Knowledge

Cleavage (embryo)

Source 📝

377:. At the 4-cell stage, the A and C macromeres meet at the animal pole, creating the animal cross-furrow, while the B and D macromeres meet at the vegetal pole, creating the vegetal cross-furrow. With each successive cleavage cycle, the macromeres give rise to quartets of smaller micromeres at the animal pole. The divisions that produce these quartets occur at an oblique angle, an angle that is not a multiple of 90 degrees, to the animal-vegetal axis. Each quartet of micromeres is rotated relative to their parent macromere, and the chirality of this rotation differs between odd- and even-numbered quartets, meaning that there is alternating symmetry between the odd and even quartets. In other words, the orientation of divisions that produces each quartet alternates between being clockwise and counterclockwise with respect to the animal pole. The alternating cleavage pattern that occurs as the quartets are generated produces quartets of micromeres that reside in the cleavage furrows of the four macromeres. When viewed from the animal pole, this arrangement of cells displays a spiral pattern. 404:, the first two cell divisions produce four macromeres that are indistinguishable from one another. Each macromere has the potential of becoming the D macromere. After the formation of the third quartet, one of the macromeres initiates maximum contact with the overlying micromeres in the animal pole of the embryo. This contact is required to distinguish one macromere as the official D quadrant blastomere. In equally cleaving spiral embryos, the D quadrant is not specified until after the formation of the third quartet, when contact with the micromeres dictates one cell to become the future D blastomere. Once specified, the D blastomere signals to surrounding micromeres to lay out their cell fates. 426: 382: 421:, in which both macromeres inherit part of the animal region of the egg, but only the bigger macromere inherits the vegetal region. The second mechanism of unequal cleavage involves the production of an enucleate, membrane bound, cytoplasmic protrusion, called a polar lobe. This polar lobe forms at the vegetal pole during cleavage, and then gets shunted to the D blastomere. The polar lobe contains vegetal cytoplasm, which becomes inherited by the future D macromere. 413:, the first two cell divisions are unequal producing four cells in which one cell is bigger than the other three. This larger cell is specified as the D macromere. Unlike equally cleaving spiralians, the D macromere is specified at the four-cell stage during unequal cleavage. Unequal cleavage can occur in two ways. One method involves asymmetric positioning of the cleavage spindle. This occurs when the 395:, the secondary axis, dorsal-ventral, is determined by the specification of the D quadrant. The D macromere facilitates cell divisions that differ from those produced by the other three macromeres. Cells of the D quadrant give rise to dorsal and posterior structures of the spiralian. Two known mechanisms exist to specify the D quadrant. These mechanisms include equal cleavage and unequal cleavage. 662: 373:. Spiral cleavage can vary between species, but generally the first two cell divisions result in four macromeres, also called blastomeres, (A, B, C, D) each representing one quadrant of the embryo. These first two cleavages are not oriented in planes that occur at right angles parallel to the animal-vegetal axis of the 385:
D quadrant specification through equal and unequal cleavage mechanisms. At the 4-cell stage of equal cleavage, the D macromere has not been specified yet. It will be specified after the formation of the third quartet of micromeres. Unequal cleavage occurs in two ways: asymmetric positioning of the
677:
Compared to other fast developing animals, mammals have a slower rate of division that is between 12 and 24 hours. Initially synchronous, these cellular divisions progressively become more and more asynchronous. Zygotic transcription starts at the two-, four-, or eight-cell stage depending on the
271:
The first cleavage results in bisection of the zygote into left and right halves. The following cleavage planes are centered on this axis and result in the two halves being mirror images of one another. In bilateral holoblastic cleavage, the divisions of the blastomeres are complete and separate;
261:
holoblastic, cleavage. These holoblastic cleavage planes pass all the way through isolecithal zygotes during the process of cytokinesis. Coeloblastula is the next stage of development for eggs that undergo these radial cleavages. In holoblastic eggs, the first cleavage always occurs along the
678:
species (for example, mouse zygotic transcription begins towards the end of the zygote stage and becomes significant at the two-cell stage, whereas human embryos begin zygotic transcription at the eight-cell stage). Cleavage is holoblastic and rotational.
498:, resulting in a polynuclear cell. With the yolk positioned in the center of the egg cell, the nuclei migrate to the periphery of the egg, and the plasma membrane grows inward, partitioning the nuclei into individual cells. Superficial cleavage occurs in 240:
In holoblastic cleavage, the zygote and blastomeres are completely divided during the cleavage, so the number of blastomeres doubles with each cleavage. In the absence of a large concentration of yolk, four major cleavage types can be observed in
308:
Rotational cleavage involves a normal first division along the meridional axis, giving rise to two daughter cells. The way in which this cleavage differs is that one of the daughter cells divides meridionally, whilst the other divides
262:
vegetal-animal axis of the egg, the second cleavage is perpendicular to the first. From here, the spatial arrangement of blastomeres can follow various patterns, due to different planes of cleavage, in various organisms.
101:
mass. This means that with each successive subdivision, there is roughly half the cytoplasm in each daughter cell than before that division, and thus the ratio of nuclear to cytoplasmic material increases.
767:
fluid. As a consequence to increased osmotic pressure, the accumulation of fluid raises the hydrostatic pressure inside the embryo. Hydrostatic pressure breaks open cell-cell contacts within the embryo by
1641:
Dumortier JG, Le Verge-Serandour M, Tortorelli AF, Mielke A, de Plater L, Turlier H, et al. (2 August 2019). "Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst".
1508:
Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N, Buchholz F, et al. (February 2017). "The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo".
1895:
Lee SC, Mietchen D, Cho JH, Kim YS, Kim C, Hong KS, et al. (January 2007). "In vivo magnetic resonance microscopy of differentiation in Xenopus laevis embryos from the first cleavage onwards".
177:. Karyokinesis and cytokinesis are independent but spatially and temporally coordinated processes. While mitosis can occur in the absence of cytokinesis, cytokinesis requires the mitotic apparatus. 693:
are initially round, and only loosely adhered. With further division in the process of compaction the cells flatten onto one another. At the 16–cell stage the compacted embryo is called a
460:
In discoidal cleavage, the cleavage furrows do not penetrate the yolk. The embryo forms a disc of cells, called a blasto-disc, on top of the yolk. Discoidal cleavage is commonly found in
480:
egg cells (egg cells with the yolk concentrated at one end). The layer of cells that have incompletely divided and are in contact with the yolk are called the "syncytial layer".
443:
In the presence of a large concentration of yolk in the fertilized egg cell, the cell can undergo partial, or meroblastic, cleavage. Two major types of meroblastic cleavage are
228:
A cell can only be indeterminate (also called regulative) if it has a complete set of undisturbed animal/vegetal cytoarchitectural features. It is characteristic of
506:
egg cells (egg cells with the yolk located in the center of the cell). This type of cleavage can work to promote synchronicity in developmental timing, such as in
232:—when the original cell in a deuterostome embryo divides, the two resulting cells can be separated, and each one can individually develop into a whole organism. 47:
with no significant overall growth, producing a cluster of cells the same size as the original zygote. The different cells derived from cleavage are called
391:
Specification of the D macromere and is an important aspect of spiralian development. Although the primary axis, animal-vegetal, is determined during
245:
cells (cells with a small, even distribution of yolk) or in mesolecithal cells or microlecithal cells (moderate concentration of yolk in a gradient)—
1302:
Firmin J, Ecker N, Rivet Danon D, Özgüç Ö, Barraud Lange V, Turlier H, et al. (16 May 2024). "Mechanics of human embryo compaction".
321:
distribution of yolk (sparsely and evenly distributed). Because the cells have only a small concentration of yolk, they require immediate
748:. The morula is now watertight, to contain the fluid that the cells will later pump into the embryo to transform it into the blastocyst. 1753:"Outcomes of preimplantation genetic diagnosis using either zona drilling with acidified Tyrode's solution or partial zona dissection" 417:
at one pole attaches to the cell membrane, causing it to be much smaller than the aster at the other pole. This results in an unequal
685:
at the eight-cell stage, having undergone three cleavages the embryo starts to change shape as it develops into a morula and then a
1817: 1694: 1563: 1435: 1359: 1286: 1261: 1236: 936: 905: 876: 839: 110:
The rapid cell cycles are facilitated by maintaining high levels of proteins that control cell cycle progression such as the
717:
that provides distinct characteristics and functions to their cell-cell and cell-medium interfaces. As surface cells become
1946: 180:
The end of cleavage coincides with the beginning of zygotic transcription. This point in non-mammals is referred to as the
361:. Most spiralians undergo equal spiral cleavage, although some undergo unequal cleavage (see below). This group includes 800: 1712:"Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization" 772:. Initially dispersed in hundreds of water pockets throughout the embryo, the fluid collects into a single large 2263: 216:. Each blastomere produced by early embryonic cleavage does not have the capacity to develop into a complete 2231: 2176: 1955: 733:
are developed with the other blastomeres. With further compaction the individual outer blastomeres, the
682: 127: 1924: 1128:"Evolutionary implications of the mode of D quadrant specification in coelomates with spiral cleavage" 792:. The trophoblasts will eventually give rise to the embryonic contribution to the placenta called the 322: 78:(partial cleavage). The pole of the egg with the highest concentration of yolk is referred to as the 1453:"Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos" 2236: 2148: 2033: 1939: 788:
on one side of the cavity that will go on to produce the embryo proper. The embryo is now termed a
2000: 1881: 773: 655: 115: 272:
compared with bilateral meroblastic cleavage, in which the blastomeres stay partially connected.
2221: 2120: 334: 2226: 2216: 2060: 1425: 856: 756: 1581:"Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay" 1840: 1651: 1592: 1464: 1311: 970: 864: 769: 414: 146: 1451:
Hirate Y, Hirahara S, Inoue Ki, Suzuki A, Alarcon VB, Akimoto K, et al. (July 2013).
8: 1970: 1932: 1844: 1655: 1596: 1468: 1315: 974: 868: 1777: 1752: 1615: 1580: 1485: 1452: 1401: 1376: 1149: 1144: 1127: 1093: 988: 2199: 1975: 1912: 1908: 1868: 1863: 1828: 1813: 1806: 1782: 1733: 1690: 1667: 1636: 1634: 1620: 1579:
Leonavicius K, Royer C, Preece C, Davies B, Biggins JS, Srinivas S (9 October 2018).
1559: 1536: 1531: 1490: 1431: 1406: 1355: 1327: 1282: 1257: 1232: 1209: 1047: 1026:"Conserved mechanism of dorsoventral axis determination in equal-cleaving spiralians" 1006: 1001: 958: 932: 901: 872: 835: 294:, in which the spindle axes are parallel or at right angles to the polar axis of the 161:
and the centrosomes are organized by centrioles brought into the egg by the sperm as
1153: 2138: 2101: 2082: 1904: 1858: 1848: 1772: 1764: 1723: 1659: 1610: 1600: 1526: 1518: 1480: 1472: 1396: 1388: 1319: 1199: 1139: 1083: 1037: 996: 978: 777: 577: 166: 1631: 799:
A single cell can be removed from a pre-compaction eight-cell embryo and used for
2015: 1522: 781: 741: 142: 1204: 1187: 2194: 2092: 1886: 1833:
Proceedings of the National Academy of Sciences of the United States of America
1768: 1751:
Kim HJ, Kim CH, Lee SM, Choe SA, Lee JY, Jee BC, et al. (September 2012).
1392: 1323: 963:
Proceedings of the National Academy of Sciences of the United States of America
893: 745: 738: 730: 666: 665:
First stages of cleavage in a fertilized mammalian egg. Semidiagrammatic. z.p.
517: 503: 354: 340: 206: 28: 1476: 827: 2257: 2143: 2087: 1882:"What are the 'advantages' of developing a deuterostome pattern of embryonic" 1689:(11th ed.). Philadelphia: Lippincott William & Wilkins. p. 45. 722: 714: 425: 213: 174: 90: 36: 1853: 1728: 1711: 1663: 1605: 959:"Evolution of the bilaterian body plan: what have we learned from annelids?" 381: 2158: 2113: 2108: 1916: 1786: 1737: 1671: 1640: 1624: 1540: 1494: 1410: 1354:(Fifth ed.). Philadelphia, PA: Churchill Livingstone. pp. 35–36. 1331: 1213: 1088: 1071: 1051: 1042: 1025: 1010: 983: 726: 673:
a. Two-cell stage b. Four-cell stage c. Eight-cell stage d, e. Morula stage
670: 544: 477: 283: 229: 162: 141:
work together to result in cleavage. The mitotic apparatus is made up of a
134: 94: 79: 32: 1872: 2153: 2078: 2020: 1558:(Forty-first ed.). Philadelphia, PA: Elsevier Limited. p. 165. 1231:(Eleventh ed.). Sunderland, Massachusetts: Sinauer Associates, Inc. 807: 737:, become indistinguishable as they become organised into a thin sheet of 734: 611: 495: 418: 318: 242: 181: 154: 138: 83: 1954: 2209: 2096: 2070: 2010: 2005: 1990: 1097: 789: 764: 718: 690: 686: 622: 540: 291: 287: 202: 158: 60: 48: 44: 20: 992: 2042: 759:
on the trophoblasts pump sodium into the morula, drawing in water by
697:. Once the embryo has divided into 16 cells, it begins to resemble a 626: 597: 585: 548: 499: 461: 392: 370: 98: 1375:
Gauster M, Moser G, Wernitznig S, Kupper N, Huppertz B (June 2022).
2186: 2168: 2130: 2047: 1072:"Evolutionary Modifications of the Spiralian Developmental Program" 710: 698: 581: 570: 563: 358: 331: 185: 119: 56: 1377:"Early human trophoblast development: from morphology to function" 1829:"Cleavage patterns and the topology of the metazoan tree of life" 1507: 793: 760: 559: 555: 491: 469: 431: 366: 362: 150: 2204: 1995: 1980: 752: 638: 386:
mitotic spindle, or through the formation of a polar lobe (PL).
374: 314: 295: 217: 210: 111: 52: 40: 201:
Determinate cleavage (also called mosaic cleavage) is in most
702: 170: 1578: 1374: 1301: 618: 473: 465: 123: 67: 1424:
Larsen WJ (2001). Sherman LS, Potter SS, Scott WJ (eds.).
894:"Early Development of the Nematode Caenorhabditis elegans" 755:
after three or four days, and begins to take in fluid, as
1556:
Gray's anatomy: the anatomical basis of clinical practice
1450: 353:
Spiral cleavage is conserved between many members of the
1188:"The MAPK cascade in equally cleaving spiralian embryos" 661: 1430:(3rd ed.). Elsevier Health Sciences. p. 20. 1279:
Vertebrates: Comparative Anatomy, Function, Evolution
606:
A. Telolecithal (dense yolk throughout most of cell)
592:
B. Mesolecithal (moderate vegetal yolk disposition)
325:
into the uterine wall in order to receive nutrients.
1805: 828:"An Introduction to Early Developmental Processes" 1897:Differentiation; Research in Biological Diversity 1894: 776:, called blastocoel, following a process akin to 535:A. Isolecithal (sparse, evenly distributed yolk) 343:, undergoes holoblastic rotational cell cleavage. 2255: 1125: 1757:Clinical and Experimental Reproductive Medicine 1585:Proceedings of the National Academy of Sciences 956: 1281:(4th ed.). McGraw-Hill. pp. 158–64. 1226: 205:. It results in the developmental fate of the 1940: 1750: 854: 713:). Concomitantly, they develop an inside-out 654:"Morula" redirects here. For other uses, see 516:Summary of the main patterns of cleavage and 429:Spiral cleavage in marine snail of the genus 93:in that it increases the number of cells and 1185: 952: 950: 948: 861:Biological physics of the developing embryo 1947: 1933: 1349: 1069: 863:. Cambridge University Press. p. 27. 633:B. Centrolecithal (yolk in center of egg) 513: 55:. Cleavage ends with the formation of the 1862: 1852: 1826: 1776: 1727: 1614: 1604: 1553: 1547: 1530: 1484: 1400: 1345: 1343: 1341: 1203: 1181: 1179: 1177: 1175: 1173: 1171: 1169: 1167: 1165: 1163: 1143: 1121: 1119: 1117: 1115: 1113: 1111: 1109: 1107: 1087: 1041: 1000: 982: 282:Radial cleavage is characteristic of the 82:while the opposite is referred to as the 66:Depending mostly on the concentration of 1803: 1017: 945: 763:from the maternal environment to become 660: 424: 380: 1368: 1276: 1251: 1220: 1065: 1063: 1061: 931:(11th ed.). Sinauer. p. 268. 926: 891: 825: 2256: 1709: 1703: 1684: 1678: 1423: 1338: 1256:(7th ed.). Sinauer. p. 214. 1160: 1104: 806:Differences exist between cleavage in 780:. Embryoblast cells also known as the 529:II. Meroblastic (incomplete) cleavage 1928: 1879: 1186:Lambert JD, Nagy LM (November 2003). 1023: 957:Shankland M, Seaver EC (April 2000). 744:. They are still enclosed within the 89:Cleavage differs from other forms of 16:Division of cells in the early embryo 1744: 1381:Cellular and Molecular Life Sciences 1058: 834:(6th ed.). Sinauer Associates. 784:form a compact mass of cells at the 317:display rotational cleavage, and an 191: 184:and appears to be controlled by the 1808:Principles of Developmental Biology 1076:Integrative and Comparative Biology 526:I. Holoblastic (complete) cleavage 51:and form a compact mass called the 13: 1796: 1145:10.1046/j.1420-9101.1992.5020205.x 14: 2275: 857:"Cleavage and blastula formation" 751:In humans, the morula enters the 165:. Cytokinesis is mediated by the 1909:10.1111/j.1432-0436.2006.00114.x 1126:Freeman G, Lundelius JW (1992). 223: 70:in the egg, the cleavage can be 1572: 1501: 1444: 1417: 1295: 1270: 1245: 1227:Gilbert SF, Barresi MJ (2016). 1132:Journal of Evolutionary Biology 803:, and the embryo will recover. 130:) promotes entry into mitosis. 920: 885: 848: 819: 689:. At the eight-cell stage the 438: 235: 196: 157:. The asters are nucleated by 74:(total or entire cleavage) or 43:of many species undergo rapid 1: 855:Forgács G, Newman SA (2005). 813: 302: 1687:Langman's medical embryology 1523:10.1016/j.devcel.2017.01.006 617:2. Discoidal cleavage (some 265: 105: 97:mass without increasing the 7: 2232:Splanchnopleuric mesenchyme 2177:Splanchnopleuric mesenchyme 1956:Human embryonic development 1880:Onken M (4 February 1999). 1205:10.1016/j.ydbio.2003.07.006 1070:Boyer BC, Henry JQ (1998). 683:human embryonic development 637:Superficial cleavage (most 596:Displaced radial cleavage ( 128:maturation promoting factor 10: 2280: 1827:Valentine JW (July 1997). 1769:10.5653/cerm.2012.39.3.118 1393:10.1007/s00018-022-04377-0 1324:10.1038/s41586-024-07351-x 653: 649: 532: 339:, a popular developmental 2185: 2167: 2129: 2069: 2056: 2029: 1963: 1716:Human Reproduction Update 1532:21.11116/0000-0002-8C77-B 1477:10.1016/j.cub.2013.05.014 1352:Larsen's human embryology 701:, hence the name morula ( 490:In superficial cleavage, 347: 276: 186:nuclear-cytoplasmic ratio 33:development of the embryo 2237:Somatopleuric mesenchyme 2149:Somatopleuric mesenchyme 1958:in the first three weeks 721:, they begin to tightly 576:4. Rotational cleavage ( 116:cyclin-dependent kinases 1854:10.1073/pnas.94.15.8001 1804:Wilt F, Hake S (2004). 1664:10.1126/science.aaw7709 1606:10.1073/pnas.1719930115 1024:Henry J (August 2002). 656:Morula (disambiguation) 610:1. Bilateral cleavage ( 569:3. Bilateral cleavage ( 209:being set early in the 169:made up of polymers of 149:made up of polymers of 2121:Regional specification 1350:Schoenwolf GC (2015). 1043:10.1006/dbio.2002.0741 984:10.1073/pnas.97.9.4434 757:sodium-potassium pumps 674: 435: 387: 182:midblastula transition 2264:Developmental biology 2227:Intraembryonic coelom 1729:10.1093/humupd/dmh050 1254:Developmental biology 1229:Developmental Biology 1192:Developmental Biology 1030:Developmental Biology 929:Developmental biology 898:Developmental Biology 832:Developmental Biology 664: 428: 384: 357:taxa, referred to as 286:, which include some 114:and their associated 1554:Standring S (2016). 1089:10.1093/icb/38.4.621 770:hydraulic fracturing 554:2. Spiral cleavage ( 539:1. Radial cleavage ( 118:(CDKs). The complex 1845:1997PNAS...94.8001V 1656:2019Sci...365..465D 1597:2018PNAS..11510375L 1591:(41): 10375–10380. 1469:2013CBio...23.1181H 1316:2024Natur.629..646F 1277:Kardong KV (2006). 1252:Gilbert SF (2003). 975:2000PNAS...97.4434S 927:Gilbert SF (2016). 892:Gilbert SF (2000). 869:2005bpde.book.....F 826:Gilbert SF (2000). 810:and other mammals. 612:cephalopod molluscs 522: 126:also known as MPF ( 27:is the division of 1685:Sadler TW (2010). 1511:Developmental Cell 675: 514: 436: 388: 2251: 2250: 2247: 2246: 1976:Oocyte activation 1839:(15): 8001–8005. 1819:978-0-393-97430-0 1710:Wilton L (2005). 1696:978-0-7817-9069-7 1650:(6452): 465–468. 1565:978-0-7020-5230-9 1517:(3): 235–247.e7. 1463:(13): 1181–1194. 1437:978-0-443-06583-5 1361:978-1-4557-0684-6 1310:(8012): 646–651. 1288:978-0-07-060750-7 1263:978-0-87893-258-0 1238:978-1-60535-470-5 938:978-1-60535-470-5 907:978-0-87893-243-6 878:978-0-521-78337-8 841:978-0-87893-243-6 808:placental mammals 801:genetic screening 647: 646: 578:placental mammals 518:yolk accumulation 257:holoblastic, and 192:Types of cleavage 133:The processes of 2271: 2139:Surface ectoderm 2102:Primitive groove 2083:Primitive streak 2067: 2066: 1949: 1942: 1935: 1926: 1925: 1920: 1891: 1876: 1866: 1856: 1823: 1811: 1791: 1790: 1780: 1748: 1742: 1741: 1731: 1707: 1701: 1700: 1682: 1676: 1675: 1638: 1629: 1628: 1618: 1608: 1576: 1570: 1569: 1551: 1545: 1544: 1534: 1505: 1499: 1498: 1488: 1448: 1442: 1441: 1427:Human embryology 1421: 1415: 1414: 1404: 1372: 1366: 1365: 1347: 1336: 1335: 1299: 1293: 1292: 1274: 1268: 1267: 1249: 1243: 1242: 1224: 1218: 1217: 1207: 1183: 1158: 1157: 1147: 1123: 1102: 1101: 1091: 1067: 1056: 1055: 1045: 1021: 1015: 1014: 1004: 986: 969:(9): 4434–4437. 954: 943: 942: 924: 918: 917: 915: 914: 900:(6th ed.). 889: 883: 882: 852: 846: 845: 823: 778:Ostwald ripening 742:epithelial cells 729:are formed, and 523: 411:unequal cleavage 167:contractile ring 2279: 2278: 2274: 2273: 2272: 2270: 2269: 2268: 2254: 2253: 2252: 2243: 2181: 2163: 2125: 2058: 2052: 2031: 2025: 2016:Inner cell mass 1959: 1953: 1923: 1820: 1812:. W.W. Norton. 1799: 1797:Further reading 1794: 1749: 1745: 1708: 1704: 1697: 1683: 1679: 1639: 1632: 1577: 1573: 1566: 1552: 1548: 1506: 1502: 1457:Current Biology 1449: 1445: 1438: 1422: 1418: 1373: 1369: 1362: 1348: 1339: 1300: 1296: 1289: 1275: 1271: 1264: 1250: 1246: 1239: 1225: 1221: 1184: 1161: 1124: 1105: 1068: 1059: 1022: 1018: 955: 946: 939: 925: 921: 912: 910: 908: 890: 886: 879: 853: 849: 842: 824: 820: 816: 782:inner cell mass 739:tightly adhered 731:tight junctions 659: 652: 494:occurs but not 441: 355:lophotrochozoan 350: 305: 279: 268: 238: 226: 199: 194: 173:protein called 153:protein called 143:central spindle 108: 17: 12: 11: 5: 2277: 2267: 2266: 2249: 2248: 2245: 2244: 2242: 2241: 2240: 2239: 2234: 2229: 2219: 2214: 2213: 2212: 2207: 2197: 2195:Axial mesoderm 2191: 2189: 2183: 2182: 2180: 2179: 2173: 2171: 2165: 2164: 2162: 2161: 2156: 2151: 2146: 2141: 2135: 2133: 2127: 2126: 2124: 2123: 2118: 2117: 2116: 2106: 2105: 2104: 2099: 2093:Primitive node 2090: 2075: 2073: 2064: 2054: 2053: 2051: 2050: 2045: 2039: 2037: 2027: 2026: 2024: 2023: 2018: 2013: 2008: 2003: 1998: 1993: 1988: 1983: 1978: 1973: 1967: 1965: 1961: 1960: 1952: 1951: 1944: 1937: 1929: 1922: 1921: 1892: 1887:MadSci Network 1877: 1824: 1818: 1800: 1798: 1795: 1793: 1792: 1763:(3): 118–124. 1743: 1702: 1695: 1677: 1630: 1571: 1564: 1546: 1500: 1443: 1436: 1416: 1367: 1360: 1337: 1294: 1287: 1269: 1262: 1244: 1237: 1219: 1198:(2): 231–241. 1159: 1103: 1057: 1036:(2): 343–355. 1016: 944: 937: 919: 906: 884: 877: 847: 840: 817: 815: 812: 786:embryonic pole 746:zona pellucida 667:Zona pellucida 651: 648: 645: 644: 643: 642: 631: 630: 615: 603: 602: 601: 590: 589: 574: 567: 552: 531: 530: 527: 520:(after and ). 512: 511: 504:centrolecithal 487: 486: 482: 481: 457: 456: 440: 437: 423: 422: 406: 405: 402:equal cleavage 397: 396: 379: 378: 349: 346: 345: 344: 341:model organism 327: 326: 311: 310: 304: 301: 300: 299: 278: 275: 274: 273: 267: 264: 237: 234: 225: 222: 198: 195: 193: 190: 175:microfilaments 137:(mitosis) and 107: 104: 15: 9: 6: 4: 3: 2: 2276: 2265: 2262: 2261: 2259: 2238: 2235: 2233: 2230: 2228: 2225: 2224: 2223: 2222:Lateral plate 2220: 2218: 2215: 2211: 2208: 2206: 2203: 2202: 2201: 2198: 2196: 2193: 2192: 2190: 2188: 2184: 2178: 2175: 2174: 2172: 2170: 2166: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2144:Neuroectoderm 2142: 2140: 2137: 2136: 2134: 2132: 2128: 2122: 2119: 2115: 2112: 2111: 2110: 2107: 2103: 2100: 2098: 2094: 2091: 2089: 2088:Primitive pit 2086: 2085: 2084: 2080: 2077: 2076: 2074: 2072: 2068: 2065: 2062: 2055: 2049: 2046: 2044: 2041: 2040: 2038: 2035: 2028: 2022: 2019: 2017: 2014: 2012: 2009: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1971:Fertilization 1969: 1968: 1966: 1962: 1957: 1950: 1945: 1943: 1938: 1936: 1931: 1930: 1927: 1918: 1914: 1910: 1906: 1902: 1898: 1893: 1889: 1888: 1883: 1878: 1874: 1870: 1865: 1860: 1855: 1850: 1846: 1842: 1838: 1834: 1830: 1825: 1821: 1815: 1810: 1809: 1802: 1801: 1788: 1784: 1779: 1774: 1770: 1766: 1762: 1758: 1754: 1747: 1739: 1735: 1730: 1725: 1721: 1717: 1713: 1706: 1698: 1692: 1688: 1681: 1673: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1637: 1635: 1626: 1622: 1617: 1612: 1607: 1602: 1598: 1594: 1590: 1586: 1582: 1575: 1567: 1561: 1557: 1550: 1542: 1538: 1533: 1528: 1524: 1520: 1516: 1512: 1504: 1496: 1492: 1487: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1447: 1439: 1433: 1429: 1428: 1420: 1412: 1408: 1403: 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1363: 1357: 1353: 1346: 1344: 1342: 1333: 1329: 1325: 1321: 1317: 1313: 1309: 1305: 1298: 1290: 1284: 1280: 1273: 1265: 1259: 1255: 1248: 1240: 1234: 1230: 1223: 1215: 1211: 1206: 1201: 1197: 1193: 1189: 1182: 1180: 1178: 1176: 1174: 1172: 1170: 1168: 1166: 1164: 1155: 1151: 1146: 1141: 1138:(2): 205–47. 1137: 1133: 1129: 1122: 1120: 1118: 1116: 1114: 1112: 1110: 1108: 1099: 1095: 1090: 1085: 1082:(4): 621–33. 1081: 1077: 1073: 1066: 1064: 1062: 1053: 1049: 1044: 1039: 1035: 1031: 1027: 1020: 1012: 1008: 1003: 998: 994: 990: 985: 980: 976: 972: 968: 964: 960: 953: 951: 949: 940: 934: 930: 923: 909: 903: 899: 895: 888: 880: 874: 870: 866: 862: 858: 851: 843: 837: 833: 829: 822: 818: 811: 809: 804: 802: 797: 795: 791: 787: 783: 779: 775: 771: 766: 762: 758: 754: 749: 747: 743: 740: 736: 732: 728: 727:gap junctions 724: 720: 716: 712: 708: 704: 700: 696: 692: 688: 684: 679: 672: 668: 663: 657: 640: 636: 635: 634: 628: 624: 620: 616: 613: 609: 608: 607: 604: 600:, some fish ) 599: 595: 594: 593: 587: 583: 579: 575: 572: 568: 565: 561: 557: 553: 550: 546: 545:hemichordates 542: 538: 537: 536: 533: 528: 525: 524: 521: 519: 509: 505: 501: 497: 493: 489: 488: 484: 483: 479: 475: 471: 467: 463: 459: 458: 454: 453: 452: 450: 446: 434: 433: 427: 420: 416: 412: 408: 407: 403: 399: 398: 394: 390: 389: 383: 376: 372: 368: 364: 360: 356: 352: 351: 342: 338: 337: 333: 329: 328: 324: 320: 316: 313: 312: 309:equatorially. 307: 306: 297: 293: 289: 285: 284:deuterostomes 281: 280: 270: 269: 263: 260: 256: 253:holoblastic, 252: 249:holoblastic, 248: 244: 233: 231: 230:deuterostomes 224:Indeterminate 221: 219: 215: 212: 208: 204: 189: 188:(about 1:6). 187: 183: 178: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 131: 129: 125: 121: 117: 113: 103: 100: 96: 92: 91:cell division 87: 85: 81: 77: 73: 69: 64: 62: 58: 54: 50: 46: 42: 38: 37:fertilization 34: 31:in the early 30: 26: 22: 2217:Intermediate 2159:Neural crest 2114:Gastrulation 1985: 1903:(1): 84–92. 1900: 1896: 1885: 1836: 1832: 1807: 1760: 1756: 1746: 1722:(1): 33–41. 1719: 1715: 1705: 1686: 1680: 1647: 1643: 1588: 1584: 1574: 1555: 1549: 1514: 1510: 1503: 1460: 1456: 1446: 1426: 1419: 1384: 1380: 1370: 1351: 1307: 1303: 1297: 1278: 1272: 1253: 1247: 1228: 1222: 1195: 1191: 1135: 1131: 1079: 1075: 1033: 1029: 1019: 966: 962: 928: 922: 911:. Retrieved 897: 887: 860: 850: 831: 821: 805: 798: 785: 765:blastocoelic 750: 735:trophoblasts 706: 694: 680: 676: 671:Polar bodies 632: 605: 591: 534: 515: 507: 478:telolecithal 448: 444: 442: 430: 410: 401: 335: 323:implantation 258: 254: 250: 246: 239: 227: 200: 179: 163:basal bodies 155:microtubules 135:karyokinesis 132: 109: 88: 80:vegetal pole 75: 71: 65: 63:in mammals. 59:, or of the 35:, following 24: 18: 2154:Neurulation 2079:Archenteron 2071:Germ layers 2021:Trophoblast 691:blastomeres 541:echinoderms 496:cytokinesis 485:Superficial 449:superficial 439:Meroblastic 419:cytokinesis 319:isolecithal 292:echinoderms 288:vertebrates 243:isolecithal 236:Holoblastic 214:development 203:protostomes 197:Determinate 159:centrosomes 139:cytokinesis 99:cytoplasmic 84:animal pole 76:meroblastic 72:holoblastic 49:blastomeres 45:cell cycles 2210:Somitomere 2097:Blastopore 2061:Trilaminar 2011:Blastocyst 2006:Blastocoel 2001:Cavitation 1991:Blastomere 1387:(6): 345. 913:2007-09-17 814:References 790:blastocyst 719:epithelial 687:blastocyst 627:monotremes 623:sauropsids 598:amphibians 586:marsupials 508:Drosophila 502:that have 500:arthropods 476:that have 462:monotremes 336:C. elegans 303:Rotational 255:rotational 145:and polar 61:blastocyst 21:embryology 2043:Hypoblast 2034:Bilaminar 582:nematodes 571:tunicates 564:flatworms 549:amphioxus 455:Discoidal 445:discoidal 393:oogenesis 371:sipuncula 266:Bilateral 247:bilateral 106:Mechanism 2258:Category 2200:Paraxial 2187:Mesoderm 2169:Endoderm 2131:Ectoderm 2109:Gastrula 2048:Epiblast 1986:Cleavage 1917:17244024 1787:23106043 1738:15569702 1672:31371608 1625:30232257 1541:28171747 1495:23791731 1411:35661923 1332:38693259 1214:14597198 1154:85304565 1052:12167409 1011:10781038 715:polarity 711:mulberry 699:mulberry 669:. p.gl. 560:mollusks 556:annelids 470:reptiles 367:molluscs 363:annelids 359:Spiralia 332:nematode 120:cyclin B 57:blastula 25:cleavage 2057:Week 3 2030:Week 2 1873:9223303 1841:Bibcode 1778:3479235 1652:Bibcode 1644:Science 1616:6187134 1593:Bibcode 1486:3742369 1465:Bibcode 1402:9167809 1312:Bibcode 1098:4620189 971:Bibcode 865:Bibcode 794:chorion 761:osmosis 650:Mammals 639:insects 558:, most 492:mitosis 432:Trochus 315:Mammals 151:tubulin 112:cyclins 95:nuclear 41:zygotes 2205:Somite 1996:Morula 1981:Zygote 1964:Week 1 1915:  1871:  1861:  1816:  1785:  1775:  1736:  1693:  1670:  1623:  1613:  1562:  1539:  1493:  1483:  1434:  1409:  1399:  1358:  1330:  1304:Nature 1285:  1260:  1235:  1212:  1152:  1096:  1050:  1009:  999:  993:122407 991:  935:  904:  875:  838:  774:cavity 753:uterus 723:adhere 695:morula 472:, and 375:zygote 369:, and 348:Spiral 296:oocyte 277:Radial 259:spiral 251:radial 218:embryo 211:embryo 147:asters 53:morula 39:. The 1864:21545 1150:S2CID 1094:JSTOR 1002:34316 989:JSTOR 707:morus 703:Latin 466:birds 415:aster 207:cells 171:actin 29:cells 1913:PMID 1869:PMID 1814:ISBN 1783:PMID 1734:PMID 1691:ISBN 1668:PMID 1621:PMID 1560:ISBN 1537:PMID 1491:PMID 1432:ISBN 1407:PMID 1356:ISBN 1328:PMID 1283:ISBN 1258:ISBN 1233:ISBN 1210:PMID 1048:PMID 1007:PMID 933:ISBN 902:ISBN 873:ISBN 836:ISBN 619:fish 474:fish 447:and 330:The 290:and 124:CDK1 68:yolk 1905:doi 1859:PMC 1849:doi 1773:PMC 1765:doi 1724:doi 1660:doi 1648:365 1611:PMC 1601:doi 1589:115 1527:hdl 1519:doi 1481:PMC 1473:doi 1397:PMC 1389:doi 1320:doi 1308:629 1200:doi 1196:263 1140:doi 1084:doi 1038:doi 1034:248 997:PMC 979:doi 796:. 725:as 681:In 409:In 400:In 19:In 2260:: 1911:. 1901:75 1899:. 1884:. 1867:. 1857:. 1847:. 1837:94 1835:. 1831:. 1781:. 1771:. 1761:39 1759:. 1755:. 1732:. 1720:11 1718:. 1714:. 1666:. 1658:. 1646:. 1633:^ 1619:. 1609:. 1599:. 1587:. 1583:. 1535:. 1525:. 1515:40 1513:. 1489:. 1479:. 1471:. 1461:23 1459:. 1455:. 1405:. 1395:. 1385:79 1383:. 1379:. 1340:^ 1326:. 1318:. 1306:. 1208:. 1194:. 1190:. 1162:^ 1148:. 1134:. 1130:. 1106:^ 1092:. 1080:38 1078:. 1074:. 1060:^ 1046:. 1032:. 1028:. 1005:. 995:. 987:. 977:. 967:97 965:. 961:. 947:^ 896:. 871:. 859:. 830:. 709:: 705:, 625:, 621:, 584:, 580:, 562:, 547:, 543:, 468:, 464:, 451:. 365:, 220:. 86:. 23:, 2095:/ 2081:/ 2063:) 2059:( 2036:) 2032:( 1948:e 1941:t 1934:v 1919:. 1907:: 1890:. 1875:. 1851:: 1843:: 1822:. 1789:. 1767:: 1740:. 1726:: 1699:. 1674:. 1662:: 1654:: 1627:. 1603:: 1595:: 1568:. 1543:. 1529:: 1521:: 1497:. 1475:: 1467:: 1440:. 1413:. 1391:: 1364:. 1334:. 1322:: 1314:: 1291:. 1266:. 1241:. 1216:. 1202:: 1156:. 1142:: 1136:5 1100:. 1086:: 1054:. 1040:: 1013:. 981:: 973:: 941:. 916:. 881:. 867:: 844:. 658:. 641:) 629:) 614:) 588:) 573:) 566:) 551:) 510:. 298:. 122:/

Index

embryology
cells
development of the embryo
fertilization
zygotes
cell cycles
blastomeres
morula
blastula
blastocyst
yolk
vegetal pole
animal pole
cell division
nuclear
cytoplasmic
cyclins
cyclin-dependent kinases
cyclin B
CDK1
maturation promoting factor
karyokinesis
cytokinesis
central spindle
asters
tubulin
microtubules
centrosomes
basal bodies
contractile ring

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.