3108:T 3104:H 3101:T 3086:S 3084:– 3082:T 3065:) 3063:2 3061:( 3044:S 3041:d 3038:T 3032:= 3029:U 3026:d 3017:S 3014:d 3011:T 3005:= 3002:) 2999:U 2996:d 2990:S 2987:d 2984:T 2981:( 2975:= 2972:) 2969:U 2966:d 2960:Q 2957:d 2954:( 2948:= 2945:V 2942:d 2939:P 2933:= 2930:W 2906:S 2904:- 2902:T 2892:) 2890:1 2888:( 2871:S 2868:d 2864:T 2859:B 2854:A 2846:= 2843:Q 2840:d 2835:B 2830:A 2822:= 2819:Q 2798:T 2794:S 2792:( 2786:S 2784:– 2782:T 2780:( 2770:C 2764:W 2759:C 2756:Q 2751:H 2748:T 2744:C 2741:T 2733:C 2730:T 2726:H 2723:T 2708:C 2705:T 2701:H 2698:T 2656:( 2630:H 2626:T 2621:/ 2615:H 2611:Q 2588:C 2584:T 2561:C 2557:Q 2534:. 2527:C 2523:T 2517:C 2513:Q 2504:= 2497:H 2493:T 2487:H 2483:Q 2460:, 2457:0 2454:= 2445:S 2438:= 2433:C 2429:S 2422:+ 2417:H 2413:S 2373:H 2371:T 2330:0 2322:C 2318:S 2292:C 2288:T 2283:/ 2277:C 2273:Q 2269:= 2264:C 2260:S 2242:C 2239:Q 2231:C 2228:T 2224:C 2221:T 2203:C 2200:T 2179:Q 2175:Q 2171:C 2168:T 2144:( 2114:H 2110:T 2105:/ 2099:H 2095:Q 2091:= 2086:H 2082:S 2058:S 2048:H 2045:Q 2023:H 2019:T 2014:H 2010:T 1940:H 1936:Q 1911:H 1907:T 1901:H 1897:Q 1891:) 1886:C 1882:T 1873:H 1869:T 1865:( 1862:= 1859:S 1853:) 1848:C 1844:T 1835:H 1831:T 1827:( 1824:= 1821:W 1801:S 1778:W 1736:C 1732:T 1709:H 1705:T 1632:e 1625:t 1618:v 1145:S 1142:T 1136:H 1133:= 1130:) 1127:p 1124:, 1121:T 1118:( 1115:G 1090:S 1087:T 1081:U 1078:= 1075:) 1072:V 1069:, 1066:T 1063:( 1060:A 1035:V 1032:p 1029:+ 1026:U 1023:= 1020:) 1017:p 1014:, 1011:S 1008:( 1005:H 980:) 977:V 974:, 971:S 968:( 965:U 842:T 818:V 795:V 771:1 746:= 710:p 686:V 663:V 639:1 611:= 575:T 551:N 528:S 504:T 479:= 476:c 399:)

Index

Thermodynamics

Carnot heat engine
Classical
Statistical
Chemical
Quantum thermodynamics
Equilibrium
Non-equilibrium
Laws
Zeroth
First
Second
Third
Systems
Closed system
Open system
Isolated system
State
Equation of state
Ideal gas
Real gas
State of matter
Phase (matter)
Equilibrium
Control volume
Instruments
Processes
Isobaric
Isochoric

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑