Knowledge

Classification of electromagnetic fields

Source 📝

829: 1200: 1367: 551: 1012: 940:
denote respectively the components of the electric and magnetic fields, as measured by an inertial observer (at rest in our coordinates). As usual in relativistic physics, we will find it convenient to work with
824:{\displaystyle F_{ab}=\left({\begin{matrix}0&B_{z}&-B_{y}&E_{x}/c\\-B_{z}&0&B_{x}&E_{y}/c\\B_{y}&-B_{x}&0&E_{z}/c\\-E_{x}/c&-E_{y}/c&-E_{z}/c&0\end{matrix}}\right)} 1206: 365: 1412:. In this case, the invariants reveal that the electric and magnetic fields are perpendicular and that they are of the same magnitude (in geometrised units). An example of a null field is a 1573: 1472: 938: 885: 1504: 427:
The classification theorem characterizes the possible principal null directions of a bivector. It states that one of the following must hold for any nonzero bivector:
1542: 1410: 996: 969: 446:
Furthermore, for any non-null bivector, the two eigenvalues associated with the two distinct principal null directions have the same magnitude but opposite sign,
1195:{\displaystyle P\equiv {\frac {1}{2}}F_{ab}\,F^{ab}=\|{\vec {B}}\|^{2}-{\frac {\|{\vec {E}}\|^{2}}{c^{2}}}=-{\frac {1}{2}}{}^{*}F_{ab}\,{}^{*}F^{ab}} 1362:{\displaystyle Q\equiv {\frac {1}{4}}F_{ab}\,{}^{*}F^{ab}={\frac {1}{8}}\epsilon ^{abcd}F_{ab}F_{cd}={\frac {{\vec {E}}\cdot {\vec {B}}}{c}}} 105:
and the underlying manifold; fortunately, nothing is lost by this specialization, for reasons we discuss as the end of the article.
260:
are linearly independent; the two cases are mutually exclusive. Stated like this, the dichotomy makes no reference to the metric
37: 1677: 1561: 304: 1638: 1672: 1662: 386: 139: 431:
the bivector has one "repeated" principal null direction; in this case, the bivector itself is said to be
1507: 1430: 890: 837: 1608: 1667: 264:, only to exterior algebra. But it is easily seen that the associated skew-symmetric linear operator 942: 86: 222:. Any nonzero bivector over a 4-dimensional vector space either is simple, or can be written as 1578: 1477: 535: 109: 41: 438:
the bivector has two distinct principal null directions; in this case, the bivector is called
1588: 1557: 1521: 1510:
for which either the electric or magnetic field vanishes. (These correspond respectively to
531: 511: 17: 85:
is isometric as a real inner product space to E. That is, it has the same notion of vector
1383: 981: 527: 45: 131:
by defining and examining the so-called "principal null directions". Let us explain this.
8: 1553: 1544:, there exists an inertial frame in which electric and magnetic fields are proportional. 948: 94: 21: 1373:(Fundamental means that every other invariant can be expressed in terms of these two.) 526:
The algebraic classification of bivectors given above has an important application in
196:
We mention a dichotomy drawn from exterior algebra. A bivector that can be written as
1634: 101:
Minkowski spacetime. This tends to blur the distinction between the tangent space at
976: 972: 538:) so we immediately obtain an algebraic classification of electromagnetic fields. 1417: 542: 142: 167:
defined by lowering one index with the metric. It acts on the tangent space at
1656: 1583: 1607:
The rank given here corresponds to that as a linear operator or tensor; the
292: 285: 61: 1413: 420:
A 1-dimensional subspace generated by a null eigenvector is called a
193:
to denote either the bivector or the operator, according to context.
29: 33: 1564:, everything works out exactly the same way on curved manifolds. 534:
is represented by a skew-symmetric second rank tensor field (the
60:(i.e. an event) of a Lorentzian spacetime is represented by a 1628: 1006:
The fundamental invariants of the electromagnetic field are:
273:
has rank 2 in the former case and rank 4 in the latter case.
90: 97:. To simplify the notation, we will assume the spacetime 576: 112:
for electromagnetic fields characterizes the bivector
1560:, if we simply replace "inertial frame" above with a 1524: 1480: 1433: 1386: 1209: 1015: 984: 951: 893: 840: 554: 456:, so we have three subclasses of non-null bivectors: 307: 276:
To state the classification theorem, we consider the
1536: 1498: 1466: 1404: 1361: 1194: 990: 963: 932: 879: 823: 545:, the electromagnetic field tensor has components 359: 360:{\displaystyle F^{a}{}_{b}r^{b}=\lambda \,r^{a}.} 1654: 1547: 51: 1109: 1093: 1078: 1062: 521: 40:. It is used in the study of solutions of 1460: 1239: 1169: 1045: 343: 1629:Landau, Lev D.; Lifshitz, E. M. (1973). 26:classification of electromagnetic fields 975:" formalism of special relativity, the 1655: 298:which satisfy the eigenvalue equation 116:in relation to the Lorentzian metric 56:The electromagnetic field at a point 998:is used to raise and lower indices. 218:are linearly independent, is called 1467:{\displaystyle P^{2}+Q^{2}\neq \,0} 44:and has applications in Einstein's 13: 284:, that is, the problem of finding 74:defined over the tangent space at 14: 1689: 933:{\displaystyle B_{x},B_{y},B_{z}} 880:{\displaystyle E_{x},E_{y},E_{z}} 1574:Electromagnetic peeling theorem 1631:The Classical Theory of Fields 1601: 1552:So far we have discussed only 1347: 1332: 1102: 1071: 1: 1622: 1556:. According to the (strong) 1001: 510:where the rank refers to the 536:electromagnetic field tensor 7: 1567: 1548:Curved Lorentzian manifolds 10: 1694: 1414:plane electromagnetic wave 1378:null electromagnetic field 52:The classification theorem 1678:Scientific classification 1499:{\displaystyle P\neq 0=Q} 189:. We will use the symbol 1615:is half that given here. 1594: 1508:inertial reference frame 541:In a cartesian chart on 422:principal null direction 1537:{\displaystyle Q\neq 0} 522:Physical interpretation 514:of the linear operator 1633:. New York: Pergamon. 1609:rank as defined for a 1579:Electrovacuum solution 1538: 1500: 1468: 1406: 1363: 1196: 992: 965: 934: 881: 825: 361: 110:classification theorem 1589:Petrov classification 1558:equivalence principle 1539: 1501: 1469: 1407: 1405:{\displaystyle P=Q=0} 1380:is characterised by 1364: 1197: 993: 991:{\displaystyle \eta } 966: 935: 882: 826: 532:electromagnetic field 370:The skew-symmetry of 362: 81:The tangent space at 18:differential geometry 1673:Lorentzian manifolds 1663:Mathematical physics 1522: 1478: 1431: 1427:is characterised by 1384: 1207: 1013: 982: 949: 891: 838: 552: 528:relativistic physics 305: 46:theory of relativity 1554:Minkowski spacetime 964:{\displaystyle c=1} 543:Minkowski spacetime 95:Minkowski spacetime 42:Maxwell's equations 38:Lorentzian manifold 36:at each point of a 22:theoretical physics 1534: 1506:, there exists an 1496: 1464: 1402: 1359: 1192: 988: 961: 930: 877: 821: 815: 357: 278:eigenvalue problem 32:classification of 1357: 1350: 1335: 1273: 1224: 1145: 1129: 1105: 1074: 1030: 943:geometrised units 424:of the bivector. 1685: 1668:Electromagnetism 1644: 1616: 1605: 1543: 1541: 1540: 1535: 1505: 1503: 1502: 1497: 1473: 1471: 1470: 1465: 1456: 1455: 1443: 1442: 1411: 1409: 1408: 1403: 1368: 1366: 1365: 1360: 1358: 1353: 1352: 1351: 1343: 1337: 1336: 1328: 1324: 1319: 1318: 1306: 1305: 1293: 1292: 1274: 1266: 1261: 1260: 1248: 1247: 1242: 1238: 1237: 1225: 1217: 1201: 1199: 1198: 1193: 1191: 1190: 1178: 1177: 1172: 1168: 1167: 1155: 1154: 1149: 1146: 1138: 1130: 1128: 1127: 1118: 1117: 1116: 1107: 1106: 1098: 1091: 1086: 1085: 1076: 1075: 1067: 1058: 1057: 1044: 1043: 1031: 1023: 997: 995: 994: 989: 977:Minkowski metric 973:Index gymnastics 970: 968: 967: 962: 939: 937: 936: 931: 929: 928: 916: 915: 903: 902: 886: 884: 883: 878: 876: 875: 863: 862: 850: 849: 830: 828: 827: 822: 820: 816: 804: 799: 798: 781: 776: 775: 758: 753: 752: 733: 728: 727: 711: 710: 696: 695: 679: 674: 673: 662: 661: 645: 644: 625: 620: 619: 608: 607: 593: 592: 567: 566: 503: 486: 455: 403: 381:the eigenvector 366: 364: 363: 358: 353: 352: 336: 335: 326: 325: 320: 317: 316: 243: 209: 188: 166: 130: 73: 1693: 1692: 1688: 1687: 1686: 1684: 1683: 1682: 1653: 1652: 1641: 1625: 1620: 1619: 1606: 1602: 1597: 1570: 1550: 1523: 1520: 1519: 1479: 1476: 1475: 1451: 1447: 1438: 1434: 1432: 1429: 1428: 1418:Minkowski space 1385: 1382: 1381: 1342: 1341: 1327: 1326: 1325: 1323: 1311: 1307: 1298: 1294: 1279: 1275: 1265: 1253: 1249: 1243: 1241: 1240: 1230: 1226: 1216: 1208: 1205: 1204: 1183: 1179: 1173: 1171: 1170: 1160: 1156: 1150: 1148: 1147: 1137: 1123: 1119: 1112: 1108: 1097: 1096: 1092: 1090: 1081: 1077: 1066: 1065: 1050: 1046: 1036: 1032: 1022: 1014: 1011: 1010: 1004: 983: 980: 979: 950: 947: 946: 924: 920: 911: 907: 898: 894: 892: 889: 888: 871: 867: 858: 854: 845: 841: 839: 836: 835: 814: 813: 808: 800: 794: 790: 785: 777: 771: 767: 762: 754: 748: 744: 738: 737: 729: 723: 719: 717: 712: 706: 702: 697: 691: 687: 684: 683: 675: 669: 665: 663: 657: 653: 651: 646: 640: 636: 630: 629: 621: 615: 611: 609: 603: 599: 594: 588: 584: 582: 575: 571: 559: 555: 553: 550: 549: 524: 497: 480: 447: 408:the eigenvalue 390: 348: 344: 331: 327: 321: 319: 318: 312: 308: 306: 303: 302: 272: 223: 197: 184: 172: 165: 153: 145: 143:linear operator 129: 117: 65: 54: 12: 11: 5: 1691: 1681: 1680: 1675: 1670: 1665: 1651: 1650: 1639: 1624: 1621: 1618: 1617: 1599: 1598: 1596: 1593: 1592: 1591: 1586: 1581: 1576: 1569: 1566: 1549: 1546: 1533: 1530: 1527: 1495: 1492: 1489: 1486: 1483: 1463: 1459: 1454: 1450: 1446: 1441: 1437: 1425:non-null field 1401: 1398: 1395: 1392: 1389: 1371: 1370: 1356: 1349: 1346: 1340: 1334: 1331: 1322: 1317: 1314: 1310: 1304: 1301: 1297: 1291: 1288: 1285: 1282: 1278: 1272: 1269: 1264: 1259: 1256: 1252: 1246: 1236: 1233: 1229: 1223: 1220: 1215: 1212: 1202: 1189: 1186: 1182: 1176: 1166: 1163: 1159: 1153: 1144: 1141: 1136: 1133: 1126: 1122: 1115: 1111: 1104: 1101: 1095: 1089: 1084: 1080: 1073: 1070: 1064: 1061: 1056: 1053: 1049: 1042: 1039: 1035: 1029: 1026: 1021: 1018: 1003: 1000: 987: 960: 957: 954: 927: 923: 919: 914: 910: 906: 901: 897: 874: 870: 866: 861: 857: 853: 848: 844: 832: 831: 819: 812: 809: 807: 803: 797: 793: 789: 786: 784: 780: 774: 770: 766: 763: 761: 757: 751: 747: 743: 740: 739: 736: 732: 726: 722: 718: 716: 713: 709: 705: 701: 698: 694: 690: 686: 685: 682: 678: 672: 668: 664: 660: 656: 652: 650: 647: 643: 639: 635: 632: 631: 628: 624: 618: 614: 610: 606: 602: 598: 595: 591: 587: 583: 581: 578: 577: 574: 570: 565: 562: 558: 523: 520: 508: 507: 506: 505: 487: 470: 444: 443: 436: 418: 417: 374:implies that: 368: 367: 356: 351: 347: 342: 339: 334: 330: 324: 315: 311: 268: 180: 161: 149: 140:skew-symmetric 125: 53: 50: 9: 6: 4: 3: 2: 1690: 1679: 1676: 1674: 1671: 1669: 1666: 1664: 1661: 1660: 1658: 1648: 1642: 1640:0-08-025072-6 1636: 1632: 1627: 1626: 1614: 1612: 1604: 1600: 1590: 1587: 1585: 1584:Lorentz group 1582: 1580: 1577: 1575: 1572: 1571: 1565: 1563: 1559: 1555: 1545: 1531: 1528: 1525: 1518:fields.) If 1517: 1516:electrostatic 1513: 1512:magnetostatic 1509: 1493: 1490: 1487: 1484: 1481: 1461: 1457: 1452: 1448: 1444: 1439: 1435: 1426: 1421: 1419: 1415: 1399: 1396: 1393: 1390: 1387: 1379: 1374: 1354: 1344: 1338: 1329: 1320: 1315: 1312: 1308: 1302: 1299: 1295: 1289: 1286: 1283: 1280: 1276: 1270: 1267: 1262: 1257: 1254: 1250: 1244: 1234: 1231: 1227: 1221: 1218: 1213: 1210: 1203: 1187: 1184: 1180: 1174: 1164: 1161: 1157: 1151: 1142: 1139: 1134: 1131: 1124: 1120: 1113: 1099: 1087: 1082: 1068: 1059: 1054: 1051: 1047: 1040: 1037: 1033: 1027: 1024: 1019: 1016: 1009: 1008: 1007: 999: 985: 978: 974: 958: 955: 952: 944: 925: 921: 917: 912: 908: 904: 899: 895: 872: 868: 864: 859: 855: 851: 846: 842: 817: 810: 805: 801: 795: 791: 787: 782: 778: 772: 768: 764: 759: 755: 749: 745: 741: 734: 730: 724: 720: 714: 707: 703: 699: 692: 688: 680: 676: 670: 666: 658: 654: 648: 641: 637: 633: 626: 622: 616: 612: 604: 600: 596: 589: 585: 579: 572: 568: 563: 560: 556: 548: 547: 546: 544: 539: 537: 533: 529: 519: 517: 513: 501: 495: 491: 488: 484: 478: 474: 471: 468: 464: 461: 460: 459: 458: 457: 454: 450: 441: 437: 434: 430: 429: 428: 425: 423: 415: 411: 407: 401: 397: 393: 388: 384: 380: 377: 376: 375: 373: 354: 349: 345: 340: 337: 332: 328: 322: 313: 309: 301: 300: 299: 297: 294: 290: 287: 283: 279: 274: 271: 267: 263: 259: 255: 251: 247: 242: 238: 234: 230: 226: 221: 217: 213: 208: 204: 200: 194: 192: 187: 183: 179: 175: 170: 164: 160: 157: 152: 148: 144: 141: 137: 134:The bivector 132: 128: 124: 120: 115: 111: 106: 104: 100: 96: 92: 88: 84: 79: 77: 72: 68: 63: 59: 49: 47: 43: 39: 35: 31: 27: 23: 19: 1646: 1630: 1610: 1603: 1551: 1515: 1511: 1424: 1422: 1377: 1375: 1372: 1005: 833: 540: 525: 515: 509: 499: 493: 489: 482: 476: 472: 466: 462: 452: 448: 445: 439: 432: 426: 421: 419: 413: 409: 405: 399: 395: 391: 382: 378: 371: 369: 295: 293:eigenvectors 288: 281: 277: 275: 269: 265: 261: 257: 253: 249: 245: 240: 236: 232: 228: 224: 219: 215: 211: 206: 202: 198: 195: 190: 185: 181: 177: 173: 168: 162: 158: 155: 150: 146: 135: 133: 126: 122: 118: 113: 107: 102: 98: 82: 80: 75: 70: 66: 57: 55: 25: 15: 1562:frame field 387:null vector 286:eigenvalues 1657:Categories 1647:section 25 1623:References 1002:Invariants 971:. In the " 490:non-simple 1529:≠ 1485:≠ 1458:≠ 1348:→ 1339:⋅ 1333:→ 1277:ϵ 1245:∗ 1214:≡ 1175:∗ 1152:∗ 1135:− 1110:‖ 1103:→ 1094:‖ 1088:− 1079:‖ 1072:→ 1063:‖ 1020:≡ 986:η 945:in which 788:− 765:− 742:− 700:− 634:− 597:− 463:spacelike 412:is zero, 341:λ 138:yields a 87:magnitude 64:bivector 34:bivectors 30:pointwise 1568:See also 496:≠ 0 and 479:≠ 0 and 475: : 473:timelike 440:non-null 244:, where 210:, where 1613:-vector 414:or both 1637:  834:where 530:: the 494:ν 477:ν 467:ν 453:ν 449:λ 389:(i.e. 379:either 289:λ 256:, and 220:simple 24:, the 1595:Notes 1474:. If 498:rank 481:rank 402:) = 0 385:is a 91:angle 28:is a 1645:See 1635:ISBN 1514:and 887:and 512:rank 433:null 291:and 280:for 108:The 89:and 62:real 20:and 1416:in 502:= 4 485:= 2 469:= 0 451:= ± 404:), 171:by 93:as 16:In 1659:: 1423:A 1420:. 1376:A 518:. 492:: 465:: 406:or 252:, 248:, 239:∧ 235:+ 231:∧ 227:= 214:, 205:∧ 201:= 176:→ 163:cb 154:= 127:ab 121:= 99:is 78:. 69:= 48:. 1649:. 1643:. 1611:k 1532:0 1526:Q 1494:Q 1491:= 1488:0 1482:P 1462:0 1453:2 1449:Q 1445:+ 1440:2 1436:P 1400:0 1397:= 1394:Q 1391:= 1388:P 1369:. 1355:c 1345:B 1330:E 1321:= 1316:d 1313:c 1309:F 1303:b 1300:a 1296:F 1290:d 1287:c 1284:b 1281:a 1271:8 1268:1 1263:= 1258:b 1255:a 1251:F 1235:b 1232:a 1228:F 1222:4 1219:1 1211:Q 1188:b 1185:a 1181:F 1165:b 1162:a 1158:F 1143:2 1140:1 1132:= 1125:2 1121:c 1114:2 1100:E 1083:2 1069:B 1060:= 1055:b 1052:a 1048:F 1041:b 1038:a 1034:F 1028:2 1025:1 1017:P 959:1 956:= 953:c 926:z 922:B 918:, 913:y 909:B 905:, 900:x 896:B 873:z 869:E 865:, 860:y 856:E 852:, 847:x 843:E 818:) 811:0 806:c 802:/ 796:z 792:E 783:c 779:/ 773:y 769:E 760:c 756:/ 750:x 746:E 735:c 731:/ 725:z 721:E 715:0 708:x 704:B 693:y 689:B 681:c 677:/ 671:y 667:E 659:x 655:B 649:0 642:z 638:B 627:c 623:/ 617:x 613:E 605:y 601:B 590:z 586:B 580:0 573:( 569:= 564:b 561:a 557:F 516:F 504:, 500:F 483:F 442:. 435:, 416:. 410:λ 400:r 398:, 396:r 394:( 392:η 383:r 372:F 355:. 350:a 346:r 338:= 333:b 329:r 323:b 314:a 310:F 296:r 282:F 270:b 266:F 262:η 258:y 254:x 250:w 246:v 241:y 237:x 233:w 229:v 225:F 216:w 212:v 207:w 203:v 199:F 191:F 186:r 182:b 178:F 174:r 169:p 159:η 156:F 151:b 147:F 136:F 123:η 119:η 114:F 103:p 83:p 76:p 71:F 67:F 58:p

Index

differential geometry
theoretical physics
pointwise
bivectors
Lorentzian manifold
Maxwell's equations
theory of relativity
real
magnitude
angle
Minkowski spacetime
classification theorem
skew-symmetric
linear operator
eigenvalues
eigenvectors
null vector
rank
relativistic physics
electromagnetic field
electromagnetic field tensor
Minkowski spacetime
geometrised units
Index gymnastics
Minkowski metric
plane electromagnetic wave
Minkowski space
inertial reference frame
Minkowski spacetime
equivalence principle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.