Knowledge

Complete quadrangle

Source đź“ť

170: 20: 232:
reformed mathematical foundations in 1847 with the complete quadrangle when he noted that a "harmonic property" could be based on concomitants of the quadrangle: When each pair of opposite sides of the quadrangle intersect on a line, then the diagonals intersect the line at
198:
As systems of points and lines in which all points belong to the same number of lines and all lines contain the same number of points, the complete quadrangle and the complete quadrilateral both form
110:. For points and lines in the Euclidean plane, the diagonal points cannot lie on a single line, and the diagonals cannot have a single point of triple crossing. Due to the discovery of the 222:
of a complete quadrangle is a complete quadrilateral, and vice versa. For any two complete quadrangles, or any two complete quadrilaterals, there is a unique
102:
of the quadrangle. Similarly, among the six points of a complete quadrilateral there are three pairs of points that are not already connected by lines; the
241:. Through perspectivity and projectivity, the harmonic property is stable. Developments of modern geometry and algebra note the influence of von Staudt on 776: 584: 261:, the four lines of a complete quadrilateral must not include any pairs of parallel lines, so that every pair of lines has a crossing point. 218:), where the numbers in this notation refer to the numbers of points, lines per point, lines, and points per line of the configuration. The 459: 291:
of these same four triangles meet in a point. In addition, the three circles having the diagonals as diameters belong to a common
397:'s animation of the same results, the pencil can be hyperbolic instead of elliptic, in which case the circles do not intersect. 745: 838: 791: 735: 577: 705: 283:
to all four lines of the quadrilateral. Any three of the lines of the quadrilateral form the sides of a triangle; the
491: 436: 843: 287:
of the four triangles formed in this way lie on a second line, perpendicular to the one through the midpoints. The
781: 812: 755: 570: 518: 234: 219: 179: 64: 237:
positions. The four points on the line deriving from the sides and diagonals of the quadrangle are called a
833: 786: 771: 508: 513: 267:
describes several additional properties of complete quadrilaterals that involve metric properties of the
271:, rather than being purely projective. The midpoints of the diagonals are collinear, and (as proved by 75: 223: 157:
by Halsted. Opposite connectors cross at a codot. The configuration of the complete quadrangle is a
687: 199: 720: 393:
Wells writes incorrectly that the three circles meet in a pair of points, but, as can be seen in
299: 98:
The six lines of a complete quadrangle meet in pairs to form three additional points called the
74:
is a system of four lines, no three of which pass through the same point, and the six points of
483: 730: 530: 807: 675: 548: 740: 710: 650: 628: 470:
Historical Math Monographs. See in particular tetrastigm, page 85, and tetragram, page 90.
133:
A set of contracted expressions for the parts of a complete quadrangle were introduced by
8: 750: 715: 593: 526: 394: 364: 40: 202:; in the notation of projective configurations, the complete quadrangle is written as (4 725: 645: 476: 467: 36: 545: 487: 432: 292: 655: 607: 446: 424: 370: 320: 52: 48: 268: 258: 229: 115: 60: 638: 303: 238: 827: 360: 325: 134: 70: 24: 633: 535: 288: 272: 103: 56: 315: 284: 246: 242: 32: 700: 665: 612: 562: 111: 553: 122:, some authors have augmented the axioms of projective geometry with 119: 280: 169: 19: 276: 543: 478:
The Penguin Dictionary of Curious and Interesting Geometry
118:
in which the diagonal points of a complete quadrangle are
295:
the axis of which is the line through the orthocenters.
47:
is a system of geometric objects consisting of any four
16:
Geometric figure made of 4 points connected by 6 lines
226:
taking one of the two configurations into the other.
78:
of these lines. The complete quadrangle was called a
302:
of the triangles of a complete quadrilateral form a
130:
collinear, while others have been less restrictive.
475: 825: 145:. The lines of the projective space are called 23:A complete quadrangle (at left) and a complete 461:An Elementary Treatise on Modern Pure Geometry 210:) and the complete quadrilateral is written (6 153:. The "diagonal lines" of Coxeter are called 86:, and the complete quadrilateral was called a 578: 90:; those terms are occasionally still used. 585: 571: 445: 344: 137:: He calls the vertices of the quadrangle 592: 410:, Dover Publications, 2007 (orig. 1960). 168: 164: 149:, and in the quadrangle they are called 18: 457: 423: 381: 348: 252: 83: 826: 400: 275:) also collinear with the center of a 566: 544: 525: 473: 464:. London, New York: Macmillan and Co. 264: 63:connecting the six pairs of points. 141:, and the diagonal points he calls 13: 451:Foundations of Projective Geometry 106:connecting these pairs are called 14: 855: 501: 453:. W. A. Benjamin. pp. 53–6. 736:Cremona–Richmond configuration 387: 375: 354: 338: 173:KLMN is a complete quadrangle; 1: 417: 366:Synthetic Projective Geometry 235:projective harmonic conjugate 180:projective harmonic conjugate 126:that the diagonal points are 813:Kirkman's schoolgirl problem 746:GrĂĽnbaum–Rigby configuration 531:"The Complete Quadrilateral" 93: 7: 706:Möbius–Kantor configuration 514:Encyclopedia of Mathematics 429:Projective Geometry, 2nd ed 408:Advanced Euclidean Geometry 309: 10: 860: 792:Bruck–Ryser–Chowla theorem 839:Configurations (geometry) 800: 782:SzemerĂ©di–Trotter theorem 764: 686: 621: 600: 224:projective transformation 200:projective configurations 772:Sylvester–Gallai theorem 458:Lachlan, Robert (1893). 331: 55:, no three of which are 844:Types of quadrilaterals 777:De Bruijn–ErdĹ‘s theorem 721:Desargues configuration 509:"Quadrangle, complete" 195: 28: 808:Design of experiments 549:"Complete Quadrangle" 474:Wells, David (1991). 172: 165:Projective properties 22: 741:Kummer configuration 711:Pappus configuration 594:Incidence structures 527:Bogomolny, Alexander 482:. Penguin. pp.  253:Euclidean properties 834:Projective geometry 751:Klein configuration 731:Schläfli double six 716:Hesse configuration 696:Complete quadrangle 431:. Springer-Verlag. 406:Johnson, Roger A., 395:Alexander Bogomolny 155:opposite connectors 45:complete quadrangle 41:projective geometry 726:Reye configuration 546:Weisstein, Eric W. 468:Cornell University 196: 39:and especially in 37:incidence geometry 35:, specifically in 29: 821: 820: 447:Hartshorne, Robin 425:Coxeter, H. S. M. 293:pencil of circles 59:, and of the six 851: 656:Projective plane 608:Incidence matrix 587: 580: 573: 564: 563: 559: 558: 540: 522: 497: 481: 465: 454: 442: 411: 404: 398: 391: 385: 379: 373: 371:Internet Archive 358: 352: 342: 321:Nine-point conic 186:with respect to 57:on a common line 859: 858: 854: 853: 852: 850: 849: 848: 824: 823: 822: 817: 796: 760: 682: 617: 613:Incidence graph 596: 591: 507: 504: 494: 439: 420: 415: 414: 405: 401: 392: 388: 380: 376: 359: 355: 345:Hartshorne 1967 343: 339: 334: 312: 269:Euclidean plane 259:Euclidean plane 255: 230:Karl von Staudt 220:projective dual 217: 213: 209: 205: 174: 167: 116:finite geometry 100:diagonal points 96: 17: 12: 11: 5: 857: 847: 846: 841: 836: 819: 818: 816: 815: 810: 804: 802: 798: 797: 795: 794: 789: 787:Beck's theorem 784: 779: 774: 768: 766: 762: 761: 759: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 692: 690: 688:Configurations 684: 683: 681: 680: 679: 678: 670: 669: 668: 660: 659: 658: 653: 643: 642: 641: 639:Steiner system 636: 625: 623: 619: 618: 616: 615: 610: 604: 602: 601:Representation 598: 597: 590: 589: 582: 575: 567: 561: 560: 541: 523: 503: 502:External links 500: 499: 498: 492: 471: 455: 443: 437: 419: 416: 413: 412: 399: 386: 374: 369:, page 14 via 353: 336: 335: 333: 330: 329: 328: 323: 318: 311: 308: 254: 251: 239:harmonic range 215: 211: 207: 203: 166: 163: 95: 92: 84:Lachlan (1893) 15: 9: 6: 4: 3: 2: 856: 845: 842: 840: 837: 835: 832: 831: 829: 814: 811: 809: 806: 805: 803: 799: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 769: 767: 763: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 693: 691: 689: 685: 677: 674: 673: 671: 667: 664: 663: 662:Graph theory 661: 657: 654: 652: 649: 648: 647: 644: 640: 637: 635: 632: 631: 630: 629:Combinatorics 627: 626: 624: 620: 614: 611: 609: 606: 605: 603: 599: 595: 588: 583: 581: 576: 574: 569: 568: 565: 556: 555: 550: 547: 542: 538: 537: 532: 528: 524: 520: 516: 515: 510: 506: 505: 495: 493:0-14-011813-6 489: 485: 480: 479: 472: 469: 463: 462: 456: 452: 448: 444: 440: 438:0-387-96532-7 434: 430: 426: 422: 421: 409: 403: 396: 390: 383: 378: 372: 368: 367: 362: 361:G. B. Halsted 357: 351:, p. 15. 350: 346: 341: 337: 327: 326:Quadrilateral 324: 322: 319: 317: 314: 313: 307: 305: 301: 300:polar circles 296: 294: 290: 289:circumcircles 286: 282: 278: 274: 270: 266: 262: 260: 250: 248: 244: 240: 236: 231: 227: 225: 221: 201: 193: 189: 185: 181: 177: 171: 162: 160: 156: 152: 148: 144: 140: 136: 135:G. B. Halsted 131: 129: 125: 121: 117: 113: 109: 105: 104:line segments 101: 91: 89: 85: 81: 77: 73: 72: 71:quadrilateral 66: 62: 58: 54: 50: 46: 42: 38: 34: 26: 25:quadrilateral 21: 801:Applications 695: 634:Block design 552: 536:Cut-the-Knot 534: 512: 477: 460: 450: 428: 407: 402: 389: 384:, p. 51 382:Coxeter 1987 377: 365: 356: 349:Coxeter 1987 340: 297: 285:orthocenters 273:Isaac Newton 265:Wells (1991) 263: 256: 228: 197: 191: 187: 183: 175: 158: 154: 150: 146: 142: 138: 132: 127: 124:Fano's axiom 123: 107: 99: 97: 87: 79: 76:intersection 68: 44: 30: 672:Statistics 316:Newton line 247:Felix Klein 243:Mario Pieri 33:mathematics 27:(at right). 828:Categories 701:Fano plane 666:Hypergraph 466:Link from 418:References 151:connectors 112:Fano plane 80:tetrastigm 651:Incidence 554:MathWorld 519:EMS Press 159:tetrastim 147:straights 120:collinear 108:diagonals 94:Diagonals 88:tetragram 69:complete 765:Theorems 676:Blocking 646:Geometry 449:(1967). 427:(1987). 310:See also 306:system. 279:that is 521:, 2001 363:(1906) 281:tangent 257:In the 178:is the 622:Fields 490:  435:  304:coaxal 143:codots 65:Dually 49:points 484:35–36 332:Notes 277:conic 61:lines 53:plane 51:in a 756:Dual 488:ISBN 433:ISBN 298:The 245:and 190:and 139:dots 114:, a 67:, a 43:, a 182:of 128:not 82:by 31:In 830:: 551:. 533:. 529:. 517:, 511:, 486:. 347:; 249:. 161:. 586:e 579:t 572:v 557:. 539:. 496:. 441:. 216:3 214:4 212:2 208:2 206:6 204:3 194:. 192:B 188:A 184:C 176:D

Index


quadrilateral
mathematics
incidence geometry
projective geometry
points
plane
on a common line
lines
Dually
quadrilateral
intersection
Lachlan (1893)
line segments
Fano plane
finite geometry
collinear
G. B. Halsted

projective harmonic conjugate
projective configurations
projective dual
projective transformation
Karl von Staudt
projective harmonic conjugate
harmonic range
Mario Pieri
Felix Klein
Euclidean plane
Wells (1991)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑