Knowledge

Category of sets

Source 📝

497:. One cannot handle proper classes as one handles sets; in particular, one cannot write that those proper classes belong to a collection (either a set or a proper class). This is a problem because it means that the category of sets cannot be formalized straightforwardly in this setting. Categories like 531:. Roughly speaking, a Grothendieck universe is a set which is itself a model of ZF(C) (for instance if a set belongs to a universe, its elements and its powerset will belong to the universe). The existence of Grothendieck universes (other than the empty set and the set 585:, but each Grothendieck universe is a set because it is an element of some larger Grothendieck universe.) However, one does not work directly with the "category of all sets". Instead, theorems are expressed in terms of the category 556: 906: 581:
In one variation of this scheme, the class of sets is the union of the entire tower of Grothendieck universes. (This is necessarily a
1143: 570:
to the elements of a particular universe. (There is no "set of all sets" within the model, but one can still reason about the class
875:
A231344    Number of morphisms in full subcategories of Set spanned by {{}, {1}, {1, 2}, ..., {1, 2, ..., n}}
1179: 86:
as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.
1184: 858: 807: 774: 741: 610:
in which one cannot reason directly about proper classes; its principal disadvantage is that a theorem can be true of all
454: 182:, with the functions mapping all elements of the source sets to the single target element as morphisms. There are thus no 1174: 562:) is not implied by the usual ZF axioms; it is an additional, independent axiom, roughly equivalent to the existence of 607: 1070: 984: 835: 899: 1022: 486: 317: 1153: 646: 634: 563: 827: 661: 148: 508:
One way to resolve the problem is to work in a system that gives formal status to proper classes, such as
1148: 974: 892: 656: 210: 1080: 916: 1047: 313: 202: 1027: 790:
Mac Lane, S. (2006) . "One universe as a foundation for category theory". In Mac Lane, S. (ed.).
559: 534: 175: 1128: 1113: 1032: 937: 36: 752: 1090: 1065: 884: 528: 392: 1012: 1085: 1042: 335: 269: 99: 72: 784: 8: 1095: 490: 381: 365: 83: 728:. Contemporary Mathematics. Vol. 30. American Mathematical Society. pp. 5–29. 1017: 964: 924: 630: 457:(i.e. the collection of its objects forms a set), then the contravariant functors from 285: 79: 1002: 957: 854: 831: 817: 803: 770: 737: 718: 350: 331: 258: 206: 198: 107: 44: 1007: 947: 795: 762: 729: 466: 342: 327: 1105: 821: 603: 358: 179: 40: 24: 733: 1133: 1075: 952: 850: 509: 502: 214: 171: 163: 60: 1168: 942: 594:
whose objects are the elements of a sufficiently large Grothendieck universe
465:, together with natural transformations as morphisms, form a new category, a 969: 932: 794:. Lecture Notes in Mathematics. Vol. 106. Springer. pp. 192–200. 785:
An elementary theory of the category of sets (long version) with commentary
582: 505:, to distinguish them from the small categories whose objects form a set. 494: 373: 140: 626:
Various other solutions, and variations on the above, have been proposed.
1138: 1057: 1037: 979: 183: 128: 20: 994: 799: 766: 651: 470: 136: 281: 159: 152: 144: 48: 629:
The same issues arise with other concrete categories, such as the
761:. Lecture Notes in Mathematics. Vol. 106. pp. 201–247. 598:, and are then shown not to depend on the particular choice of 489:
the collection of all sets is not a set; this follows from the
914: 512:. In this setting, categories formed from sets are said to be 501:
whose collection of objects forms a proper class are known as
1118: 309: 878: 124:
which serves as identity element for function composition.
874: 566:. Assuming this extra axiom, one can limit the objects of 251:
serves to ensure that all the components stay disjoint).
719:"The interaction between category theory and set theory" 480: 261:; other categories are concrete if they are "built on" 537: 520:) that are formed from proper classes are said to be 89: 550: 16:Category in mathematics where the objects are sets 606:, this approach is well matched to a system like 493:. One refers to collections that are not sets as 1166: 753:"Set-theoretical foundations of category theory" 527:Another solution is to assume the existence of 849:, Pure and applied mathematics, vol. 39, 900: 234:, we construct the coproduct as the union of 726:Mathematical Applications of Category Theory 792:Reports of the Midwest Category Seminar III 403:are often an important object of study. If 907: 893: 372:are the finite sets. Since every set is a 296:is given by the set of all functions from 94:The axioms of a category are satisfied by 71:, and the composition of morphisms is the 844: 823:Categories for the Working Mathematician 816: 789: 757: 750: 690: 679: 1167: 449:) is an example of such a functor. If 888: 716: 701: 574:of all inner sets, i.e., elements of 382:locally finitely presentable category 481:Foundations for the category of sets 376:of its finite subsets, the category 98:because composition of functions is 78:Many other categories (such as the 13: 268:Every two-element set serves as a 90:Properties of the category of sets 14: 1196: 985:List of mathematical logic topics 868: 205:in this category is given by the 564:strongly inaccessible cardinals 1154:List of category theory topics 695: 684: 673: 647:Category of topological spaces 635:category of topological spaces 608:Tarski–Grothendieck set theory 391:is an arbitrary category, the 247:} (the cartesian product with 1: 1180:Categories in category theory 828:Graduate Texts in Mathematics 709: 662:Category of measurable spaces 1185:Basic concepts in set theory 366:finitely presentable objects 276:. The power object of a set 7: 1149:Glossary of category theory 1023:Zermelo–Fraenkel set theory 975:Mathematical constructivism 657:Small set (category theory) 640: 551:{\displaystyle V_{\omega }} 487:Zermelo–Fraenkel set theory 437:) (the set of morphisms in 230:ranges over some index set 10: 1201: 1175:Foundations of mathematics 1144:Mathematical structuralism 1081:Intuitionistic type theory 917:Foundations of Mathematics 341:Every non-empty set is an 318:exact in the sense of Barr 265:in some well-defined way. 1104: 1056: 1048:List of set theory topics 993: 923: 830:. Vol. 5. Springer. 469:known as the category of 667: 560:hereditarily finite sets 411:, then the functor from 199:complete and co-complete 102:, and because every set 73:composition of functions 1028:Constructive set theory 847:Categories and functors 845:Pareigis, Bodo (1970), 734:10.1090/conm/030/749767 1129:Higher category theory 1033:Descriptive set theory 938:Mathematical induction 602:. As a foundation for 552: 529:Grothendieck universes 393:contravariant functors 257:is the prototype of a 1091:Univalent foundations 1076:Dependent type theory 1066:Axiom of reducibility 751:Feferman, S. (1969). 553: 174:as morphisms. Every 1086:Homotopy type theory 1013:Axiomatic set theory 535: 270:subobject classifier 491:axiom of foundation 312:(and in particular 84:group homomorphisms 1071:Simple type theory 1018:Zermelo set theory 965:Mathematical proof 925:Mathematical logic 820:(September 1998). 818:Mac Lane, Saunders 800:10.1007/BFb0059147 767:10.1007/BFb0059148 717:Blass, A. (1984). 631:category of groups 548: 286:exponential object 80:category of groups 1162: 1161: 1043:Russell's paradox 958:Natural deduction 860:978-0-12-545150-5 809:978-3-540-36150-3 776:978-3-540-04625-7 743:978-0-8218-5032-9 351:projective object 349:. Every set is a 259:concrete category 207:cartesian product 108:identity function 47:. The arrows or 1192: 1124:Category of sets 1096:Girard's paradox 1008:Naive set theory 948:Axiomatic system 915:Major topics in 909: 902: 895: 886: 885: 863: 841: 813: 780: 747: 723: 704: 699: 693: 688: 682: 677: 557: 555: 554: 549: 547: 546: 516:and those (like 503:large categories 467:functor category 407:is an object of 343:injective object 314:cartesian closed 280:is given by its 213:is given by the 29:category of sets 1200: 1199: 1195: 1194: 1193: 1191: 1190: 1189: 1165: 1164: 1163: 1158: 1106:Category theory 1100: 1052: 989: 919: 913: 871: 866: 861: 838: 810: 777: 744: 721: 712: 707: 700: 696: 689: 685: 678: 674: 670: 643: 618: 604:category theory 593: 542: 538: 536: 533: 532: 483: 428: 359:axiom of choice 242: 225: 180:terminal object 172:empty functions 115: 92: 61:total functions 25:category theory 17: 12: 11: 5: 1198: 1188: 1187: 1182: 1177: 1160: 1159: 1157: 1156: 1151: 1146: 1141: 1139:∞-topos theory 1136: 1131: 1126: 1121: 1116: 1110: 1108: 1102: 1101: 1099: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1062: 1060: 1054: 1053: 1051: 1050: 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1010: 1005: 999: 997: 991: 990: 988: 987: 982: 977: 972: 967: 962: 961: 960: 955: 953:Hilbert system 950: 940: 935: 929: 927: 921: 920: 912: 911: 904: 897: 889: 883: 882: 870: 869:External links 867: 865: 864: 859: 851:Academic Press 842: 836: 814: 808: 787: 783:Lawvere, F.W. 781: 775: 748: 742: 713: 711: 708: 706: 705: 694: 683: 671: 669: 666: 665: 664: 659: 654: 649: 642: 639: 614: 589: 545: 541: 510:NBG set theory 495:proper classes 482: 479: 455:small category 424: 357:(assuming the 238: 221: 215:disjoint union 164:initial object 162:serves as the 147:maps, and the 111: 91: 88: 15: 9: 6: 4: 3: 2: 1197: 1186: 1183: 1181: 1178: 1176: 1173: 1172: 1170: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1111: 1109: 1107: 1103: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1063: 1061: 1059: 1055: 1049: 1046: 1044: 1041: 1039: 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1004: 1001: 1000: 998: 996: 992: 986: 983: 981: 978: 976: 973: 971: 968: 966: 963: 959: 956: 954: 951: 949: 946: 945: 944: 943:Formal system 941: 939: 936: 934: 931: 930: 928: 926: 922: 918: 910: 905: 903: 898: 896: 891: 890: 887: 880: 876: 873: 872: 862: 856: 852: 848: 843: 839: 837:0-387-98403-8 833: 829: 825: 824: 819: 815: 811: 805: 801: 797: 793: 788: 786: 782: 778: 772: 768: 764: 760: 759: 758:Mac Lane 1969 754: 749: 745: 739: 735: 731: 727: 720: 715: 714: 703: 698: 692: 691:Feferman 1969 687: 681: 680:Mac Lane 1969 676: 672: 663: 660: 658: 655: 653: 650: 648: 645: 644: 638: 636: 632: 627: 624: 622: 617: 613: 609: 605: 601: 597: 592: 588: 584: 579: 577: 573: 569: 565: 561: 543: 539: 530: 525: 523: 519: 515: 511: 506: 504: 500: 496: 492: 488: 478: 476: 472: 468: 464: 460: 456: 452: 448: 444: 440: 436: 432: 427: 422: 418: 414: 410: 406: 402: 398: 394: 390: 385: 383: 379: 375: 371: 367: 362: 360: 356: 352: 348: 344: 339: 337: 333: 329: 325: 321: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 266: 264: 260: 256: 252: 250: 246: 241: 237: 233: 229: 224: 220: 217:: given sets 216: 212: 209:of sets. The 208: 204: 200: 196: 193:The category 191: 189: 185: 181: 177: 173: 169: 165: 161: 156: 154: 150: 146: 142: 141:monomorphisms 138: 134: 130: 125: 123: 119: 114: 109: 105: 101: 97: 87: 85: 81: 76: 74: 70: 66: 62: 58: 54: 51:between sets 50: 46: 42: 38: 34: 31:, denoted as 30: 26: 22: 1123: 1119:Topos theory 970:Model theory 933:Peano axioms 846: 822: 791: 756: 725: 697: 686: 675: 628: 625: 620: 615: 611: 599: 595: 590: 586: 583:proper class 580: 575: 571: 567: 526: 521: 517: 513: 507: 498: 484: 474: 462: 458: 450: 446: 442: 438: 434: 430: 425: 420: 416: 412: 408: 404: 400: 396: 388: 386: 377: 374:direct limit 369: 363: 354: 346: 340: 323: 322: 305: 301: 297: 293: 289: 288:of the sets 277: 273: 267: 262: 254: 253: 248: 244: 239: 235: 231: 227: 222: 218: 194: 192: 187: 184:zero objects 167: 157: 149:isomorphisms 132: 129:epimorphisms 126: 121: 117: 112: 103: 95: 93: 77: 68: 64: 56: 52: 32: 28: 21:mathematical 18: 1058:Type theory 1038:Determinacy 980:Modal logic 619:but not of 419:that sends 336:preadditive 100:associative 1169:Categories 1134:∞-groupoid 995:Set theory 710:References 702:Blass 1984 652:Set theory 471:presheaves 308:is thus a 284:, and the 139:maps, the 137:surjective 544:ω 282:power set 211:coproduct 176:singleton 160:empty set 153:bijective 145:injective 49:morphisms 35:, is the 23:field of 1114:Category 641:See also 332:additive 151:are the 143:are the 135:are the 116: : 59:are the 37:category 633:or the 558:of all 328:abelian 326:is not 203:product 106:has an 82:, with 41:objects 19:In the 857:  834:  806:  773:  740:  423:to Hom 226:where 201:. The 155:maps. 39:whose 27:, the 722:(PDF) 668:Notes 522:large 514:small 453:is a 441:from 395:from 380:is a 310:topos 178:is a 170:with 63:from 879:OEIS 855:ISBN 832:ISBN 804:ISBN 771:ISBN 738:ISBN 364:The 334:nor 316:and 292:and 158:The 127:The 55:and 45:sets 43:are 1003:Set 877:at 796:doi 763:doi 730:doi 621:Set 612:Set 587:Set 578:.) 568:Set 518:Set 499:Set 485:In 473:on 463:Set 461:to 445:to 417:Set 415:to 401:Set 399:to 387:If 378:Set 370:Set 368:in 361:). 355:Set 353:in 347:Set 345:in 324:Set 320:). 306:Set 300:to 274:Set 272:in 263:Set 255:Set 197:is 195:Set 190:. 188:Set 186:in 168:Set 166:in 133:Set 131:in 96:Set 67:to 33:Set 1171:: 853:, 826:. 802:. 769:. 755:. 736:. 724:. 637:. 623:. 524:. 477:. 384:. 338:. 330:, 304:. 243:×{ 120:→ 110:id 75:. 908:e 901:t 894:v 881:. 840:. 812:. 798:: 779:. 765:: 746:. 732:: 616:U 600:U 596:U 591:U 576:U 572:U 540:V 475:C 459:C 451:C 447:A 443:X 439:C 435:A 433:, 431:X 429:( 426:C 421:X 413:C 409:C 405:A 397:C 389:C 302:B 298:A 294:B 290:A 278:A 249:i 245:i 240:i 236:A 232:I 228:i 223:i 219:A 122:X 118:X 113:X 104:X 69:B 65:A 57:B 53:A

Index

mathematical
category theory
category
objects
sets
morphisms
total functions
composition of functions
category of groups
group homomorphisms
associative
identity function
epimorphisms
surjective
monomorphisms
injective
isomorphisms
bijective
empty set
initial object
empty functions
singleton
terminal object
zero objects
complete and co-complete
product
cartesian product
coproduct
disjoint union
concrete category

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.