Knowledge

Electrical conductor

Source 📝

31: 55: 964: 1445:
Organic compounds such as octane, which has 8 carbon atoms and 18 hydrogen atoms, cannot conduct electricity. Oils are hydrocarbons, since carbon has the property of tetracovalency and forms covalent bonds with other elements such as hydrogen, since it does not lose or gain electrons, thus does not
1235:
is essentially a lattice vibration, or rather a small, harmonic kinetic movement of the atoms of the material. Much like the shaking of a pinball machine, phonons serve to disrupt the path of electrons, causing them to scatter. This electron scattering will decrease the number of electron collisions
1230:
specific to the material. Such an expansion (or contraction) will change the geometry of the conductor and therefore its characteristic resistance. However, this effect is generally small, on the order of 10. An increase in temperature will also increase the number of phonons generated within the
1493:
it can carry, is related to its electrical resistance: a lower-resistance conductor can carry a larger value of current. The resistance, in turn, is determined by the material the conductor is made from (as described above) and the conductor's size. For a given material, conductors with a larger
1225:
Aside from the geometry of the wire, temperature also has a significant effect on the efficacy of conductors. Temperature affects conductors in two main ways, the first is that materials may expand under the application of heat. The amount that the material will expand is governed by the
1433:
than the brass materials used for connectors causes connections to loosen. Aluminum can also "creep", slowly deforming under load, which also loosens connections. These effects can be mitigated with suitably designed connectors and extra care in installation, but they have made
1426:. Although only 61% of the conductivity of copper by cross-sectional area, its lower density makes it twice as conductive by mass. As aluminum is roughly one-third the cost of copper by weight, the economic advantages are considerable when large conductors are required. 986:
has lower resistance than an otherwise-identical thin copper wire. Also, for a given material, the resistance is proportional to the length; for example, a long copper wire has higher resistance than an otherwise-identical short copper wire. The resistance
1081: 1142:) of the material, measured in ohm-metres (Ω·m). The resistivity and conductivity are proportionality constants, and therefore depend only on the material the wire is made of, not the geometry of the wire. Resistivity and conductivity are 1446:
form ions. Covalent bonds are simply the sharing of electrons. Hence, there is no separation of ions when electricity is passed through it. Liquids made of compounds with only covalent bonds cannot conduct electricity. Certain organic
981:
of a given conductor depends on the material it is made of, and on its dimensions. For a given material, the resistance is inversely proportional to the cross-sectional area. For example, a thick copper
1010: 1206:
cross-section in which current actually flows, so the resistance is higher than expected. Similarly, if two conductors are near each other carrying AC current, their resistances increase due to the
1505:
insulation that is only rated to operate to about 60 Â°C, therefore, the current in such wires must be limited so that it never heats the copper conductor above 60 Â°C, causing a risk of
1187:
is totally uniform in the conductor, which is not always true in practical situation. However, this formula still provides a good approximation for long thin conductors such as wires.
1893: 1005: 932:
of conduction describes this process more rigorously. This momentum transfer model makes metal an ideal choice for a conductor; metals, characteristically, possess a delocalized
1872: 1178: 1104: 1429:
The disadvantages of aluminum wiring lie in its mechanical and chemical properties. It readily forms an insulating oxide, making connections heat up. Its larger
1469:
Wires are measured by their cross sectional area. In many countries, the size is expressed in square millimetres. In North America, conductors are measured by
612: 585: 597: 1806: 1358:, although ultra-pure copper can slightly exceed 101% IACS. The main grade of copper used for electrical applications, such as building wire, 1396:
is 6% more conductive than copper, but due to cost it is not practical in most cases. However, it is used in specialized equipment, such as
920:
neighbor, and on and on until a particle is nudged into the consumer, thus powering it. Essentially what is occurring is a long chain of
1501:, most conductors in the real world are operated far below this limit, however. For example, household wiring is usually insulated with 1888: 848: 617: 1869: 627: 1695: 1245: 1537:. If the resulting electric current is in a different direction from the applied electric field, the material is said to be an 1497:
For bare conductors, the ultimate limit is the point at which power lost to resistance causes the conductor to melt. Aside from
1351: 452: 978: 972: 467: 462: 89: 477: 1207: 1781: 79: 347: 1430: 1562: 262: 1745: 1076:{\displaystyle {\begin{aligned}R&=\rho {\frac {\ell }{A}},\\G&=\sigma {\frac {A}{\ell }}.\end{aligned}}} 1913: 841: 607: 84: 1227: 622: 327: 939:
As discussed above, electrons are the primary mover in metals; however, other devices such as the cationic
487: 227: 94: 217: 1603: 1423: 1419: 780: 655: 552: 527: 447: 955:
are non-conducting materials with few mobile charges that support only insignificant electric currents.
1576: 1550: 280: 17: 1367: 1149: 834: 795: 322: 312: 252: 247: 187: 1404:
losses at high frequencies. Famously, 14,700 short tons (13,300 t) of silver on loan from the
916:). Instead, the charged particle simply needs to nudge its neighbor a finite amount, who will nudge 1710: 1435: 1255: 332: 765: 267: 1685: 1343: 1123: 952: 645: 172: 162: 157: 1350:
copper is the international standard to which all other electrical conductors are compared; the
770: 740: 1494:
cross-sectional area have less resistance than conductors with a smaller cross-sectional area.
1405: 1347: 1143: 1135: 866: 592: 362: 137: 1600: 1595: 1219: 944: 908:, one charged particle does not need to travel from the component producing the current (the 690: 377: 367: 317: 307: 1908: 1089: 815: 715: 680: 432: 297: 197: 182: 936:
which gives the electrons enough mobility to collide and thus affect a momentum transfer.
54: 8: 1470: 1191: 775: 755: 750: 557: 542: 427: 397: 292: 222: 1615: 1592: 1502: 1383: 1333: 1214:, these effects are significant for large conductors carrying large currents, such as 905: 650: 390: 192: 152: 1386:(CW008A or ASTM designation C10100) may be used. Because of its ease of connection by 472: 1716: 1668: 1498: 1211: 710: 1690: 1680: 1530: 1490: 1325: 1251: 948: 933: 882: 810: 725: 685: 675: 562: 517: 500: 417: 352: 122: 46: 27:
Object or material which allows the flow of electric charge with little energy loss
1457:
is not an electrical conductor, even a small portion of ionic impurities, such as
1876: 1184: 1180:. Resistivity is a measure of the material's ability to oppose electric current. 925: 913: 878: 745: 670: 665: 532: 407: 372: 232: 132: 1390:
or clamping, copper is still the most common choice for most light-gauge wires.
785: 1526: 1359: 1317: 1127: 1119: 909: 705: 700: 522: 412: 337: 287: 237: 210: 167: 142: 112: 105: 34:
Overhead conductors carry electric power from generating stations to customers.
30: 1902: 1785: 1705: 1474: 1321: 894: 820: 805: 790: 730: 442: 357: 342: 257: 242: 147: 1447: 1439: 1131: 1115: 800: 695: 660: 602: 537: 457: 422: 302: 177: 1700: 1401: 1313: 1195: 940: 929: 720: 572: 402: 64: 1894:
The discovery of conductors and insulators by Gray, Dufay and Franklin.
1721: 1514: 999:
of a conductor of uniform cross section, therefore, can be computed as
963: 437: 1397: 1387: 1236:
and therefore will decrease the total amount of current transferred.
760: 735: 547: 69: 1486: 1415: 1409: 1329: 967:
A piece of resistive material with electrical contacts on both ends
921: 890: 874: 512: 507: 127: 1222:, or large power cables carrying more than a few hundred amperes. 1198:
inhibits current flow near the center of the conductor. Then, the
1379: 1375: 889:
are common electrical conductors. The flow of negatively charged
862: 482: 1412:
magnets during World War II due to wartime shortages of copper.
1510: 1393: 1363: 1339: 1232: 1215: 567: 74: 1454: 1309: 1107: 886: 1506: 1458: 1374:
designation C100140). If high conductivity copper must be
1371: 983: 898: 1862:
American Society for Testing and Materials. (every year)
1713:, first to identify electrical conductors and insulators 1533:
is in the same direction, the material is said to be an
1190:
Another situation this formula is not exact for is with
1784:. Copper Development Association (U.K.). Archived from 1769:
Standard Handbook for Electrical Engineers 11th Edition
1114:
is the cross-section area of the conductor measured in
1860:
Annual Book of ASTM Standards: Electrical Conductors.
1152: 1092: 1008: 1529:
is applied to a material, and the resulting induced
1832: 1172: 1098: 1075: 1551:Classification of materials based on permittivity 1517:may allow operation at much higher temperatures. 951:of a fuel cell rely on positive charge carriers. 1900: 1889:BBC: Key Stage 2 Bitesize: Electrical Conductors 1450:, by contrast, can conduct an electric current. 893:generates electric current, positively charged 885:) in one or more directions. Materials made of 1807:"From Treasury Vault to the Manhattan Project" 1461:, can rapidly transform it into a conductor. 958: 904:In order for current to flow within a closed 842: 1868:Institution for Engineering and Technology. 1106:is the length of the conductor, measured in 1509:. Other, more expensive insulation such as 1183:This formula is not exact: It assumes the 849: 835: 53: 1782:"High conductivity coppers (electrical)" 1328:and some nonmetallic conductors such as 962: 29: 1696:Electrical resistivity and conductivity 1489:of a conductor, that is, the amount of 1382:or used in a reducing atmosphere, then 1246:Electrical resistivity and conductivity 598:Electromagnetism and special relativity 14: 1901: 1352:International Annealed Copper Standard 1239: 1480: 1368:electrolytic-tough pitch (ETP) copper 973:Electrical resistance and conductance 618:Maxwell equations in curved spacetime 1740: 1738: 1400:, and as a thin plating to mitigate 1384:oxygen-free high conductivity copper 1202:cross-section is different from the 24: 1853: 1827: 25: 1925: 1882: 1735: 1418:wire is the most common metal in 1539:anisotropic electrical conductor 1431:coefficient of thermal expansion 1833:Pioneering and historical books 1408:were used in the making of the 1173:{\displaystyle \rho =1/\sigma } 947:, or the mobile protons of the 1799: 1774: 1761: 1535:isotropic electrical conductor 1140:specific electrical resistance 13: 1: 1728: 1308:Conduction materials include 1228:thermal expansion coefficient 912:) to those consuming it (the 623:Relativistic electromagnetism 1464: 7: 1746:"Wire Sizes and Resistance" 1544: 1520: 1420:electric power transmission 897:, and positive or negative 10: 1930: 1653:high-conductivity material 1249: 1243: 1212:commercial power frequency 970: 959:Resistance and conductance 348:LiĂ©nard–Wiechert potential 1645:lossy propagation medium 1642:lossy conducting material 1627:low-conductivity material 613:Mathematical descriptions 323:Electromagnetic radiation 313:Electromagnetic induction 253:Magnetic vector potential 248:Magnetic scalar potential 1840:On Electrical Conductors 1436:aluminum building wiring 1256:Aluminum building wiring 1130:per meter (S·m), and ρ ( 924:transfer between mobile 877:that allows the flow of 873:is an object or type of 1866:IET Wiring Regulations. 1686:Charge transfer complex 1124:electrical conductivity 163:Electrostatic induction 158:Electrostatic discharge 1838:William Henry Preece. 1473:for smaller ones, and 1406:United States Treasury 1174: 1136:electrical resistivity 1100: 1077: 968: 867:electrical engineering 593:Electromagnetic tensor 35: 1914:Electrical conductors 1870:wiringregulations.net 1362:windings, cables and 1250:Further information: 1220:electrical substation 1175: 1101: 1099:{\displaystyle \ell } 1078: 966: 586:Covariant formulation 378:Synchrotron radiation 318:Electromagnetic pulse 308:Electromagnetic field 33: 1812:. American Scientist 1150: 1090: 1006: 628:Stress–energy tensor 553:Reluctance (complex) 298:Displacement current 1553: 1471:American wire gauge 1438:unpopular past the 1334:conductive polymers 1240:Conductor materials 1192:alternating current 543:Magnetomotive force 428:Electromotive force 398:Alternating current 333:Jefimenko equations 293:Cyclotron radiation 1875:2021-04-02 at the 1849:. Macmillan, 1894. 1845:Oliver Heaviside. 1616:perfect dielectric 1549: 1481:Conductor ampacity 1194:(AC), because the 1170: 1096: 1073: 1071: 969: 906:electrical circuit 391:Electrical network 228:Gauss magnetic law 193:Static electricity 153:Electric potential 36: 1847:Electrical Papers 1717:Superconductivity 1676: 1675: 1669:perfect conductor 1477:for larger ones. 1306: 1305: 1269:σ at 20 Â°C 1064: 1034: 859: 858: 558:Reluctance (real) 528:Gyrator–capacitor 473:Resonant cavities 363:Maxwell equations 16:(Redirected from 1921: 1821: 1820: 1818: 1817: 1811: 1803: 1797: 1796: 1794: 1793: 1778: 1772: 1767:Fink and Beaty, 1765: 1759: 1758: 1756: 1755: 1750: 1742: 1691:Electrical cable 1681:Bundle conductor 1660:poor dielectric 1658:high-loss medium 1634:good dielectric 1619:lossless medium 1589: 1588: 1586: 1585: 1574: 1571: 1554: 1548: 1531:electric current 1357: 1354:conductivity is 1266:ρ at 20 Â°C 1260: 1259: 1252:Copper conductor 1208:proximity effect 1179: 1177: 1176: 1171: 1166: 1105: 1103: 1102: 1097: 1082: 1080: 1079: 1074: 1072: 1065: 1057: 1035: 1027: 998: 993:and conductance 992: 949:proton conductor 934:sea of electrons 883:electric current 851: 844: 837: 518:Electric machine 501:Magnetic circuit 463:Parallel circuit 453:Network analysis 418:Electric current 353:London equations 198:Triboelectricity 188:Potential energy 57: 47:Electromagnetism 38: 37: 21: 1929: 1928: 1924: 1923: 1922: 1920: 1919: 1918: 1899: 1898: 1885: 1877:Wayback Machine 1856: 1854:Reference books 1835: 1830: 1828:Further reading 1825: 1824: 1815: 1813: 1809: 1805: 1804: 1800: 1791: 1789: 1780: 1779: 1775: 1766: 1762: 1753: 1751: 1748: 1744: 1743: 1736: 1731: 1726: 1659: 1654: 1633: 1632:low-loss medium 1628: 1618: 1582: 1575: 1572: 1568: 1561: 1560: 1558: 1557: 1547: 1523: 1483: 1467: 1355: 1318:superconductors 1258: 1248: 1242: 1185:current density 1162: 1151: 1148: 1147: 1091: 1088: 1087: 1070: 1069: 1056: 1046: 1040: 1039: 1026: 1016: 1009: 1007: 1004: 1003: 994: 988: 975: 961: 926:charge carriers 901:in some cases. 855: 826: 825: 641: 633: 632: 588: 578: 577: 533:Induction motor 503: 493: 492: 408:Current density 393: 383: 382: 373:Poynting vector 283: 281:Electrodynamics 273: 272: 268:Right-hand rule 233:Magnetic dipole 223:Biot–Savart law 213: 203: 202: 138:Electric dipole 133:Electric charge 108: 28: 23: 22: 15: 12: 11: 5: 1927: 1917: 1916: 1911: 1897: 1896: 1891: 1884: 1883:External links 1881: 1880: 1879: 1863: 1855: 1852: 1851: 1850: 1843: 1834: 1831: 1829: 1826: 1823: 1822: 1798: 1773: 1760: 1733: 1732: 1730: 1727: 1725: 1724: 1719: 1714: 1708: 1703: 1698: 1693: 1688: 1683: 1677: 1674: 1673: 1671: 1666: 1662: 1661: 1656: 1655:good conductor 1651: 1647: 1646: 1643: 1640: 1636: 1635: 1630: 1629:poor conductor 1625: 1621: 1620: 1613: 1611: 1607: 1606: 1598: 1590: 1580: 1566: 1546: 1543: 1527:electric field 1522: 1519: 1482: 1479: 1466: 1463: 1322:semiconductors 1304: 1303: 1300: 1297: 1293: 1292: 1289: 1286: 1282: 1281: 1278: 1275: 1271: 1270: 1267: 1264: 1244:Main article: 1241: 1238: 1169: 1165: 1161: 1158: 1155: 1095: 1084: 1083: 1068: 1063: 1060: 1055: 1052: 1049: 1047: 1045: 1042: 1041: 1038: 1033: 1030: 1025: 1022: 1019: 1017: 1015: 1012: 1011: 971:Main article: 960: 957: 910:current source 857: 856: 854: 853: 846: 839: 831: 828: 827: 824: 823: 818: 813: 808: 803: 798: 793: 788: 783: 778: 773: 768: 763: 758: 753: 748: 743: 738: 733: 728: 723: 718: 713: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 642: 639: 638: 635: 634: 631: 630: 625: 620: 615: 610: 608:Four-potential 605: 600: 595: 589: 584: 583: 580: 579: 576: 575: 570: 565: 560: 555: 550: 545: 540: 535: 530: 525: 523:Electric motor 520: 515: 510: 504: 499: 498: 495: 494: 491: 490: 485: 480: 478:Series circuit 475: 470: 465: 460: 455: 450: 448:Kirchhoff laws 445: 440: 435: 430: 425: 420: 415: 413:Direct current 410: 405: 400: 394: 389: 388: 385: 384: 381: 380: 375: 370: 368:Maxwell tensor 365: 360: 355: 350: 345: 340: 338:Larmor formula 335: 330: 325: 320: 315: 310: 305: 300: 295: 290: 288:Bremsstrahlung 284: 279: 278: 275: 274: 271: 270: 265: 260: 255: 250: 245: 240: 238:Magnetic field 235: 230: 225: 220: 214: 211:Magnetostatics 209: 208: 205: 204: 201: 200: 195: 190: 185: 180: 175: 170: 165: 160: 155: 150: 145: 143:Electric field 140: 135: 130: 125: 120: 115: 113:Charge density 109: 106:Electrostatics 104: 103: 100: 99: 98: 97: 92: 87: 82: 77: 72: 67: 59: 58: 50: 49: 43: 42: 41:Articles about 26: 9: 6: 4: 3: 2: 1926: 1915: 1912: 1910: 1907: 1906: 1904: 1895: 1892: 1890: 1887: 1886: 1878: 1874: 1871: 1867: 1864: 1861: 1858: 1857: 1848: 1844: 1841: 1837: 1836: 1808: 1802: 1788:on 2013-07-20 1787: 1783: 1777: 1771:, pages 17–19 1770: 1764: 1747: 1741: 1739: 1734: 1723: 1720: 1718: 1715: 1712: 1709: 1707: 1706:Overhead line 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1678: 1672: 1670: 1667: 1664: 1663: 1657: 1652: 1649: 1648: 1644: 1641: 1638: 1637: 1631: 1626: 1623: 1622: 1617: 1614: 1612: 1609: 1608: 1605: 1602: 1599: 1597: 1594: 1591: 1584: 1579: 1570: 1565: 1556: 1555: 1552: 1542: 1540: 1536: 1532: 1528: 1518: 1516: 1512: 1508: 1504: 1500: 1495: 1492: 1488: 1478: 1476: 1475:circular mils 1472: 1462: 1460: 1456: 1451: 1449: 1448:ionic liquids 1443: 1441: 1437: 1432: 1427: 1425: 1421: 1417: 1413: 1411: 1407: 1403: 1399: 1395: 1391: 1389: 1385: 1381: 1377: 1373: 1369: 1365: 1361: 1353: 1349: 1345: 1341: 1337: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1301: 1298: 1295: 1294: 1290: 1287: 1284: 1283: 1279: 1276: 1273: 1272: 1268: 1265: 1262: 1261: 1257: 1253: 1247: 1237: 1234: 1229: 1223: 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1193: 1188: 1186: 1181: 1167: 1163: 1159: 1156: 1153: 1145: 1141: 1138:(also called 1137: 1133: 1129: 1125: 1121: 1117: 1116:square metres 1113: 1109: 1093: 1066: 1061: 1058: 1053: 1050: 1048: 1043: 1036: 1031: 1028: 1023: 1020: 1018: 1013: 1002: 1001: 1000: 997: 991: 985: 980: 974: 965: 956: 954: 950: 946: 942: 937: 935: 931: 927: 923: 919: 915: 911: 907: 902: 900: 896: 892: 888: 884: 880: 876: 872: 868: 864: 852: 847: 845: 840: 838: 833: 832: 830: 829: 822: 819: 817: 814: 812: 809: 807: 804: 802: 799: 797: 794: 792: 789: 787: 784: 782: 779: 777: 774: 772: 769: 767: 764: 762: 759: 757: 754: 752: 749: 747: 744: 742: 739: 737: 734: 732: 729: 727: 724: 722: 719: 717: 714: 712: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 649: 647: 644: 643: 637: 636: 629: 626: 624: 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 594: 591: 590: 587: 582: 581: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 526: 524: 521: 519: 516: 514: 511: 509: 506: 505: 502: 497: 496: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 443:Joule heating 441: 439: 436: 434: 431: 429: 426: 424: 421: 419: 416: 414: 411: 409: 406: 404: 401: 399: 396: 395: 392: 387: 386: 379: 376: 374: 371: 369: 366: 364: 361: 359: 358:Lorentz force 356: 354: 351: 349: 346: 344: 341: 339: 336: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 296: 294: 291: 289: 286: 285: 282: 277: 276: 269: 266: 264: 261: 259: 258:Magnetization 256: 254: 251: 249: 246: 244: 243:Magnetic flux 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 215: 212: 207: 206: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 148:Electric flux 146: 144: 141: 139: 136: 134: 131: 129: 126: 124: 121: 119: 116: 114: 111: 110: 107: 102: 101: 96: 93: 91: 88: 86: 85:Computational 83: 81: 78: 76: 73: 71: 68: 66: 63: 62: 61: 60: 56: 52: 51: 48: 45: 44: 40: 39: 32: 19: 1865: 1859: 1846: 1839: 1814:. Retrieved 1801: 1790:. Retrieved 1786:the original 1776: 1768: 1763: 1752:. Retrieved 1711:Stephen Gray 1577: 1563: 1538: 1534: 1524: 1496: 1484: 1468: 1452: 1444: 1440:service drop 1428: 1424:distribution 1414: 1392: 1356:58 MS/m 1344:conductivity 1338: 1314:electrolytes 1307: 1296:Aluminum, Al 1231:material. A 1224: 1203: 1199: 1189: 1182: 1139: 1126:measured in 1111: 1085: 995: 989: 976: 938: 917: 903: 870: 860: 603:Four-current 538:Linear motor 423:Electrolysis 303:Eddy current 263:Permeability 183:Polarization 178:Permittivity 117: 1909:Electricity 1701:Fourth rail 1604:propagation 1453:While pure 1402:skin effect 1370:(CW004A or 1342:has a high 1200:geometrical 1196:skin effect 1144:reciprocals 941:electrolyte 930:Drude model 573:Transformer 403:Capacitance 328:Faraday law 123:Coulomb law 65:Electricity 1903:Categories 1816:2022-10-27 1792:2013-06-01 1754:2018-01-14 1729:References 1722:Third rail 1596:conduction 1515:fiberglass 1398:satellites 1302:3.50 × 10 1291:5.96 × 10 1285:Copper, Cu 1280:6.30 × 10 1274:Silver, Ag 979:resistance 953:Insulators 640:Scientists 488:Waveguides 468:Resistance 438:Inductance 218:AmpĂšre law 18:Conductive 1465:Wire size 1388:soldering 1299:2.82 × 10 1288:1.68 × 10 1277:1.59 × 10 1204:effective 1168:σ 1154:ρ 1134:) is the 1122:) is the 1094:ℓ 1062:ℓ 1054:σ 1029:ℓ 1024:ρ 943:(s) of a 891:electrons 871:conductor 796:Steinmetz 726:Kirchhoff 711:Jefimenko 706:Hopkinson 691:Helmholtz 686:Heaviside 548:Permeance 433:Impedance 173:Insulator 168:Gauss law 118:Conductor 95:Phenomena 90:Textbooks 70:Magnetism 1873:Archived 1842:. 1883. 1545:See also 1521:Isotropy 1487:ampacity 1416:Aluminum 1410:calutron 1348:Annealed 1330:graphite 1263:Material 922:momentum 875:material 821:Wiechert 776:Poynting 666:Einstein 513:DC motor 508:AC motor 343:Lenz law 128:Electret 1593:Current 1587:⁠ 1559:⁠ 1491:current 1364:busbars 1326:plasmas 1216:busbars 1128:siemens 945:battery 863:physics 806:Thomson 781:Ritchie 771:Poisson 756:Neumann 751:Maxwell 746:Lorentz 741:LiĂ©nard 671:Faraday 656:Coulomb 483:Voltage 458:Ohm law 80:History 1525:If an 1511:Teflon 1394:Silver 1380:brazed 1376:welded 1340:Copper 1310:metals 1233:phonon 1218:in an 1108:metres 1086:where 928:; the 879:charge 791:Singer 786:Savart 766:Ørsted 731:Larmor 721:Kelvin 676:Fizeau 646:AmpĂšre 568:Stator 75:Optics 1810:(PDF) 1749:(PDF) 1601:Field 1499:fuses 1455:water 1366:, is 1360:motor 1210:. At 1120:sigma 1118:, σ ( 914:loads 895:holes 887:metal 816:Weber 811:Volta 801:Tesla 716:Joule 701:Hertz 696:Henry 681:Gauss 563:Rotor 1507:fire 1485:The 1459:salt 1422:and 1372:ASTM 1332:and 1254:and 984:wire 977:The 899:ions 869:, a 865:and 736:Lenz 661:Davy 651:Biot 1650:≫ 1 1639:≈ 1 1624:â‰Ș 1 1513:or 1503:PVC 1378:or 1132:rho 918:its 861:In 761:Ohm 1905:: 1737:^ 1541:. 1442:. 1346:. 1336:. 1324:, 1320:, 1316:, 1312:, 1146:: 1110:, 1819:. 1795:. 1757:. 1665:∞ 1610:0 1583:â€Č 1581:r 1578:Δ 1573:/ 1569:″ 1567:r 1564:Δ 1164:/ 1160:1 1157:= 1112:A 1067:. 1059:A 1051:= 1044:G 1037:, 1032:A 1021:= 1014:R 996:G 990:R 881:( 850:e 843:t 836:v 20:)

Index

Conductive

Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity
Triboelectricity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑