Knowledge

Chordal graph

Source 📝

559: 31: 34:
A cycle (black) with two chords (green). As for this part, the graph is chordal. However, removing one green edge would result in a non-chordal graph. Indeed, the other green edge with three black edges would form a cycle of length four with no
184:
and the second consisting of the non-neighbors. When this splitting process has been performed for all vertices, the sequence of sets has one vertex per set, in the reverse of a perfect elimination ordering.
168:. This algorithm maintains a partition of the vertices of the graph into a sequence of sets; initially this sequence consists of a single set with all vertices. The algorithm repeatedly chooses a vertex 71:
in the graph should have exactly three vertices. The chordal graphs may also be characterized as the graphs that have perfect elimination orderings, as the graphs in which each minimal separator is a
425: 585:
that has one vertex per subtree and an edge connecting any two subtrees that overlap in one or more nodes of the tree. Gavril showed that the subtree graphs are exactly the chordal graphs.
447:
is a set of vertices the removal of which leaves the remaining graph disconnected; a separator is minimal if it has no proper subset that is also a separator. According to a theorem of
850:-trees are their own chordal completions, and form a subclass of the chordal graphs. Chordal completions can also be used to characterize several other related classes of graphs. 1180: 546:. That is, they are the graphs that have a recursive decomposition by clique separators into smaller subgraphs. For this reason, chordal graphs have also sometimes been called 526: 496: 1417:
Kaplan, Haim; Shamir, Ron; Tarjan, Robert (1999), "Tractability of Parameterized Completion Problems on Chordal, Strongly Chordal, and Proper Interval Graphs",
188:
Since both this lexicographic breadth first search process and the process of testing whether an ordering is a perfect elimination ordering can be performed in
215:
use this connection to antimatroids as part of an algorithm for efficiently listing all perfect elimination orderings of a given chordal graph.
451:, chordal graphs are graphs in which each minimal separator is a clique; Dirac used this characterization to prove that chordal graphs are 1390:"Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition, and consecutive ones testing" 777:
is a triangle, because peripheral cycles are a special case of induced cycles. Strangulated graphs are graphs that can be formed by
1704: 672:
are another subclass of Ptolemaic graphs in which every two maximal cliques have at most one vertex in common. A special type is
458:
The family of chordal graphs may be defined inductively as the graphs whose vertices can be divided into three nonempty subsets
1394: 1220: 239:. To list all maximal cliques of a chordal graph, simply find a perfect elimination ordering, form a clique for each vertex 1619: 1139: 17: 842:
are the graphs to which no additional edges can be added without increasing their treewidth to a number larger than 
341: 1469:
Parra, Andreas; Scheffler, Petra (1997), "Characterizations and algorithmic applications of chordal graph embeddings",
265:
The largest maximal clique is a maximum clique, and, as chordal graphs are perfect, the size of this clique equals the
165: 1172: 1459: 164:) show that a perfect elimination ordering of a chordal graph may be found efficiently using an algorithm known as 1352: 963: 562:
A chordal graph with eight vertices, represented as the intersection graph of eight subtrees of a six-node tree.
1580: 235:, while non-chordal graphs may have exponentially many. This implies that the class of chordal graphs has 1324: 135: 1281:
Fomin, Fedor V.; Villanger, Yngve (2013), "Subexponential Parameterized Algorithm for Minimum Fill-In",
596:
equal to one less than the size of the largest clique in the graph; the tree decomposition of any graph
1439: 1350:
Gavril, Fănică (1974), "The intersection graphs of subtrees in trees are exactly the chordal graphs",
964:"Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations" 726:
are chordal graphs in which all maximal cliques and all maximal clique separators have the same size.
172:
from the earliest set in the sequence that contains previously unchosen vertices, and splits each set
1551: 657: 635: 604:
as a subgraph of a chordal graph. The tree decomposition of a graph is also the junction tree of the
270: 820: 1699: 1694: 1585: 1375: 1134: 605: 236: 251:
in the perfect elimination ordering, and test whether each of the resulting cliques is maximal.
1614: 679: 193: 762:. Chordal graphs are precisely the graphs that are both odd-hole-free and even-hole-free (see 1137:; Lipshteyn, Marina (2007), "Recognizing chordal probe graphs and cycle-bicolorable graphs", 661: 505: 475: 224: 147: 111: 72: 56: 1606: 1572: 1517: 1492: 1265: 1241: 1125: 1104: 1073: 782: 755: 281: 259: 52: 1081:
Bender, E. A.; Richmond, L. B.; Wormald, N. C. (1985), "Almost all chordal graphs split",
67:
that is not part of the cycle but connects two vertices of the cycle. Equivalently, every
8: 763: 571: 435:
divides the polynomial, as it should.) Clearly, this computation depends on chordality.
64: 1212: 1308: 1290: 1269: 1160: 794: 770: 727: 589: 582: 76: 1483: 1408: 1233: 203:
The set of all perfect elimination orderings of a chordal graph can be modeled as the
1667: 1538: 1455: 1366: 1273: 1213:"Enumerating and characterizing the perfect elimination orderings of a chordal graph" 735: 710: 1525:
Rose, Donald J. (December 1970), "Triangulated graphs and the elimination process",
781:
of chordal graphs and maximal planar graphs. Therefore, strangulated graphs include
227:
of a chordal graph in polynomial-time, while the same problem for general graphs is
1636: 1628: 1594: 1560: 1546: 1534: 1478: 1447: 1426: 1403: 1361: 1336: 1300: 1253: 1229: 1193: 1185: 1148: 1090: 1059: 774: 531: 444: 266: 176:
of the sequence into two smaller subsets, the first consisting of the neighbors of
1670: 1312: 200:
whereas the probe graph problem on chordal graphs has polynomial-time complexity.
126:
in a graph is an ordering of the vertices of the graph such that, for each vertex
1660: 1602: 1568: 1513: 1488: 1320: 1261: 1164: 1121: 1100: 1069: 653: 274: 1064: 832: 673: 621: 232: 151: 103: 1632: 1430: 1095: 628:, a special case of trees. Therefore, they are a subfamily of chordal graphs. 1688: 1389: 1189: 759: 751: 747: 452: 95: 68: 1451: 1341: 1181:
Proc. of 19th International Colloquium on Automata Languages and Programming
284:
of a chordal graph is easy to compute. Find a perfect elimination ordering
277:
algorithm to the vertices in the reverse of a perfect elimination ordering.
1598: 1446:, CMS Books in Mathematics, vol. 11, Springer-Verlag, pp. 65–84, 1388:
Habib, Michel; McConnell, Ross; Paul, Christophe; Viennot, Laurent (2000),
1208: 1168: 1113: 731: 588:
A representation of a chordal graph as an intersection of subtrees forms a
255: 44: 1047: 223:
Another application of perfect elimination orderings is finding a maximum
1656: 669: 631: 228: 208: 197: 189: 99: 40: 823:, and moreover, is solvable in parameterized subexponential time. The 102:, and several problems that are hard on other classes of graphs such as 1257: 778: 750:. Other superclasses of chordal graphs include weakly chordal graphs, 625: 1641: 1617:; Bornstein, C.F. (1994), "Clique graphs of chordal and path graphs", 1304: 1198: 1184:, Lecture Notes in Computer Science, vol. 623, pp. 273–283, 1152: 1675: 824: 593: 558: 107: 1564: 1438:
Maffray, Frédéric (2003), "On the coloration of perfect graphs", in
1246:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
1295: 894: 192:, it is possible to recognize chordal graphs in linear time. The 906: 835:
of a chordal completion chosen to minimize this clique size. The
676:, where the common vertex is the same for every pair of cliques. 665: 117: 106:
may be solved in polynomial time when the input is chordal. The
30: 1549:(1976), "Algorithmic aspects of vertex elimination on graphs", 918: 836: 819:
as a subgraph. The parameterized version of minimum fill-in is
720: 1583:; Weaver, R. W. (1984), "A generalization of chordal graphs", 1000: 231:. More generally, a chordal graph can have only linearly many 110:
of an arbitrary graph may be characterized by the size of the
664:
are a subclass of Ptolemaic graphs that are both chordal and
1112:
Berge, Claude (1967), "Some Classes of Perfect Graphs", in
738:
are a subclass of 2-trees, and therefore are also chordal.
1206: 1024: 1012: 577:
From a collection of subtrees of a tree, one can define a
566:
An alternative characterization of chordal graphs, due to
212: 1506:
Journal of Combinatorics, Information and System Sciences
1387: 988: 161: 87:: a chordal completion of a graph is typically called a 1159: 900: 79:
of subtrees of a tree. They are sometimes also called
1665: 1132: 912: 650:-vertex chordal graphs that are split approaches one. 1080: 639: 508: 478: 344: 218: 1613: 924: 788: 273:: an optimal coloring may be obtained by applying a 1048:"On chordal graphs and their chromatic polynomials" 420:{\displaystyle (x-N_{1})(x-N_{2})\cdots (x-N_{n}).} 1416: 1006: 930: 611: 553: 520: 490: 419: 1527:Journal of Mathematical Analysis and Applications 600:can be viewed in this way as a representation of 1686: 1544: 746:Chordal graphs are a subclass of the well known 709:degree-two vertices, adjacent to the edges of a 157: 1444:Recent Advances in Algorithms and Combinatorics 882: 1468: 1319: 1280: 1030: 1018: 1579: 994: 831:is one less than the number of vertices in a 118:Perfect elimination and efficient recognition 1657:Information System on Graph Class Inclusions 1380:Algorithmic Graph Theory and Perfect Graphs 952:, Remark 2.5, calls this method well known. 682:are graphs that are chordal and contain no 624:are the intersection graphs of subtrees of 1500:Patil, H. P. (1986), "On the structure of 978: 976: 961: 734:, or equivalently planar 3-trees. Maximal 1640: 1482: 1407: 1365: 1340: 1294: 1197: 1094: 1063: 1045: 949: 634:are graphs that are both chordal and the 538:is a clique, and there are no edges from 269:of the chordal graph. Chordal graphs are 1374: 1325:"Incidence matrices and interval graphs" 557: 29: 27:Graph where all long cycles have a chord 1437: 1173:"Two strikes against perfect phylogeny" 973: 936: 901:Bodlaender, Fellows & Warnow (1992) 154:it has a perfect elimination ordering. 114:in the chordal graphs that contain it. 14: 1687: 1349: 913:Berry, Golumbic & Lipshteyn (2007) 567: 1666: 1499: 1240: 1111: 982: 876: 865: 656:are graphs that are both chordal and 640:Bender, Richmond & Wormald (1985) 448: 438: 1620:SIAM Journal on Discrete Mathematics 1524: 1140:SIAM Journal on Discrete Mathematics 1120:, Academic Press, pp. 155–165, 1118:Graph Theory and Theoretical Physics 888: 870: 859: 1244:(1961), "On rigid circuit graphs", 815:) is a chordal graph that contains 338:. The chromatic polynomial equals 94:Chordal graphs are a subset of the 24: 1007:Kaplan, Shamir & Tarjan (1999) 925:Szwarcfiter & Bornstein (1994) 693:) as an induced subgraph. Here an 646:goes to infinity, the fraction of 219:Maximal cliques and graph coloring 166:lexicographic breadth-first search 25: 1716: 1650: 789:Chordal completions and treewidth 328:in that ordering. For instance, 314:equal the number of neighbors of 158:Rose, Lueker & Tarjan (1976) 1353:Journal of Combinatorial Theory 741: 612:Relation to other graph classes 554:Intersection graphs of subtrees 243:together with the neighbors of 1705:Intersection classes of graphs 955: 942: 705:together with a collection of 411: 392: 386: 367: 364: 345: 13: 1: 1484:10.1016/S0166-218X(97)00041-3 1409:10.1016/S0304-3975(97)00241-7 1234:10.1016/S0304-3975(03)00221-4 1207:Chandran, L. S.; Ibarra, L.; 1039: 642:showed that, in the limit as 616: 1539:10.1016/0022-247x(70)90282-9 1471:Discrete Applied Mathematics 1442:; Sales, Cláudia L. (eds.), 1395:Theoretical Computer Science 1367:10.1016/0095-8956(74)90094-X 1221:Theoretical Computer Science 1031:Parra & Scheffler (1997) 1019:Fomin & Villanger (2013) 124:perfect elimination ordering 98:. They may be recognized in 7: 995:Seymour & Weaver (1984) 427:(The last factor is simply 10: 1721: 1545:Rose, D.; Lueker, George; 1065:10.7146/math.scand.a-14421 792: 258:of chordal graphs are the 1633:10.1137/s0895480191223191 1552:SIAM Journal on Computing 1431:10.1137/S0097539796303044 1096:10.1017/S1446788700023077 821:fixed parameter tractable 803:is an arbitrary graph, a 773:, a graph in which every 769:Every chordal graph is a 1376:Golumbic, Martin Charles 1190:10.1007/3-540-55719-9_80 1135:Golumbic, Martin Charles 1052:Mathematica Scandinavica 1046:Agnarsson, Geir (2003), 853: 754:, odd-hole-free graphs, 1586:Journal of Graph Theory 1452:10.1007/0-387-22444-0_3 1342:10.2140/pjm.1965.15.835 1323:; Gross, O. A. (1965), 680:Strongly chordal graphs 606:junction tree algorithm 521:{\displaystyle S\cup B} 491:{\displaystyle A\cup S} 1599:10.1002/jgt.3190080206 1083:J. Austral. Math. Soc. 701:-vertex chordal graph 662:Quasi-threshold graphs 563: 522: 492: 421: 213:Chandran et al. (2003) 194:graph sandwich problem 36: 1211:; Sawada, J. (2003), 783:maximal planar graphs 756:even-hole-free graphs 561: 523: 493: 422: 260:dually chordal graphs 196:on chordal graphs is 150:. A graph is chordal 33: 730:are chordal maximal 574:and their subtrees. 506: 476: 342: 282:chromatic polynomial 247:that are later than 146:in the order form a 81:rigid circuit graphs 51:is one in which all 18:Chord (graph theory) 728:Apollonian networks 658:distance hereditary 638:of chordal graphs. 592:of the graph, with 548:decomposable graphs 271:perfectly orderable 85:triangulated graphs 77:intersection graphs 1668:Weisstein, Eric W. 1258:10.1007/BF02992776 805:chordal completion 795:Chordal completion 771:strangulated graph 766:in graph theory). 736:outerplanar graphs 590:tree decomposition 583:intersection graph 564: 530:both form chordal 518: 488: 439:Minimal separators 417: 37: 1615:Szwarcfiter, J.L. 1547:Tarjan, Robert E. 1305:10.1137/11085390X 1161:Bodlaender, H. L. 1153:10.1137/050637091 846:. Therefore, the 711:Hamiltonian cycle 532:induced subgraphs 162:Habib et al. 2000 142:that occur after 16:(Redirected from 1712: 1681: 1680: 1645: 1644: 1609: 1575: 1541: 1520: 1495: 1486: 1477:(1–3): 171–188, 1464: 1433: 1425:(5): 1906–1922, 1412: 1411: 1383: 1382:, Academic Press 1370: 1369: 1345: 1344: 1329:Pacific J. Math. 1321:Fulkerson, D. R. 1315: 1298: 1289:(6): 2197–2216, 1276: 1236: 1217: 1202: 1201: 1177: 1155: 1128: 1107: 1098: 1076: 1067: 1034: 1028: 1022: 1016: 1010: 1004: 998: 992: 986: 980: 971: 970: 968: 962:Peter Bartlett. 959: 953: 950:Agnarsson (2003) 946: 940: 934: 928: 922: 916: 910: 904: 898: 892: 886: 880: 874: 868: 863: 849: 845: 839: 830: 818: 810: 802: 775:peripheral cycle 723: 716: 708: 704: 700: 696: 692: 685: 654:Ptolemaic graphs 649: 645: 545: 541: 537: 529: 527: 525: 524: 519: 499: 497: 495: 494: 489: 469: 465: 461: 445:vertex separator 443:In any graph, a 434: 430: 426: 424: 423: 418: 410: 409: 385: 384: 363: 362: 337: 327: 321:that come after 320: 313: 306: 267:chromatic number 250: 246: 242: 183: 179: 175: 171: 145: 141: 133: 129: 55:of four or more 21: 1720: 1719: 1715: 1714: 1713: 1711: 1710: 1709: 1685: 1684: 1671:"Chordal Graph" 1653: 1565:10.1137/0205021 1462: 1419:SIAM J. Comput. 1283:SIAM J. Comput. 1215: 1175: 1042: 1037: 1029: 1025: 1017: 1013: 1005: 1001: 993: 989: 981: 974: 966: 960: 956: 947: 943: 935: 931: 923: 919: 911: 907: 899: 895: 887: 883: 875: 871: 864: 860: 856: 847: 843: 837: 828: 816: 813:minimum fill-in 808: 800: 797: 791: 744: 721: 714: 706: 702: 698: 694: 687: 683: 674:windmill graphs 647: 643: 622:Interval graphs 619: 614: 556: 543: 539: 535: 507: 504: 503: 501: 477: 474: 473: 471: 467: 463: 459: 441: 432: 428: 405: 401: 380: 376: 358: 354: 343: 340: 339: 334: 329: 326: 322: 319: 315: 312: 308: 304: 298: 291: 285: 275:greedy coloring 248: 244: 240: 233:maximal cliques 221: 181: 177: 173: 169: 143: 139: 131: 127: 120: 91:of that graph. 28: 23: 22: 15: 12: 11: 5: 1718: 1708: 1707: 1702: 1700:Perfect graphs 1697: 1695:Graph families 1683: 1682: 1663: 1652: 1651:External links 1649: 1648: 1647: 1627:(2): 331–336, 1611: 1593:(2): 241–251, 1581:Seymour, P. D. 1577: 1559:(2): 266–283, 1542: 1533:(3): 597–609, 1522: 1512:(2–4): 57–64, 1497: 1466: 1460: 1440:Reed, Bruce A. 1435: 1414: 1402:(1–2): 59–84, 1385: 1372: 1347: 1335:(3): 835–855, 1317: 1278: 1252:(1–2): 71–76, 1238: 1228:(2): 303–317, 1204: 1165:Fellows, M. R. 1157: 1147:(3): 573–591, 1130: 1109: 1089:(2): 214–221, 1078: 1058:(2): 240–246, 1041: 1038: 1036: 1035: 1023: 1011: 999: 987: 972: 954: 948:For instance, 941: 937:Maffray (2003) 929: 917: 905: 893: 881: 869: 857: 855: 852: 833:maximum clique 793:Main article: 790: 787: 760:Meyniel graphs 752:cop-win graphs 748:perfect graphs 743: 740: 618: 615: 613: 610: 581:, which is an 555: 552: 517: 514: 511: 487: 484: 481: 440: 437: 416: 413: 408: 404: 400: 397: 394: 391: 388: 383: 379: 375: 372: 369: 366: 361: 357: 353: 350: 347: 332: 324: 317: 310: 302: 296: 289: 220: 217: 152:if and only if 119: 116: 104:graph coloring 96:perfect graphs 63:, which is an 26: 9: 6: 4: 3: 2: 1717: 1706: 1703: 1701: 1698: 1696: 1693: 1692: 1690: 1678: 1677: 1672: 1669: 1664: 1662: 1661:chordal graph 1658: 1655: 1654: 1643: 1638: 1634: 1630: 1626: 1622: 1621: 1616: 1612: 1608: 1604: 1600: 1596: 1592: 1588: 1587: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1553: 1548: 1543: 1540: 1536: 1532: 1528: 1523: 1519: 1515: 1511: 1507: 1503: 1498: 1494: 1490: 1485: 1480: 1476: 1472: 1467: 1463: 1461:0-387-95434-1 1457: 1453: 1449: 1445: 1441: 1436: 1432: 1428: 1424: 1420: 1415: 1410: 1405: 1401: 1397: 1396: 1391: 1386: 1381: 1377: 1373: 1368: 1363: 1359: 1355: 1354: 1348: 1343: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1297: 1292: 1288: 1284: 1279: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1222: 1214: 1210: 1205: 1200: 1195: 1191: 1187: 1183: 1182: 1174: 1170: 1169:Warnow, T. J. 1166: 1162: 1158: 1154: 1150: 1146: 1142: 1141: 1136: 1133:Berry, Anne; 1131: 1127: 1123: 1119: 1115: 1114:Harary, Frank 1110: 1106: 1102: 1097: 1092: 1088: 1084: 1079: 1075: 1071: 1066: 1061: 1057: 1053: 1049: 1044: 1043: 1032: 1027: 1020: 1015: 1008: 1003: 996: 991: 984: 979: 977: 965: 958: 951: 945: 938: 933: 926: 921: 914: 909: 902: 897: 890: 885: 878: 873: 867: 862: 858: 851: 841: 834: 826: 822: 814: 806: 796: 786: 784: 780: 776: 772: 767: 765: 761: 757: 753: 749: 739: 737: 733: 732:planar graphs 729: 725: 718: 712: 690: 681: 677: 675: 671: 667: 663: 659: 655: 651: 641: 637: 633: 629: 627: 623: 609: 607: 603: 599: 595: 591: 586: 584: 580: 579:subtree graph 575: 573: 569: 568:Gavril (1974) 560: 551: 549: 533: 515: 512: 509: 485: 482: 479: 456: 454: 450: 446: 436: 414: 406: 402: 398: 395: 389: 381: 377: 373: 370: 359: 355: 351: 348: 335: 305: 295: 288: 283: 278: 276: 272: 268: 263: 261: 257: 256:clique graphs 252: 238: 234: 230: 226: 216: 214: 210: 206: 201: 199: 195: 191: 186: 167: 163: 159: 155: 153: 149: 137: 125: 115: 113: 109: 105: 101: 97: 92: 90: 89:triangulation 86: 82: 78: 75:, and as the 74: 70: 69:induced cycle 66: 62: 58: 54: 50: 49:chordal graph 46: 42: 32: 19: 1674: 1624: 1618: 1590: 1584: 1556: 1550: 1530: 1526: 1509: 1505: 1501: 1474: 1470: 1443: 1422: 1418: 1399: 1393: 1379: 1357: 1356:, Series B, 1351: 1332: 1328: 1286: 1282: 1249: 1245: 1242:Dirac, G. A. 1225: 1219: 1179: 1144: 1138: 1117: 1086: 1082: 1055: 1051: 1026: 1014: 1002: 990: 983:Patil (1986) 957: 944: 932: 920: 908: 896: 884: 877:Berge (1967) 872: 866:Dirac (1961) 861: 812: 804: 798: 768: 745: 742:Superclasses 719: 688: 678: 670:Block graphs 652: 632:Split graphs 630: 620: 601: 597: 587: 578: 576: 565: 547: 470:, such that 457: 449:Dirac (1961) 442: 330: 300: 293: 286: 279: 264: 253: 222: 204: 202: 187: 156: 123: 121: 93: 88: 84: 80: 60: 48: 45:graph theory 41:mathematical 38: 889:Rose (1970) 779:clique-sums 697:-sun is an 636:complements 626:path graphs 570:, involves 237:few cliques 229:NP-complete 209:antimatroid 205:basic words 198:NP-complete 190:linear time 100:linear time 1689:Categories 1642:11422/1497 1209:Ruskey, F. 1199:1874/16653 1040:References 686:-sun (for 617:Subclasses 160:(see also 1676:MathWorld 1504:-trees", 1360:: 47–56, 1296:1104.2230 1274:120608513 825:treewidth 594:treewidth 513:∪ 483:∪ 399:− 390:⋯ 374:− 352:− 136:neighbors 108:treewidth 1378:(1980), 1171:(1992), 713:in  666:cographs 134:and the 57:vertices 43:area of 1607:0742878 1573:0408312 1518:0966069 1493:1478250 1266:0130190 1126:0232694 1116:(ed.), 1105:0770128 1074:2009583 528:⁠ 502:⁠ 498:⁠ 472:⁠ 453:perfect 307:. Let 112:cliques 59:have a 39:In the 35:chords. 1605:  1571:  1516:  1491:  1458:  1313:934546 1311:  1272:  1264:  1124:  1103:  1072:  840:-trees 758:, and 724:-trees 466:, and 225:clique 207:of an 148:clique 73:clique 53:cycles 1309:S2CID 1291:arXiv 1270:S2CID 1216:(PDF) 1176:(PDF) 1085:, A, 967:(PDF) 854:Notes 764:holes 572:trees 431:, so 299:, …, 61:chord 1456:ISBN 811:(or 500:and 280:The 254:The 83:or 65:edge 47:, a 1637:hdl 1629:doi 1595:doi 1561:doi 1535:doi 1479:doi 1448:doi 1427:doi 1404:doi 1400:234 1362:doi 1337:doi 1301:doi 1254:doi 1230:doi 1226:307 1194:hdl 1186:doi 1149:doi 1091:doi 1060:doi 827:of 807:of 799:If 691:≥ 3 542:to 336:= 0 180:in 138:of 1691:: 1673:. 1659:: 1635:, 1623:, 1603:MR 1601:, 1589:, 1569:MR 1567:, 1555:, 1531:32 1529:, 1514:MR 1510:11 1508:, 1489:MR 1487:, 1475:79 1473:, 1454:, 1423:28 1421:, 1398:, 1392:, 1358:16 1333:15 1331:, 1327:, 1307:, 1299:, 1287:42 1285:, 1268:, 1262:MR 1260:, 1250:25 1248:, 1224:, 1218:, 1192:, 1178:, 1167:; 1163:; 1145:21 1143:, 1122:MR 1101:MR 1099:, 1087:38 1070:MR 1068:, 1056:93 1054:, 1050:, 975:^ 785:. 717:. 668:. 660:. 608:. 550:. 534:, 462:, 455:. 292:, 262:. 211:; 130:, 122:A 1679:. 1646:. 1639:: 1631:: 1625:7 1610:. 1597:: 1591:8 1576:. 1563:: 1557:5 1537:: 1521:. 1502:k 1496:. 1481:: 1465:. 1450:: 1434:. 1429:: 1413:. 1406:: 1384:. 1371:. 1364:: 1346:. 1339:: 1316:. 1303:: 1293:: 1277:. 1256:: 1237:. 1232:: 1203:. 1196:: 1188:: 1156:. 1151:: 1129:. 1108:. 1093:: 1077:. 1062:: 1033:. 1021:. 1009:. 997:. 985:. 969:. 939:. 927:. 915:. 903:. 891:. 879:. 848:k 844:k 838:k 829:G 817:G 809:G 801:G 722:K 715:G 707:n 703:G 699:n 695:n 689:n 684:n 648:n 644:n 602:G 598:G 544:B 540:A 536:S 516:B 510:S 486:S 480:A 468:B 464:S 460:A 433:x 429:x 415:. 412:) 407:n 403:N 396:x 393:( 387:) 382:2 378:N 371:x 368:( 365:) 360:1 356:N 349:x 346:( 333:n 331:N 325:i 323:v 318:i 316:v 311:i 309:N 303:n 301:v 297:2 294:v 290:1 287:v 249:v 245:v 241:v 182:S 178:v 174:S 170:v 144:v 140:v 132:v 128:v 20:)

Index

Chord (graph theory)

mathematical
graph theory
cycles
vertices
edge
induced cycle
clique
intersection graphs
perfect graphs
linear time
graph coloring
treewidth
cliques
neighbors
clique
if and only if
Rose, Lueker & Tarjan (1976)
Habib et al. 2000
lexicographic breadth-first search
linear time
graph sandwich problem
NP-complete
antimatroid
Chandran et al. (2003)
clique
NP-complete
maximal cliques
few cliques

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.