Knowledge

Cauchy surface

Source 📝

71:, the formal notion of a Cauchy surface can be understood in familiar terms. Suppose that humans can travel at a maximum speed of 20 miles per hour. This places constraints, for any given person, upon where they can reach by a certain time. For instance, it is impossible for a person who is in Mexico at 3 o'clock to arrive in Libya by 4 o'clock; however it is 100:
this time; furthermore, no traveler can be at multiple locations at this time. By contrast, there cannot be any Cauchy surface for this causal structure that contains both the pair (Manhattan, 1 o'clock) and (Brooklyn, 2 o'clock) since there are hypothetical travelers that could have been in Manhattan at 1 o'clock and Brooklyn at 2 o'clock.
1224:. The Cauchy surface is defined rigorously in terms of intersections with inextensible curves in order to deal with this case of circular time. An inextensible curve is a curve with no ends: either it goes on forever, remaining timelike or null, or it closes in on itself to make a circle, a closed non-spacelike curve. 288:
define causal structures which are schematically of the above type ("a traveler either can or cannot reach a certain spacetime point from a certain other spacetime point"), with the exception that locations and times are not cleanly separable from one another. Hence one can speak of Cauchy surfaces
1227:
When there are closed timelike curves, or even when there are closed non-spacelike curves, a Cauchy surface still determines the future, but the future includes the surface itself. This means that the initial conditions obey a constraint, and the Cauchy surface is not of the same character as when
1562:
Since a black hole Cauchy horizon only forms in a region where the geodesics are outgoing, in radial coordinates, in a region where the central singularity is repulsive, it is hard to imagine exactly how it forms. For this reason, Kerr and others suggest that a Cauchy horizon never forms, instead
99:
There are a number of uninteresting Cauchy surfaces. For instance, one Cauchy surface for this causal structure is given by considering the pairing of every location with the time of 1 o'clock (on a certain specified day), since any hypothetical traveler must have been at one specific location at
1559:, beyond which information cannot escape, but where the future is still determined from the conditions outside. Inside the inner horizon, the Cauchy horizon, the singularity is visible and to predict the future requires additional data about what comes out of the singularity. 95:
for this causal structure is a collection of pairs of locations and times such that, for any hypothetical traveler whatsoever, there is exactly one location and time pair in the collection for which the traveler was at the indicated location at the indicated time.
75:
for a person who is in Manhattan at 1 o'clock to reach Brooklyn by 2 o'clock, since the locations are ten miles apart. So as to speak semi-formally, ignore time zones and travel difficulties, and suppose that travelers are immortal beings who have lived forever.
1485: 1339: 186: 641: 103:
There are, also, some more interesting Cauchy surfaces which are harder to describe verbally. One could define a function τ from the collection of all locations into the collection of all times, such that the
1963:
Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 7. Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972. viii+72 pp.
1529: 650:
makes clear that, even for the "simplest" Lorentzian manifolds, Cauchy surfaces may fail to be differentiable everywhere (in this case, at the origin), and that the homeomorphism
1553: 1367: 1253: 1222: 1198: 1404: 1258: 1174: 1147: 731:
Furthermore, at the cost of not being able to consider arbitrary Cauchy surface, it is always possible to find smooth Cauchy surfaces (Bernal & Sánchez 2003):
114: 1713:
Hamilton, Andrew J.S.; Avelino, Pedro P. (2010), "The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes",
1387: 527: 1564: 32:, a Cauchy surface is usually interpreted as defining an "instant of time". In the mathematics of general relativity, Cauchy surfaces provide 1555:. A clear physical example of a Cauchy horizon is the second horizon inside a charged or rotating black hole. The outermost horizon is an 1176:
are two different regions. When the time dimension closes up on itself everywhere so that it makes a circle, the future and the past of
517:. By considering the restriction of the inverse to another Cauchy surface, one sees that any two Cauchy surfaces are homeomorphic. 1991: 1914:
Second edition. Monographs and Textbooks in Pure and Applied Mathematics, 202. Marcel Dekker, Inc., New York, 1996. xiv+635 pp.
1563:
that the inner horizon is in fact a spacelike or timelike singularity. The inner horizon corresponds to the instability due to
108:
of τ is everywhere less than 1/20 hours per mile. Then another example of a Cauchy surface is given by the collection of pairs
1933: 1975: 1954: 1919: 1942:
Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London-New York, 1973. xi+391 pp.
1822:
Di Filippo, Francesco; Carballo-Rubio, Raúl; Liberati, Stefano; Pacilio, Costantino; Visser, Matt (28 Mar 2022).
1494: 1996: 204: 17: 1480:{\displaystyle D^{+}({\mathcal {S}})\cup {\mathcal {S}}\cup D^{-}({\mathcal {S}})\not ={\mathcal {M}}} 277:, which must be larger than "20 miles per hour" due to the gradient condition on τ: a contradiction. 1534: 1348: 1234: 1203: 1179: 1774: 1334:{\displaystyle D^{+}({\mathcal {S}})\cup {\mathcal {S}}\cup D^{-}({\mathcal {S}})={\mathcal {M}}} 52: 181:{\displaystyle {\Big \{}{\big (}p,\tau (p){\big )}:p{\text{ a location on Earth}}{\Big \}}.} 1845: 1788: 1732: 1571: 1390: 1152: 1125: 497:
is topologically closed and is an embedded continuous (and even Lipschitz) submanifold of
8: 1898:
Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes.
1849: 1792: 1736: 1949:
Pure and Applied Mathematics, 103. Academic Press, Inc. , New York, 1983. xiii+468 pp.
1835: 1756: 1722: 1372: 668:-diffeomorphism. However, the same argument as for a general Cauchy surface shows that 285: 281: 240: 68: 41: 33: 29: 521:
It is hard to say more about the nature of Cauchy surfaces in general. The example of
28:
of a Lorentzian manifold. In the application of Lorentzian geometry to the physics of
1971: 1950: 1929: 1915: 1804: 1779: 1760: 1748: 1700: 1928:
Oxford Mathematical Monographs. Oxford University Press, Oxford, 2009. xxvi+785 pp.
1853: 1796: 1740: 1583: 37: 1744: 1057:
by the same criteria, replacing "past-inextensible" with "future-inextensible".
636:{\displaystyle {\Big \{}(t,x,y,z):t^{2}={\frac {x^{2}+y^{2}+z^{2}}{2}}{\Big \}}} 1488: 1114:
is the union of the future Cauchy development and the past Cauchy development.
56: 191:
The point is that, for any hypothetical traveler, there must be some location
1985: 1800: 1752: 1556: 45: 1858: 1823: 1808: 505:. The flow of any continuous timelike vector field defines a homeomorphism 83:"A person in (location 1) at (time 1) can reach (location 2) by (time 2)" 25: 1531:
and regions of the manifold not completely determined by information on
1821: 862:
is either future-directed timelike or future-directed null for each
1840: 1342: 105: 1727: 983:
is any past-inextensible differentiable causal curve such that
292: 1891:
On smooth Cauchy hypersurfaces and Geroch's splitting theorem.
1824:"On the inner horizon instability of non-singular black holes" 79:
The system of all possible ways to fill in the four blanks in
1970:
University of Chicago Press, Chicago, IL, 1984. xiii+491 pp.
207:. Furthermore, it is impossible that there are two locations 805:
be a time-oriented Lorentzian manifold. One says that a map
690:, then the flow of a smooth timelike vector field defines a 1877:
Global aspects of the Cauchy problem in general relativity.
1947:
Semi-Riemannian geometry. With applications to relativity.
751:
which has a Cauchy surface, there exists a Cauchy surface
757:
which is an embedded and spacelike smooth submanifold of
477:
The following is automatically true of a Cauchy surface
434:
if every inextensible differentiable timelike curve in
1537: 1497: 1407: 1375: 1351: 1261: 1237: 1206: 1182: 1155: 1128: 530: 243:
they would at some point have had to travel at speed
117: 1231:If there are no closed timelike curves, then given 1961:Techniques of differential topology in relativity. 1910:Beem, John K.; Ehrlich, Paul E.; Easley, Kevin L. 1570:A homogeneous space-time with a Cauchy horizon is 1547: 1523: 1479: 1381: 1361: 1333: 1247: 1216: 1192: 1168: 1141: 708:, and that any two Cauchy surfaces which are both 635: 180: 628: 533: 170: 120: 1983: 1712: 903:future-inextensible differentiable causal curve 1926:General relativity and the Einstein equations. 1369:is a Cauchy surface. Any surface of constant 313:be a Lorentzian manifold. One says that a map 1893:Comm. Math. Phys. 243 (2003), no. 3, 461–470. 1772: 827:past-inextensible differentiable causal curve 152: 127: 293:Mathematical definition and basic properties 1900:Comm. Math. Phys. 257 (2005), no. 1, 43–50. 450:has exactly one point of intersection with 67:Although it is usually phrased in terms of 55:(1789-1857) due to their relevance for the 1122:When there are no closed timelike curves, 905:by the same criteria, with the phrase "as 335:inextensible differentiable timelike curve 215:and that there is some traveler who is at 1886:J. Mathematical Phys. 11 (1970), 437–449. 1857: 1839: 1726: 1940:The large scale structure of space-time. 1875:Choquet-Bruhat, Yvonne; Geroch, Robert. 1524:{\displaystyle D^{\pm }({\mathcal {S}})} 646:as a Cauchy surface for Minkowski space 62: 51:They are named for French mathematician 44:can be solved (using, for example, the 1984: 1773:Poisson, Eric; Israel, Werner (1990). 1691:. This definition makes sense even if 1228:the future and the past are disjoint. 784: 454:; if there exists such a subset, then 1896:Bernal, Antonio N.; Sánchez, Miguel. 1889:Bernal, Antonio N.; Sánchez, Miguel. 1879:Comm. Math. Phys. 14 (1969), 329–335. 1601:One is requiring that for all points 735:Given any smooth Lorentzian manifold 289:for these causal structures as well. 1613:, there exists an open neighborhood 1088:such that any observer leaving from 951:is defined to consist of all points 1775:"Internal structure of black holes" 1072:such that any observer arriving at 195:which the traveler was at, at time 13: 1540: 1513: 1472: 1459: 1436: 1423: 1354: 1326: 1313: 1290: 1277: 1240: 1209: 1185: 14: 2008: 1396: 1080:; the past Cauchy development of 1064:The future Cauchy development of 1255:a partial Cauchy surface and if 1992:Partial differential equations 1815: 1766: 1706: 1595: 1548:{\displaystyle {\mathcal {S}}} 1518: 1508: 1464: 1454: 1428: 1418: 1362:{\displaystyle {\mathcal {S}}} 1318: 1308: 1282: 1272: 1248:{\displaystyle {\mathcal {S}}} 1217:{\displaystyle {\mathcal {S}}} 1200:are the same and both include 1193:{\displaystyle {\mathcal {S}}} 562: 538: 147: 141: 1: 1938:Hawking, S.W.; Ellis, G.F.R. 1745:10.1016/j.physrep.2010.06.002 1589: 1117: 890:does not approach a limit as 772:is smoothly diffeomorphic to 398:does not approach a limit as 16:In the mathematical field of 1699:only has the structure of a 7: 1912:Global Lorentzian geometry. 1577: 10: 2013: 1092:will have to pass through 205:intermediate value theorem 1076:must have passed through 1013:, then there exists some 935:future Cauchy development 280:The physical theories of 165: a location on Earth 1924:Choquet-Bruhat, Yvonne. 1801:10.1103/PhysRevD.41.1796 203:; this follows from the 87:defines the notion of a 1859:10.3390/universe8040204 1084:consists of all points 1068:consists of all points 1045:past Cauchy development 59:of general relativity. 1549: 1525: 1481: 1383: 1363: 1335: 1249: 1218: 1194: 1170: 1143: 1098: 782: 662:may fail to be even a 637: 519: 182: 85: 1884:Domain of dependence. 1683:are not contained in 1550: 1526: 1482: 1393:is a Cauchy surface. 1384: 1364: 1336: 1250: 1219: 1195: 1171: 1169:{\displaystyle D^{-}} 1144: 1142:{\displaystyle D^{+}} 1062: 733: 638: 483: 370:is timelike for each 183: 81: 63:Informal introduction 53:Augustin-Louis Cauchy 24:is a certain kind of 1997:Lorentzian manifolds 1572:anti-de Sitter space 1535: 1495: 1487:then there exists a 1405: 1391:Minkowski space-time 1373: 1349: 1259: 1235: 1204: 1180: 1153: 1126: 849:it is differentiable 528: 357:it is differentiable 115: 1968:General relativity. 1850:2022Univ....8..204D 1793:1990PhRvD..41.1796P 1737:2010PhR...495....1H 1632:which increases to 785:Cauchy developments 472:globally hyperbolic 34:boundary conditions 18:Lorentzian geometry 1945:O'Neill, Barrett. 1545: 1521: 1477: 1379: 1359: 1331: 1245: 1214: 1190: 1166: 1139: 1102:Cauchy development 1043:. One defines the 921:". Given a subset 913:" replaced by "as 633: 286:general relativity 282:special relativity 241:mean value theorem 178: 69:general relativity 42:Einstein equations 30:general relativity 1934:978-0-19-923072-3 1870:Research articles 1780:Physical Review D 1701:topological space 1382:{\displaystyle t} 714:-submanifolds of 672:a Cauchy surface 624: 166: 2004: 1966:Wald, Robert M. 1959:Penrose, Roger. 1882:Geroch, Robert. 1864: 1863: 1861: 1843: 1819: 1813: 1812: 1787:(6): 1796–1809. 1770: 1764: 1763: 1730: 1710: 1704: 1698: 1697: 1690: 1686: 1682: 1666: 1650: 1646: 1635: 1631: 1620: 1616: 1612: 1611: 1604: 1599: 1584:Causal structure 1554: 1552: 1551: 1546: 1544: 1543: 1530: 1528: 1527: 1522: 1517: 1516: 1507: 1506: 1486: 1484: 1483: 1478: 1476: 1475: 1463: 1462: 1453: 1452: 1440: 1439: 1427: 1426: 1417: 1416: 1388: 1386: 1385: 1380: 1368: 1366: 1365: 1360: 1358: 1357: 1340: 1338: 1337: 1332: 1330: 1329: 1317: 1316: 1307: 1306: 1294: 1293: 1281: 1280: 1271: 1270: 1254: 1252: 1251: 1246: 1244: 1243: 1223: 1221: 1220: 1215: 1213: 1212: 1199: 1197: 1196: 1191: 1189: 1188: 1175: 1173: 1172: 1167: 1165: 1164: 1148: 1146: 1145: 1140: 1138: 1137: 1113: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1056: 1042: 1028: 1016: 1012: 1000: 996: 982: 981: 962: 961: 954: 950: 946: 932: 931: 924: 920: 916: 912: 908: 897: 893: 889: 877: 866:in the interval 865: 861: 844: 842: 836: 824: 823: 804: 802: 796: 779: 778: 771: 764: 763: 756: 750: 748: 742: 728:-diffeomorphic. 727: 721: 720: 713: 707: 706: 696:-diffeomorphism 695: 689: 688: 682:-submanifold of 681: 675: 667: 661: 660: 649: 642: 640: 639: 634: 632: 631: 625: 620: 619: 618: 606: 605: 593: 592: 582: 577: 576: 537: 536: 516: 515: 504: 503: 496: 495: 480: 469: 467: 461: 453: 449: 447: 441: 429: 428: 421: 413: 409: 405: 401: 397: 385: 374:in the interval 373: 369: 352: 350: 344: 332: 331: 312: 310: 304: 276: 275: 273: 272: 261: 258: 238: 230: 226: 218: 214: 210: 202: 194: 187: 185: 184: 179: 174: 173: 167: 164: 156: 155: 131: 130: 124: 123: 89:causal structure 38:causal structure 2012: 2011: 2007: 2006: 2005: 2003: 2002: 2001: 1982: 1981: 1978:; 0-226-87033-2 1867: 1820: 1816: 1771: 1767: 1715:Physics Reports 1711: 1707: 1693: 1692: 1688: 1684: 1680: 1668: 1664: 1652: 1648: 1645: 1637: 1636:and a sequence 1633: 1630: 1622: 1621:and a sequence 1618: 1614: 1607: 1606: 1602: 1600: 1596: 1592: 1580: 1539: 1538: 1536: 1533: 1532: 1512: 1511: 1502: 1498: 1496: 1493: 1492: 1471: 1470: 1458: 1457: 1448: 1444: 1435: 1434: 1422: 1421: 1412: 1408: 1406: 1403: 1402: 1399: 1374: 1371: 1370: 1353: 1352: 1350: 1347: 1346: 1325: 1324: 1312: 1311: 1302: 1298: 1289: 1288: 1276: 1275: 1266: 1262: 1260: 1257: 1256: 1239: 1238: 1236: 1233: 1232: 1208: 1207: 1205: 1202: 1201: 1184: 1183: 1181: 1178: 1177: 1160: 1156: 1154: 1151: 1150: 1133: 1129: 1127: 1124: 1123: 1120: 1104: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1047: 1030: 1018: 1014: 1002: 998: 984: 977: 964: 957: 956: 952: 948: 937: 927: 926: 922: 918: 914: 910: 906: 895: 891: 880: 867: 863: 852: 838: 832: 830: 819: 806: 798: 792: 790: 787: 774: 773: 766: 759: 758: 752: 744: 738: 736: 723: 716: 715: 709: 702: 697: 691: 684: 683: 677: 673: 663: 656: 651: 647: 627: 626: 614: 610: 601: 597: 588: 584: 583: 581: 572: 568: 532: 531: 529: 526: 525: 511: 506: 499: 498: 491: 486: 478: 463: 457: 455: 451: 443: 437: 435: 424: 423: 419: 411: 407: 403: 399: 388: 375: 371: 360: 346: 340: 338: 327: 314: 306: 300: 298: 295: 262: 259: 248: 247: 245: 244: 239:, since by the 232: 228: 220: 216: 212: 208: 196: 192: 169: 168: 163: 151: 150: 126: 125: 119: 118: 116: 113: 112: 65: 12: 11: 5: 2010: 2000: 1999: 1994: 1980: 1979: 1964: 1957: 1943: 1936: 1922: 1902: 1901: 1894: 1887: 1880: 1866: 1865: 1814: 1765: 1705: 1676: 1660: 1647:decreasing to 1641: 1626: 1593: 1591: 1588: 1587: 1586: 1579: 1576: 1565:mass inflation 1542: 1520: 1515: 1510: 1505: 1501: 1489:Cauchy horizon 1474: 1469: 1466: 1461: 1456: 1451: 1447: 1443: 1438: 1433: 1430: 1425: 1420: 1415: 1411: 1398: 1397:Cauchy horizon 1395: 1378: 1356: 1328: 1323: 1320: 1315: 1310: 1305: 1301: 1297: 1292: 1287: 1284: 1279: 1274: 1269: 1265: 1242: 1211: 1187: 1163: 1159: 1136: 1132: 1119: 1116: 901:One defines a 899: 898: 878: 850: 786: 783: 765:and such that 644: 643: 630: 623: 617: 613: 609: 604: 600: 596: 591: 587: 580: 575: 571: 567: 564: 561: 558: 555: 552: 549: 546: 543: 540: 535: 432:Cauchy surface 416: 415: 386: 358: 294: 291: 189: 188: 177: 172: 162: 159: 154: 149: 146: 143: 140: 137: 134: 129: 122: 93:Cauchy surface 64: 61: 57:Cauchy problem 22:Cauchy surface 9: 6: 4: 3: 2: 2009: 1998: 1995: 1993: 1990: 1989: 1987: 1977: 1976:0-226-87032-4 1973: 1969: 1965: 1962: 1958: 1956: 1955:0-12-526740-1 1952: 1948: 1944: 1941: 1937: 1935: 1931: 1927: 1923: 1921: 1920:0-8247-9324-2 1917: 1913: 1909: 1908: 1907: 1906: 1899: 1895: 1892: 1888: 1885: 1881: 1878: 1874: 1873: 1872: 1871: 1860: 1855: 1851: 1847: 1842: 1837: 1833: 1829: 1825: 1818: 1810: 1806: 1802: 1798: 1794: 1790: 1786: 1782: 1781: 1776: 1769: 1762: 1758: 1754: 1750: 1746: 1742: 1738: 1734: 1729: 1724: 1720: 1716: 1709: 1702: 1696: 1679: 1675: 1671: 1663: 1659: 1655: 1644: 1640: 1629: 1625: 1610: 1598: 1594: 1585: 1582: 1581: 1575: 1573: 1568: 1566: 1560: 1558: 1557:event horizon 1503: 1499: 1490: 1467: 1449: 1445: 1441: 1431: 1413: 1409: 1394: 1392: 1376: 1344: 1341:, the entire 1321: 1303: 1299: 1295: 1285: 1267: 1263: 1229: 1225: 1161: 1157: 1134: 1130: 1115: 1111: 1107: 1103: 1097: 1061: 1058: 1054: 1050: 1046: 1041: 1037: 1033: 1026: 1022: 1010: 1006: 995: 991: 987: 980: 975: 971: 967: 963:such that if 960: 944: 940: 936: 930: 917:increases to 909:decreases to 904: 894:decreases to 887: 883: 879: 875: 871: 859: 855: 851: 848: 847: 846: 841: 835: 828: 822: 817: 813: 809: 801: 795: 781: 777: 769: 762: 755: 747: 741: 732: 729: 726: 719: 712: 705: 700: 694: 687: 680: 671: 666: 659: 654: 621: 615: 611: 607: 602: 598: 594: 589: 585: 578: 573: 569: 565: 559: 556: 553: 550: 547: 544: 541: 524: 523: 522: 518: 514: 509: 502: 494: 489: 482: 475: 473: 466: 460: 446: 440: 433: 427: 410:decreases to 402:increases to 395: 391: 387: 383: 379: 367: 363: 359: 356: 355: 354: 349: 343: 336: 330: 325: 321: 317: 309: 303: 290: 287: 283: 278: 270: 266: 256: 252: 242: 236: 224: 206: 200: 175: 160: 157: 144: 138: 135: 132: 111: 110: 109: 107: 101: 97: 94: 90: 84: 80: 77: 74: 70: 60: 58: 54: 49: 47: 46:ADM formalism 43: 40:in which the 39: 35: 31: 27: 23: 19: 1967: 1960: 1946: 1939: 1925: 1911: 1904: 1903: 1897: 1890: 1883: 1876: 1869: 1868: 1831: 1827: 1817: 1784: 1778: 1768: 1718: 1714: 1708: 1694: 1677: 1673: 1669: 1661: 1657: 1653: 1642: 1638: 1627: 1623: 1608: 1597: 1569: 1561: 1400: 1230: 1226: 1121: 1109: 1105: 1101: 1099: 1063: 1060:Informally: 1059: 1052: 1048: 1044: 1039: 1035: 1031: 1024: 1020: 1008: 1004: 993: 989: 985: 978: 973: 969: 965: 958: 942: 938: 934: 928: 902: 900: 885: 881: 873: 869: 857: 853: 839: 833: 826: 820: 815: 811: 807: 799: 793: 788: 775: 767: 760: 753: 745: 739: 734: 730: 724: 717: 710: 703: 698: 692: 685: 678: 669: 664: 657: 652: 645: 520: 512: 507: 500: 492: 487: 484: 476: 471: 464: 458: 444: 438: 431: 430:is called a 425: 417: 393: 389: 381: 377: 365: 361: 347: 341: 334: 328: 323: 319: 315: 307: 301: 296: 279: 268: 264: 254: 250: 234: 222: 198: 190: 102: 98: 92: 88: 86: 82: 78: 72: 66: 50: 21: 15: 1721:(1): 1–32, 485:The subset 26:submanifold 1986:Categories 1841:2203.14516 1834:(4): 204. 1651:such that 1590:References 1118:Discussion 470:is called 1905:Textbooks 1761:118546967 1753:0370-1573 1728:0811.1926 1504:± 1450:− 1442:∪ 1432:∪ 1304:− 1296:∪ 1286:∪ 1162:− 997:for some 968: : ( 810: : ( 418:A subset 318: : ( 139:τ 1828:Universe 1809:10012548 1687:for any 1578:See also 1491:between 1468:≠ 1343:manifold 722:will be 231:at time 219:at time 106:gradient 73:possible 36:for the 1846:Bibcode 1789:Bibcode 1733:Bibcode 1345:, then 274:⁠ 246:⁠ 227:and at 1974:  1953:  1932:  1918:  1807:  1759:  1751:  933:, the 701:× ℝ → 655:× ℝ → 510:× ℝ → 406:or as 333:is an 267:) − τ( 1836:arXiv 1757:S2CID 1723:arXiv 1029:with 825:is a 676:is a 249:dist( 1972:ISBN 1951:ISBN 1930:ISBN 1916:ISBN 1805:PMID 1749:ISSN 1667:and 1149:and 1100:The 1038:) ∈ 992:) = 976:) → 845:if: 818:) → 789:Let 353:if: 326:) → 297:Let 284:and 211:and 91:. A 20:, a 1854:doi 1797:doi 1741:doi 1719:495 1617:of 1605:in 1567:. 1401:If 1389:in 1017:in 1001:in 955:of 947:of 925:of 829:in 770:× ℝ 422:of 337:in 263:|τ( 48:.) 1988:: 1852:. 1844:. 1830:. 1826:. 1803:. 1795:. 1785:41 1783:. 1777:. 1755:, 1747:, 1739:, 1731:, 1717:, 1574:. 872:, 856:′( 837:, 797:, 743:, 670:if 490:⊂ 481:: 474:. 462:, 442:, 380:, 345:, 305:, 271:)| 233:τ( 221:τ( 197:τ( 1862:. 1856:: 1848:: 1838:: 1832:8 1811:. 1799:: 1791:: 1743:: 1735:: 1725:: 1703:. 1695:M 1689:k 1685:U 1681:) 1678:k 1674:s 1672:( 1670:c 1665:) 1662:k 1658:t 1656:( 1654:c 1649:a 1643:k 1639:s 1634:b 1628:k 1624:t 1619:p 1615:U 1609:M 1603:p 1541:S 1519:) 1514:S 1509:( 1500:D 1473:M 1465:) 1460:S 1455:( 1446:D 1437:S 1429:) 1424:S 1419:( 1414:+ 1410:D 1377:t 1355:S 1327:M 1322:= 1319:) 1314:S 1309:( 1300:D 1291:S 1283:) 1278:S 1273:( 1268:+ 1264:D 1241:S 1210:S 1186:S 1158:D 1135:+ 1131:D 1112:) 1110:S 1108:( 1106:D 1096:. 1094:S 1090:p 1086:p 1082:S 1078:S 1074:p 1070:p 1066:S 1055:) 1053:S 1051:( 1049:D 1040:S 1036:s 1034:( 1032:c 1027:) 1025:b 1023:, 1021:a 1019:( 1015:s 1011:) 1009:b 1007:, 1005:a 1003:( 999:t 994:p 990:t 988:( 986:c 979:M 974:b 972:, 970:a 966:c 959:M 953:p 949:S 945:) 943:S 941:( 939:D 929:M 923:S 919:b 915:t 911:a 907:t 896:a 892:t 888:) 886:t 884:( 882:c 876:) 874:b 870:a 868:( 864:t 860:) 858:t 854:c 843:) 840:g 834:M 831:( 821:M 816:b 814:, 812:a 808:c 803:) 800:g 794:M 791:( 780:. 776:M 768:S 761:M 754:S 749:) 746:g 740:M 737:( 725:C 718:M 711:C 704:M 699:S 693:C 686:M 679:C 674:S 665:C 658:M 653:S 648:ℝ 629:} 622:2 616:2 612:z 608:+ 603:2 599:y 595:+ 590:2 586:x 579:= 574:2 570:t 566:: 563:) 560:z 557:, 554:y 551:, 548:x 545:, 542:t 539:( 534:{ 513:M 508:S 501:M 493:M 488:S 479:S 468:) 465:g 459:M 456:( 452:S 448:) 445:g 439:M 436:( 426:M 420:S 414:. 412:a 408:t 404:b 400:t 396:) 394:t 392:( 390:c 384:) 382:b 378:a 376:( 372:t 368:) 366:t 364:( 362:c 351:) 348:g 342:M 339:( 329:M 324:b 322:, 320:a 316:c 311:) 308:g 302:M 299:( 269:q 265:p 260:/ 257:) 255:q 253:, 251:p 237:) 235:q 229:q 225:) 223:p 217:p 213:q 209:p 201:) 199:p 193:p 176:. 171:} 161:p 158:: 153:) 148:) 145:p 142:( 136:, 133:p 128:( 121:{

Index

Lorentzian geometry
submanifold
general relativity
boundary conditions
causal structure
Einstein equations
ADM formalism
Augustin-Louis Cauchy
Cauchy problem
general relativity
gradient
intermediate value theorem
mean value theorem
special relativity
general relativity
manifold
Minkowski space-time
Cauchy horizon
event horizon
mass inflation
anti-de Sitter space
Causal structure
topological space
arXiv
0811.1926
Bibcode
2010PhR...495....1H
doi
10.1016/j.physrep.2010.06.002
ISSN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.