Knowledge

Cellular automaton

Source 📝

1118: 997: 826:, both of which involve modifying the definition of a cellular automaton in some way. Although such automata do not strictly satisfy the definition given above, it can be shown that they can be emulated by conventional cellular automata with sufficiently large neighborhoods and numbers of states, and can therefore be considered a subset of conventional cellular automata. Conversely, it has been shown that every reversible cellular automaton can be emulated by a block cellular automaton. 449:. Von Neumann's initial design was founded upon the notion of one robot building another robot. This design is known as the kinematic model. As he developed this design, von Neumann came to realize the great difficulty of building a self-replicating robot, and of the great cost in providing the robot with a "sea of parts" from which to build its replicant. Neumann wrote a paper entitled "The general and logical theory of automata" for the 469: 256: 1243:. This unit hypercube is the cellular automaton rule space. For next-nearest-neighbor cellular automata, a rule is specified by 2 = 32 bits, and the cellular automaton rule space is a 32-dimensional unit hypercube. A distance between two rules can be defined by the number of steps required to move from one vertex, which represents the first rule, and another vertex, representing another rule, along the 1284: 240: 1033: 1457: 154:(generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the 337: 1255:
number of bit-1 in the 8-bit string for elementary rules (or 32-bit string for the next-nearest-neighbor rules). Drawing the rules in different Wolfram classes in these slices of the rule space show that class 1 rules tend to have lower number of bit-1s, thus located in one region of the space, whereas class 3 rules tend to have higher proportion (50%) of bit-1s.
4456:– Home to free MCell and MJCell cellular automata explorer software and rule libraries. The software supports a large number of 1D and 2D rules. The site provides both an extensive rules lexicon and many image galleries loaded with examples of rules. MCell is a Windows application, while MJCell is a Java applet. Source code is available. 349:
cells in the grid. One possible method is to allow the values in those cells to remain constant. Another method is to define neighborhoods differently for these cells. One could say that they have fewer neighbors, but then one would also have to define new rules for the cells located on the edges. These cells are usually handled with
591:
consequence of computation universality in a 1-dimensional CA. Intended as the introduction to the German edition of von Neumann's book on CA, he wrote a survey of the field with dozens of references to papers, by many authors in many countries over a decade or so of work, often overlooked by modern CA researchers.
1213:. This result is interesting because rule 110 is an extremely simple one-dimensional system, and difficult to engineer to perform specific behavior. This result therefore provides significant support for Wolfram's view that class 4 systems are inherently likely to be universal. Cook presented his proof at a 1254:
Cellular automaton rule space allows us to ask the question concerning whether rules with similar dynamical behavior are "close" to each other. Graphically drawing a high dimensional hypercube on the 2-dimensional plane remains a difficult task, and one crude locator of a rule in the hypercube is the
739:
There have been several attempts to classify cellular automata in formally rigorous classes, inspired by Wolfram's classification. For instance, Culik and Yu proposed three well-defined classes (and a fourth one for the automata not matching any of these), which are sometimes called Culik–Yu classes;
296:
adjacent cells. The latter includes the von Neumann neighborhood as well as the four diagonally adjacent cells. For such a cell and its Moore neighborhood, there are 512 (= 2) possible patterns. For each of the 512 possible patterns, the rule table would state whether the center cell will be black or
671:
in particular) in June 1983. The unexpected complexity of the behavior of these simple rules led Wolfram to suspect that complexity in nature may be due to similar mechanisms. His investigations, however, led him to realize that cellular automata were poor at modelling neural networks. Additionally,
585:
completed a Stanford PhD dissertation on Cellular Automata Theory, the first mathematical treatment of CA as a general class of computers. Many papers came from this dissertation: He showed the equivalence of neighborhoods of various shapes, how to reduce a Moore to a von Neumann neighborhood or how
483:
Ulam and von Neumann created a method for calculating liquid motion in the late 1950s. The driving concept of the method was to consider a liquid as a group of discrete units and calculate the motion of each based on its neighbors' behaviors. Thus was born the first system of cellular automata. Like
348:
Cellular automata are often simulated on a finite grid rather than an infinite one. In two dimensions, the universe would be a rectangle instead of an infinite plane. The obvious problem with finite grids is how to handle the cells on the edges. How they are handled will affect the values of all the
208:, automata in which patterns evolve into mostly stable or oscillating structures, automata in which patterns evolve in a seemingly chaotic fashion, and automata in which patterns become extremely complex and may last for a long time, with stable local structures. This last class is thought to be 1640:
For a random starting pattern, these maze-generating cellular automata will evolve into complex mazes with well-defined walls outlining corridors. Mazecetric, which has the rule B3/S1234 has a tendency to generate longer and straighter corridors compared with Maze, with the rule B3/S12345. Since
722:
Class 4: Nearly all initial patterns evolve into structures that interact in complex and interesting ways, with the formation of local structures that are able to survive for long periods of time. Class 2 type stable or oscillating structures may be the eventual outcome, but the number of steps
735:
These definitions are qualitative in nature and there is some room for interpretation. According to Wolfram, "...with almost any general classification scheme there are inevitably cases which get assigned to one class by one definition and another class by another definition. And so it is with
992:
The simplest nontrivial cellular automaton would be one-dimensional, with two possible states per cell, and a cell's neighbors defined as the adjacent cells on either side of it. A cell and its two neighbors form a neighborhood of 3 cells, so there are 2 = 8 possible patterns for a
751:
who identified these 4 classes of thermodynamical systems: (1) systems in thermodynamic equilibrium, (2) spatially/temporally uniform systems, (3) chaotic systems, and (4) complex far-from-equilibrium systems with dissipative structures (see figure 1 in the 1974 paper of Nicolis, Prigogine's
706:
and several papers dating from the mid-1980s, defined four classes into which cellular automata and several other simple computational models can be divided depending on their behavior. While earlier studies in cellular automata tended to try to identify types of patterns for specific rules,
590:
that two-dimensional CA are computation universal, introduced 1-dimensional CA, and showed that they too are computation universal, even with simple neighborhoods. He showed how to subsume the complex von Neumann proof of construction universality (and hence self-reproducing machines) into a
519:
developed a model of excitable media with some of the characteristics of a cellular automaton. Their specific motivation was the mathematical description of impulse conduction in cardiac systems. However their model is not a cellular automaton because the medium in which signals propagate is
1519:, of two or three dimensions; other tilings are possible, but not yet used. Cell states are determined only by interactions with adjacent neighbor cells. No means exists to communicate directly with cells farther away. One such cellular automaton processor array configuration is the 1024:
cellular automata are particularly interesting. The images below show the history of rules 30 and 110 when the starting configuration consists of a 1 (at the top of each image) surrounded by 0s. Each row of pixels represents a generation in the history of the automaton, with
901:, those hexagons could be used as cells. In many cases the resulting cellular automata are equivalent to those with rectangular grids with specially designed neighborhoods and rules. Another variation would be to make the grid itself irregular, such as with 1647:
Like some of the graph-theory based methods described above, these cellular automata typically generate mazes from a single starting pattern; hence it will usually be relatively easy to find the way to the starting cell, but harder to find the way anywhere
1560:
is the evolution of a finite CA whose inverse is believed to be hard to find. Given the rule, anyone can easily calculate future states, but it appears to be very difficult to calculate previous states. Cellular automata have also been applied to design
1460:
Visualization of a lattice gas automaton. The shades of grey of the individual pixels are proportional to the gas particle density (between 0 and 4) at that pixel. The gas is surrounded by a shell of yellow cells that act as reflectors to create a closed
1333:
pigments according to the activating and inhibiting activity of its neighbor pigment cells, obeying a natural version of a mathematical rule. The cell band leaves the colored pattern on the shell as it grows slowly. For example, the widespread species
1627:
can be used to generate mazes. Two well-known such cellular automata, Maze and Mazectric, have rulestrings B3/S12345 and B3/S1234. In the former, this means that cells survive from one generation to the next if they have at least one and at most five
572:, proposing that the physical laws of the universe are discrete by nature, and that the entire universe is the output of a deterministic computation on a single cellular automaton; "Zuse's Theory" became the foundation of the field of study called 1437:, acidified bromate, and a ceric salt were mixed together and left undisturbed, fascinating geometric patterns such as concentric circles and spirals propagate across the medium. In the "Computer Recreations" section of the August 1988 issue of 637:, arrangements of cells that essentially move themselves across the grid. It is possible to arrange the automaton so that the gliders interact to perform computations, and after much effort it has been shown that the Game of Life can emulate a 1485:
become demagnetized when heated. Moreover, results from studying the demagnetization phase transition can be transferred to other phase transitions, like the evaporation of a liquid into a gas; this convenient cross-applicability is known as
736:
cellular automata: there are occasionally rules...that show some features of one class and some of another." Wolfram's classification has been empirically matched to a clustering of the compressed lengths of the outputs of cellular automata.
317:
is the number of neighboring cells (including the cell to be calculated itself) used to determine the cell's next state. Thus, in the two-dimensional system with a Moore neighborhood, the total number of automata possible would be 2, or
357:
arrangement: when one goes off the top, one comes in at the corresponding position on the bottom, and when one goes off the left, one comes in on the right. (This essentially simulates an infinite periodic tiling, and in the field of
1514:
Cellular automaton processors are physical implementations of CA concepts, which can process information computationally. Processing elements are arranged in a regular grid of identical cells. The grid is usually a square tiling, or
1008:, a standard naming convention invented by Wolfram that gives each rule a number from 0 to 255. A number of papers have analyzed and compared the distinct cases among the 256 cellular automata (many are trivially isomorphic). The 333:. More generally, it is sometimes assumed that the universe starts out covered with a periodic pattern, and only a finite number of cells violate that pattern. The latter assumption is common in one-dimensional cellular automata. 927:
In cellular automata, the new state of a cell is not affected by the new state of other cells. This could be changed so that, for instance, a 2 by 2 block of cells can be determined by itself and the cells adjacent to itself.
4462:
supports von Neumann, Nobili, GOL, and a great many other systems of cellular automata. Developed by Tomas Rokicki and Andrew Trevorrow. This is the only simulator currently available that can demonstrate von Neumann type
923:
The neighborhood or rules could change over time or space. For example, initially the new state of a cell could be determined by the horizontally adjacent cells, but for the next generation the vertical cells would be used.
714:
Class 2: Nearly all initial patterns evolve quickly into stable or oscillating structures. Some of the randomness in the initial pattern may filter out, but some remains. Local changes to the initial pattern tend to remain
1447:
discussed a cellular automaton developed by Martin Gerhardt and Heike Schuster of the University of Bielefeld (Germany). This automaton produces wave patterns that resemble those in the Belousov-Zhabotinsky reaction.
226:, in which the future value of individual cells only depends on the total value of a group of neighboring cells. Cellular automata can simulate a variety of real-world systems, including biological and chemical ones. 718:
Class 3: Nearly all initial patterns evolve in a pseudo-random or chaotic manner. Any stable structures that appear are quickly destroyed by the surrounding noise. Local changes to the initial pattern tend to spread
3601:
Ilina, Olga; Gritsenko, Pavlo G.; Syga, Simon; Lippoldt, JĂŒrgen; La Porta, Caterina A. M.; Chepizhko, Oleksandr; Grosser, Steffen; Vullings, Manon; Bakker, Gert-Jan; Starruß, Jörn; Bult, Peter (September 2020).
1636:
in that patterns that do not have a living cell adjacent to 1, 4, or 5 other living cells in any generation will behave identically to it. However, for large patterns, it behaves very differently from Life.
543:
compiled many results following this point of view in what is still considered as a seminal paper for the mathematical study of cellular automata. The most fundamental result is the characterization in the
1527:
at quantum scales), or any other physically useful means. This can be done in several ways so that no wires are needed between any elements. This is very unlike processors used in most computers today (
920: + 1. Sometimes a simpler rule is used; for example: "The rule is the Game of Life, but on each time step there is a 0.001% probability that each cell will transition to the opposite color." 950:
have a continuum of locations. The state of a location is a finite number of real numbers. Time is also continuous, and the state evolves according to differential equations. One important example is
791:
For one-dimensional cellular automata there are known algorithms for deciding whether a rule is reversible or irreversible. However, for cellular automata of two or more dimensions reversibility is
641:. It was viewed as a largely recreational topic, and little follow-up work was done outside of investigating the particularities of the Game of Life and a few related rules in the early 1970s. 1217:
conference on Cellular Automata in 1998, but Wolfram blocked the proof from being included in the conference proceedings, as Wolfram did not want the proof announced before the publication of
838:
cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time
2202:
Wiener, N.; Rosenblueth, A. (1946). "The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle".
1199:
behavior, which is neither completely random nor completely repetitive. Localized structures appear and interact in various complicated-looking ways. In the course of the development of
500:
that a particular pattern would make endless copies of itself within the given cellular universe by designing a 200,000 cell configuration that could do so. This design is known as the
4365:
Crutchfeld, James P.; Mitchell, Melanie; Das, Rajarshi (2002). "The Evolutionary Design of Collective Computation in Cellular Automata". In Crutchfield, J. P.; Schuster, P. K. (eds.).
33: 3150:, who used it in a broader sense to refer to outer totalistic automata, not necessarily of two dimensions. The more specific meaning given here was used e.g. in several chapters of 886: 329:
It is usually assumed that every cell in the universe starts in the same state, except for a finite number of cells in other states; the assignment of state values is called a
1258:
For larger cellular automaton rule space, it is shown that class 4 rules are located between the class 1 and class 3 rules. This observation is the foundation for the phrase
782:, a topological characterization of cellular automata. For cellular automata in which not every configuration has a preimage, the configurations without preimages are called 723:
required to reach this state may be very large, even when the initial pattern is relatively simple. Local changes to the initial pattern may spread indefinitely. Wolfram has
366:
boundary conditions.) This can be visualized as taping the left and right edges of the rectangle to form a tube, then taping the top and bottom edges of the tube to form a
204:
The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four. They are, in order, automata in which patterns generally stabilize into
993:
neighborhood. A rule consists of deciding, for each pattern, whether the cell will be a 1 or a 0 in the next generation. There are then 2 = 256 possible rules.
520:
continuous, and wave fronts are curves. A true cellular automaton model of excitable media was developed and studied by J. M. Greenberg and S. P. Hastings in 1978; see
795:; that is, there is no algorithm that takes as input an automaton rule and is guaranteed to determine correctly whether the automaton is reversible. The proof by 2264:
Davidenko, J. M.; Pertsov, A. V.; Salomonsz, R.; Baxter, W.; Jalife, J. (1992). "Stationary and drifting spiral waves of excitation in isolated cardiac muscle".
1645:, each maze generated is uniquely determined by its random starting pattern. This is a significant drawback since the mazes tend to be relatively predictable. 305:, which includes the two closest cells in each orthogonal direction, for a total of eight. The general equation for the total number of automata possible is 4411:. Proceedings of the First International Conference on Evolutionary Computation and Its Applications (EvCA'96). Moscow, Russia: Russian Academy of Sciences. 3079: 1632:. In the latter, this means that cells survive if they have one to four neighbours. If a cell has exactly three neighbours, it is born. It is similar to 778:. If a cellular automaton is reversible, its time-reversed behavior can also be described as a cellular automaton; this fact is a consequence of the 1886: 492:
working within a cellular automaton with a small neighborhood (only those cells that touch are neighbors; for von Neumann's cellular automata, only
3528: 647:
independently began working on cellular automata in mid-1981 after considering how complex patterns seemed formed in nature in violation of the
4005:
Chowdhury, D. Roy; Basu, S.; Gupta, I. Sen; Chaudhuri, P. Pal (June 1994). "Design of CAECC - cellular automata based error correcting code".
276:
along with a set of rules for the cells to follow. Each square is called a "cell" and each cell has two possible states, black and white. The
1477:
is a prototypical example, in which each cell can be in either of two states called "up" and "down", making an idealized representation of a
1227:(Vol. 15, No. 1), over ten years after Cook came up with it. Rule 110 has been the basis for some of the smallest universal Turing machines. 944:). The state of a location is a finite number of real numbers. Certain cellular automata can yield diffusion in liquid patterns in this way. 818:
and others. Several techniques can be used to explicitly construct reversible cellular automata with known inverses. Two common ones are the
774:). If one thinks of a cellular automaton as a function mapping configurations to configurations, reversibility implies that this function is 4376:"Building Efficient Computational Cellular Automata Models of Complex Systems: Background, Applications, Results, Software, and Pathologies" 1481:. By adjusting the parameters of the model, the proportion of cells being in the same state can be varied, in ways that help explicate how 3970:
Tomassini, M.; Sipper, M.; Perrenoud, M. (2000). "On the generation of high-quality random numbers by two-dimensional cellular automata".
3436: 1235:
An elementary cellular automaton rule is specified by 8 bits, and all elementary cellular automaton rules can be considered to sit on the
3204: 3774:
Gerhardt, M.; Schuster, H. (1989). "A cellular automaton describing the formation of spatially ordered structures in chemical systems".
3560: 968:
There are known examples of continuous spatial automata, which exhibit propagating phenomena analogous to gliders in the Game of Life.
806:
Reversible cellular automata are often used to simulate such physical phenomena as gas and fluid dynamics, since they obey the laws of
711:
Class 1: Nearly all initial patterns evolve quickly into a stable, homogeneous state. Any randomness in the initial pattern disappears.
374:
are handled similarly. This solves boundary problems with neighborhoods, but another advantage is that it is easily programmable using
3353: 3260:
Tomita, Kohji; Kurokawa, Haruhisa; Murata, Satoshi (2009). "Graph-Rewriting Automata as a Natural Extension of Cellular Automata".
3156:
Barral, Bernard; Chaté, Hugues; Manneville, Paul (1992). "Collective behaviors in a family of high-dimensional cellular automata".
1616: 866:
is an example of an outer totalistic cellular automaton with cell values 0 and 1; outer totalistic cellular automata with the same
1358:
can be simulated with a two-state, two-dimensional cellular automata, each state corresponding to either an expanded or retracted
1117: 524:. The original work of Wiener and Rosenblueth contains many insights and continues to be cited in modern research publications on 4520: 4034: 4327: 4273: 4254: 4231: 4199: 4176: 4153: 4081: 3866: 3824: 3277: 3131: 2923: 2739: 2706: 2679: 1859: 1577: 1379:
Additionally, biological phenomena which require explicit modeling of the agents' velocities (for example, those involved in
779: 545: 521: 2471: 1572: 1491: 4356: 784: 707:
Wolfram's classification was the first attempt to classify the rules themselves. In order of complexity the classes are:
2053: 1682: 962:
and spots on leopards. When these are approximated by cellular automata, they often yield similar patterns. MacLennan
3231: 1974: 1947: 1867: 1418: 505: 489: 17: 744:. Wolfram's class 2 can be partitioned into two subgroups of stable (fixed-point) and oscillating (periodic) rules. 3852: 1487: 941:
a table, using states {0,1,2}), continuous functions are used, and the states become continuous (usually values in
378:
functions. For example, in a 1-dimensional cellular automaton like the examples below, the neighborhood of a cell
1814: 909: 819: 159: 3091: 4007: 1727: 476: 434: 359: 174: 4374:
Kroc, Jiƙí; JimĂ©nez-Morales, Francisco; Guisado, JosĂ© Luis; Lemos, MarĂ­a Carmen; Tkáč, Jakub (December 2019).
2087:, ed., Cerebral Mechanisms in Behavior – The Hixon Symposium, John Wiley & Sons, New York, 1951, pp. 1–31. 810:. Such cellular automata have rules specially constructed to be reversible. Such systems have been studied by 629:
Despite its simplicity, the system achieves an impressive diversity of behavior, fluctuating between apparent
1546: 1114:
behavior, meaning even simple input patterns such as that shown lead to chaotic, seemingly random histories.
987: 761: 663: 485: 218: 186: 181:, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia. In the 1980s, 155: 3661:"Cell adhesion heterogeneity reinforces tumour cell dissemination: novel insights from a mathematical model" 3385:
Wentian Li; Norman Packard; Chris G Langton (1990). "Transition phenomena in cellular automata rule space".
4292: 3719: 3358: 1667: 871: 677: 648: 1914: 947: 450: 350: 1796: â€“ a physical model that is defined on a lattice, as opposed to the continuum of space or spacetime 770:
if, for every current configuration of the cellular automaton, there is exactly one past configuration (
4515: 4505: 4191: 3858: 1850: 1808: 1802: 1717: 1531:) which are divided into sections with elements that can communicate with distant elements over wires. 747:
The idea that there are 4 classes of dynamical system came originally from Nobel-prize winning chemist
3604:"Cell–cell adhesion and 3D matrix confinement determine jamming transitions in breast cancer invasion" 3535: 2229:
Letichevskii, A. A.; Reshodko, L. V. (1974). "N. Wiener's theory of the activity of excitable media".
1761: 1380: 1223: 657: 280:
of a cell is the nearby, usually adjacent, cells. The two most common types of neighborhoods are the
209: 43: 2616:"Compression-based investigation of the dynamical properties of cellular automata and other systems" 4047: 3407: 2953:"Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures" 1820: 1702: 1677: 1633: 1528: 1470: 1210: 863: 823: 652: 638: 595: 298: 282: 262: 178: 118: 47: 39: 2040:
The Math Book: From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics
1502:
to understand in depth. Other cellular automata that have been of significance in physics include
1305:
Some examples of biological phenomena modeled by cellular automata with a simple state space are:
937:. These are like totalistic cellular automata, but instead of the rule and states being discrete ( 4510: 4168: 4035:
Cellular automata in generative electronic music and sonic art: a historical and technical review
3816: 1793: 1784: 1553: 846:
of the values of the cells in its neighborhood (possibly including the cell itself) at time 
446: 438: 4061: 134:). The grid can be in any finite number of dimensions. For each cell, a set of cells called its 4367:
Evolutionary Dynamics: Exploring the Interplay of Selection, Neutrality, Accident, and Function
3445: 3402: 2731: 2045: 1499: 975: 951: 633:
and order. One of the most apparent features of the Game of Life is the frequent occurrence of
2913: 2667: 908:
Also, rules can be probabilistic rather than deterministic. Such cellular automata are called
3957:
Cellular Automaton Processor Based Systems for Genetic Sequence Comparison/Database Searching
1964: 1937: 1503: 1375:
bear similarities to cellular automata, as each fibroblast only interacts with its neighbors.
1201: 702: 4066:
Proceedings of 6th International Conference in Software Engineering for Defence Applications
3764:
A. K. Dewdney, The hodgepodge machine makes waves, Scientific American, p. 104, August 1988.
3121: 2723: 2696: 2037: 625:
Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.
488:
are two-dimensional, with his self-replicator implemented algorithmically. The result was a
4425: 3919: 3783: 3482: 3471:"Evidence for complex, collective dynamics and emergent, distributed computation in plants" 3394: 3308: 3165: 3022: 2811: 2439:"Mathematical Games: The fantastic combinations of John Conway's new solitaire game "life"" 2273: 2106: 1898: 1405: 1399: 933: 458: 66: 1000:
An animation of the way the rules of a 1D cellular automaton determine the next generation
8: 4050:." Proceedings of 2001 Workshop on Artificial Life Models for Musical Applications. 2001. 1629: 1466: 1439: 1422: 1383:) may be modeled by cellular automata with a more complex state space and rules, such as 916:, the probabilities that the central cell will transition to each possible state at time 792: 741: 728: 608: 549: 292:. The former, named after the founding cellular automaton theorist, consists of the four 131: 102: 4429: 4418:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
4347: 3923: 3787: 3486: 3398: 3312: 3169: 3026: 2815: 2277: 2110: 1902: 1347:
Plants regulate their intake and loss of gases via a cellular automaton mechanism. Each
616:
Any live cell with fewer than two live neighbours dies, as if caused by underpopulation.
4395: 4285: 4087: 3987: 3937: 3909: 3891: 3695: 3660: 3636: 3603: 3334: 2648: 2630: 2555: 2538: 2454: 2438: 2335: 2297: 2246: 1692: 1603: 1599: 1495: 1426: 1297: 1214: 867: 599: 587: 525: 516: 497: 375: 288: 246: 177:. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and 3505: 3470: 2969: 2952: 2897: 2880: 2834: 2118: 272:
One way to simulate a two-dimensional cellular automaton is with an infinite sheet of
4489: 4399: 4375: 4323: 4313: 4269: 4250: 4227: 4195: 4172: 4149: 4077: 3872: 3862: 3830: 3820: 3810: 3795: 3747: 3739: 3700: 3682: 3641: 3623: 3554: 3510: 3416: 3326: 3273: 3227: 3177: 3127: 3034: 2919: 2839: 2797:"Dissipative Structures, Catastrophes, and Pattern Formation: A Bifurcation Analysis" 2735: 2724: 2702: 2675: 2559: 2315: 2289: 2250: 2211: 2084: 2049: 2038: 1970: 1943: 1863: 1855: 1766: 1749: 1624: 1236: 651:. His investigations were initially spurred by a desire to model systems such as the 568: 540: 536: 185:
engaged in a systematic study of one-dimensional cellular automata, or what he calls
4091: 3991: 3941: 3338: 2652: 2402: 2339: 265:
for the blue cell. The range-2 "cross neighborhood" includes the pink cells as well.
4433: 4387: 4246: 4141: 4069: 4016: 3979: 3927: 3791: 3731: 3690: 3672: 3659:
Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja (11 August 2017).
3631: 3615: 3500: 3490: 3412: 3316: 3299: 3265: 3246:
Pivato, M: "RealLife: The continuum limit of Larger than Life cellular automata",
3173: 3080:"Representing reversible cellular automata with reversible block cellular automata" 3060: 3030: 2964: 2892: 2829: 2819: 2644: 2640: 2547: 2533: 2450: 2327: 2301: 2281: 2238: 2114: 1906: 1772: 1687: 1662: 1595: 1557: 1263: 1248: 963: 898: 598:
became widely known, particularly among the early computing community. Invented by
532: 472: 442: 170: 3718:
Hatzikirou, H.; Basanta, D.; Simon, M.; Schaller, K.; Deutsch, A. (1 March 2012).
2384: 996: 4351: 4309: 4115: 3269: 2475: 2468: 1882: 1778: 1755: 1244: 815: 811: 685: 644: 622:
Any live cell with more than three live neighbours dies, as if by overpopulation.
574: 462: 198: 182: 70: 4483: 4073: 4068:. Advances in Intelligent Systems and Computing. Vol. 925. pp. 10–23. 2985: 2796: 2762: 2726:
Models of massive parallelism: analysis of cellular automata and neural networks
2615: 619:
Any live cell with two or three live neighbours lives on to the next generation.
3932: 3895: 1845: 1589: 1520: 1430: 1267: 807: 748: 603: 582: 512: 430: 213: 166: 106: 4391: 4300:
Wainwright, Robert. "Conway's game of life: early personal recollections". In
3677: 3619: 1910: 1029:=0 being the top row. Each pixel is colored white for 0 and black for 1. 4499: 4319: 3876: 3848: 3834: 3743: 3686: 3627: 3051:(1999). "On the circuit depth of structurally reversible cellular automata". 1805: â€“ Method in computational solid mechanics based on the discrete concept 1642: 1444: 1359: 1336: 1302:
Several biological processes occur—or can be simulated—by cellular automata.
1288: 1259: 942: 902: 552: 4466: 4459: 3735: 3495: 2551: 2420: 2366: 889:
A cellular automaton based on hexagonal cells instead of squares (rule 34/2)
301:
is a popular version of this model. Another common neighborhood type is the
222:, where only a single configuration leads directly to a subsequent one, and 4492:
contains an extensive list of academic and professional reference material.
4437: 4409:
Evolving Cellular Automata with Genetic Algorithms: A Review of Recent Work
3900: 3751: 3720:"'Go or Grow': the key to the emergence of invasion in tumour progression?" 3704: 3645: 3586:
Yves Bouligand (1986). "Fibroblasts, Morphogenesis and Cellular Automata".
3514: 3330: 3064: 2843: 2824: 2215: 1542: 1538: 1516: 1434: 1206: 1005: 882:
There are many possible generalizations of the cellular automaton concept.
689: 501: 190: 2293: 1369:, and complex behaviors such as recognition and learning can be simulated. 854:
depends on both its own state and the total of its neighbors at time 
3955:
Muhtaroglu, Ali (August 1996). "4.1 Cellular Automaton Processor (CAP)".
3048: 3010: 2318:(1969). "Endomorphisms and automorphisms of the shift dynamical system". 1482: 1474: 955: 796: 563: 556: 273: 205: 36: 2421:"Introduction to and Survey of Cellular Automata or Polyautomata Theory" 4209:
Eppstein, David. "Growth and decay in life-like cellular autometa". In
3384: 2758: 2331: 2242: 1562: 1392: 1372: 1355: 1315: 724: 673: 630: 493: 371: 293: 97:. Cellular automata have found application in various areas, including 4486:(includes discussion on triangular grids, and larger neighborhood CAs) 4453: 4020: 3983: 1769: â€“ Discrete (i.e., incremental) version of infinitesimal calculus 142: = 0) is selected by assigning a state for each cell. A new 4223: 4048:
Evolving cellular automata music: From sound synthesis to composition
2285: 1732: 1523:. Cell interaction can be via electric charge, magnetism, vibration ( 1425:
that can be simulated by means of a cellular automaton. In the 1950s
1330: 1240: 800: 775: 531:
In the 1960s, cellular automata were studied as a particular type of
32: 3321: 3294: 468: 2083:
John von Neumann, "The general and logical theory of automata," in
1712: 1545:. Two-dimensional cellular automata can be used for constructing a 1384: 1321: 1310: 1221:. In 2004, Cook's proof was finally published in Wolfram's journal 1126: 1021: 1017: 771: 681: 594:
In the 1970s a two-state, two-dimensional cellular automaton named
194: 3914: 2635: 1568:
Other problems that can be solved with cellular automata include:
1473:
to study phenomena like fluid dynamics and phase transitions. The
138:
is defined relative to the specified cell. An initial state (time
4469:– An atlas of various types of one-dimensional cellular automata. 3146:
The phrase "life-like cellular automaton" dates back at least to
1722: 1707: 1534: 1524: 1348: 1341: 1326: 1209:
proved that some of these structures were rich enough to support
1041: 1013: 1009: 965:
considers continuous spatial automata as a model of computation.
668: 255: 98: 3812:
Statistical Mechanics: Entropy, Order Parameters, and Complexity
3013:(1990). "Reversibility of 2D cellular automata is undecidable". 2665: 1433:) discovered that when a thin, homogenous layer of a mixture of 1387:. These include phenomena of great medical importance, such as: 1247:
of the hypercube. This rule-to-rule distance is also called the
727:
that many class 4 cellular automata, if not all, are capable of
672:
during this period Wolfram formulated the concepts of intrinsic
445:, Ulam's colleague at Los Alamos, was working on the problem of 4407:
Mitchell, Melanie; Crutchfeld, James P.; Das, Rajarshi (1996).
4109: 4107: 4105: 4103: 4101: 2263: 1478: 1456: 1366: 1329:
cells reside in a narrow band along the shell's lip. Each cell
1283: 1004:
These 256 cellular automata are generally referred to by their
893:
One way is by using something other than a rectangular (cubic,
461:
performed many of the earliest explorations of these models of
3717: 2763:"The structure of the elementary cellular automata rule space" 1509: 958:
to explain how chemical reactions could create the stripes on
858: âˆ’ 1 then the cellular automaton is properly called 731:. This has been proven for Rule 110 and Conway's Game of Life. 548:
of the set of global rules of cellular automata as the set of
457:
system for creating a reductionist model of self-replication.
4472: 4416:
Turing, A. M. (1952). "The Chemical Basis of Morphogenesis".
1697: 1195:
Rule 110, like the Game of Life, exhibits what Wolfram calls
1032: 959: 885: 586:
to reduce any neighborhood to a von Neumann neighborhood. He
437:
in the 1940s, studied the growth of crystals, using a simple
367: 341: 4442:
Proposes reaction-diffusion, a type of continuous automaton.
4098: 4264:
Kier, Lemont B.; Seybold, Paul G.; Cheng, Chao-Kun (2005).
4004: 3658: 2698:
Computational analysis of one-dimensional cellular automata
2536:(4 October 2002). "Is the Universe a Universal Computer?". 1672: 239: 3600: 2757: 1939:
Cellular Automata Machines: A New Environment for Modeling
4163:
Bialynicki-Birula, Iwo; Bialynicka-Birula, Iwona (2004).
2915:
Cellular Automata in Hyperbolic Spaces – Tome I, Volume 1
1617:
Maze generation algorithm § Cellular automaton algorithms
496:
cells), and with 29 states per cell. Von Neumann gave an
3969: 336: 3205:"First gliders navigate ever-changing Penrose universe" 1992: 1990: 1988: 1986: 912:. A probabilistic rule gives, for each pattern at time 165:
The concept was originally discovered in the 1940s by
4062:"Evolving Diverse Cellular Automata Based Level Maps" 3155: 3147: 3084:
Discrete Mathematics and Theoretical Computer Science
2197: 2195: 2035: 688:—a fact proved later by Wolfram's research assistant 4477: 3259: 2228: 1983: 1798:
Pages displaying wikidata descriptions as a fallback
1789:
Pages displaying wikidata descriptions as a fallback
3264:. Understanding Complex Systems. pp. 291–309. 2097:Kemeny, John G. (1955). "Man viewed as a machine". 1292:
exhibits a cellular automaton pattern on its shell.
112:A cellular automaton consists of a regular grid of 4284: 4283:von Neumann, John (1966). Burks, Arthur W. (ed.). 4114:Nathaniel Johnston; et al. (21 August 2010). 4113: 3896:"A-D-E Classification of Conformal Field Theories" 2694: 2659: 2192: 1365:Threshold automata have been invented to simulate 1325:, are generated by natural cellular automata. The 535:and the connection with the mathematical field of 4266:Modeling Chemical Systems using Cellular Automata 2532: 2201: 850: âˆ’ 1. If the state of the cell at time 655:found in brains. He published his first paper in 313:is the number of possible states for a cell, and 4497: 3773: 3351: 2573: 2571: 2569: 1881: 1498:has been of particular interest, as it requires 453:in 1948. Ulam was the one who suggested using a 4059: 3954: 3475:Proceedings of the National Academy of Sciences 2986:"De Bruijn Graphs and Linear Cellular Automata" 2142: 1966:Cellular Automata: A Discrete View of the World 1935: 1758: â€“ Study of abstract machines and automata 981: 4188:Cellular Automata Modeling of Physical Systems 3588:Disordered Systems and Biological Organization 3585: 3567: 3184: 2504: 2502: 2500: 2498: 2496: 2469:http://www.igblan.free-online.co.uk/igblan/ca/ 2385:"Simple Computation-Universal Cellular Spaces" 2171: 2169: 1817: â€“ Computerised aid to land use decisions 1205:, as a research assistant to Wolfram in 1994, 3889: 3468: 2753: 2751: 2666:G. Cattaneo; E. Formenti; L. Margara (1998). 2583: 2566: 2481: 2403:"Simple Nontrivial Self-Reproducing Machines" 2007: 2005: 1811: â€“ Abstract model of quantum computation 1781: â€“ Tool for simulating cellular automata 974:are extensions of cellular automata based on 954:textures, differential equations proposed by 539:was established for the first time. In 1969, 422:is the index (horizontal) in one generation. 4480:from the newsgroup comp.theory.cell-automata 2688: 2044:. Sterling Publishing Company, Inc. p.  1887:"Statistical Mechanics of Cellular Automata" 1465:Probabilistic cellular automata are used in 1402:in the development of aggressive carcinomas. 4282: 4165:Modeling Reality: How Computers Mirror Life 4060:Ashlock, Daniel; Kreitzer, Matthew (2020). 4037:." Digital Creativity 16.3 (2005): 165-185. 3077: 2950: 2911: 2862: 2860: 2595: 2514: 2493: 2187: 2166: 2154: 1936:Toffoli, Tommaso; Margolus, Norman (1987). 1823: â€“ Computing by new or unusual methods 1583: 1510:Computer science, coding, and communication 4490:Cosma Shalizi's Cellular Automata Notebook 4299: 3438:The Geometry and Pigmentation of Seashells 3292: 3119: 3098: 2932: 2881:"Tessellations with local transformations" 2878: 2748: 2721: 2715: 2487: 2346: 2067: 2065: 2002: 1657:Specific cellular automata rules include: 27:Discrete model studied in computer science 4301: 4210: 4140: 3931: 3913: 3694: 3676: 3635: 3504: 3494: 3430: 3428: 3426: 3406: 3320: 3151: 2968: 2951:Amoroso, Serafino; Patt, Yale N. (1972). 2896: 2833: 2823: 2634: 2367:"Cellular Automata Complexity Trade-Offs" 2161:Bialynicki-Birula, Bialynicka-Birula 2004 2012:Bialynicki-Birula, Bialynicka-Birula 2004 1877: 1875: 1552:Cellular automata have been proposed for 834:A special class of cellular automata are 216:. Special types of cellular automata are 4220:Cellular Automata: Theory and Experiment 4208: 3190: 2918:. Archives contemporaines. p. 134. 2857: 2222: 2130: 2017: 1455: 1385:biological lattice-gas cellular automata 1282: 1116: 1031: 995: 884: 467: 335: 31: 4263: 4186:Chopard, Bastien; Droz, Michel (2005). 3115: 3113: 2794: 2788: 2467:Paul Chapman. Life universal computer. 2436: 2314: 2062: 2029: 1996: 1537:was originally suggested as a possible 1391:Characterization of different modes of 870:structure as Life are sometimes called 14: 4498: 4243:Cellular Automata: A Discrete Universe 4033:Burraston, Dave, and Ernest Edmonds. " 3847: 3808: 3559:: CS1 maint: archived copy as title ( 3434: 3423: 3221: 3202: 3123:Cellular automata: a discrete universe 2983: 2096: 1872: 4346:Berto, Francesco; Tagliabue, Jacopo. 3959:. Cornell University. pp. 62–74. 3286: 3148:Barral, ChatĂ© & Manneville (1992) 2613: 1969:. Wiley & Sons, Inc. p. 40. 1340:bears a pattern resembling Wolfram's 522:Greenberg-Hastings cellular automaton 370:(doughnut shape). Universes of other 4369:. New York: Oxford University Press. 3469:Peak, West; Messinger, Mott (2004). 3435:Coombs, Stephen (15 February 2009), 3352:Weinberg, Steven (24 October 2002). 3226:(3rd ed.). New York: Springer. 3126:. World Scientific. pp. 44–45. 3110: 3047: 3009: 2670:. In M. Delorme; J. Mazoyer (eds.). 2181: 1752: â€“ Type of computational models 1594:Cellular automata have been used in 1573:Firing squad synchronization problem 1354:Moving wave patterns on the skin of 799:is related to the tiling problem by 116:, each in one of a finite number of 73:. Cellular automata are also called 4357:Stanford Encyclopedia of Philosophy 4287:Theory of Self-Reproducing Automata 2672:Cellular automata: a parallel model 1641:these cellular automaton rules are 897:) grid. For example, if a plane is 877: 612:article, its rules are as follows: 24: 4338: 2455:10.1038/scientificamerican1070-120 1775: â€“ Nonlinear dynamical system 1609: 173:while they were contemporaries at 25: 4532: 4447: 4185: 3724:Mathematical Medicine and Biology 2418: 2400: 2382: 2364: 2119:10.1038/scientificamerican0455-58 1652: 695: 562:In 1969, German computer pioneer 506:von Neumann universal constructor 418:is the time step (vertical), and 303:extended von Neumann neighborhood 297:white on the next time interval. 3250:, 372 (1), March 2007, pp. 46–68 1615:This section is an excerpt from 1131:(binary 01101110 = decimal 110) 581:Also in 1969 computer scientist 490:universal copier and constructor 441:as his model. At the same time, 254: 238: 4240: 4053: 4040: 4027: 3998: 3963: 3948: 3883: 3841: 3802: 3767: 3758: 3711: 3652: 3594: 3579: 3573: 3521: 3462: 3378: 3345: 3295:"What Kind of Science is This?" 3253: 3240: 3215: 3196: 3140: 3071: 3041: 3003: 2977: 2944: 2905: 2872: 2701:. World Scientific. p. 8. 2607: 2589: 2577: 2526: 2461: 2430: 2412: 2394: 2376: 2358: 2308: 2257: 2148: 2090: 2077: 1815:Spatial decision support system 1273: 1046:(binary 00011110 = decimal 30) 910:probabilistic cellular automata 820:second-order cellular automaton 486:von Neumann's cellular automata 160:asynchronous cellular automaton 150:by 1), according to some fixed 4218:Gutowitz, Howard, ed. (1991). 4162: 4146:Game of Life Cellular Automata 4133: 4008:IEEE Transactions on Computers 3972:IEEE Transactions on Computers 3444:, pp. 3–4, archived from 2645:10.25088/ComplexSystems.19.1.1 2160: 2036:Pickover, Clifford A. (2009). 2011: 1956: 1929: 1839: 1728:Von Neumann cellular automaton 1506:, which simulate fluid flows. 1490:. The phase transition in the 1313:, like the ones in the genera 435:Los Alamos National Laboratory 360:partial differential equations 175:Los Alamos National Laboratory 13: 1: 4521:Computational fields of study 4217: 3854:Statistical Physics of Fields 3354:"Is the Universe a Computer?" 2970:10.1016/s0022-0000(72)80013-8 2912:Margenstern, Maurice (2007). 2898:10.1016/S0022-0000(72)80009-6 2866: 1828: 1547:pseudorandom number generator 1419:Belousov–Zhabotinsky reaction 1230: 988:Elementary cellular automaton 829: 780:Curtis–Hedlund–Lyndon theorem 762:Reversible cellular automaton 755: 546:Curtis–Hedlund–Lyndon theorem 212:, or capable of simulating a 156:stochastic cellular automaton 4308: 4293:University of Illinois Press 3796:10.1016/0167-2789(89)90081-x 3417:10.1016/0167-2789(90)90175-O 3359:The New York Review of Books 3270:10.1007/978-3-642-01284-6_14 3248:Theoretical Computer Science 3178:10.1016/0375-9601(92)91013-H 3104: 3078:Durand-Lose, JĂ©rĂŽme (2001). 3035:10.1016/0167-2789(90)90195-U 2601: 2520: 2508: 2175: 1833: 1412: 1262:, and is reminiscent of the 982:Elementary cellular automata 678:computational irreducibility 664:elementary cellular automata 649:Second Law of Thermodynamics 362:is sometimes referred to as 351:periodic boundary conditions 187:elementary cellular automata 46:" in the cellular automaton 7: 4380:Advances in Complex Systems 4241:Ilachinski, Andrew (2001). 4074:10.1007/978-3-030-14687-0_2 3120:Ilachinski, Andrew (2001). 2938: 2695:Burton H. Voorhees (1996). 2352: 2204:Arch. Inst. Cardiol. MĂ©xico 2136: 2071: 2023: 1962: 1787: â€“ class of algorithms 1742: 1606:generation in video games. 1492:two-dimensional Ising model 1408:during tumor proliferation. 1351:on the leaf acts as a cell. 948:Continuous spatial automata 899:tiled with regular hexagons 872:life-like cellular automata 740:membership in these proved 229: 10: 4537: 4192:Cambridge University Press 3933:10.4249/scholarpedia.10314 3859:Cambridge University Press 2761:; Packard, Norman (1990). 2668:"Topological chaos and CA" 1809:Quantum cellular automaton 1803:Movable cellular automaton 1614: 1587: 1451: 1295: 1278: 1239:of the 8-dimensional unit 1165:new state for center cell 1121:256 iterations of Rule 110 1080:new state for center cell 985: 759: 425: 4392:10.1142/S0219525919500139 4386:(5): 1950013 (38 pages). 3809:Sethna, James P. (2008). 3678:10.1186/s13062-017-0188-z 3620:10.1038/s41556-020-0552-6 3090:: 145–154. Archived from 2674:. Springer. p. 239. 1997:Kier, Seybold, Cheng 2005 1942:. MIT Press. p. 27. 1911:10.1103/RevModPhys.55.601 1891:Reviews of Modern Physics 1854:, Penguin Books, London, 1762:Cyclic cellular automaton 1668:Codd's cellular automaton 1494:and other systems in its 1381:collective cell migration 658:Reviews of Modern Physics 210:computationally universal 189:; his research assistant 4046:Miranda, Eduardo Reck. " 2474:6 September 2009 at the 2437:Gardner, Martin (1970). 1963:Schiff, Joel L. (2011). 1821:Unconventional computing 1703:Nobili cellular automata 1584:Generative art and music 1471:condensed matter physics 972:Graph rewriting automata 824:block cellular automaton 766:A cellular automaton is 639:universal Turing machine 484:Ulam's lattice network, 447:self-replicating systems 283:von Neumann neighborhood 263:von Neumann neighborhood 4169:Oxford University Press 3817:Oxford University Press 3496:10.1073/pnas.0307811100 3053:Fundamenta Informaticae 2879:Richardson, D. (1972). 2552:10.1126/science.1075073 1851:Darwin's Dangerous Idea 1785:Iterative Stencil Loops 1554:public-key cryptography 1429:(extending the work of 976:graph rewriting systems 528:and excitable systems. 504:model, and is called a 433:, while working at the 91:tessellation structures 4484:"Neighbourhood Survey" 4478:Cellular automaton FAQ 4438:10.1098/rstb.1952.0012 3222:Murray, J. D. (2003). 3065:10.3233/FI-1999-381208 2984:Sutner, Klaus (1991). 2825:10.1073/pnas.71.7.2748 2614:Zenil, Hector (2010). 1563:error correction codes 1500:conformal field theory 1462: 1293: 1122: 1037: 1001: 890: 480: 345: 261:The red cells are the 245:The red cells are the 146:is created (advancing 83:homogeneous structures 50: 4315:A New Kind of Science 3736:10.1093/imammb/dqq011 2127:1955; 192:6 (errata). 1678:Conway's game of life 1634:Conway's Game of Life 1588:Further information: 1459: 1421:is a spatio-temporal 1296:Further information: 1286: 1219:A New Kind of Science 1202:A New Kind of Science 1120: 1035: 999: 888: 864:Conway's Game of Life 729:universal computation 703:A New Kind of Science 680:, and suggested that 471: 339: 299:Conway's Game of Life 179:Conway's Game of Life 79:tessellation automata 48:Conway's Game of Life 35: 4454:Mirek's Cellebration 3224:Mathematical biology 2957:J. Comput. Syst. Sci 2885:J. Comput. Syst. Sci 2730:. Springer. p.  2320:Math. Systems Theory 1917:on 21 September 2013 1504:lattice gas automata 1406:Phenotypic switching 842:depends only on the 459:Nils Aall Barricelli 67:model of computation 4430:1952RSPTB.237...37T 4348:"Cellular Automata" 3924:2010SchpJ...510314C 3892:Zuber, Jean-Bernard 3788:1989PhyD...36..209G 3608:Nature Cell Biology 3590:. pp. 374–375. 3487:2004PNAS..101..918P 3399:1990PhyD...45...77L 3313:2002Natur.417..216G 3293:Giles, Jim (2002). 3170:1992PhLA..163..279B 3027:1990PhyD...45..379K 2816:1974PNAS...71.2748N 2722:Max Garzon (1995). 2443:Scientific American 2278:1992Natur.355..349D 2111:1955SciAm.192d..58K 1903:1983RvMP...55..601W 1529:von Neumann designs 1440:Scientific American 1423:chemical oscillator 1344:cellular automaton. 1132: 1047: 934:continuous automata 609:Scientific American 602:and popularized by 566:published his book 511:Also in the 1940s, 132:coupled map lattice 103:theoretical biology 87:cellular structures 3890:Cappelli, Andrea; 2332:10.1007/BF01691062 2243:10.1007/bf01068458 1604:procedural terrain 1600:evolutionary music 1496:universality class 1463: 1298:Patterns in nature 1294: 1215:Santa Fe Institute 1129:cellular automaton 1125: 1123: 1044:cellular automaton 1040: 1038: 1002: 952:reaction–diffusion 891: 868:Moore neighborhood 526:cardiac arrhythmia 517:Arturo Rosenblueth 481: 376:modular arithmetic 346: 344:, a toroidal shape 289:Moore neighborhood 249:for the blue cell. 247:Moore neighborhood 195:one of these rules 130:(in contrast to a 55:cellular automaton 51: 4516:Dynamical systems 4506:Cellular automata 4463:self-replication. 4329:978-1-57955-008-0 4275:978-1-4020-3657-6 4256:978-981-238-183-5 4233:978-0-262-57086-2 4201:978-0-521-46168-9 4178:978-0-19-853100-5 4155:978-1-84996-216-2 4142:Adamatzky, Andrew 4116:"Maze - LifeWiki" 4083:978-3-030-14686-3 4021:10.1109/12.286310 3984:10.1109/12.888056 3978:(10): 1146–1151. 3868:978-0-521-87341-3 3826:978-0-198-56677-9 3451:on 7 January 2013 3307:(6886): 216–218. 3279:978-3-642-01283-9 3262:Adaptive Networks 3158:Physics Letters A 3133:978-981-238-183-5 2925:978-2-84703-033-4 2867:Kari, Jarrko 1991 2741:978-3-540-56149-1 2708:978-981-02-2221-5 2681:978-0-7923-5493-2 2534:Mitchell, Melanie 2419:Smith, Alvy Ray. 2401:Smith, Alvy Ray. 2383:Smith, Alvy Ray. 2365:Smith, Alvy Ray. 2272:(6358): 349–351. 1860:978-0-14-016734-4 1767:Discrete calculus 1750:Agent-based model 1625:cellular automata 1623:Certain types of 1427:A. M. Zhabotinsky 1309:Patterns of some 1193: 1192: 1110:Rule 30 exhibits 1108: 1107: 569:Calculating Space 541:Gustav A. Hedlund 537:symbolic dynamics 59:cellular automata 18:Cellular automata 16:(Redirected from 4528: 4441: 4412: 4403: 4370: 4361: 4352:Zalta, Edward N. 4333: 4310:Wolfram, Stephen 4305: 4302:Adamatzky (2010) 4296: 4290: 4279: 4260: 4247:World Scientific 4237: 4214: 4211:Adamatzky (2010) 4205: 4182: 4159: 4128: 4127: 4125: 4123: 4111: 4096: 4095: 4057: 4051: 4044: 4038: 4031: 4025: 4024: 4002: 3996: 3995: 3967: 3961: 3960: 3952: 3946: 3945: 3935: 3917: 3887: 3881: 3880: 3845: 3839: 3838: 3806: 3800: 3799: 3771: 3765: 3762: 3756: 3755: 3715: 3709: 3708: 3698: 3680: 3656: 3650: 3649: 3639: 3614:(9): 1103–1115. 3598: 3592: 3591: 3583: 3577: 3571: 3565: 3564: 3558: 3550: 3548: 3546: 3540: 3534:. Archived from 3533: 3525: 3519: 3518: 3508: 3498: 3466: 3460: 3459: 3458: 3456: 3450: 3443: 3432: 3421: 3420: 3410: 3382: 3376: 3375: 3373: 3371: 3349: 3343: 3342: 3324: 3290: 3284: 3283: 3257: 3251: 3244: 3238: 3237: 3219: 3213: 3212: 3200: 3194: 3193:, pp. 72–73 3188: 3182: 3181: 3152:Adamatzky (2010) 3144: 3138: 3137: 3117: 3108: 3102: 3096: 3095: 3075: 3069: 3068: 3045: 3039: 3038: 3021:(1–3): 379–385. 3007: 3001: 3000: 2990: 2981: 2975: 2974: 2972: 2948: 2942: 2936: 2930: 2929: 2909: 2903: 2902: 2900: 2876: 2870: 2864: 2855: 2854: 2852: 2850: 2837: 2827: 2810:(7): 2748–2751. 2801: 2795:Nicolis (1974). 2792: 2786: 2785: 2783: 2781: 2767: 2755: 2746: 2745: 2729: 2719: 2713: 2712: 2692: 2686: 2685: 2663: 2657: 2656: 2638: 2620: 2611: 2605: 2599: 2593: 2587: 2581: 2575: 2564: 2563: 2530: 2524: 2518: 2512: 2506: 2491: 2485: 2479: 2465: 2459: 2458: 2434: 2428: 2427: 2425: 2416: 2410: 2409: 2407: 2398: 2392: 2391: 2389: 2380: 2374: 2373: 2371: 2362: 2356: 2350: 2344: 2343: 2312: 2306: 2305: 2286:10.1038/355349a0 2261: 2255: 2254: 2226: 2220: 2219: 2199: 2190: 2188:von Neumann 1966 2185: 2179: 2173: 2164: 2158: 2152: 2146: 2140: 2134: 2128: 2122: 2094: 2088: 2081: 2075: 2069: 2060: 2059: 2043: 2033: 2027: 2021: 2015: 2009: 2000: 1994: 1981: 1980: 1960: 1954: 1953: 1933: 1927: 1926: 1924: 1922: 1913:. Archived from 1883:Wolfram, Stephen 1879: 1870: 1843: 1799: 1790: 1773:Excitable medium 1602:composition and 1596:generative music 1578:Majority problem 1558:one-way function 1264:phase transition 1249:Hamming distance 1136:current pattern 1133: 1124: 1051:current pattern 1048: 1039: 878:Related automata 860:outer totalistic 533:dynamical system 473:John von Neumann 443:John von Neumann 325: 323: 258: 242: 171:John von Neumann 95:iterative arrays 65:) is a discrete 21: 4536: 4535: 4531: 4530: 4529: 4527: 4526: 4525: 4496: 4495: 4450: 4445: 4415: 4406: 4373: 4364: 4345: 4341: 4339:Further reading 4336: 4330: 4276: 4257: 4234: 4202: 4179: 4156: 4136: 4131: 4121: 4119: 4112: 4099: 4084: 4058: 4054: 4045: 4041: 4032: 4028: 4003: 3999: 3968: 3964: 3953: 3949: 3888: 3884: 3869: 3846: 3842: 3827: 3807: 3803: 3772: 3768: 3763: 3759: 3716: 3712: 3657: 3653: 3599: 3595: 3584: 3580: 3574:Ilachinsky 2001 3572: 3568: 3552: 3551: 3544: 3542: 3541:on 25 July 2010 3538: 3531: 3529:"Archived copy" 3527: 3526: 3522: 3467: 3463: 3454: 3452: 3448: 3441: 3433: 3424: 3383: 3379: 3369: 3367: 3350: 3346: 3322:10.1038/417216a 3291: 3287: 3280: 3258: 3254: 3245: 3241: 3234: 3220: 3216: 3201: 3197: 3189: 3185: 3145: 3141: 3134: 3118: 3111: 3103: 3099: 3094:on 15 May 2011. 3076: 3072: 3046: 3042: 3008: 3004: 2993:Complex Systems 2988: 2982: 2978: 2949: 2945: 2937: 2933: 2926: 2910: 2906: 2877: 2873: 2865: 2858: 2848: 2846: 2799: 2793: 2789: 2779: 2777: 2770:Complex Systems 2765: 2756: 2749: 2742: 2720: 2716: 2709: 2693: 2689: 2682: 2664: 2660: 2623:Complex Systems 2618: 2612: 2608: 2600: 2596: 2590:Ilachinsky 2001 2588: 2584: 2578:Ilachinsky 2001 2576: 2567: 2546:(5591): 65–68. 2531: 2527: 2519: 2515: 2507: 2494: 2488:Wainwright 2010 2486: 2482: 2476:Wayback Machine 2466: 2462: 2435: 2431: 2423: 2417: 2413: 2405: 2399: 2395: 2387: 2381: 2377: 2369: 2363: 2359: 2351: 2347: 2326:(4): 320–3751. 2313: 2309: 2262: 2258: 2227: 2223: 2200: 2193: 2186: 2182: 2174: 2167: 2159: 2155: 2149:Ilachinski 2001 2147: 2143: 2135: 2131: 2095: 2091: 2082: 2078: 2070: 2063: 2056: 2034: 2030: 2022: 2018: 2010: 2003: 1995: 1984: 1977: 1961: 1957: 1950: 1934: 1930: 1920: 1918: 1880: 1873: 1844: 1840: 1836: 1831: 1826: 1797: 1788: 1756:Automata theory 1745: 1739: 1737: 1693:Langton's loops 1655: 1650: 1649: 1620: 1612: 1610:Maze generation 1592: 1586: 1512: 1454: 1415: 1300: 1281: 1276: 1233: 1224:Complex Systems 1130: 1045: 990: 984: 880: 832: 816:Norman Margolus 812:Tommaso Toffoli 764: 758: 698: 653:neural networks 645:Stephen Wolfram 575:digital physics 498:existence proof 463:artificial life 451:Hixon Symposium 439:lattice network 428: 413: 403: 394: 383: 353:resulting in a 321: 319: 270: 269: 268: 267: 266: 259: 251: 250: 243: 232: 199:Turing-complete 183:Stephen Wolfram 75:cellular spaces 71:automata theory 28: 23: 22: 15: 12: 11: 5: 4534: 4524: 4523: 4518: 4513: 4511:Systems theory 4508: 4494: 4493: 4487: 4481: 4475: 4470: 4464: 4457: 4449: 4448:External links 4446: 4444: 4443: 4424:(641): 37–72. 4413: 4404: 4371: 4362: 4342: 4340: 4337: 4335: 4334: 4328: 4306: 4297: 4280: 4274: 4261: 4255: 4238: 4232: 4215: 4206: 4200: 4183: 4177: 4160: 4154: 4144:, ed. (2010). 4137: 4135: 4132: 4130: 4129: 4097: 4082: 4052: 4039: 4026: 4015:(6): 759–764. 3997: 3962: 3947: 3882: 3867: 3849:Kardar, Mehran 3840: 3825: 3801: 3782:(3): 209–221. 3766: 3757: 3710: 3665:Biology Direct 3651: 3593: 3578: 3566: 3520: 3481:(4): 918–922. 3461: 3422: 3408:10.1.1.15.2786 3393:(1–3): 77–94. 3377: 3344: 3285: 3278: 3252: 3239: 3232: 3214: 3195: 3183: 3164:(4): 279–285. 3139: 3132: 3109: 3097: 3070: 3040: 3002: 2976: 2963:(5): 448–464. 2943: 2931: 2924: 2904: 2891:(5): 373–388. 2871: 2856: 2787: 2747: 2740: 2714: 2707: 2687: 2680: 2658: 2606: 2594: 2582: 2565: 2525: 2513: 2492: 2480: 2460: 2449:(4): 120–123. 2429: 2411: 2393: 2375: 2357: 2345: 2316:Hedlund, G. A. 2307: 2256: 2237:(5): 856–864. 2221: 2191: 2180: 2165: 2153: 2151:, p. xxix 2141: 2129: 2089: 2076: 2061: 2055:978-1402757969 2054: 2028: 2016: 2001: 1982: 1975: 1955: 1948: 1928: 1897:(3): 601–644. 1871: 1846:Daniel Dennett 1837: 1835: 1832: 1830: 1827: 1825: 1824: 1818: 1812: 1806: 1800: 1791: 1782: 1776: 1770: 1764: 1759: 1753: 1746: 1744: 1741: 1736: 1735: 1730: 1725: 1720: 1715: 1710: 1705: 1700: 1695: 1690: 1685: 1680: 1675: 1670: 1665: 1659: 1654: 1653:Specific rules 1651: 1621: 1613: 1611: 1608: 1590:Generative art 1585: 1582: 1581: 1580: 1575: 1521:systolic array 1511: 1508: 1453: 1450: 1431:B. P. Belousov 1414: 1411: 1410: 1409: 1403: 1396: 1377: 1376: 1370: 1363: 1352: 1345: 1280: 1277: 1275: 1272: 1268:thermodynamics 1232: 1229: 1191: 1190: 1187: 1184: 1181: 1178: 1175: 1172: 1169: 1166: 1162: 1161: 1158: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1106: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1077: 1076: 1073: 1070: 1067: 1064: 1061: 1058: 1055: 1052: 986:Main article: 983: 980: 879: 876: 831: 828: 808:thermodynamics 785:Garden of Eden 760:Main article: 757: 754: 749:Ilya Prigogine 733: 732: 720: 716: 712: 697: 696:Classification 694: 692:in the 1990s. 661:investigating 627: 626: 623: 620: 617: 604:Martin Gardner 583:Alvy Ray Smith 513:Norbert Wiener 431:Stanislaw Ulam 427: 424: 408: 399: 389: 381: 260: 253: 252: 244: 237: 236: 235: 234: 233: 231: 228: 214:Turing machine 167:Stanislaw Ulam 107:microstructure 26: 9: 6: 4: 3: 2: 4533: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4503: 4501: 4491: 4488: 4485: 4482: 4479: 4476: 4474: 4471: 4468: 4467:Wolfram Atlas 4465: 4461: 4458: 4455: 4452: 4451: 4439: 4435: 4431: 4427: 4423: 4419: 4414: 4410: 4405: 4401: 4397: 4393: 4389: 4385: 4381: 4377: 4372: 4368: 4363: 4359: 4358: 4353: 4349: 4344: 4343: 4331: 4325: 4321: 4320:Wolfram Media 4317: 4316: 4311: 4307: 4303: 4298: 4294: 4289: 4288: 4281: 4277: 4271: 4267: 4262: 4258: 4252: 4248: 4244: 4239: 4235: 4229: 4225: 4221: 4216: 4212: 4207: 4203: 4197: 4193: 4189: 4184: 4180: 4174: 4170: 4166: 4161: 4157: 4151: 4147: 4143: 4139: 4138: 4117: 4110: 4108: 4106: 4104: 4102: 4093: 4089: 4085: 4079: 4075: 4071: 4067: 4063: 4056: 4049: 4043: 4036: 4030: 4022: 4018: 4014: 4010: 4009: 4001: 3993: 3989: 3985: 3981: 3977: 3973: 3966: 3958: 3951: 3943: 3939: 3934: 3929: 3925: 3921: 3916: 3911: 3907: 3903: 3902: 3897: 3893: 3886: 3878: 3874: 3870: 3864: 3860: 3856: 3855: 3850: 3844: 3836: 3832: 3828: 3822: 3818: 3814: 3813: 3805: 3797: 3793: 3789: 3785: 3781: 3777: 3770: 3761: 3753: 3749: 3745: 3741: 3737: 3733: 3729: 3725: 3721: 3714: 3706: 3702: 3697: 3692: 3688: 3684: 3679: 3674: 3670: 3666: 3662: 3655: 3647: 3643: 3638: 3633: 3629: 3625: 3621: 3617: 3613: 3609: 3605: 3597: 3589: 3582: 3576:, p. 275 3575: 3570: 3562: 3556: 3537: 3530: 3524: 3516: 3512: 3507: 3502: 3497: 3492: 3488: 3484: 3480: 3476: 3472: 3465: 3447: 3440: 3439: 3431: 3429: 3427: 3418: 3414: 3409: 3404: 3400: 3396: 3392: 3388: 3381: 3365: 3361: 3360: 3355: 3348: 3340: 3336: 3332: 3328: 3323: 3318: 3314: 3310: 3306: 3302: 3301: 3296: 3289: 3281: 3275: 3271: 3267: 3263: 3256: 3249: 3243: 3235: 3233:0-387-95228-4 3229: 3225: 3218: 3210: 3209:New Scientist 3206: 3199: 3192: 3191:Eppstein 2010 3187: 3179: 3175: 3171: 3167: 3163: 3159: 3153: 3149: 3143: 3135: 3129: 3125: 3124: 3116: 3114: 3106: 3101: 3093: 3089: 3085: 3081: 3074: 3066: 3062: 3058: 3054: 3050: 3044: 3036: 3032: 3028: 3024: 3020: 3016: 3012: 3006: 2998: 2994: 2987: 2980: 2971: 2966: 2962: 2958: 2954: 2947: 2941:, p. 103 2940: 2935: 2927: 2921: 2917: 2916: 2908: 2899: 2894: 2890: 2886: 2882: 2875: 2869:, p. 379 2868: 2863: 2861: 2845: 2841: 2836: 2831: 2826: 2821: 2817: 2813: 2809: 2805: 2798: 2791: 2775: 2771: 2764: 2760: 2754: 2752: 2743: 2737: 2733: 2728: 2727: 2718: 2710: 2704: 2700: 2699: 2691: 2683: 2677: 2673: 2669: 2662: 2654: 2650: 2646: 2642: 2637: 2632: 2628: 2624: 2617: 2610: 2604:, p. 231 2603: 2598: 2591: 2586: 2579: 2574: 2572: 2570: 2561: 2557: 2553: 2549: 2545: 2541: 2540: 2535: 2529: 2523:, p. 881 2522: 2517: 2511:, p. 880 2510: 2505: 2503: 2501: 2499: 2497: 2489: 2484: 2478:November 2002 2477: 2473: 2470: 2464: 2456: 2452: 2448: 2444: 2440: 2433: 2422: 2415: 2404: 2397: 2386: 2379: 2368: 2361: 2355:, p. 182 2354: 2349: 2341: 2337: 2333: 2329: 2325: 2321: 2317: 2311: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2260: 2252: 2248: 2244: 2240: 2236: 2232: 2225: 2217: 2213: 2210:(3): 205–65. 2209: 2205: 2198: 2196: 2189: 2184: 2178:, p. 876 2177: 2172: 2170: 2162: 2157: 2150: 2145: 2138: 2133: 2126: 2120: 2116: 2112: 2108: 2104: 2100: 2093: 2086: 2085:L.A. Jeffress 2080: 2073: 2068: 2066: 2057: 2051: 2047: 2042: 2041: 2032: 2025: 2020: 2013: 2008: 2006: 1998: 1993: 1991: 1989: 1987: 1978: 1976:9781118030639 1972: 1968: 1967: 1959: 1951: 1949:9780262200608 1945: 1941: 1940: 1932: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1878: 1876: 1869: 1868:0-14-016734-X 1865: 1861: 1857: 1853: 1852: 1847: 1842: 1838: 1822: 1819: 1816: 1813: 1810: 1807: 1804: 1801: 1795: 1794:Lattice model 1792: 1786: 1783: 1780: 1777: 1774: 1771: 1768: 1765: 1763: 1760: 1757: 1754: 1751: 1748: 1747: 1740: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1714: 1711: 1709: 1706: 1704: 1701: 1699: 1696: 1694: 1691: 1689: 1688:Langton's ant 1686: 1684: 1683:Day and Night 1681: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1663:Brian's Brain 1661: 1660: 1658: 1646: 1644: 1643:deterministic 1638: 1635: 1631: 1626: 1618: 1607: 1605: 1601: 1597: 1591: 1579: 1576: 1574: 1571: 1570: 1569: 1566: 1564: 1559: 1555: 1550: 1548: 1544: 1540: 1536: 1532: 1530: 1526: 1522: 1518: 1507: 1505: 1501: 1497: 1493: 1489: 1484: 1480: 1476: 1472: 1468: 1458: 1449: 1446: 1445:A. K. Dewdney 1442: 1441: 1436: 1432: 1428: 1424: 1420: 1407: 1404: 1401: 1400:heterogeneity 1397: 1394: 1390: 1389: 1388: 1386: 1382: 1374: 1371: 1368: 1364: 1361: 1360:chromatophore 1357: 1353: 1350: 1346: 1343: 1339: 1338: 1337:Conus textile 1332: 1328: 1324: 1323: 1318: 1317: 1312: 1308: 1307: 1306: 1303: 1299: 1291: 1290: 1289:Conus textile 1285: 1271: 1269: 1265: 1261: 1260:edge of chaos 1256: 1252: 1250: 1246: 1242: 1238: 1228: 1226: 1225: 1220: 1216: 1212: 1208: 1204: 1203: 1198: 1188: 1185: 1182: 1179: 1176: 1173: 1170: 1167: 1164: 1163: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1134: 1128: 1119: 1115: 1113: 1103: 1100: 1097: 1094: 1091: 1088: 1085: 1082: 1079: 1078: 1074: 1071: 1068: 1065: 1062: 1059: 1056: 1053: 1050: 1049: 1043: 1034: 1030: 1028: 1023: 1019: 1015: 1011: 1007: 998: 994: 989: 979: 977: 973: 969: 966: 964: 961: 957: 953: 949: 945: 943: 940: 936: 935: 929: 925: 921: 919: 915: 911: 906: 904: 903:Penrose tiles 900: 896: 887: 883: 875: 873: 869: 865: 861: 857: 853: 849: 845: 841: 837: 827: 825: 821: 817: 813: 809: 804: 802: 798: 794: 789: 787: 786: 781: 777: 773: 769: 763: 753: 750: 745: 743: 737: 730: 726: 721: 719:indefinitely. 717: 713: 710: 709: 708: 705: 704: 693: 691: 687: 683: 679: 675: 670: 666: 665: 660: 659: 654: 650: 646: 642: 640: 636: 632: 624: 621: 618: 615: 614: 613: 611: 610: 605: 601: 597: 592: 589: 584: 579: 577: 576: 571: 570: 565: 560: 558: 554: 553:endomorphisms 551: 547: 542: 538: 534: 529: 527: 523: 518: 514: 509: 507: 503: 499: 495: 491: 487: 478: 474: 470: 466: 464: 460: 456: 452: 448: 444: 440: 436: 432: 423: 421: 417: 411: 407: 402: 398: 392: 388: 384: 377: 373: 369: 365: 361: 356: 352: 343: 338: 334: 332: 331:configuration 327: 316: 312: 308: 304: 300: 295: 291: 290: 285: 284: 279: 275: 264: 257: 248: 241: 227: 225: 221: 220: 215: 211: 207: 202: 200: 196: 192: 188: 184: 180: 176: 172: 168: 163: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 120: 115: 110: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 49: 45: 41: 38: 34: 30: 19: 4421: 4417: 4408: 4383: 4379: 4366: 4355: 4314: 4286: 4268:. Springer. 4265: 4242: 4219: 4187: 4164: 4148:. Springer. 4145: 4120:. Retrieved 4065: 4055: 4042: 4029: 4012: 4006: 4000: 3975: 3971: 3965: 3956: 3950: 3908:(4): 10314. 3905: 3901:Scholarpedia 3899: 3885: 3853: 3843: 3811: 3804: 3779: 3775: 3769: 3760: 3730:(1): 49–65. 3727: 3723: 3713: 3668: 3664: 3654: 3611: 3607: 3596: 3587: 3581: 3569: 3545:14 September 3543:. Retrieved 3536:the original 3523: 3478: 3474: 3464: 3453:, retrieved 3446:the original 3437: 3390: 3386: 3380: 3368:. Retrieved 3363: 3357: 3347: 3304: 3298: 3288: 3261: 3255: 3247: 3242: 3223: 3217: 3208: 3203:Jacob Aron. 3198: 3186: 3161: 3157: 3142: 3122: 3107:, p. 60 3105:Wolfram 2002 3100: 3092:the original 3087: 3083: 3073: 3056: 3052: 3049:Kari, Jarkko 3043: 3018: 3014: 3011:Kari, Jarkko 3005: 2996: 2992: 2979: 2960: 2956: 2946: 2934: 2914: 2907: 2888: 2884: 2874: 2847:. Retrieved 2807: 2803: 2790: 2778:. Retrieved 2773: 2769: 2725: 2717: 2697: 2690: 2671: 2661: 2626: 2622: 2609: 2602:Wolfram 2002 2597: 2592:, p. 13 2585: 2580:, p. 12 2543: 2537: 2528: 2521:Wolfram 2002 2516: 2509:Wolfram 2002 2490:, p. 16 2483: 2463: 2446: 2442: 2432: 2414: 2396: 2378: 2360: 2348: 2323: 2319: 2310: 2269: 2265: 2259: 2234: 2230: 2224: 2207: 2203: 2183: 2176:Wolfram 2002 2156: 2144: 2132: 2124: 2105:(4): 58–67. 2102: 2098: 2092: 2079: 2039: 2031: 2026:, p. 41 2019: 1999:, p. 15 1965: 1958: 1938: 1931: 1919:. Retrieved 1915:the original 1894: 1890: 1849: 1841: 1738: 1656: 1639: 1622: 1593: 1567: 1551: 1543:cryptography 1539:block cipher 1533: 1517:tessellation 1513: 1488:universality 1483:ferromagnets 1464: 1438: 1435:malonic acid 1416: 1398:The role of 1378: 1335: 1320: 1314: 1304: 1301: 1287: 1274:Applications 1257: 1253: 1234: 1222: 1218: 1211:universality 1207:Matthew Cook 1200: 1196: 1194: 1111: 1109: 1026: 1006:Wolfram code 1003: 991: 971: 970: 967: 946: 938: 932: 930: 926: 922: 917: 913: 907: 894: 892: 881: 859: 855: 851: 847: 843: 839: 835: 833: 805: 790: 783: 767: 765: 746: 738: 734: 701: 700:Wolfram, in 699: 690:Matthew Cook 662: 656: 643: 634: 628: 607: 596:Game of Life 593: 580: 573: 567: 561: 557:shift spaces 530: 510: 502:tessellation 482: 454: 429: 419: 415: 409: 405: 400: 396: 390: 386: 379: 363: 354: 347: 330: 328: 314: 310: 306: 302: 294:orthogonally 287: 281: 278:neighborhood 277: 271: 223: 217: 203: 193:showed that 191:Matthew Cook 164: 151: 147: 143: 139: 136:neighborhood 135: 127: 123: 117: 113: 111: 94: 90: 86: 82: 78: 74: 62: 58: 54: 52: 29: 4473:Conway Life 4134:Works cited 3455:2 September 2939:Schiff 2011 2759:Li, Wentian 2629:(1): 1–28. 2353:Schiff 2011 2231:Cybernetics 2163:, p. 8 2139:, p. 3 2137:Schiff 2011 2074:, p. 1 2072:Schiff 2011 2024:Schiff 2011 2014:, p. 9 1921:28 February 1541:for use in 1475:Ising model 1467:statistical 1373:Fibroblasts 1356:cephalopods 956:Alan Turing 797:Jarkko Kari 793:undecidable 742:undecidable 725:conjectured 600:John Conway 564:Konrad Zuse 274:graph paper 206:homogeneity 69:studied in 4500:Categories 4291:. Urbana: 4118:. LifeWiki 3370:12 October 3059:: 93–107. 2780:25 January 1829:References 1630:neighbours 1393:metastatic 1231:Rule space 931:There are 836:totalistic 830:Totalistic 801:Wang tiles 788:patterns. 768:reversible 756:Reversible 752:student). 674:randomness 631:randomness 550:continuous 494:orthogonal 477:Los Alamos 372:dimensions 224:totalistic 219:reversible 144:generation 122:, such as 109:modeling. 61:, abbrev. 42:creating " 40:Glider Gun 4400:212988726 4224:MIT Press 3915:0911.3242 3877:920137477 3835:845714772 3776:Physica D 3744:1477-8599 3687:1745-6150 3671:(1): 18. 3628:1465-7392 3403:CiteSeerX 3387:Physica D 3015:Physica D 2776:: 281–297 2636:0910.4042 2560:122484855 2251:121306408 1834:Citations 1733:Wireworld 1413:Chemistry 1395:invasion. 1311:seashells 1241:hypercube 776:bijective 686:universal 414:}, where 4312:(2002). 4092:85562837 3992:10139169 3942:18207779 3894:(2010). 3851:(2007). 3752:20610469 3705:28800767 3646:32839548 3555:cite web 3515:14732685 3339:10636328 3331:12015565 2999:: 19–30. 2849:25 March 2844:16592170 2653:15364755 2472:Archived 2340:21803927 2216:20245817 2125:Sci. Am. 1885:(1983). 1848:(1995), 1743:See also 1713:Rule 184 1331:secretes 1322:Cymbiola 1237:vertices 1127:Rule 110 1022:rule 184 1018:rule 110 822:and the 772:preimage 682:rule 110 479:ID badge 455:discrete 364:periodic 355:toroidal 309:, where 286:and the 230:Overview 37:Gosper's 4426:Bibcode 4354:(ed.). 4122:1 March 3920:Bibcode 3784:Bibcode 3696:5553611 3637:7502685 3483:Bibcode 3395:Bibcode 3309:Bibcode 3166:Bibcode 3154:. See: 3023:Bibcode 2812:Bibcode 2539:Science 2302:4348759 2294:1731248 2274:Bibcode 2107:Bibcode 2099:Sci. Am 1899:Bibcode 1723:Turmite 1708:Rule 90 1535:Rule 30 1525:phonons 1452:Physics 1367:neurons 1342:rule 30 1327:pigment 1279:Biology 1197:class 4 1112:class 3 1042:Rule 30 1036:Rule 30 1014:rule 90 1010:rule 30 684:may be 669:Rule 30 635:gliders 426:History 99:physics 44:gliders 4398:  4326:  4272:  4253:  4230:  4198:  4175:  4152:  4090:  4080:  3990:  3940:  3875:  3865:  3833:  3823:  3750:  3742:  3703:  3693:  3685:  3644:  3634:  3626:  3513:  3506:327117 3503:  3405:  3337:  3329:  3300:Nature 3276:  3230:  3130:  2922:  2842:  2835:388547 2832:  2738:  2705:  2678:  2651:  2558:  2338:  2300:  2292:  2266:Nature 2249:  2214:  2052:  1973:  1946:  1866:  1858:  1556:. The 1479:magnet 1461:space. 1020:, and 960:zebras 715:local. 588:proved 119:states 93:, and 4460:Golly 4396:S2CID 4350:. In 4088:S2CID 3988:S2CID 3938:S2CID 3910:arXiv 3539:(PDF) 3532:(PDF) 3449:(PDF) 3442:(PDF) 3335:S2CID 2989:(PDF) 2800:(PDF) 2766:(PDF) 2649:S2CID 2631:arXiv 2619:(PDF) 2556:S2CID 2424:(PDF) 2406:(PDF) 2388:(PDF) 2370:(PDF) 2336:S2CID 2298:S2CID 2247:S2CID 1779:Golly 1718:Seeds 1698:Lenia 1648:else. 1349:stoma 1316:Conus 606:in a 368:torus 342:torus 114:cells 57:(pl. 4422:B237 4324:ISBN 4270:ISBN 4251:ISBN 4228:ISBN 4196:ISBN 4173:ISBN 4150:ISBN 4124:2011 4078:ISBN 3873:OCLC 3863:ISBN 3831:OCLC 3821:ISBN 3748:PMID 3740:ISSN 3701:PMID 3683:ISSN 3642:PMID 3624:ISSN 3561:link 3547:2008 3511:PMID 3457:2012 3372:2012 3366:(16) 3327:PMID 3274:ISBN 3228:ISBN 3128:ISBN 2920:ISBN 2851:2017 2840:PMID 2804:PNAS 2782:2013 2736:ISBN 2703:ISBN 2676:ISBN 2290:PMID 2212:PMID 2050:ISBN 1971:ISBN 1944:ISBN 1923:2011 1864:ISBN 1856:ISBN 1673:CoDi 1598:and 1469:and 1417:The 1319:and 1245:edge 1160:000 1075:000 939:e.g. 895:etc. 676:and 515:and 385:is { 320:1.34 169:and 158:and 152:rule 126:and 105:and 4434:doi 4388:doi 4070:doi 4017:doi 3980:doi 3928:doi 3792:doi 3732:doi 3691:PMC 3673:doi 3632:PMC 3616:doi 3501:PMC 3491:doi 3479:101 3413:doi 3317:doi 3305:417 3266:doi 3174:doi 3162:163 3061:doi 3031:doi 2965:doi 2893:doi 2830:PMC 2820:doi 2732:149 2641:doi 2548:doi 2544:298 2451:doi 2447:223 2328:doi 2282:doi 2270:355 2239:doi 2115:doi 2103:192 2046:406 1907:doi 1266:in 1157:001 1154:010 1151:011 1148:100 1145:101 1142:110 1139:111 1072:001 1069:010 1066:011 1063:100 1060:101 1057:110 1054:111 844:sum 555:of 197:is 128:off 4502:: 4432:. 4420:. 4394:. 4384:22 4382:. 4378:. 4322:. 4318:. 4249:. 4245:. 4226:. 4222:. 4194:. 4190:. 4171:. 4167:. 4100:^ 4086:. 4076:. 4064:. 4013:43 4011:. 3986:. 3976:49 3974:. 3936:. 3926:. 3918:. 3904:. 3898:. 3871:. 3861:. 3857:. 3829:. 3819:. 3815:. 3790:. 3780:36 3778:. 3746:. 3738:. 3728:29 3726:. 3722:. 3699:. 3689:. 3681:. 3669:12 3667:. 3663:. 3640:. 3630:. 3622:. 3612:22 3610:. 3606:. 3557:}} 3553:{{ 3509:. 3499:. 3489:. 3477:. 3473:. 3425:^ 3411:. 3401:. 3391:45 3389:. 3364:49 3362:. 3356:. 3333:. 3325:. 3315:. 3303:. 3297:. 3272:. 3207:. 3172:. 3160:. 3112:^ 3088:AA 3086:. 3082:. 3057:38 3055:. 3029:. 3019:45 3017:. 2995:. 2991:. 2959:. 2955:. 2887:. 2883:. 2859:^ 2838:. 2828:. 2818:. 2808:71 2806:. 2802:. 2772:. 2768:. 2750:^ 2734:. 2647:. 2639:. 2627:19 2625:. 2621:. 2568:^ 2554:. 2542:. 2495:^ 2445:. 2441:. 2334:. 2322:. 2296:. 2288:. 2280:. 2268:. 2245:. 2233:. 2208:16 2206:. 2194:^ 2168:^ 2123:; 2113:. 2101:. 2064:^ 2048:. 2004:^ 1985:^ 1905:. 1895:55 1893:. 1889:. 1874:^ 1862:, 1565:. 1549:. 1443:, 1270:. 1251:. 1189:0 1104:0 1016:, 1012:, 978:. 905:. 874:. 862:. 814:, 803:. 578:. 559:. 508:. 475:, 465:. 412:+1 404:, 395:, 393:−1 340:A 326:. 324:10 201:. 162:. 124:on 101:, 89:, 85:, 81:, 77:, 63:CA 53:A 4440:. 4436:: 4428:: 4402:. 4390:: 4360:. 4332:. 4304:. 4295:. 4278:. 4259:. 4236:. 4213:. 4204:. 4181:. 4158:. 4126:. 4094:. 4072:: 4023:. 4019:: 3994:. 3982:: 3944:. 3930:: 3922:: 3912:: 3906:5 3879:. 3837:. 3798:. 3794:: 3786:: 3754:. 3734:: 3707:. 3675:: 3648:. 3618:: 3563:) 3549:. 3517:. 3493:: 3485:: 3419:. 3415:: 3397:: 3374:. 3341:. 3319:: 3311:: 3282:. 3268:: 3236:. 3211:. 3180:. 3176:: 3168:: 3136:. 3067:. 3063:: 3037:. 3033:: 3025:: 2997:5 2973:. 2967:: 2961:6 2928:. 2901:. 2895:: 2889:6 2853:. 2822:: 2814:: 2784:. 2774:4 2744:. 2711:. 2684:. 2655:. 2643:: 2633:: 2562:. 2550:: 2457:. 2453:: 2426:. 2408:. 2390:. 2372:. 2342:. 2330:: 2324:3 2304:. 2284:: 2276:: 2253:. 2241:: 2235:8 2218:. 2121:. 2117:: 2109:: 2058:. 1979:. 1952:. 1925:. 1909:: 1901:: 1619:. 1362:. 1186:1 1183:1 1180:1 1177:0 1174:1 1171:1 1168:0 1101:1 1098:1 1095:1 1092:1 1089:0 1086:0 1083:0 1027:t 918:t 914:t 856:t 852:t 848:t 840:t 667:( 420:i 416:t 410:i 406:x 401:i 397:x 391:i 387:x 382:i 380:x 322:× 315:s 311:k 307:k 148:t 140:t 20:)

Index

Cellular automata

Gosper's
Glider Gun
gliders
Conway's Game of Life
model of computation
automata theory
physics
theoretical biology
microstructure
states
coupled map lattice
stochastic cellular automaton
asynchronous cellular automaton
Stanislaw Ulam
John von Neumann
Los Alamos National Laboratory
Conway's Game of Life
Stephen Wolfram
elementary cellular automata
Matthew Cook
one of these rules
Turing-complete
homogeneity
computationally universal
Turing machine
reversible

Moore neighborhood

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑