Knowledge

Constructive proof

Source đź“ť

1682:
conjecture (in the former case) or a constructive proof that Goldbach's conjecture is false (in the latter case). Because no such proof is known, the quoted statement must also not have a known constructive proof. However, it is entirely possible that Goldbach's conjecture may have a constructive proof (as we do not know at present whether it does), in which case the quoted statement would have a constructive proof as well, albeit one that is unknown at present. The main practical use of weak counterexamples is to identify the "hardness" of a problem. For example, the counterexample just shown shows that the quoted statement is "at least as hard to prove" as Goldbach's conjecture. Weak counterexamples of this sort are often related to the
1645: 1476: 1434:
to show that the statement is non-constructive. This sort of counterexample shows that the statement implies some principle that is known to be non-constructive. If it can be proved constructively that the statement implies some principle that is not constructively provable, then the statement itself
1681:
Several facts about the real number α can be proved constructively. However, based on the different meaning of the words in constructive mathematics, if there is a constructive proof that "α = 0 or α ≠ 0" then this would mean that there is a constructive proof of Goldbach's
1640:{\displaystyle a(n)={\begin{cases}(1/2)^{n}&{\mbox{if every even natural number in the interval }}{\mbox{ is the sum of two primes}},\\(1/2)^{k}&{\mbox{if }}k{\mbox{ is the least even natural number in the interval }}{\mbox{ which is not the sum of two primes}}\end{cases}}} 1457:
Brouwer also provided "weak" counterexamples. Such counterexamples do not disprove a statement, however; they only show that, at present, no constructive proof of the statement is known. One weak counterexample begins by taking some unsolved problem of mathematics, such as
1160: 1320: 563:
is constructive. But a common way of simplifying Euclid's proof postulates that, contrary to the assertion in the theorem, there are only a finite number of them, in which case there is a largest one, denoted
49:), which proves the existence of a particular kind of object without providing an example. For avoiding confusion with the stronger concept that follows, such a constructive proof is sometimes called an 1055: 763: 1454:
develops this idea further by classifying various principles in terms of "how nonconstructive" they are, by showing they are equivalent to various fragments of the law of the excluded middle.
353: 839: 1219: 1002: 709: 420: 466: 278: 216: 68:
is a mathematical philosophy that rejects all proof methods that involve the existence of objects that are not explicitly built. This excludes, in particular, the use of the
1046: 926: 797: 1360: 1385: 500: 537: 655: 1022: 969: 949: 902: 882: 862: 628: 608: 1414:". However, the proof of the existence of this finite set is not constructive, and the forbidden minors are not actually specified. They are still unknown. 80:, and induces a different meaning for some terminology (for example, the term "or" has a stronger meaning in constructive mathematics than in classical). 1763:
Circles disturbed: the interplay of mathematics and narrative — Chapter 4. Hilbert on Theology and Its Discontents The Origin Myth of Modern Mathematics
1810:
Hermann, Grete (1926). "Die Frage der endlich vielen Schritte in der Theorie der Polynomideale: Unter Benutzung nachgelassener Sätze von K. Hentzelt".
107: 1438:
For example, a particular statement may be shown to imply the law of the excluded middle. An example of a Brouwerian counterexample of this type is
1181:; it merely gives a number of possibilities (in this case, two mutually exclusive possibilities) and shows that one of them—but does not show 146:
Until the end of 19th century, all mathematical proofs were essentially constructive. The first non-constructive constructions appeared with
83:
Some non-constructive proofs show that if a certain proposition is false, a contradiction ensues; consequently the proposition must be true (
1243: 1711: 1859: 1695: 1237:
proof of the theorem that a power of an irrational number to an irrational exponent may be rational gives an actual example, such as:
169:. From a philosophical point of view, the former is especially interesting, as implying the existence of a well specified object. 1155:{\displaystyle \left({\sqrt {2}}^{\sqrt {2}}\right)^{\sqrt {2}}={\sqrt {2}}^{({\sqrt {2}}\cdot {\sqrt {2}})}={\sqrt {2}}^{2}=2.} 2103: 2067: 714: 664:
The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since at least 1970:
1706: 286: 2050: 2028: 1778: 1678:
converges to some real number α, according to the usual treatment of real numbers in constructive mathematics.
1683: 1451: 115: 1737: 358:
Such a non-constructive existence theorem was such a surprise for mathematicians of that time that one of them,
805: 1874:
Dov Jarden, "A simple proof that a power of an irrational number to an irrational exponent may be rational",
1222: 1191: 974: 681: 2098: 2014: 1399: 1173:, which is not valid within a constructive proof. The non-constructive proof does not construct an example 799: 162: 65: 1462:, which asks whether every even natural number larger than 4 is the sum of two primes. Define a sequence 376: 425: 422:
which is not a constructive proof in the strong sense, as she used Hilbert's result. She proved that, if
237: 175: 506: 166: 123: 69: 135: 1500: 1459: 1423: 711:
is either rational or irrational. If it is rational, our statement is proved. If it is irrational,
61: 1447: 1439: 1027: 907: 778: 580:. Without establishing a specific prime number, this proves that one exists that is greater than 1997: 1898: 1332: 661:." This theorem can be proven by using both a constructive proof, and a non-constructive proof. 161:
The first use of non-constructive proofs for solving previously considered problems seems to be
2081: 1983: 1365: 1170: 471: 88: 84: 676:
A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational.
1855:, "The Root-2 Proof as an Example of Non-constructivity", unpublished paper, September 2014, 1450:, since the axiom of choice implies the law of excluded middle in such systems. The field of 1856: 512: 2055: 1716: 1407: 633: 8: 1880: 1395: 560: 32: 1964: 1921: 1835: 1792: 1165:
At its core, this proof is non-constructive because it relies on the statement "Either
1007: 954: 934: 887: 867: 847: 613: 593: 231: 111: 28: 1765:. Doxiadēs, Apostolos K., 1953-, Mazur, Barry. Princeton: Princeton University Press. 2063: 2046: 2024: 1956: 1839: 1827: 1796: 1784: 1774: 588: 73: 44: 1925: 576:
numbers). Either this number is prime, or all of its prime factors are greater than
119: 35:
by creating or providing a method for creating the object. This is in contrast to a
1948: 1913: 1852: 1819: 1766: 1411: 1326: 1863: 1671: 1443: 658: 127: 77: 2019: 1225:, but this fact is irrelevant to the correctness of the non-constructive proof. 767:     Dov Jarden     Jerusalem 2059: 1427: 227: 1770: 131: 2092: 1960: 1831: 1788: 1700: 370: 95:) has been accepted in some varieties of constructive mathematics, including 2038: 552: 151: 147: 96: 359: 155: 20: 1917: 1391:, 9 would be equal to 2, but the former is odd, and the latter is even. 2034: 1968: 1823: 1388: 219: 1430:, as in classical mathematics. However, it is also possible to give a 509:, by considering as unknowns the finite number of coefficients of the 1744:(Summer 2018 ed.), Metaphysics Research Lab, Stanford University 1315:{\displaystyle a={\sqrt {2}}\,,\quad b=\log _{2}9\,,\quad a^{b}=3\,.} 103: 1952: 2062:(1988) "Constructivism in Mathematics: Volume 1" Elsevier Science. 505:
This provides an algorithm, as the problem is reduced to solving a
102:
Constructive proofs can be seen as defining certified mathematical
60:
may also refer to the stronger concept of a proof that is valid in
1899:"Nonconstructive tools for proving polynomial-time decidability" 556: 1666:
is a well defined sequence, constructively. Moreover, because
1403: 1703:- author of the book "Foundations of Constructive Analysis". 1604: is the least even natural number in the interval  1633: 551:
First consider the theorem that there are an infinitude of
1169:
is rational or it is irrational"—an instance of the
118:
between proofs and programs, and such logical systems as
1897:
Fellows, Michael R.; Langston, Michael A. (1988-06-01).
1939:
Mandelkern, Mark (1989). "Brouwerian Counterexamples".
758:{\displaystyle ({\sqrt {2}}^{\sqrt {2}})^{\sqrt {2}}=2} 2085:
by Mark van Atten, Stanford Encyclopedia of Philosophy
1624: 1602: 1592: 1552: 1530: 1479: 1369: 1335: 1246: 1194: 1058: 1030: 1010: 977: 957: 937: 910: 890: 870: 850: 808: 781: 717: 684: 636: 616: 596: 515: 474: 428: 379: 289: 240: 178: 1639: 1532:if every even natural number in the interval  1379: 1354: 1314: 1213: 1154: 1040: 1016: 996: 963: 943: 920: 896: 876: 856: 833: 791: 757: 703: 649: 622: 602: 531: 494: 460: 414: 347: 272: 210: 1707:Existence theorem § 'Pure' existence results 1662:) can be determined by exhaustive search, and so 468:exist, they can be found with degrees less than 172:The Nullstellensatz may be stated as follows: If 2090: 348:{\displaystyle f_{1}g_{1}+\ldots +f_{k}g_{k}=1.} 1987:, Lecture Notes in Mathematics 95, 1969, p. 102 1896: 1735: 951:is irrational, then the theorem is true, with 1417: 864:is rational, then the theorem is true, with 841:. Either it is rational or it is irrational. 1712:Non-constructive algorithm existence proofs 1426:, a statement may be disproved by giving a 230:coefficients, which have no common complex 2045:(Fifth Edition). Oxford University Press. 1938: 1696:Constructivism (philosophy of mathematics) 1398:. A consequence of this theorem is that a 1185:one—must yield the desired example. 546: 1736:Bridges, Douglas; Palmgren, Erik (2018), 1308: 1287: 1260: 834:{\displaystyle q={\sqrt {2}}^{\sqrt {2}}} 802:, and 2 is rational. Consider the number 108:Brouwer–Heyting–Kolmogorov interpretation 2043:An Introduction to the Theory of Numbers 1626: which is not the sum of two primes 1362:is also irrational: if it were equal to 364:"this is not mathematics, it is theology 2000:", Stanford Encyclopedia of Mathematics 1809: 1760: 1742:The Stanford Encyclopedia of Philosophy 1214:{\displaystyle {\sqrt {2}}^{\sqrt {2}}} 997:{\displaystyle {\sqrt {2}}^{\sqrt {2}}} 704:{\displaystyle {\sqrt {2}}^{\sqrt {2}}} 141: 2091: 1228: 587:Now consider the theorem "there exist 584:, contrary to the original postulate. 2020:Proof in Mathematics: An Introduction 31:that demonstrates the existence of a 1435:cannot be constructively provable. 572:! + 1 (1 + the product of the first 415:{\displaystyle g_{1},\ldots ,g_{k},} 373:provided an algorithm for computing 1410:belong to a certain finite set of " 461:{\displaystyle g_{1},\ldots ,g_{k}} 273:{\displaystyle g_{1},\ldots ,g_{k}} 211:{\displaystyle f_{1},\ldots ,f_{k}} 13: 2007: 1674:with a fixed rate of convergence, 1470:) of rational numbers as follows: 1446:is non-constructive in systems of 1394:A more substantial example is the 1329:is irrational, and 3 is rational. 14: 2115: 2074: 1761:McLarty, Colin (April 15, 2008). 1684:limited principle of omniscience 1452:constructive reverse mathematics 1291: 1264: 154:, and the formal definition of 106:: this idea is explored in the 1990: 1975: 1932: 1890: 1868: 1846: 1803: 1754: 1729: 1620: 1608: 1580: 1565: 1554: is the sum of two primes 1548: 1536: 1518: 1503: 1489: 1483: 1124: 1104: 738: 718: 16:Method of proof in mathematics 1: 1740:, in Zalta, Edward N. (ed.), 1722: 1406:if, and only if, none of its 1387:, then, by the properties of 1221:is irrational because of the 234:, then there are polynomials 2104:Constructivism (mathematics) 1442:, which shows that the full 7: 1689: 1041:{\displaystyle {\sqrt {2}}} 921:{\displaystyle {\sqrt {2}}} 792:{\displaystyle {\sqrt {2}}} 568:. Then consider the number 541: 116:Curry–Howard correspondence 10: 2120: 1984:Principles of Intuitionism 1738:"Constructive Mathematics" 1418:Brouwerian counterexamples 1355:{\displaystyle \log _{2}9} 507:system of linear equations 124:intuitionistic type theory 70:law of the excluded middle 1771:10.1515/9781400842681.105 1432:Brouwerian counterexample 1380:{\displaystyle m \over n} 1223:Gelfond–Schneider theorem 495:{\displaystyle 2^{2^{n}}} 369:Twenty five years later, 163:Hilbert's Nullstellensatz 136:calculus of constructions 1424:constructive mathematics 62:constructive mathematics 1996:Mark van Atten, 2015, " 1448:constructive set theory 547:Non-constructive proofs 167:Hilbert's basis theorem 1641: 1381: 1356: 1316: 1215: 1171:law of excluded middle 1156: 1042: 1018: 998: 965: 945: 922: 898: 878: 858: 835: 793: 771:In a bit more detail: 769: 759: 705: 651: 624: 604: 533: 532:{\displaystyle g_{i}.} 496: 462: 416: 349: 274: 212: 89:principle of explosion 85:proof by contradiction 46:pure existence theorem 37:non-constructive proof 1812:Mathematische Annalen 1642: 1460:Goldbach's conjecture 1382: 1357: 1317: 1216: 1157: 1043: 1019: 999: 966: 946: 923: 899: 879: 859: 836: 794: 765:proves our statement. 760: 706: 666: 652: 650:{\displaystyle a^{b}} 625: 605: 534: 497: 463: 417: 350: 275: 213: 2082:Weak counterexamples 2056:Anne Sjerp Troelstra 2017:and A. Daoud (2011) 1998:Weak Counterexamples 1941:Mathematics Magazine 1717:Probabilistic method 1477: 1440:Diaconescu's theorem 1402:can be drawn on the 1366: 1333: 1244: 1192: 1056: 1028: 1008: 975: 955: 935: 908: 888: 868: 848: 806: 779: 715: 682: 634: 614: 594: 513: 472: 426: 377: 287: 238: 226:indeterminates with 176: 142:A historical example 2099:Mathematical proofs 1918:10.1145/44483.44491 1881:Scripta Mathematica 1396:graph minor theorem 1229:Constructive proofs 33:mathematical object 1906:Journal of the ACM 1862:2014-10-23 at the 1824:10.1007/BF01206635 1637: 1632: 1628: 1606: 1596: 1556: 1534: 1373: 1352: 1312: 1211: 1152: 1038: 1014: 994: 961: 941: 918: 894: 874: 854: 831: 789: 755: 701: 647: 620: 600: 589:irrational numbers 529: 492: 458: 412: 345: 270: 208: 112:constructive logic 93:ex falso quodlibet 58:constructive proof 39:(also known as an 25:constructive proof 2068:978-0-444-70506-8 1981:A. S. Troelstra, 1627: 1605: 1595: 1555: 1533: 1377: 1258: 1208: 1201: 1188:As it turns out, 1138: 1122: 1112: 1101: 1089: 1077: 1070: 1036: 1017:{\displaystyle b} 991: 984: 964:{\displaystyle a} 944:{\displaystyle q} 916: 897:{\displaystyle b} 877:{\displaystyle a} 857:{\displaystyle q} 828: 821: 787: 746: 734: 727: 698: 691: 623:{\displaystyle b} 603:{\displaystyle a} 74:axiom of infinity 2111: 2001: 1994: 1988: 1979: 1973: 1972: 1936: 1930: 1929: 1903: 1894: 1888: 1872: 1866: 1853:J. Roger Hindley 1850: 1844: 1843: 1807: 1801: 1800: 1758: 1752: 1751: 1750: 1749: 1733: 1646: 1644: 1643: 1638: 1636: 1635: 1629: 1625: 1607: 1603: 1597: 1593: 1588: 1587: 1575: 1557: 1553: 1535: 1531: 1526: 1525: 1513: 1412:forbidden minors 1386: 1384: 1383: 1378: 1368: 1361: 1359: 1358: 1353: 1345: 1344: 1327:square root of 2 1321: 1319: 1318: 1313: 1301: 1300: 1280: 1279: 1259: 1254: 1220: 1218: 1217: 1212: 1210: 1209: 1204: 1202: 1197: 1161: 1159: 1158: 1153: 1145: 1144: 1139: 1134: 1128: 1127: 1123: 1118: 1113: 1108: 1102: 1097: 1091: 1090: 1085: 1083: 1079: 1078: 1073: 1071: 1066: 1047: 1045: 1044: 1039: 1037: 1032: 1023: 1021: 1020: 1015: 1003: 1001: 1000: 995: 993: 992: 987: 985: 980: 970: 968: 967: 962: 950: 948: 947: 942: 927: 925: 924: 919: 917: 912: 903: 901: 900: 895: 883: 881: 880: 875: 863: 861: 860: 855: 840: 838: 837: 832: 830: 829: 824: 822: 817: 798: 796: 795: 790: 788: 783: 764: 762: 761: 756: 748: 747: 742: 736: 735: 730: 728: 723: 710: 708: 707: 702: 700: 699: 694: 692: 687: 656: 654: 653: 648: 646: 645: 629: 627: 626: 621: 609: 607: 606: 601: 538: 536: 535: 530: 525: 524: 501: 499: 498: 493: 491: 490: 489: 488: 467: 465: 464: 459: 457: 456: 438: 437: 421: 419: 418: 413: 408: 407: 389: 388: 354: 352: 351: 346: 338: 337: 328: 327: 309: 308: 299: 298: 279: 277: 276: 271: 269: 268: 250: 249: 225: 217: 215: 214: 209: 207: 206: 188: 187: 87:). However, the 2119: 2118: 2114: 2113: 2112: 2110: 2109: 2108: 2089: 2088: 2077: 2072: 2010: 2008:Further reading 2005: 2004: 1995: 1991: 1980: 1976: 1953:10.2307/2689939 1937: 1933: 1901: 1895: 1891: 1873: 1869: 1864:Wayback Machine 1851: 1847: 1808: 1804: 1781: 1759: 1755: 1747: 1745: 1734: 1730: 1725: 1692: 1672:Cauchy sequence 1654:, the value of 1631: 1630: 1623: 1601: 1591: 1589: 1583: 1579: 1571: 1562: 1561: 1551: 1529: 1527: 1521: 1517: 1509: 1496: 1495: 1478: 1475: 1474: 1444:axiom of choice 1420: 1367: 1364: 1363: 1340: 1336: 1334: 1331: 1330: 1296: 1292: 1275: 1271: 1253: 1245: 1242: 1241: 1231: 1203: 1196: 1195: 1193: 1190: 1189: 1140: 1133: 1132: 1117: 1107: 1103: 1096: 1095: 1084: 1072: 1065: 1064: 1060: 1059: 1057: 1054: 1053: 1031: 1029: 1026: 1025: 1009: 1006: 1005: 986: 979: 978: 976: 973: 972: 956: 953: 952: 936: 933: 932: 911: 909: 906: 905: 889: 886: 885: 869: 866: 865: 849: 846: 845: 823: 816: 815: 807: 804: 803: 782: 780: 777: 776: 766: 741: 737: 729: 722: 721: 716: 713: 712: 693: 686: 685: 683: 680: 679: 678: 671: 641: 637: 635: 632: 631: 615: 612: 611: 595: 592: 591: 549: 544: 520: 516: 514: 511: 510: 484: 480: 479: 475: 473: 470: 469: 452: 448: 433: 429: 427: 424: 423: 403: 399: 384: 380: 378: 375: 374: 333: 329: 323: 319: 304: 300: 294: 290: 288: 285: 284: 264: 260: 245: 241: 239: 236: 235: 223: 202: 198: 183: 179: 177: 174: 173: 144: 128:Thierry Coquand 78:axiom of choice 51:effective proof 41:existence proof 27:is a method of 17: 12: 11: 5: 2117: 2107: 2106: 2101: 2087: 2086: 2076: 2075:External links 2073: 2071: 2070: 2060:Dirk van Dalen 2053: 2032: 2011: 2009: 2006: 2003: 2002: 1989: 1974: 1931: 1912:(3): 727–739. 1889: 1867: 1845: 1818:(1): 736–788. 1802: 1779: 1753: 1727: 1726: 1724: 1721: 1720: 1719: 1714: 1709: 1704: 1698: 1691: 1688: 1648: 1647: 1634: 1622: 1619: 1616: 1613: 1610: 1600: 1590: 1586: 1582: 1578: 1574: 1570: 1567: 1564: 1563: 1560: 1550: 1547: 1544: 1541: 1538: 1528: 1524: 1520: 1516: 1512: 1508: 1505: 1502: 1501: 1499: 1494: 1491: 1488: 1485: 1482: 1428:counterexample 1419: 1416: 1376: 1372: 1351: 1348: 1343: 1339: 1323: 1322: 1311: 1307: 1304: 1299: 1295: 1290: 1286: 1283: 1278: 1274: 1270: 1267: 1263: 1257: 1252: 1249: 1230: 1227: 1207: 1200: 1163: 1162: 1151: 1148: 1143: 1137: 1131: 1126: 1121: 1116: 1111: 1106: 1100: 1094: 1088: 1082: 1076: 1069: 1063: 1050: 1049: 1035: 1013: 990: 983: 960: 940: 929: 915: 893: 873: 853: 842: 827: 820: 814: 811: 786: 754: 751: 745: 740: 733: 726: 720: 697: 690: 644: 640: 619: 599: 548: 545: 543: 540: 528: 523: 519: 487: 483: 478: 455: 451: 447: 444: 441: 436: 432: 411: 406: 402: 398: 395: 392: 387: 383: 356: 355: 344: 341: 336: 332: 326: 322: 318: 315: 312: 307: 303: 297: 293: 267: 263: 259: 256: 253: 248: 244: 205: 201: 197: 194: 191: 186: 182: 143: 140: 120:Per Martin-Löf 66:Constructivism 15: 9: 6: 4: 3: 2: 2116: 2105: 2102: 2100: 2097: 2096: 2094: 2084: 2083: 2079: 2078: 2069: 2065: 2061: 2057: 2054: 2052: 2051:0-19-853171-0 2048: 2044: 2040: 2039:Wright, E. M. 2036: 2033: 2030: 2029:0-646-54509-4 2026: 2023:. Kew Books, 2022: 2021: 2016: 2013: 2012: 1999: 1993: 1986: 1985: 1978: 1970: 1966: 1962: 1958: 1954: 1950: 1946: 1942: 1935: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1893: 1886: 1883: 1882: 1877: 1871: 1865: 1861: 1858: 1854: 1849: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1814:(in German). 1813: 1806: 1798: 1794: 1790: 1786: 1782: 1780:9781400842681 1776: 1772: 1768: 1764: 1757: 1743: 1739: 1732: 1728: 1718: 1715: 1713: 1710: 1708: 1705: 1702: 1701:Errett Bishop 1699: 1697: 1694: 1693: 1687: 1685: 1679: 1677: 1673: 1669: 1665: 1661: 1657: 1653: 1617: 1614: 1611: 1598: 1584: 1576: 1572: 1568: 1558: 1545: 1542: 1539: 1522: 1514: 1510: 1506: 1497: 1492: 1486: 1480: 1473: 1472: 1471: 1469: 1465: 1461: 1455: 1453: 1449: 1445: 1441: 1436: 1433: 1429: 1425: 1415: 1413: 1409: 1405: 1401: 1397: 1392: 1390: 1374: 1370: 1349: 1346: 1341: 1337: 1328: 1309: 1305: 1302: 1297: 1293: 1288: 1284: 1281: 1276: 1272: 1268: 1265: 1261: 1255: 1250: 1247: 1240: 1239: 1238: 1236: 1226: 1224: 1205: 1198: 1186: 1184: 1180: 1176: 1172: 1168: 1149: 1146: 1141: 1135: 1129: 1119: 1114: 1109: 1098: 1092: 1086: 1080: 1074: 1067: 1061: 1052: 1051: 1033: 1011: 988: 981: 958: 938: 930: 913: 891: 871: 851: 843: 825: 818: 812: 809: 801: 800:is irrational 784: 774: 773: 772: 768: 752: 749: 743: 731: 724: 695: 688: 677: 674: 670: 665: 662: 660: 642: 638: 617: 597: 590: 585: 583: 579: 575: 571: 567: 562: 558: 554: 553:prime numbers 539: 526: 521: 517: 508: 503: 485: 481: 476: 453: 449: 445: 442: 439: 434: 430: 409: 404: 400: 396: 393: 390: 385: 381: 372: 371:Grete Hermann 367: 365: 361: 342: 339: 334: 330: 324: 320: 316: 313: 310: 305: 301: 295: 291: 283: 282: 281: 265: 261: 257: 254: 251: 246: 242: 233: 229: 221: 203: 199: 195: 192: 189: 184: 180: 170: 168: 164: 159: 157: 153: 152:infinite sets 150:’s theory of 149: 139: 137: 133: 129: 125: 121: 117: 113: 109: 105: 100: 98: 94: 90: 86: 81: 79: 75: 71: 67: 63: 59: 54: 52: 48: 47: 42: 38: 34: 30: 26: 22: 2080: 2042: 2035:Hardy, G. H. 2018: 1992: 1982: 1977: 1944: 1940: 1934: 1909: 1905: 1892: 1884: 1879: 1875: 1870: 1848: 1815: 1811: 1805: 1762: 1756: 1746:, retrieved 1741: 1731: 1680: 1675: 1667: 1663: 1659: 1655: 1651: 1649: 1467: 1463: 1456: 1437: 1431: 1421: 1393: 1324: 1235:constructive 1234: 1232: 1187: 1182: 1178: 1174: 1166: 1164: 775:Recall that 770: 675: 672: 668: 667: 663: 586: 581: 577: 573: 569: 565: 550: 504: 368: 363: 357: 171: 160: 156:real numbers 148:Georg Cantor 145: 101: 97:intuitionism 92: 82: 57: 55: 50: 45: 40: 36: 24: 18: 2015:J. Franklin 1947:(1): 3–27. 1887::229 (1953) 1878:No. 339 in 904:both being 360:Paul Gordan 280:such that 220:polynomials 132:GĂ©rard Huet 21:mathematics 2093:Categories 1748:2019-10-25 1723:References 1389:logarithms 630:such that 104:algorithms 76:, and the 1961:0025-570X 1857:full text 1840:115897210 1832:0025-5831 1797:170826113 1789:775873004 1650:For each 1347:⁡ 1282:⁡ 1115:⋅ 443:… 394:… 362:, wrote: 314:… 255:… 193:… 1926:16587284 1860:Archived 1690:See also 1594:if  659:rational 542:Examples 2041:(1979) 2031:, ch. 4 1969:2689939 1876:Curiosa 1048:, since 669:CURIOSA 228:complex 2066:  2049:  2037:& 2027:  1967:  1959:  1924:  1838:  1830:  1795:  1787:  1777:  1408:minors 1024:being 971:being 557:Euclid 126:, and 114:, the 72:, the 1965:JSTOR 1922:S2CID 1902:(PDF) 1836:S2CID 1793:S2CID 1670:is a 1404:torus 1400:graph 1183:which 561:proof 232:zeros 29:proof 2064:ISBN 2058:and 2047:ISBN 2025:ISBN 1957:ISSN 1828:ISSN 1785:OCLC 1775:ISBN 1325:The 1177:and 1004:and 884:and 673:339. 610:and 218:are 165:and 130:and 23:, a 1949:doi 1914:doi 1820:doi 1767:doi 1422:In 1338:log 1273:log 931:If 844:If 657:is 559:'s 366:". 222:in 134:'s 122:'s 110:of 43:or 19:In 2095:: 1963:. 1955:. 1945:62 1943:. 1920:. 1910:35 1908:. 1904:. 1885:19 1834:. 1826:. 1816:95 1791:. 1783:. 1773:. 1686:. 1233:A 1150:2. 555:. 502:. 343:1. 158:. 138:. 99:. 64:. 56:A 53:. 1971:. 1951:: 1928:. 1916:: 1842:. 1822:: 1799:. 1769:: 1676:a 1668:a 1664:a 1660:n 1658:( 1656:a 1652:n 1621:] 1618:n 1615:, 1612:4 1609:[ 1599:k 1585:k 1581:) 1577:2 1573:/ 1569:1 1566:( 1559:, 1549:] 1546:n 1543:, 1540:4 1537:[ 1523:n 1519:) 1515:2 1511:/ 1507:1 1504:( 1498:{ 1493:= 1490:) 1487:n 1484:( 1481:a 1468:n 1466:( 1464:a 1375:n 1371:m 1350:9 1342:2 1310:. 1306:3 1303:= 1298:b 1294:a 1289:, 1285:9 1277:2 1269:= 1266:b 1262:, 1256:2 1251:= 1248:a 1206:2 1199:2 1179:b 1175:a 1167:q 1147:= 1142:2 1136:2 1130:= 1125:) 1120:2 1110:2 1105:( 1099:2 1093:= 1087:2 1081:) 1075:2 1068:2 1062:( 1034:2 1012:b 989:2 982:2 959:a 939:q 928:. 914:2 892:b 872:a 852:q 826:2 819:2 813:= 810:q 785:2 753:2 750:= 744:2 739:) 732:2 725:2 719:( 696:2 689:2 643:b 639:a 618:b 598:a 582:n 578:n 574:n 570:n 566:n 527:. 522:i 518:g 486:n 482:2 477:2 454:k 450:g 446:, 440:, 435:1 431:g 410:, 405:k 401:g 397:, 391:, 386:1 382:g 340:= 335:k 331:g 325:k 321:f 317:+ 311:+ 306:1 302:g 296:1 292:f 266:k 262:g 258:, 252:, 247:1 243:g 224:n 204:k 200:f 196:, 190:, 185:1 181:f 91:(

Index

mathematics
proof
mathematical object
pure existence theorem
constructive mathematics
Constructivism
law of the excluded middle
axiom of infinity
axiom of choice
proof by contradiction
principle of explosion
intuitionism
algorithms
Brouwer–Heyting–Kolmogorov interpretation
constructive logic
Curry–Howard correspondence
Per Martin-Löf
intuitionistic type theory
Thierry Coquand
GĂ©rard Huet
calculus of constructions
Georg Cantor
infinite sets
real numbers
Hilbert's Nullstellensatz
Hilbert's basis theorem
polynomials
complex
zeros
Paul Gordan

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑