Knowledge

Channichthyidae

Source 📝

623:. This means that when icefish lost hemoglobin and myoglobin, it did not just mean a decreased ability to transport oxygen, but it also meant that total nitric oxide levels were elevated. Nitric oxide plays a role in regulating various cardiovascular processes in icefish, such as the dilation of branchial vasculature, cardiac stroke volume, and power output. The presence of nitric oxide also can increase angiogenesis, mitochondrial biogenesis, and cause muscle hypertrophy; all of these traits are characteristics of icefish. The similarity between nitric oxide-mediated trait expression and the unusual cardiovascular traits of icefish suggests that while these abnormal traits have evolved over time, much of these traits were simply an immediate physiological response to heightened levels of nitric oxide, which may in turn have led to a process of homeostatic evolution. In addition, the heightened levels of nitric oxide that followed as an inevitable consequence of the loss of hemoglobin and myoglobin may have actually provided an automatic compensation, allowing for the fish to make up for the hit to their oxygen transport system and thereby providing a grace period of the fixation of these less than desirable traits. 589:
performed a test using stopped flow spectrometry. They found that across all temperatures, oxygen binds and dissociates faster from icefish than it does from mammalian myoglobin. However, when they repeated the test with each organism at a temperature that accurately reflected its native environment, the myoglobin performance was roughly equivalent between icefish and mammals. So, they concluded that icefish myoglobin is neither more nor less functional than the myoglobin in other clades. This means that myoglobin is unlikely to have been selected against. The same researchers then performed a test in which they selectively inhibited cardiac myoglobin in icefish with natural myoglobin expression. They found that icefish species that naturally lack cardiac myoglobin performed better without myoglobin than did fish that naturally express cardiac myoglobin. This finding suggests that fish without cardiac myoglobin have undergone compensatory adaptation.
598:
these waters, means oxygen availability in Antarctic waters is unusually high. The loss of hemoglobin and myoglobin would have negative consequences in warmer environments. The stability in temperature is also "lucky", as strong fluctuations in temperature would create a more stressful environment that would likely weed out individuals with deleterious mutations. Although most research suggests that the loss of hemoglobin in icefish was a neutral or maladaptive trait that arose due to a random evolutionary event, some researchers have also suggested that the loss of hemoglobin might be tied to a necessary adaptation for the icefish. Most animals require iron for hemoglobin production, and iron is often limited in ocean environments. Through hemoglobin loss, icefish may minimize their iron requirements. This minimization could have aided the icefish survival 8.5 million years ago when Arctic diversity plummeted dramatically.
564:
proposed that the lack of hemoglobin, while not lethal, is not adaptive. Any adaptive advantages incurred by reduced blood viscosity are outweighed by the fact that icefish must pump much more blood per unit of time to make up for the reduced oxygen carrying capacity of their blood. The high blood volume of icefish is itself evidence that the loss of hemoglobin and myoglobin was not advantageous for the ancestor of the icefish. Their unusual cardiovascular physiology, including large heart, high blood volume, increased mitochondrial density, and extensive microvasculature, suggests that icefish have had to evolve ways of coping with the impairment of their oxygen binding and transport systems.
53: 31: 501: 513: 409: 607: 543:(ACC) is widely believed to mark the beginning of the evolution of Antarctic fish. The ACC moves in a clockwise northeast direction, and can be up to 10,000 km (6,200 mi) wide. This current formed 25-22 million years ago, and thermally isolated the Southern Ocean by separating it from the warm subtropical gyres to the north. 483:, and the ventricle muscles are very spongy, enabling them to absorb oxygen directly from the blood they pump. Their hearts, large blood vessels and low-viscosity (RBC-free) blood are specialized to carry out very high flow rates at low pressures. This helps to reduce the problems caused by the lack of hemoglobin. In the past, their 487:
skin had been widely thought to help absorb oxygen. However, current analysis has shown that the amount of oxygen absorbed by the skin is much less than that absorbed through the gills. The little extra oxygen absorbed by the skin may play a part in supplementing the oxygen supply to the heart, which
453:
is dissolved in the plasma and transported throughout the body without the hemoglobin protein. The fish can live without hemoglobin via low metabolic rates and the high solubility of oxygen in water at the low temperatures of their environment (the solubility of a gas tends to increase as temperature
588:
Phylogenetic relationships indicate that the nonexpression of myoglobin in cardiac tissue has evolved at least four discrete times. This repeated loss suggests that cardiac myoglobin may be vestigial or even detrimental to icefish. Sidell and O'Brien (2006) investigated this possibility. First, they
597:
The Southern Ocean is an atypical environment. To begin with, the Southern Ocean has been characterized by extremely cold but stable temperatures for the past 10-14 million years. These cold temperatures, which allow for higher water oxygen content, combined with a high degree of vertical mixing in
563:
The loss of hemoglobin was initially believed to be an adaptation to the extreme cold, as the lack of hemoglobin and red blood cells decreases blood viscosity, which is an adaptation that has been seen in species adapted to cold climates. In refuting this original hypothesis, previous analysis has
618:
The key to solving this conundrum is to consider the other functions that both hemoglobin and myoglobin perform. While emphasis is often placed and understandably so on the importance of hemoglobin and myoglobin in oxygen delivery and use, recent studies have found that both proteins are actually
554:
to colonize. Despite the hemoglobin-less mutants being less fit, the lack of competition allowed even the mutants to leave descendants that colonized empty habitats and evolved compensations for their mutations. Later, the periodic openings of fjords created habitats that were colonized by a few
896:
Purser, Autun; Hehemann, Laura; Boehringer, Lilian; Tippenhauer, Sandra; Wege, Mia; Bornemann, Horst; Pineda-Metz, Santiago E.A.; Flintrop, Clara M.; Koch, Florian; Hellmer, Hartmut H.; Burkhardt-Holm, Patricia; Janout, Markus; Werner, Ellen; Glemser, Barbara; Balaguer, Jenna; Rogge, Andreas;
567:
Recent research by Corliss et al. (2019) claims that the loss of hemoglobin has adaptive value. Iron is a limiting nutrient in the environments inhabited by the icefish. By no longer synthesizing hemoglobin, they claim that icefish are minimizing endogenous iron use. To demonstrate this, they
1422:
Tota, Bruno; Raffaele Acierno; Claudio Agnisola; Bruno Tota; Raffaele Acierno; Claudio Agnisola (1991-06-29). "Mechanical Performance of the Isolated and Perfused Heart of the Haemoglobinless Antarctic Icefish Chionodraco Hamatus (Lonnberg): Effects of Loading Conditions and Temperature".
580:, demonstrating for the first time that there is limited transcription and translation of a hemoglobin gene fragment within an icefish. Because this fragment of hemoglobin does not contain any iron binding sites, the finding suggests that hemoglobin was selected against to conserve iron. 531:
When the icefish evolved is unknown; two main competing hypotheses have been postulated. The first is that they are only about 6 million years old, appearing after the Southern Ocean cooled significantly. The second suggests that they are much older, 15-20 million years.
196:
sectors of the Southern Ocean, as well as the continental shelf waters surrounding Antarctica. Water temperatures in these regions remain relatively stable, generally ranging from −1.8 to 2 °C (28.8 to 35.6 °F). One icefish,
1515:
Bargelloni, Luca; Babbucci, Massimiliano; Ferraresso, Serena; Papetti, Chiara; Vitulo, Nicola; Carraro, Roberta; Pauletto, Marianna; Santovito, Gianfranco; Lucassen, Magnus; Mark, Felix Christopher; Zane, Lorenzo (December 2019).
436:. The hemoglobin protein is made of two subunits (alpha and beta). In 15 of the 16 icefish species, the beta subunit gene has been completely deleted and the alpha subunit gene has been partially deleted. One icefish species, 400:; thus, they can survive long periods between feeding, and often consume fish up to 50% of their own body length. Maximum body lengths of 25–50 cm (9.8–19.7 in) have been recorded in these species. 528:
ancestor. The cold, well-mixed, oxygen-rich waters of the Southern Ocean provided an environment where a fish with a low metabolic rate could survive even without hemoglobin, albeit less efficiently.
488:
receives venous blood from the skin and body before pumping it to the gills. Additionally, icefish have larger cardiac mitochondria and increased mitochondrial biogenesis in comparison to red-blooded
1744:
Corliss, Bruce A.; Delalio, Leon J.; Stevenson Keller, T. C.; Keller, Alexander S.; Keller, Douglas A.; Corliss, Bruce H.; Beers, Jody M.; Peirce, Shayn M.; Isakson, Brant E. (2019-11-12).
1586:
Corliss, Bruce A.; Delalio, Leon J.; Stevenson Keller, T. C.; Keller, Alexander S.; Keller, Douglas A.; Corliss, Bruce H.; Beers, Jody M.; Peirce, Shayn M.; Isakson, Brant E. (2019-11-12).
1207:
Barber, D. L; J. E Mills Westermann; M. G White (1981-07-01). "The blood cells of the Antarctic icefish Chaenocephalus aceratus Lönnberg: light and electron microscopic observations".
1645:
Sedwick, P. N.; Marsay, C. M.; Sohst, B. M.; Aguilar-Islas, A. M.; Lohan, M. C.; Long, M. C.; Arrigo, K. R.; Dunbar, R. B.; Saito, M. A.; Smith, W. O.; DiTullio, G. R. (2011-12-15).
1242:
Holeton, George (2015-10-15). "Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded Antarctic fish".
492:. This adaptation facilitates enhanced oxygen delivery by increasing mitochondrial surface area, and reducing distance between the extracellular area and the mitochondria. 293: 1518:"Draft genome assembly and transcriptome data of the icefish Chionodraco myersi reveal the key role of mitochondria for a life without hemoglobin at subzero temperatures" 1879:
Pellegrino, D.; R. Acierno & B. Tota (2003). "Control of cardiovascular function in the icefish Chionodraco hamatus: involvement of serotonin and nitric oxide".
479:), greater blood volumes (four-fold those of other fish), larger hearts, and greater cardiac outputs (five-fold greater) compared to other fish. Their hearts lack 1339:
Grove, Theresa (2004). "Two species of Antarctic icefishes (Genus Champsocephalus) share a common genetic lesion leading to the loss of myoglobin expression".
1468:"High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis" 1280:
Sidell, B. D.; Vayda, M. E.; Small, D. J.; Moylan, T. J.; Londraville, R. L.; Yuan, M. L.; Rodnick, K. J.; Eppley, Z. A.; Costello, L.; et al. (1997).
984: 1844:
Gardner, P. R. (2004). "Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin, and their associated reductases".
2058: 345: 1917: 1704:
Kennett, J. P. (1977). "Cenozoic evolution of Antarctic glaciation, the circus-Antarctic Ocean and their impact on global paleooceanography".
208:
At least 16 species of crocodile icefish are currently recognized, although eight additional species have been proposed for the icefish genus
2084: 797:
Clarke, A. (1990). "Temperature and evolution: Southern Ocean cooling and the Antarctic marine fauna". In Kerry, K. R; Hempel, G (eds.).
1647:"Early season depletion of dissolved iron in the Ross Sea polynya: Implications for iron dynamics on the Antarctic continental shelf" 460:, the oxygen-binding protein used in muscles, is absent from all icefish skeletal muscles. In 10 species, myoglobin is found in the 2032: 225:
in Antarctica. The majority of nests were occupied by one adult fish guarding an approximated estimate of 1,735 eggs in each nest.
2071: 840:"Early life history of two Channichthys species from the Kerguelen Islands, Antarctica (Pisces: Notothenioidei: Channichthyidae)" 574:
and stained them to detect hemoglobin alpha 3'f. They found expression of hemoglobin alpha 3'f within the retinal vasculature of
432:
to lack hemoglobin as adults. Although they do not manufacture hemoglobin, remnants of hemoglobin genes can be found in their
814: 454:
decreases). However, the oxygen-carrying capacity of icefish blood is less than 10% that of their relatives with hemoglobin.
2076: 620: 418: 221:
icefish estimated to have 60 million active nests across an area of approximately 92 square miles at the bottom of the
1746:"Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver" 1588:"Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver" 2123: 2089: 428:
is colorless because it lacks hemoglobin, the oxygen-binding protein in blood. Channichthyidae are the only known
878: 994: 1015:
LaMesa, Mario (2004). "The role of notothenioid fish in the food web of the Ross Sea shelf waters: a review".
1803:
Galbraith, Eric D.; Le Mézo, Priscilla; Solanes Hernandez, Gerard; Bianchi, Daniele; Kroodsma, David (2019).
708:"When Bad Things Happen to Good Fish: The Loss of Hemoglobin and Myoglobin Expression in Antarctic Icefishes" 540: 52: 960: 536: 243: 1922: 1993: 1980: 1998: 762:
Kock, KH (2005). "Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I".
1050:
Artigues, Bernat (2003). "Fish length-weight relationships in the Weddell Sea and Bransfield Strait".
2128: 1971: 2151: 505: 413: 2115: 1933: 611: 375: 332: 129: 2110: 2063: 205: 2102: 2019: 1713: 1658: 1432: 1293: 1097: 980: 199: 475:
To compensate for the absence of hemoglobin, icefish have larger blood vessels (including
8: 517: 438: 289: 39: 1717: 1662: 1436: 1425:
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
1297: 1101: 1985: 1780: 1745: 1622: 1587: 1550: 1517: 1356: 1220: 1121: 1067: 1032: 938: 859: 820: 779: 370: 256: 47: 1892: 1392: 1152: 2097: 2006: 1896: 1861: 1826: 1785: 1767: 1686: 1627: 1609: 1555: 1537: 1497: 1489: 1448: 1404: 1396: 1321: 1316: 1281: 1259: 1255: 1224: 1189: 1113: 989: 942: 930: 863: 839: 810: 737: 729: 663: 641: 639: 524:
The icefish are considered a monophyletic group and likely descended from a sluggish
480: 465: 1857: 1071: 1036: 824: 783: 306: 1888: 1853: 1816: 1775: 1757: 1721: 1676: 1666: 1617: 1599: 1545: 1529: 1479: 1440: 1388: 1360: 1348: 1311: 1301: 1251: 1216: 1179: 1148: 1125: 1105: 1088:
Ruud, Johan T. (1954-05-08). "Vertebrates without Erythrocytes and Blood Pigment".
1059: 1024: 920: 910: 851: 802: 771: 719: 653: 576: 570: 551: 350: 162: 1923:
HHMI video about the discovery and natural history of the icefish (requires FLASH)
1168:"A genomic fossil reveals key steps in hemoglobin loss by the antarctic icefishes" 2011: 855: 469: 397: 284: 264: 1956: 1286:
Proceedings of the National Academy of Sciences of the United States of America
1282:"Variable expression of myoglobin among the hemoglobinless antarctic icefishes" 555:
individuals. These conditions may have also allowed for the loss of myoglobin.
489: 446: 238: 189: 177: 114: 94: 1533: 1421: 1352: 1063: 1028: 915: 898: 806: 775: 658: 30: 2145: 1830: 1821: 1805:"Growth Limitation of Marine Fish by Low Iron Availability in the Open Ocean" 1804: 1771: 1762: 1690: 1613: 1604: 1541: 1493: 1452: 1400: 1228: 956: 733: 340: 233:
The following genera have been classified within the family Channichthyidae:
1725: 1184: 1167: 550:
period, a species crash in the Southern Ocean opened up wide range of empty
217:
In February 2021, scientists discovered and documented a breeding colony of
1900: 1865: 1789: 1631: 1559: 1501: 1444: 1408: 1306: 1193: 1117: 934: 879:"'Major Discovery' Beneath Antarctic Seas: A Giant Icefish Breeding Colony" 741: 667: 461: 274: 210: 193: 170: 1325: 1263: 535:
Although the evolution of icefish is still disputed, the formation of the
500: 2045: 1965: 1671: 1646: 476: 389: 319: 301: 251: 222: 188:
in their blood as adults. Icefish populations are known to reside in the
104: 1802: 1484: 1467: 1139:
Cocca, E (1997). "Do the hemoglobinless icefishes have globin genes?".
640:
Richard van der Laan; William N. Eschmeyer & Ronald Fricke (2014).
484: 472:
in icefish heart ventricles has occurred at least four separate times.
429: 360: 185: 181: 925: 724: 707: 512: 2050: 1681: 1206: 1109: 457: 327: 314: 64: 2037: 1927: 1743: 1585: 1950: 1918:
A story about the use of the crocodile icefish for medical research
1514: 965: 895: 547: 525: 84: 1379:
Rankin, J.C; H Tuurala (January 1998). "Gills of Antarctic Fish".
449:(RBCs) are usually absent, and if present, are rare and defunct. 408: 1878: 1644: 450: 443:
has a more complete, but still nonfunctional, hemoglobin gene.
433: 173: 74: 2024: 425: 393: 899:"A vast icefish breeding colony discovered in the Antarctic" 705: 606: 1574:
Antarctic Fish Biology: Evolution in a Unique Environment
979: 1279: 403: 1166:Near, T. J.; Parker, S. K.; Detrich, H. W. (2006). 1465: 983:; Fricke, Ron & van der Laan, Richard (eds.). 1165: 706:Sidell, Bruce D; Kristin M O'Brien (2006-05-15). 2143: 1378: 1843: 1703: 897:Holtappels, Moritz; Wenzhoefer, Frank (2022). 837: 619:also involved in the process of breaking down 184:. They are the only known vertebrates to lack 1576:. San Diego, California: Academic Press, Inc. 1466:Urschel, M. R.; O'Brien, K. M. (2008-08-15). 1374: 1372: 1370: 701: 699: 697: 1043: 695: 693: 691: 689: 687: 685: 683: 681: 679: 677: 601: 1235: 1083: 1081: 1367: 1200: 1008: 29: 1820: 1779: 1761: 1680: 1670: 1621: 1603: 1549: 1483: 1381:Comparative Biochemistry and Physiology A 1332: 1315: 1305: 1183: 1132: 924: 914: 790: 723: 674: 657: 1415: 1078: 1049: 605: 511: 499: 407: 1244:Comparative Biochemistry and Physiology 1241: 955: 949: 592: 2144: 1014: 985:"Genera in the family Channichthyidae" 876: 796: 1932: 1931: 1739: 1737: 1735: 1338: 1275: 1273: 1138: 642:"Family-group names of Recent fishes" 558: 383: 1881:Computational Biochemical Physiology 1087: 761: 757: 755: 753: 751: 633: 583: 973: 877:Imbler, Sabrina (13 January 2022). 13: 1732: 1270: 1221:10.1111/j.1095-8649.1981.tb05807.x 404:Respiratory and circulatory system 14: 2163: 1911: 1846:Journal of Inorganic Biochemistry 748: 51: 1872: 1858:10.1016/j.jinorgbio.2004.10.003 1837: 1796: 1706:Journal of Geophysical Research 1697: 1651:Journal of Geophysical Research 1638: 1579: 1566: 1508: 1472:Journal of Experimental Biology 1459: 1172:Molecular Biology and Evolution 1159: 712:Journal of Experimental Biology 388:All icefish are believed to be 995:California Academy of Sciences 889: 870: 831: 1: 1893:10.1016/s1095-6433(02)00324-0 1393:10.1016/S1095-6433(97)00396-6 1153:10.1016/s0300-9629(97)00010-8 838:Voskoboinikova, Olga (2002). 626: 541:Antarctic Circumpolar Current 206:Antarctic Polar Frontal Zone. 1256:10.1016/0010-406x(70)90185-4 568:obtained retinal samples of 537:Antarctic Polar Frontal Zone 495: 204:is distributed north of the 7: 1809:Frontiers in Marine Science 144: 10: 2168: 856:10.31610/zsr/2001.10.2.407 1940: 1534:10.1038/s42003-019-0685-y 1353:10.1007/s00300-004-0634-0 1141:Comp. Biochem. Physiol. A 1064:10.1007/s00300-003-0505-0 1029:10.1007/s00300-004-0599-z 916:10.1016/j.cub.2021.12.022 807:10.1007/978-3-642-84074-6 776:10.1007/s00300-005-0019-z 659:10.11646/zootaxa.3882.1.1 602:Cardiovascular physiology 228: 142: 137: 48:Scientific classification 46: 37: 28: 23: 1822:10.3389/fmars.2019.00509 1763:10.3389/fphys.2019.01389 1605:10.3389/fphys.2019.01389 1572:Eastman, Joseph (1993). 961:"Family Channichthyidae" 959:; Pauly, Daniel (eds.). 396:. Icefish are typically 1750:Frontiers in Physiology 1726:10.1029/jc082i027p03843 1592:Frontiers in Physiology 1209:Journal of Fish Biology 577:Champsocephalus gunnari 571:Champsocephalus gunnari 506:Chaenocephalus aceratus 414:Champsocephalus gunnari 392:, but can also feed on 1522:Communications Biology 1445:10.1098/rstb.1991.0049 1307:10.1073/pnas.94.7.3420 844:Zoosystematica Rossica 615: 612:Pagetopsis macropterus 521: 509: 421: 2111:Paleobiology Database 1185:10.1093/molbev/msl071 981:Eschmeyer, William N. 609: 515: 503: 411: 1672:10.1029/2010JC006553 969:. June 2021 version. 799:Antarctic Ecosystems 593:Reason for trait fix 468:. Loss of myoglobin 419:Soviet postage stamp 200:Champsocephalus esox 1718:1977JGR....82.3843K 1663:2011JGRC..11612019S 1437:1991RSPTB.332..191T 1298:1997PNAS...94.3420S 1102:1954Natur.173..848R 518:Chaenodraco wilsoni 439:Neopagetopsis ionah 219:Neopagetopsis ionah 40:Chionodraco hamatus 1485:10.1242/jeb.018598 883:The New York Times 616: 559:Loss of hemoglobin 522: 510: 422: 384:Diet and body size 371:Pseudochaenichthys 159:white-blooded fish 2139: 2138: 2098:Open Tree of Life 1934:Taxon identifiers 1712:(27): 3843–3860. 1478:(16): 2638–2646. 1431:(1264): 191–198. 1178:(11): 2008–2016. 1096:(4410): 848–850. 990:Catalog of Fishes 909:(4): 842–850.e4. 816:978-3-642-84076-0 801:. pp. 9–22. 725:10.1242/jeb.02091 718:(10): 1791–1802. 584:Loss of myoglobin 481:coronary arteries 379: 366: 356: 336: 323: 310: 297: 280: 270: 260: 247: 155:crocodile icefish 151: 150: 133: 2159: 2132: 2131: 2119: 2118: 2106: 2105: 2093: 2092: 2080: 2079: 2067: 2066: 2054: 2053: 2041: 2040: 2028: 2027: 2015: 2014: 2002: 2001: 1989: 1988: 1976: 1975: 1974: 1961: 1960: 1959: 1929: 1928: 1905: 1904: 1876: 1870: 1869: 1841: 1835: 1834: 1824: 1800: 1794: 1793: 1783: 1765: 1741: 1730: 1729: 1701: 1695: 1694: 1684: 1674: 1642: 1636: 1635: 1625: 1607: 1583: 1577: 1570: 1564: 1563: 1553: 1512: 1506: 1505: 1487: 1463: 1457: 1456: 1419: 1413: 1412: 1376: 1365: 1364: 1336: 1330: 1329: 1319: 1309: 1292:(7): 3420–3424. 1277: 1268: 1267: 1239: 1233: 1232: 1204: 1198: 1197: 1187: 1163: 1157: 1156: 1147:(4): 1027–1030. 1136: 1130: 1129: 1110:10.1038/173848a0 1085: 1076: 1075: 1047: 1041: 1040: 1012: 1006: 1005: 1003: 1001: 977: 971: 970: 953: 947: 946: 928: 918: 893: 887: 886: 874: 868: 867: 835: 829: 828: 794: 788: 787: 759: 746: 745: 727: 703: 672: 671: 661: 637: 398:ambush predators 374: 364: 354: 344: 331: 318: 305: 288: 279:Richardson, 1844 278: 268: 255: 242: 128: 56: 55: 33: 21: 20: 16:Family of fishes 2167: 2166: 2162: 2161: 2160: 2158: 2157: 2156: 2152:Channichthyidae 2142: 2141: 2140: 2135: 2127: 2122: 2114: 2109: 2101: 2096: 2088: 2083: 2075: 2070: 2062: 2057: 2049: 2044: 2036: 2031: 2023: 2018: 2010: 2005: 1997: 1992: 1986:Channichthyidae 1984: 1979: 1972:Channichthyidae 1970: 1969: 1964: 1955: 1954: 1949: 1942:Channichthyidae 1936: 1914: 1909: 1908: 1877: 1873: 1842: 1838: 1801: 1797: 1742: 1733: 1702: 1698: 1657:(C12): C12019. 1643: 1639: 1584: 1580: 1571: 1567: 1513: 1509: 1464: 1460: 1420: 1416: 1377: 1368: 1347:(10): 579–585. 1337: 1333: 1278: 1271: 1240: 1236: 1205: 1201: 1164: 1160: 1137: 1133: 1086: 1079: 1048: 1044: 1013: 1009: 999: 997: 978: 974: 954: 950: 903:Current Biology 894: 890: 875: 871: 836: 832: 817: 795: 791: 770:(11): 862–895. 760: 749: 704: 675: 638: 634: 629: 604: 595: 586: 561: 546:During the mid- 539:(APFZ) and the 498: 470:gene expression 464:, specifically 447:Red blood cells 406: 386: 348: 285:Chionobathyscus 265:Champsocephalus 231: 167:Channichthyidae 127: 125:Channichthyidae 50: 17: 12: 11: 5: 2165: 2155: 2154: 2137: 2136: 2134: 2133: 2120: 2107: 2094: 2081: 2068: 2055: 2042: 2029: 2016: 2003: 1990: 1977: 1962: 1946: 1944: 1938: 1937: 1926: 1925: 1920: 1913: 1912:External links 1910: 1907: 1906: 1887:(2): 471–480. 1871: 1852:(1): 247–266. 1836: 1795: 1731: 1696: 1637: 1578: 1565: 1507: 1458: 1414: 1387:(1): 149–163. 1366: 1331: 1269: 1250:(2): 457–471. 1234: 1199: 1158: 1131: 1077: 1058:(7): 463–467. 1042: 1023:(6): 321–338. 1007: 972: 957:Froese, Rainer 948: 888: 869: 850:(2): 407–412. 830: 815: 789: 747: 673: 652:(2): 001–230. 631: 630: 628: 625: 603: 600: 594: 591: 585: 582: 560: 557: 497: 494: 405: 402: 385: 382: 381: 380: 367: 357: 337: 324: 311: 298: 281: 271: 261: 248: 239:Chaenocephalus 230: 227: 178:Southern Ocean 149: 148: 140: 139: 135: 134: 122: 118: 117: 115:Notothenioidei 112: 108: 107: 102: 98: 97: 95:Actinopterygii 92: 88: 87: 82: 78: 77: 72: 68: 67: 62: 58: 57: 44: 43: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 2164: 2153: 2150: 2149: 2147: 2130: 2125: 2121: 2117: 2112: 2108: 2104: 2099: 2095: 2091: 2086: 2082: 2078: 2073: 2069: 2065: 2060: 2056: 2052: 2047: 2043: 2039: 2034: 2030: 2026: 2021: 2017: 2013: 2008: 2004: 2000: 1995: 1991: 1987: 1982: 1978: 1973: 1967: 1963: 1958: 1952: 1948: 1947: 1945: 1943: 1939: 1935: 1930: 1924: 1921: 1919: 1916: 1915: 1902: 1898: 1894: 1890: 1886: 1882: 1875: 1867: 1863: 1859: 1855: 1851: 1847: 1840: 1832: 1828: 1823: 1818: 1814: 1810: 1806: 1799: 1791: 1787: 1782: 1777: 1773: 1769: 1764: 1759: 1755: 1751: 1747: 1740: 1738: 1736: 1727: 1723: 1719: 1715: 1711: 1707: 1700: 1692: 1688: 1683: 1678: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1641: 1633: 1629: 1624: 1619: 1615: 1611: 1606: 1601: 1597: 1593: 1589: 1582: 1575: 1569: 1561: 1557: 1552: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1519: 1511: 1503: 1499: 1495: 1491: 1486: 1481: 1477: 1473: 1469: 1462: 1454: 1450: 1446: 1442: 1438: 1434: 1430: 1426: 1418: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1375: 1373: 1371: 1362: 1358: 1354: 1350: 1346: 1342: 1341:Polar Biology 1335: 1327: 1323: 1318: 1313: 1308: 1303: 1299: 1295: 1291: 1287: 1283: 1276: 1274: 1265: 1261: 1257: 1253: 1249: 1245: 1238: 1230: 1226: 1222: 1218: 1214: 1210: 1203: 1195: 1191: 1186: 1181: 1177: 1173: 1169: 1162: 1154: 1150: 1146: 1142: 1135: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1084: 1082: 1073: 1069: 1065: 1061: 1057: 1053: 1052:Polar Biology 1046: 1038: 1034: 1030: 1026: 1022: 1018: 1017:Polar Biology 1011: 996: 992: 991: 986: 982: 976: 968: 967: 962: 958: 952: 944: 940: 936: 932: 927: 922: 917: 912: 908: 904: 900: 892: 884: 880: 873: 865: 861: 857: 853: 849: 845: 841: 834: 826: 822: 818: 812: 808: 804: 800: 793: 785: 781: 777: 773: 769: 765: 764:Polar Biology 758: 756: 754: 752: 743: 739: 735: 731: 726: 721: 717: 713: 709: 702: 700: 698: 696: 694: 692: 690: 688: 686: 684: 682: 680: 678: 669: 665: 660: 655: 651: 647: 643: 636: 632: 624: 622: 614: 613: 608: 599: 590: 581: 579: 578: 573: 572: 565: 556: 553: 549: 544: 542: 538: 533: 529: 527: 520: 519: 514: 508: 507: 502: 493: 491: 490:notothenioids 486: 482: 478: 473: 471: 467: 463: 459: 455: 452: 448: 444: 442: 440: 435: 431: 427: 420: 416: 415: 410: 401: 399: 395: 391: 377: 373: 372: 368: 363: 362: 358: 352: 347: 343: 342: 341:Neopagetopsis 338: 334: 330: 329: 325: 321: 317: 316: 312: 308: 304: 303: 299: 295: 291: 287: 286: 282: 277: 276: 272: 267: 266: 262: 258: 254: 253: 249: 245: 241: 240: 236: 235: 234: 226: 224: 220: 215: 214: 212: 207: 203: 201: 195: 191: 187: 183: 179: 176:found in the 175: 172: 168: 164: 160: 156: 147: 146: 141: 136: 131: 126: 123: 120: 119: 116: 113: 110: 109: 106: 103: 100: 99: 96: 93: 90: 89: 86: 83: 80: 79: 76: 73: 70: 69: 66: 63: 60: 59: 54: 49: 45: 42: 41: 36: 32: 27: 22: 19: 1941: 1884: 1880: 1874: 1849: 1845: 1839: 1812: 1808: 1798: 1753: 1749: 1709: 1705: 1699: 1654: 1650: 1640: 1595: 1591: 1581: 1573: 1568: 1525: 1521: 1510: 1475: 1471: 1461: 1428: 1424: 1417: 1384: 1380: 1344: 1340: 1334: 1289: 1285: 1247: 1243: 1237: 1215:(1): 11–28. 1212: 1208: 1202: 1175: 1171: 1161: 1144: 1140: 1134: 1093: 1089: 1055: 1051: 1045: 1020: 1016: 1010: 998:. Retrieved 988: 975: 964: 951: 906: 902: 891: 882: 872: 847: 843: 833: 798: 792: 767: 763: 715: 711: 649: 645: 635: 621:nitric oxide 617: 610: 596: 587: 575: 569: 566: 562: 545: 534: 530: 523: 516: 504: 474: 462:heart muscle 456: 445: 437: 423: 412: 387: 369: 359: 339: 326: 313: 300: 283: 275:Channichthys 273: 263: 250: 237: 232: 218: 216: 211:Channichthys 209: 198: 171:notothenioid 166: 158: 154: 152: 143: 124: 38: 18: 2046:iNaturalist 1966:Wikispecies 477:capillaries 430:vertebrates 390:piscivorous 365:Regan, 1913 349: [ 302:Chionodraco 252:Chaenodraco 223:Weddell Sea 161:comprise a 105:Perciformes 1528:(1): 443. 1000:12 October 926:2263/90796 627:References 466:ventricles 417:on a 1978 361:Pagetopsis 290:Andriashev 269:Gill, 1861 244:Richardson 186:hemoglobin 182:Antarctica 130:T. N. Gill 111:Suborder: 1831:2296-7745 1772:1664-042X 1691:0148-0227 1682:1912/4994 1614:1664-042X 1542:2399-3642 1494:0022-0949 1453:0962-8436 1401:1095-6433 1229:1095-8649 943:245936769 864:252225313 734:0022-0949 496:Evolution 485:scaleless 458:Myoglobin 328:Dacodraco 315:Cryodraco 71:Kingdom: 65:Eukaryota 2146:Category 1957:Q1412616 1951:Wikidata 1901:12547277 1866:15598505 1790:31780954 1756:: 1389. 1632:31780954 1598:: 1389. 1560:31815198 1502:18689417 1409:11253779 1194:16870682 1118:13165664 1072:25224018 1037:36398753 966:FishBase 935:35030328 825:32563062 784:12382710 742:16651546 668:25543675 548:Tertiary 526:demersal 424:Icefish 307:Lönnberg 190:Atlantic 145:see text 121:Family: 85:Chordata 81:Phylum: 75:Animalia 61:Domain: 24:Icefish 1781:6861181 1714:Bibcode 1659:Bibcode 1623:6861181 1551:6884616 1433:Bibcode 1361:6394817 1326:9096409 1294:Bibcode 1264:5426570 1126:3261779 1098:Bibcode 646:Zootaxa 346:Nybelin 294:Neyelov 180:around 138:Genera 101:Order: 91:Class: 2129:234518 2116:266365 2103:668238 2077:171119 2064:111258 1899:  1864:  1829:  1788:  1778:  1770:  1689:  1630:  1620:  1612:  1558:  1548:  1540:  1500:  1492:  1451:  1407:  1399:  1359:  1324:  1314:  1262:  1227:  1192:  1124:  1116:  1090:Nature 1070:  1035:  941:  933:  862:  823:  813:  782:  740:  732:  666:  552:niches 451:Oxygen 434:genome 378:, 1937 376:Norman 355:, 1947 335:, 1916 322:, 1900 309:, 1905 296:, 1978 292:& 259:, 1914 246:, 1844 229:Genera 194:Indian 163:family 132:, 1861 2124:WoRMS 2090:30806 2059:IRMNG 2051:51478 1999:59323 1357:S2CID 1317:20385 1122:S2CID 1068:S2CID 1033:S2CID 939:S2CID 860:S2CID 821:S2CID 780:S2CID 426:blood 394:krill 353:] 333:Waite 320:Dollo 257:Regan 169:) of 2085:NCBI 2072:ITIS 2038:4258 2033:GBIF 2025:5350 1994:BOLD 1897:PMID 1885:134A 1862:PMID 1827:ISSN 1786:PMID 1768:ISSN 1687:ISSN 1628:PMID 1610:ISSN 1556:PMID 1538:ISSN 1498:PMID 1490:ISSN 1449:ISSN 1405:PMID 1397:ISSN 1322:PMID 1260:PMID 1225:ISSN 1190:PMID 1114:PMID 1002:2021 931:PMID 811:ISBN 738:PMID 730:ISSN 664:PMID 650:3882 192:and 174:fish 153:The 2020:EoL 2012:7ZR 2007:CoL 1981:AFD 1889:doi 1854:doi 1817:doi 1776:PMC 1758:doi 1722:doi 1677:hdl 1667:doi 1655:116 1618:PMC 1600:doi 1546:PMC 1530:doi 1480:doi 1476:211 1441:doi 1429:332 1389:doi 1385:119 1349:doi 1312:PMC 1302:doi 1252:doi 1217:doi 1180:doi 1149:doi 1145:118 1106:doi 1094:173 1060:doi 1025:doi 921:hdl 911:doi 852:doi 803:doi 772:doi 720:doi 716:209 654:doi 157:or 2148:: 2126:: 2113:: 2100:: 2087:: 2074:: 2061:: 2048:: 2035:: 2022:: 2009:: 1996:: 1983:: 1968:: 1953:: 1895:. 1883:. 1860:. 1850:99 1848:. 1825:. 1815:. 1811:. 1807:. 1784:. 1774:. 1766:. 1754:10 1752:. 1748:. 1734:^ 1720:. 1710:82 1708:. 1685:. 1675:. 1665:. 1653:. 1649:. 1626:. 1616:. 1608:. 1596:10 1594:. 1590:. 1554:. 1544:. 1536:. 1524:. 1520:. 1496:. 1488:. 1474:. 1470:. 1447:. 1439:. 1427:. 1403:. 1395:. 1383:. 1369:^ 1355:. 1345:27 1343:. 1320:. 1310:. 1300:. 1290:94 1288:. 1284:. 1272:^ 1258:. 1248:34 1246:. 1223:. 1213:19 1211:. 1188:. 1176:23 1174:. 1170:. 1143:. 1120:. 1112:. 1104:. 1092:. 1080:^ 1066:. 1056:26 1054:. 1031:. 1021:27 1019:. 993:. 987:. 963:. 937:. 929:. 919:. 907:32 905:. 901:. 881:. 858:. 848:10 846:. 842:. 819:. 809:. 778:. 768:28 766:. 750:^ 736:. 728:. 714:. 710:. 676:^ 662:. 648:. 644:. 351:sv 1903:. 1891:: 1868:. 1856:: 1833:. 1819:: 1813:6 1792:. 1760:: 1728:. 1724:: 1716:: 1693:. 1679:: 1669:: 1661:: 1634:. 1602:: 1562:. 1532:: 1526:2 1504:. 1482:: 1455:. 1443:: 1435:: 1411:. 1391:: 1363:. 1351:: 1328:. 1304:: 1296:: 1266:. 1254:: 1231:. 1219:: 1196:. 1182:: 1155:. 1151:: 1128:. 1108:: 1100:: 1074:. 1062:: 1039:. 1027:: 1004:. 945:. 923:: 913:: 885:. 866:. 854:: 827:. 805:: 786:. 774:: 744:. 722:: 670:. 656:: 441:, 213:. 202:, 165:(

Index


Chionodraco hamatus
Scientific classification
Edit this classification
Eukaryota
Animalia
Chordata
Actinopterygii
Perciformes
Notothenioidei
Channichthyidae
T. N. Gill
see text
family
notothenioid
fish
Southern Ocean
Antarctica
hemoglobin
Atlantic
Indian
Champsocephalus esox
Antarctic Polar Frontal Zone.
Channichthys
Weddell Sea
Chaenocephalus
Richardson
Chaenodraco
Regan
Champsocephalus

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.