Knowledge

Collision cascade

Source đź“ť

225: 169: 337: 324:. Unfortunately the rate of electron-phonon coupling from the hot and disordered ionic system is not well known, as it can not be treated equally to the fairly well known process of transfer of heat from hot electrons to an intact crystal structure. Finally, the relaxation phase of the cascade, when the defects formed possibly recombine and migrate, can last from a few ps to infinite times, depending on the material, its 150: 2225: 197:(MD) simulations. In MD simulations they can be included either as a frictional force or in a more advanced manner by also following the heating of the electronic systems and coupling the electronic and atomic degrees of freedom. However, uncertainties remain on what is the appropriate low-energy limit of electronic stopping power or electron-phonon coupling is. 421:, both in the linear spike and heat spike regimes. Heat spikes near surfaces also frequently lead to crater formation. This cratering is caused by liquid flow of atoms, but if the projectile size above roughly 100,000 atoms, the crater production mechanism switches to the same mechanism as that of macroscopic craters produced by bullets or asteroids. 257:(the two terms are usually considered to be equivalent). The heat spike cools down to the ambient temperature in 1–100 ps, so the "temperature" here does not correspond to thermodynamic equilibrium temperature. However, it has been shown that after about 3 lattice vibrations, the kinetic energy distribution of the atoms in a heat spike has the 320:, typically lasts 0.1–0.5 ps. If a heat spike is formed, it can live for some 1–100 ps until the spike temperature has cooled down essentially to the ambient temperature. The cooling down of the cascade occurs via lattice heat conductivity and by electronic heat conductivity after the hot ionic subsystem has heated up the electronic one via 261:, making the use of the concept of temperature somewhat justified. Moreover, experiments have shown that a heat spike can induce a phase transition which is known to require a very high temperature, showing that the concept of a (non-equilibrium) temperature is indeed useful in describing collision cascades. 408:
A curious feature of collision cascades is that the final amount of damage produced may be much less than the number of atoms initially affected by the heat spikes. Especially in pure metals, the final damage production after the heat spike phase can be orders of magnitude smaller than the number of
228:
As above, but in the middle the region of collisions has become so dense that multiple collisions occur simultaneously, which is called a heat spike. In this region the ions move in complex paths, and it is not possible to distinguish the numerical order of recoils - hence the atoms are colored with
216:
When the ion is heavy and energetic enough, and the material is dense, the collisions between the ions may occur so near to each other that they can not be considered independent of each other. In this case the process becomes a complicated process of many-body interactions between hundreds and tens
276:
For instance, for copper irradiation of copper, recoil energies of around 5–20 keV are almost guaranteed to produce heat spikes. At lower energies, the cascade energy is too low to produce a liquid-like zone. At much higher energies, the Cu ions would most likely lead initially to a linear cascade,
348:
simulation of a collision cascade. The image shows a cross section of two atomic layers in the middle of a threedimensional simulation cell. Each sphere illustrates the position of an atom, and the colors show the kinetic energy of each atom as indicated by the scale on the right. At the end, both
172:
Schematic illustration of a linear collision cascade. The thick line illustrates the position of the surface, and the thinner lines the ballistic movement paths of the atoms from beginning until they stop in the material. The purple circle is the incoming ion. Red, blue, green and yellow circles
204:(PKA), secondary knock-on atoms (SKA), tertiary knock-on atoms (TKA), etc. Since it is extremely unlikely that all energy would be transferred to a knock-on atom, each generation of recoil atoms has on average less energy than the previous, and eventually the knock-on atom energies go below the 409:
atoms displaced in the spike. On the other hand, in semiconductors and other covalently bonded materials the damage production is usually similar to the number of displaced atoms. Ionic materials can behave like either metals or semiconductors with respect to the fraction of damage recombined.
272:
is low. But once the Cu ion would slow down enough, the nuclear stopping power would increase and a heat spike would be produced. Moreover, many of the primary and secondary recoils of the incoming ions would likely have energies in the keV range and thus produce a heat spike.
27: 42:
Au self-recoil. This is a typical case of a collision cascade in the heat spike regime. Each small sphere illustrates the position of an atom, in a 2-atom-layer-thick cross section of a three-dimensional simulation cell. The colors show (on a logarithmic scale) the
397:
The defects production can be harmful, such as in nuclear fission and fusion reactors where the neutrons slowly degrade the mechanical properties of the materials, or a useful and desired materials modification effect, e.g., when ions are introduced into
315:
To understand the nature of collision cascade, it is very important to know the associated time scale. The ballistic phase of the cascade, when the initial ion/recoil and its primary and lower-order recoils have energies well above the
299:, can also be considered to produce thermal spikes in the sense that they lead to strong lattice heating and a transient disordered atom zone. However, at least the initial stage of the damage might be better understood in terms of a 161:), the collisions between the initial recoil and sample atoms occur rarely, and can be understood well as a sequence of independent binary collisions between atoms. This kind of a cascade can be theoretically well treated using the 233:
Typically, a heat spike is characterized by the formation of a transient underdense region in the center of the cascade, and an overdense region around it. After the cascade, the overdense region becomes
424:
The fact that many atoms are displaced by a cascade means that ions can be used to deliberately mix materials, even for materials that are normally thermodynamically immiscible. This effect is known as
200:
In linear cascades the set of recoils produced in the sample can be described as a sequence of recoil generations depending on how many collision steps have passed since the original collision:
249:
T), one finds that the kinetic energy in units of temperature is initially of the order of 10,000 K. Because of this, the region can be considered to be very hot, and is therefore called a
321: 2151: 1219: 185:. Note, however, that SRIM does not treat effects such as damage due to electronic energy deposition or damage produced by excited electrons. The nuclear and electronic 19:
For the scenario of collisions between objects in low earth orbit producing a chain reactions of debris colliding with additional objects producing more debris, see
1609:
A. Struchbery; E. Bezakova (1999). "Thermal-Spike Lifetime from Picosecond-Duration Preequilibrium Effects in Hyperfine Magnetic Fields Following Ion Implantation".
2186:
Pugacheva, T; Gjurabekova, F; Khvaliev, S (1998). "Effects of cascade mixing, sputtering and diffusion by high dose light ion irradiation of boron nitride".
2149:
T. Pugacheva; F. Gjurabekova; S. Khvaliev (1998). "Effects of cascade mixing, sputtering and diffusion by high dose light ion irradiation of boron nitride".
366:
Since the kinetic energies in a cascade can be very high, it can drive the material locally far outside thermodynamic equilibrium. Typically this results in
452: 165:(BCA) simulation approach. For instance, H and He ions with energies below 10 keV can be expected to lead to purely linear cascades in all materials. 157:
When the initial recoil/ion mass is low, and the material where the cascade occurs has a low density (i.e. the recoil-material combination has a low
432:
The non-equilibrium nature of irradiation can also be used to drive materials out of thermodynamic equilibrium, and thus form new kinds of alloys.
173:
illustrate primary, secondary, tertiary and quaternary recoils, respectively. In between the ballistic collisions the ions move in a straight path.
485:
R. S. Averback and T. Diaz de la Rubia (1998). "Displacement damage in irradiated metals and semiconductors". In H. Ehrenfest; F. Spaepen (eds.).
189:
used are averaging fits to experiments, and are thus not perfectly accurate either. The electronic stopping power can be readily included in
137:
The nature of collision cascades can vary strongly depending on the energy and mass of the recoil/incoming ion and density of the material (
245:
If the kinetic energy of the atoms in the region of dense collisions is recalculated into temperature (using the basic equation E = 3/2·N·k
1728:
M. O. Ruault; J. Chaumont; J. M. Penisson; A. Bourret (1984). "High resolution and in situ investigation of defects in Bi-irradiated Si".
281:
signifies the energy above which a recoil in a material is likely to produce several isolated heat spikes rather than a single dense one.
340:
Image sequence of the time development of a collision cascade in the heat spike regime produced by a 30 keV Xe ion impacting on Au under
1766: 303:
mechanism. Regardless of what the heating mechanism is, it is well established that swift heavy ions in insulators typically produce
938:
Duffy, D. M. (2007). "Including the effects of electronic stopping and electron-ion interactions in radiation damage simulations".
712:
Hobler, G. (2001). "On the useful range of application of molecular dynamics simulations in the recoil interaction approximation".
1564:
D. Albrecht; et al. (1985). "Investigation of heavy ion produced defect structures in insulators by small angle scattering".
861:
Bjorkas, C. (2009). "Assessment of the relation between ion beam mixing, electron-phonon coupling, and damage production in Fe".
386:
zones. Prolonged irradiation of many materials can lead to their full amorphization, an effect which occurs regularly during the
608:
Beardmore, K. (1998). "An Efficient Molecular Dynamics Scheme for the Calculation of Dopant Profiles due to Ion Implantation".
546:
Robinson, M. T. (1974). "Computer Simulation of atomic-displacement cascades in solids in the binary-collision approximation".
181:
can be used to simulate linear collision cascades in disordered materials for all ion in all materials up to ion energies of 1
1297: 1916: 1816:
V. D. S. Dhaka; et al. (2006). "Ultrafast dynamics of Ni+-irradiated and annealed GaInAs/InP multiple quantum wells".
178: 296: 269: 186: 158: 138: 2229: 1253:
K. Nordlund; et al. (1998). "Defect production in collision cascades in elemental semiconductors and fcc metals".
264:
In many cases, the same irradiation condition is a combination of linear cascades and heat spikes. For example, 10 MeV
258: 1107:
T. de la Rudia; R. Averback; R. Benedek; W. King (1987). "Role of thermal spikes in energetic displacement cascades".
2245: 519: 1217:
R. Aderjan; H. Urbassek (2000). "Molecular-dynamics study of craters formed by energetic Cu cluster impact on Cu".
2096:
J. Samela; K. Nordlund (2008). "Atomistic Simulation of the Transition from Atomistic to Macroscopic Cratering".
1016:
Sand, A. E. (2014). "Radiation damage production in massive cascades initiated by fusion neutrons in tungsten".
277:
but the recoils could lead to heat spikes, as would the initial ion once it has slowed down enough. The concept
190: 162: 284:
Computer simulation-based animations of collision cascades in the heat spike regime are available on YouTube.
1088:
F. Seitz; J. S. Koehler (1956). "Displacement of Atoms during Irradiation". In F. Seitz; D. Turnbull (eds.).
317: 205: 99: 1861:
A. Kis; et al. (2004). "Reinforcement of single-walled carbon nanotube bundles by intertube bridging".
1153: 2250: 1774: 511: 447: 1367:"Effect of Stress on Track Formation in Amorphous Iron Boron Alloy: Ion Tracks as Elastic Inclusions" 581:
Nordlund, K. (1995). "Molecular dynamics simulation of ion ranges in the 1 -- 100 keV energy range".
268:
ions bombarding Cu would initially move in the lattice in a linear cascade regime, since the nuclear
2016: 2014:
W. Jäger; K. L. Merkle (1988). "Defect-cluster formation in high-energy-density cascades in gold".
1730: 56: 1959:
R. Webb; D. Harrison (1983). "Computer Simulation of Pit Formation in Metals by Ion Bombardment".
661:
Caturla, M. (1996). "Ion-beam processing of silicon at keV energies: A molecular-dynamics study".
2098: 2053: 1961: 1693: 1611: 1511: 1416: 1371: 1109: 375: 371: 367: 325: 239: 111: 1646:
I. Koponen (1993). "Energy transfer between electrons and ions in dense displacement cascades".
897: 747:
Smith, R. (1997). "Molecular Dynamics Simulation of 0.1 -- 2 keV ion bombardment of Ni {100}".
1366: 341: 1799: 1691:
K. Nordlund; F. Gao (1999). "Formation of stacking-fault tetrahedra in collision cascades".
815:
Hou, M. (2000). "Deposition of AuN clusters on Au(111) surfaces. I. Atomic-scale modeling".
444:, a set of binary collisions between high-energy particles often involving nuclear reactions 2195: 2160: 2107: 2062: 2025: 1970: 1925: 1872: 1827: 1818: 1783: 1739: 1702: 1657: 1620: 1575: 1520: 1435: 1380: 1331: 1264: 1224: 1170: 1118: 1062: 1025: 990: 947: 912: 870: 824: 787: 721: 670: 627: 555: 115: 2051:
M. Ghaly; R. Averback (1994). "Effect of viscous flow on ion damage near solid surfaces".
1154:"A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite" 507:
Atomic & ion collisions in solids and at surfaces: theory, simulation and applications
8: 235: 2199: 2164: 2111: 2066: 2029: 1974: 1929: 1876: 1831: 1787: 1743: 1706: 1661: 1624: 1579: 1524: 1505:
P. Kluth; et al. (2008). "Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO
1439: 1384: 1335: 1268: 1228: 1174: 1122: 1066: 1029: 994: 959: 951: 916: 874: 828: 791: 725: 674: 631: 559: 217:
of thousands of atoms, which can not be treated with the BCA, but can be modelled using
2131: 1996: 1941: 1896: 1843: 1591: 1459: 1425: 1280: 1196: 963: 840: 694: 643: 617: 345: 218: 194: 31: 2207: 2172: 1937: 1914:
K. Trachenko (2004). "Understanding resistance to amorphization by radiation damage".
1839: 1236: 1051:
J. Gibson; A. Goland; M. Milgram; G. Vineyard (1960). "Dynamics of Radiation Damage".
733: 2123: 2078: 2000: 1945: 1888: 1673: 1648: 1566: 1546: 1451: 1396: 1347: 1322: 1255: 1200: 1134: 967: 844: 686: 594: 515: 300: 201: 131: 2135: 1900: 1847: 1595: 1463: 1284: 981:
Tamm, A. (2016). "Electron-phonon interaction within classical molecular dynamics".
800: 775: 698: 647: 405:
structures to speed up the operation of a laser. or to strengthen carbon nanotubes.
2203: 2168: 2119: 2115: 2070: 2033: 1986: 1978: 1933: 1880: 1863: 1835: 1791: 1747: 1710: 1665: 1628: 1583: 1536: 1532: 1528: 1443: 1388: 1339: 1272: 1232: 1186: 1178: 1161: 1126: 1070: 1033: 998: 955: 920: 878: 832: 795: 756: 729: 678: 635: 590: 563: 387: 20: 1478: 1447: 1037: 1486: 1053: 505: 441: 426: 292: 107: 1982: 1632: 1392: 1130: 2074: 1727: 1093: 1002: 882: 490: 457: 72: 44: 16:
Series of collisions between nearby atoms, initiated by a single energetic atom
2037: 1751: 1669: 1343: 898:"The effect of electronic energy loss on the dynamics of thermal spikes in Cu" 760: 682: 2239: 1276: 1151: 1074: 836: 639: 399: 567: 224: 2127: 2082: 1892: 1677: 1550: 1455: 1400: 1351: 1138: 402: 391: 350: 103: 1106: 924: 690: 1430: 1301: 1191: 776:"Electron promotion and electronic friction in atomic collision cascades" 379: 354: 168: 622: 1991: 1587: 1479:"Swift heavy ion-induced modification and track formation in materials" 1050: 418: 304: 1414:
E. Bringa; R. Johnson (2002). "Coulomb Explosion and Thermal Spikes".
484: 208:
for damage production, at which point no more damage can be produced.
2148: 1884: 1795: 1714: 1541: 383: 328:
migration and recombination properties, and the ambient temperature.
153:
Schematic illustration of independent binary collisions between atoms
76: 1364: 295:, i.e. MeV and GeV heavy ions which produce damage by a very strong 336: 123: 106:
or more), the collisions can permanently displace atoms from their
71:) is a set of nearby adjacent energetic (much higher than ordinary 47:
of the atoms, with white and red being high kinetic energy from 10
1182: 149: 119: 2224: 265: 127: 88: 417:
Collision cascades in the vicinity of a surface often lead to
2188:
Nuclear Instruments and Methods in Physics Research Section B
2152:
Nuclear Instruments and Methods in Physics Research Section B
1220:
Nuclear Instruments and Methods in Physics Research Section B
84: 26: 2185: 1152:
A. Meldrum; S.J. Zinkle; L. A. Boatner; R. C. Ewing (1998).
80: 35: 307:
forming long cylindrical damage zones of reduced density.
238:, and the underdense region typically becomes a region of 182: 114:. The initial energetic atom can be, e.g., an ion from a 95: 48: 39: 1608: 1767:"Ion beams in silicon processing and characterization" 1316:
A. Meftah; et al. (1994). "Track formation in SiO
534: 1216: 1087: 118:, an atomic recoil produced by a passing high-energy 2095: 2013: 98:
energies in a collision cascade are higher than the
2050: 1413: 1958: 1690: 1365:C. Trautmann; S. KlaumĂĽnzer; H. Trinkaus (2000). 344:conditions. The image is produced by a classical 287: 2237: 211: 1815: 34:computer simulation of a collision cascade in 1913: 130:, or be produced when a radioactive nucleus 1563: 1476: 1252: 1645: 1990: 1764: 1540: 1429: 1320:quartz and the thermal-spike mechanism". 1315: 1248: 1246: 1190: 895: 799: 773: 621: 607: 1504: 1311: 1309: 1212: 1210: 856: 854: 580: 545: 503: 335: 223: 167: 148: 25: 1907: 860: 660: 480: 478: 476: 474: 472: 2238: 2142: 1952: 1860: 1407: 1243: 711: 370:production. The defects can be, e.g., 83:induced by an energetic particle in a 2089: 2044: 2007: 1758: 1721: 1684: 1639: 1602: 1557: 1498: 1470: 1358: 1306: 1207: 1145: 1100: 1081: 1044: 937: 851: 746: 412: 279:subcascade breakdown threshold energy 1917:Journal of Physics: Condensed Matter 1015: 980: 497: 469: 361: 134:and gives the atom a recoil energy. 863:Nucl. Instrum. Methods Phys. Res. B 814: 714:Nucl. Instrum. Methods Phys. Res. B 13: 144: 14: 2262: 2217: 2223: 177:The most commonly used BCA code 2179: 1854: 1809: 1765:E. Chason; et al. (1997). 1291: 1009: 974: 931: 889: 808: 767: 2120:10.1103/PhysRevLett.101.027601 1533:10.1103/PhysRevLett.101.175503 740: 705: 654: 601: 574: 539: 528: 288:Swift heavy ion thermal spikes 259:Maxwell–Boltzmann distribution 191:binary collision approximation 163:binary collision approximation 51:downwards, and blue being low. 1: 2208:10.1016/S0168-583X(98)00139-6 2173:10.1016/S0168-583X(98)00139-6 1448:10.1103/PhysRevLett.88.165501 1298:"displacement cascade" Search 1237:10.1016/S0168-583X(99)01111-8 1038:10.1016/j.jnucmat.2014.06.007 960:10.1088/0953-8984/19/1/016207 905:Journal of Materials Research 734:10.1016/s0168-583x(01)00418-9 463: 318:threshold displacement energy 310: 206:threshold displacement energy 100:threshold displacement energy 595:10.1016/0927-0256(94)00085-q 212:Heat spikes (thermal spikes) 7: 1983:10.1103/PhysRevLett.50.1478 1938:10.1088/0953-8984/16/49/R03 1840:10.1088/0022-3727/39/13/004 1633:10.1103/PhysRevLett.82.3637 1393:10.1103/PhysRevLett.85.3648 1131:10.1103/PhysRevLett.59.1930 435: 382:loops, stacking faults, or 10: 2267: 2075:10.1103/PhysRevLett.72.364 1775:Journal of Applied Physics 1003:10.1103/PhysRevB.94.014305 883:10.1016/j.nimb.2009.03.080 512:Cambridge University Press 448:Radiation material science 331: 229:a mixture of red and blue. 18: 2038:10.1080/01418618808204681 1752:10.1080/01418618408237526 1670:10.1103/PhysRevB.47.14011 1344:10.1103/PhysRevB.49.12457 940:J. Phys.: Condens. Matter 801:10.1088/1367-2630/9/2/038 761:10.1080/10420159708211586 683:10.1103/PhysRevB.54.16683 102:of the material (tens of 2246:Condensed matter physics 2017:Philosophical Magazine A 1731:Philosophical Magazine A 1277:10.1103/PhysRevB.57.7556 1075:10.1103/PhysRev.120.1229 837:10.1103/PhysRevB.62.2825 640:10.1103/PhysRevE.57.7278 378:, ordered or disordered 322:electron–phonon coupling 57:condensed-matter physics 2099:Physical Review Letters 2054:Physical Review Letters 1962:Physical Review Letters 1694:Applied Physics Letters 1612:Physical Review Letters 1512:Physical Review Letters 1417:Physical Review Letters 1372:Physical Review Letters 1110:Physical Review Letters 568:10.1103/physrevb.9.5008 94:If the maximum atom or 896:Pronnecke, S. (1991). 774:Duvenbeck, A. (2007). 504:R. Smith, ed. (1997). 358: 230: 202:primary knock-on atoms 174: 154: 52: 925:10.1557/jmr.1991.0483 749:Rad. Eff. Def. In Sol 339: 227: 171: 152: 29: 2232:at Wikimedia Commons 1819:Journal of Physics D 1477:D. Kanjijal (2001). 1223:. 164–165: 697–704. 236:interstitial defects 116:particle accelerator 65:displacement cascade 2200:1998NIMPB.141...99P 2165:1998NIMPB.141...99P 2112:2008PhRvL.101b7601S 2067:1994PhRvL..72..364G 2030:1988PMagA..57..479J 1975:1983PhRvL..50.1478W 1930:2004JPCM...16R1491T 1924:(49): R1491–R1515. 1877:2004NatMa...3..153K 1832:2006JPhD...39.2659D 1788:1997JAP....81.6513C 1744:1984PMagA..50..667R 1707:1999ApPhL..74.2720N 1662:1993PhRvB..4714011K 1656:(21): 14011–14019. 1625:1999PhRvL..82.3637S 1580:1985ApPhA..37...37A 1525:2008PhRvL.101q5503K 1440:2002PhRvL..88p5501B 1385:2000PhRvL..85.3648T 1336:1994PhRvB..4912457M 1330:(18): 12457–12463. 1269:1998PhRvB..57.7556N 1229:2000NIMPB.164..697A 1175:1998Natur.395...56M 1123:1987PhRvL..59.1930D 1090:Solid State Physics 1067:1960PhRv..120.1229G 1030:2014JNuM..455..207S 995:2016PhRvB..94a4305L 952:2007JPCM...19a6207D 917:1991JMatR...6..483P 875:2009NIMPB.267.1830B 829:2000PhRvB..62.2825H 792:2007NJPh....9...38D 726:2001NIMPB.180..203H 675:1996PhRvB..5416683C 669:(23): 16683–16695. 632:1998PhRvE..57.7278B 560:1974PhRvB...9.5008R 493:. pp. 281–402. 487:Solid State Physics 297:electronic stopping 1588:10.1007/BF00617867 583:Comput. Mater. Sci 453:COSIRES conference 413:Other consequences 359: 346:molecular dynamics 231: 219:molecular dynamics 195:molecular dynamics 175: 155: 110:sites and produce 69:displacement spike 53: 32:molecular dynamics 2251:Radiation effects 2230:Collision cascade 2228:Media related to 1826:(13): 2659–2663. 1782:(10): 6513–6561. 1649:Physical Review B 1567:Applied Physics A 1323:Physical Review B 1263:(13): 7556–7570. 1256:Physical Review B 1117:(17): 1930–1933. 362:Damage production 301:Coulomb explosion 63:(also known as a 61:collision cascade 2258: 2227: 2212: 2211: 2183: 2177: 2176: 2146: 2140: 2139: 2093: 2087: 2086: 2048: 2042: 2041: 2011: 2005: 2004: 1994: 1956: 1950: 1949: 1911: 1905: 1904: 1885:10.1038/nmat1076 1864:Nature Materials 1858: 1852: 1851: 1813: 1807: 1806: 1804: 1798:. Archived from 1796:10.1063/1.365193 1771: 1762: 1756: 1755: 1725: 1719: 1718: 1715:10.1063/1.123948 1688: 1682: 1681: 1643: 1637: 1636: 1606: 1600: 1599: 1561: 1555: 1554: 1544: 1502: 1496: 1495: 1483: 1474: 1468: 1467: 1433: 1431:cond-mat/0103475 1411: 1405: 1404: 1362: 1356: 1355: 1313: 1304: 1295: 1289: 1288: 1250: 1241: 1240: 1214: 1205: 1204: 1194: 1158: 1149: 1143: 1142: 1104: 1098: 1097: 1085: 1079: 1078: 1048: 1042: 1041: 1013: 1007: 1006: 978: 972: 971: 935: 929: 928: 902: 893: 887: 886: 858: 849: 848: 812: 806: 805: 803: 771: 765: 764: 744: 738: 737: 709: 703: 702: 658: 652: 651: 625: 605: 599: 598: 578: 572: 571: 543: 537: 532: 526: 525: 501: 495: 494: 489:. Vol. 51. 482: 388:ion implantation 293:Swift heavy ions 73:thermal energies 38:induced by a 10 21:Kessler syndrome 2266: 2265: 2261: 2260: 2259: 2257: 2256: 2255: 2236: 2235: 2220: 2215: 2194:(1–4): 99–104. 2184: 2180: 2159:(1–4): 99–104. 2147: 2143: 2094: 2090: 2049: 2045: 2012: 2008: 1957: 1953: 1912: 1908: 1859: 1855: 1814: 1810: 1802: 1769: 1763: 1759: 1726: 1722: 1689: 1685: 1644: 1640: 1607: 1603: 1562: 1558: 1508: 1503: 1499: 1487:Current Science 1481: 1475: 1471: 1412: 1408: 1379:(17): 3648–51. 1363: 1359: 1319: 1314: 1307: 1296: 1292: 1251: 1244: 1215: 1208: 1156: 1150: 1146: 1105: 1101: 1092:. Vol. 2. 1086: 1082: 1054:Physical Review 1049: 1045: 1014: 1010: 979: 975: 936: 932: 900: 894: 890: 859: 852: 813: 809: 772: 768: 745: 741: 710: 706: 659: 655: 623:physics/9901054 606: 602: 579: 575: 544: 540: 533: 529: 522: 502: 498: 483: 470: 466: 442:Particle shower 438: 427:ion beam mixing 415: 364: 334: 313: 290: 248: 214: 187:stopping powers 147: 145:Linear cascades 24: 17: 12: 11: 5: 2264: 2254: 2253: 2248: 2234: 2233: 2219: 2218:External links 2216: 2214: 2213: 2178: 2141: 2088: 2061:(3): 364–367. 2043: 2006: 1951: 1906: 1853: 1808: 1805:on 2010-06-23. 1757: 1720: 1683: 1638: 1601: 1556: 1519:(17): 175503. 1506: 1497: 1469: 1424:(16): 165501. 1406: 1357: 1317: 1305: 1290: 1242: 1206: 1144: 1099: 1096:. p. 307. 1094:Academic Press 1080: 1043: 1018:J. Nucl. Mater 1008: 973: 930: 888: 850: 807: 766: 739: 704: 653: 600: 573: 538: 527: 520: 496: 491:Academic Press 467: 465: 462: 461: 460: 458:REI conference 455: 450: 445: 437: 434: 414: 411: 363: 360: 333: 330: 312: 309: 289: 286: 270:stopping power 246: 213: 210: 159:stopping power 146: 143: 139:stopping power 45:kinetic energy 15: 9: 6: 4: 3: 2: 2263: 2252: 2249: 2247: 2244: 2243: 2241: 2231: 2226: 2222: 2221: 2209: 2205: 2201: 2197: 2193: 2189: 2182: 2174: 2170: 2166: 2162: 2158: 2154: 2153: 2145: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2106:(2): 027601. 2105: 2101: 2100: 2092: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2055: 2047: 2039: 2035: 2031: 2027: 2023: 2019: 2018: 2010: 2002: 1998: 1993: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1963: 1955: 1947: 1943: 1939: 1935: 1931: 1927: 1923: 1919: 1918: 1910: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1865: 1857: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1820: 1812: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1776: 1768: 1761: 1753: 1749: 1745: 1741: 1737: 1733: 1732: 1724: 1716: 1712: 1708: 1704: 1700: 1696: 1695: 1687: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1650: 1642: 1634: 1630: 1626: 1622: 1618: 1614: 1613: 1605: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1568: 1560: 1552: 1548: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1513: 1501: 1493: 1489: 1488: 1480: 1473: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1432: 1427: 1423: 1419: 1418: 1410: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1373: 1368: 1361: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1324: 1312: 1310: 1303: 1299: 1294: 1286: 1282: 1278: 1274: 1270: 1266: 1262: 1258: 1257: 1249: 1247: 1238: 1234: 1230: 1226: 1222: 1221: 1213: 1211: 1202: 1198: 1193: 1192:2027.42/62853 1188: 1184: 1183:10.1038/25698 1180: 1176: 1172: 1168: 1164: 1163: 1155: 1148: 1140: 1136: 1132: 1128: 1124: 1120: 1116: 1112: 1111: 1103: 1095: 1091: 1084: 1076: 1072: 1068: 1064: 1060: 1056: 1055: 1047: 1039: 1035: 1031: 1027: 1023: 1019: 1012: 1004: 1000: 996: 992: 989:(1): 024305. 988: 984: 977: 969: 965: 961: 957: 953: 949: 946:(1): 016207. 945: 941: 934: 926: 922: 918: 914: 910: 906: 899: 892: 884: 880: 876: 872: 868: 864: 857: 855: 846: 842: 838: 834: 830: 826: 822: 818: 811: 802: 797: 793: 789: 785: 781: 777: 770: 762: 758: 754: 750: 743: 735: 731: 727: 723: 719: 715: 708: 700: 696: 692: 688: 684: 680: 676: 672: 668: 664: 657: 649: 645: 641: 637: 633: 629: 624: 619: 615: 611: 604: 596: 592: 588: 584: 577: 569: 565: 561: 557: 553: 549: 542: 536: 535:SRIM web site 531: 523: 521:0-521-44022-X 517: 513: 509: 508: 500: 492: 488: 481: 479: 477: 475: 473: 468: 459: 456: 454: 451: 449: 446: 443: 440: 439: 433: 430: 428: 422: 420: 410: 406: 404: 401: 400:semiconductor 395: 393: 392:silicon chips 389: 385: 381: 377: 376:Frenkel pairs 373: 372:point defects 369: 357:loops remain. 356: 352: 351:point defects 347: 343: 338: 329: 327: 323: 319: 308: 306: 302: 298: 294: 285: 282: 280: 274: 271: 267: 262: 260: 256: 255:thermal spike 252: 243: 241: 237: 226: 222: 220: 209: 207: 203: 198: 196: 192: 188: 184: 180: 170: 166: 164: 160: 151: 142: 140: 135: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 92: 90: 86: 82: 78: 74: 70: 66: 62: 58: 50: 46: 41: 37: 33: 28: 22: 2191: 2187: 2181: 2156: 2150: 2144: 2103: 2097: 2091: 2058: 2052: 2046: 2021: 2015: 2009: 1969:(19): 1478. 1966: 1960: 1954: 1921: 1915: 1909: 1871:(3): 153–7. 1868: 1862: 1856: 1823: 1817: 1811: 1800:the original 1779: 1773: 1760: 1735: 1729: 1723: 1701:(18): 2720. 1698: 1692: 1686: 1653: 1647: 1641: 1619:(18): 3637. 1616: 1610: 1604: 1574:(1): 37–46. 1571: 1565: 1559: 1516: 1510: 1500: 1491: 1485: 1472: 1421: 1415: 1409: 1376: 1370: 1360: 1327: 1321: 1293: 1260: 1254: 1218: 1169:(6697): 56. 1166: 1160: 1147: 1114: 1108: 1102: 1089: 1083: 1058: 1052: 1046: 1024:(1–3): 207. 1021: 1017: 1011: 986: 983:Phys. Rev. B 982: 976: 943: 939: 933: 908: 904: 891: 869:(10): 1830. 866: 862: 820: 817:Phys. Rev. B 816: 810: 783: 779: 769: 755:(1–4): 425. 752: 748: 742: 720:(1–4): 203. 717: 713: 707: 666: 663:Phys. Rev. B 662: 656: 613: 610:Phys. Rev. E 609: 603: 586: 582: 576: 551: 548:Phys. Rev. B 547: 541: 530: 506: 499: 486: 431: 423: 416: 407: 403:quantum well 396: 365: 314: 291: 283: 278: 275: 263: 254: 250: 244: 232: 215: 199: 176: 156: 136: 93: 68: 64: 60: 54: 30:A classical 1992:10945/44927 1302:YouTube.com 1061:(4): 1229. 823:(4): 2825. 780:New J. Phys 616:(6): 7278. 380:dislocation 355:dislocation 2240:Categories 2024:(3): 479. 1738:(5): 667. 911:(3): 483. 589:(4): 448. 554:(12): 12. 464:References 419:sputtering 390:doping of 342:channeling 311:Time scale 305:ion tracks 251:heat spike 77:collisions 2001:120756958 1946:123658664 1542:10440/862 1201:204996702 968:122777435 845:123595658 786:(2): 38. 384:amorphous 374:such as 240:vacancies 221:methods. 2136:15787700 2128:18764228 2083:10056412 1901:11422662 1893:14991016 1848:55536038 1678:10005739 1596:94620228 1551:18999762 1464:11034531 1456:11955237 1401:11030972 1352:10010146 1285:55789148 1139:10035371 699:38579564 648:13994369 436:See also 124:electron 2196:Bibcode 2161:Bibcode 2108:Bibcode 2063:Bibcode 2026:Bibcode 1971:Bibcode 1926:Bibcode 1873:Bibcode 1828:Bibcode 1784:Bibcode 1740:Bibcode 1703:Bibcode 1658:Bibcode 1621:Bibcode 1576:Bibcode 1521:Bibcode 1494:: 1560. 1436:Bibcode 1381:Bibcode 1332:Bibcode 1265:Bibcode 1225:Bibcode 1171:Bibcode 1119:Bibcode 1063:Bibcode 1026:Bibcode 991:Bibcode 948:Bibcode 913:Bibcode 871:Bibcode 825:Bibcode 788:Bibcode 722:Bibcode 691:9985796 671:Bibcode 628:Bibcode 556:Bibcode 332:Effects 120:neutron 112:defects 108:lattice 2134:  2126:  2081:  1999:  1944:  1899:  1891:  1846:  1676:  1594:  1549:  1462:  1454:  1399:  1350:  1283:  1199:  1162:Nature 1137:  966:  843:  697:  689:  646:  518:  368:defect 326:defect 132:decays 128:photon 89:liquid 2132:S2CID 1997:S2CID 1942:S2CID 1897:S2CID 1844:S2CID 1803:(PDF) 1770:(PDF) 1592:S2CID 1482:(PDF) 1460:S2CID 1426:arXiv 1281:S2CID 1197:S2CID 1157:(PDF) 964:S2CID 901:(PDF) 841:S2CID 695:S2CID 644:S2CID 618:arXiv 85:solid 81:atoms 67:or a 2124:PMID 2079:PMID 1889:PMID 1674:PMID 1547:PMID 1452:PMID 1397:PMID 1348:PMID 1135:PMID 687:PMID 516:ISBN 353:and 179:SRIM 59:, a 2204:doi 2192:141 2169:doi 2157:141 2116:doi 2104:101 2071:doi 2034:doi 1987:hdl 1979:doi 1934:doi 1881:doi 1836:doi 1792:doi 1748:doi 1711:doi 1666:doi 1629:doi 1584:doi 1537:hdl 1529:doi 1517:101 1509:". 1444:doi 1389:doi 1340:doi 1273:doi 1233:doi 1187:hdl 1179:doi 1167:395 1127:doi 1071:doi 1059:120 1034:doi 1022:455 999:doi 956:doi 921:doi 879:doi 867:267 833:doi 796:doi 757:doi 753:141 730:doi 718:180 679:doi 636:doi 591:doi 564:doi 253:or 193:or 183:GeV 141:). 126:or 104:eVs 96:ion 87:or 79:of 55:In 49:keV 40:keV 2242:: 2202:. 2190:. 2167:. 2155:. 2130:. 2122:. 2114:. 2102:. 2077:. 2069:. 2059:72 2057:. 2032:. 2022:57 2020:. 1995:. 1985:. 1977:. 1967:50 1965:. 1940:. 1932:. 1922:16 1920:. 1895:. 1887:. 1879:. 1867:. 1842:. 1834:. 1824:39 1822:. 1790:. 1780:81 1778:. 1772:. 1746:. 1736:50 1734:. 1709:. 1699:74 1697:. 1672:. 1664:. 1654:47 1652:. 1627:. 1617:82 1615:. 1590:. 1582:. 1572:37 1570:. 1545:. 1535:. 1527:. 1515:. 1492:80 1490:. 1484:. 1458:. 1450:. 1442:. 1434:. 1422:88 1420:. 1395:. 1387:. 1377:85 1375:. 1369:. 1346:. 1338:. 1328:49 1326:. 1308:^ 1300:, 1279:. 1271:. 1261:57 1259:. 1245:^ 1231:. 1209:^ 1195:. 1185:. 1177:. 1165:. 1159:. 1133:. 1125:. 1115:59 1113:. 1069:. 1057:. 1032:. 1020:. 997:. 987:94 985:. 962:. 954:. 944:17 942:. 919:. 907:. 903:. 877:. 865:. 853:^ 839:. 831:. 821:62 819:. 794:. 782:. 778:. 751:. 728:. 716:. 693:. 685:. 677:. 667:54 665:. 642:. 634:. 626:. 614:57 612:. 585:. 562:. 550:. 514:. 510:. 471:^ 429:. 394:. 266:Cu 242:. 122:, 91:. 75:) 36:Au 2210:. 2206:: 2198:: 2175:. 2171:: 2163:: 2138:. 2118:: 2110:: 2085:. 2073:: 2065:: 2040:. 2036:: 2028:: 2003:. 1989:: 1981:: 1973:: 1948:. 1936:: 1928:: 1903:. 1883:: 1875:: 1869:3 1850:. 1838:: 1830:: 1794:: 1786:: 1754:. 1750:: 1742:: 1717:. 1713:: 1705:: 1680:. 1668:: 1660:: 1635:. 1631:: 1623:: 1598:. 1586:: 1578:: 1553:. 1539:: 1531:: 1523:: 1507:2 1466:. 1446:: 1438:: 1428:: 1403:. 1391:: 1383:: 1354:. 1342:: 1334:: 1318:2 1287:. 1275:: 1267:: 1239:. 1235:: 1227:: 1203:. 1189:: 1181:: 1173:: 1141:. 1129:: 1121:: 1077:. 1073:: 1065:: 1040:. 1036:: 1028:: 1005:. 1001:: 993:: 970:. 958:: 950:: 927:. 923:: 915:: 909:6 885:. 881:: 873:: 847:. 835:: 827:: 804:. 798:: 790:: 784:9 763:. 759:: 736:. 732:: 724:: 701:. 681:: 673:: 650:. 638:: 630:: 620:: 597:. 593:: 587:3 570:. 566:: 558:: 552:9 524:. 247:B 23:.

Index

Kessler syndrome

molecular dynamics
Au
keV
kinetic energy
keV
condensed-matter physics
thermal energies
collisions
atoms
solid
liquid
ion
threshold displacement energy
eVs
lattice
defects
particle accelerator
neutron
electron
photon
decays
stopping power

stopping power
binary collision approximation

SRIM
GeV

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑