Knowledge

Coulomb gap

Source 📝

989:
Other treatments of the problem include a mean-field numerical approach, as well as more recent treatments such as, also verifying the upper bound suggested above is a tight bound. Many Monte Carlo simulations were also performed, some of them in disagreement with the result quoted above. Few works
1056:
dependence is obtained, for any dimension. The observation of this is expected to occur below a certain temperature, such that the optimal energy of hopping would be smaller than the width of the Coulomb gap. The transition from Mott to so-called Efros–Shklovskii variable-range hopping has been
998:
Direct experimental confirmation of the gap has been done via tunneling experiments, which probed the single-particle DOS in two and three dimensions. The experiments clearly showed a linear gap in two dimensions, and a parabolic gap in three dimensions. Another experimental consequence of the
553:
of these would be occupied, and the others unoccupied. Of all pairs of occupied and unoccupied sites, let us choose the one where the two are closest to each other. If we assume the sites are randomly distributed in space, we find that the distance between these two sites is of order:
307:
such that all sites with energies above it are empty, and below it are full (this is the Fermi energy, but since we are dealing with a system with interactions it is not obvious a-priori that it is still well-defined). Assume we have a finite single-particle DOS at the Fermi energy,
986:. This is an upper bound for the Coulomb gap. Efros considered single electron excitations, and obtained an integro-differential equation for the DOS, showing the Coulomb gap in fact follows the above equation (i.e., the upper bound is a tight bound). 31:(DOS) of a system of interacting localized electrons. Due to the long-range Coulomb interactions, the single-particle DOS vanishes at the chemical potential, at low enough temperatures, such that thermal excitations do not wash out the gap. 990:
deal with the quantum aspect of the problem. Classical Coulomb gap in clean system without disorder is well captured within Extended Dynamical Mean Field Theory (EDMFT) supported by Metropolis Monte Carlo simulations.
106:, due to the disorder and the Coulomb interaction with all other electrons (we define this both for occupied and unoccupied sites), it is easy to see that the energy needed to move an electron from an occupied site 763: 999:
Coulomb gap is found in the conductivity of samples in the localized regime. The existence of a gap in the spectrum of excitations would result in a lowered conductivity than that predicted by
227: 832: 523: 952: 1100: 610: 984: 1054: 411: 1057:
observed experimentally for various systems. Nevertheless, no rigorous derivation of the Efros–Shklovskii conductivity formula has been put forth, and in some experiments
852: 342: 1120: 906: 879: 305: 258: 80: 551: 783: 650: 630: 472: 382: 362: 278: 144: 124: 104: 1646: 1434: 1377: 1275: 1391:
A. Mobius, M. Richter, and B. Drittler (1992). "Coulomb gap in two- and three-dimensional systems: Simulation results for large samples".
655: 280:, but after moving the electron this term should not be considered. It is easy to see from this that there exists an energy 1542:
J. G. Massey and M. Lee (1995). "Direct Observation of the Coulomb Correlation Gap in a Nonmetallic Semiconductor, Si: B".
1726: 152: 1151:
M. Pollak (1970). "Effect of carrier-carrier interactions on some transport properties in disordered semiconductors".
384:, the energy invested should be positive, since we are assuming we are in the ground state of the system, i.e., 1731: 788: 1736: 1248:
M. Grunewald, B. Pohlmann, L. Schweitzer, and D.Wurtz (1982). "Mean field approach to the electron glass".
1178:
A L Efros and B I Shklovskii (1975). "Coulomb gap and low temperature conductivity of disordered systems".
477: 1659:
B. Shklovskii and A. Efros, Electronic properties of doped semiconductors (Springer-Verlag, Berlin, 1984).
1585:
V. Y. Butko, J. F. Ditusa, and P. W. Adams (2000). "Coulomb Gap: How a Metal Film Becomes an Insulator".
911: 1669:
Rogatchev, A.Yu.; Mizutani, U. (2000). "Hopping conductivity and specific heat in insulating amorphousTi
1060: 557: 1003:. If one uses the analytical expression of the single-particle DOS in the Mott derivation, a universal 957: 1006: 387: 39:
At zero temperature, a classical treatment of a system gives an upper bound for the DOS near the
1000: 881:
led to a contradiction. Repeating the above calculation under the assumption that the DOS near
837: 311: 1640: 1428: 1371: 1289:
M. Muller and S. Pankov (2007). "Mean-field theory for the three-dimensional Coulomb glass".
1269: 1105: 1686: 1604: 1551: 1514: 1457: 1400: 1351: 1308: 1222: 1187: 884: 857: 283: 236: 58: 1491:
Pramudya, Y.; Terletska, H.; Pankov, S.; Manousakis, E.; Dobrosavljević, V. (2011-09-12).
8: 528: 1690: 1608: 1555: 1518: 1461: 1404: 1355: 1312: 1226: 1191: 413:. Assuming we have a large system, consider all the sites with energies in the interval 1628: 1594: 1504: 1324: 1298: 768: 635: 615: 416: 367: 347: 263: 129: 109: 89: 1261: 1702: 1620: 1567: 1473: 1416: 1328: 1247: 1234: 28: 1632: 1199: 1694: 1612: 1559: 1522: 1465: 1408: 1359: 1316: 1257: 1230: 1195: 1160: 1131: 48: 44: 1616: 1563: 1527: 1492: 1363: 1320: 1698: 1412: 1720: 1706: 1469: 1624: 1571: 1420: 52: 40: 1584: 1477: 1599: 1303: 1164: 260:
contains a term due to the interaction with the electron present at site
1341: 24: 1390: 344:. For every possible transfer of an electron from an occupied site 83: 1509: 1342:
J. H. Davies, P. A. Lee, and T. M. Rice (1982). "Electron Glass".
758:{\displaystyle E_{j}-E_{i}-Ce^{2}(\epsilon g(E_{f})/V)^{1/d}>0} 1490: 834:, this inequality will necessarily be violated for small enough 1122:
that fits neither the Mott nor the Efros–Shklovskii theories.
1177: 233:
The subtraction of the last term accounts for the fact that
1213:
A. L. Efros (1976). "Coulomb gap in disordered systems".
1541: 1288: 632:
is the dimension of space. Plugging the expression for
652:
into the previous equation, we obtain the inequality:
1662: 1108: 1063: 1009: 960: 914: 887: 860: 840: 791: 771: 658: 638: 618: 560: 531: 480: 419: 390: 370: 350: 314: 286: 266: 239: 155: 132: 112: 92: 61: 1114: 1094: 1048: 978: 946: 900: 873: 846: 826: 777: 757: 644: 624: 604: 545: 517: 466: 405: 376: 356: 336: 299: 272: 252: 221: 138: 118: 98: 74: 1668: 222:{\displaystyle \Delta E=E_{j}-E_{i}-e^{2}/r_{ij}} 51:. The argument is as follows: Let us look at the 1718: 1171: 1448:G. Vignale (1987). "Quantum electron glass". 1645:: CS1 maint: multiple names: authors list ( 1433:: CS1 maint: multiple names: authors list ( 1376:: CS1 maint: multiple names: authors list ( 1274:: CS1 maint: multiple names: authors list ( 993: 1212: 1447: 1598: 1526: 1508: 1302: 1250:Journal of Physics C: Solid State Physics 1215:Journal of Physics C: Solid State Physics 1150: 827:{\displaystyle E_{j}-E_{i}<2\epsilon } 785:is a coefficient of order unity. Since 474:The number of these, by assumption, is 1719: 1102:behavior is observed, with a value of 55:configuration of the system. Defining 518:{\displaystyle N=2\epsilon g(E_{f}).} 947:{\displaystyle (E-E_{f})^{\alpha }} 19:First introduced by M. Pollak, the 13: 1153:Discussions of the Faraday Society 1095:{\displaystyle e^{-1/T^{\alpha }}} 854:. Hence, assuming a finite DOS at 605:{\displaystyle R\sim (N/V)^{-1/d}} 391: 156: 14: 1748: 1653: 1578: 1535: 1493:"Nearly frozen Coulomb liquids" 979:{\displaystyle \alpha >=d-1} 1484: 1441: 1384: 1335: 1282: 1241: 1206: 1144: 1049:{\displaystyle e^{-1/T^{1/2}}} 935: 915: 732: 720: 707: 698: 582: 567: 509: 496: 458: 420: 406:{\displaystyle \Delta E>=0} 331: 318: 1: 1137: 146:is given by the expression: 7: 1617:10.1103/PhysRevLett.84.1543 1564:10.1103/PhysRevLett.75.4266 1262:10.1088/0022-3719/15/32/007 1125: 1001:Mott variable-range hopping 10: 1753: 1727:Electronic band structures 1528:10.1103/PhysRevB.84.125120 1364:10.1103/PhysRevLett.49.758 1321:10.1103/PhysRevB.75.144201 1235:10.1088/0022-3719/9/11/012 1699:10.1103/PhysRevB.61.15550 1413:10.1103/PhysRevB.45.11568 1200:10.1088/0022-3719/8/4/003 994:Experimental observations 847:{\displaystyle \epsilon } 34: 1470:10.1103/PhysRevB.36.8192 337:{\displaystyle g(E_{f})} 1587:Physical Review Letters 1544:Physical Review Letters 1344:Physical Review Letters 1115:{\displaystyle \alpha } 27:in the single-particle 1116: 1096: 1050: 980: 948: 902: 875: 848: 828: 779: 759: 646: 626: 606: 547: 519: 468: 407: 378: 364:to an unoccupied site 358: 338: 301: 274: 254: 223: 140: 126:to an unoccupied site 120: 100: 76: 1732:Statistical mechanics 1117: 1097: 1051: 981: 949: 903: 901:{\displaystyle E_{f}} 876: 874:{\displaystyle E_{f}} 849: 829: 780: 760: 647: 627: 607: 548: 520: 469: 408: 379: 359: 339: 302: 300:{\displaystyle E_{f}} 275: 255: 253:{\displaystyle E_{j}} 224: 141: 121: 101: 77: 75:{\displaystyle E_{i}} 43:, first suggested by 1180:Journal of Physics C 1165:10.1039/DF9705000013 1106: 1061: 1007: 958: 912: 885: 858: 838: 789: 769: 656: 636: 616: 558: 529: 478: 417: 388: 368: 348: 312: 284: 264: 237: 153: 130: 110: 90: 82:as the energy of an 59: 1737:Physical quantities 1691:2000PhRvB..6115550R 1685:(23): 15550–15553. 1609:2000PhRvL..84.1543B 1556:1995PhRvL..75.4266M 1519:2011PhRvB..84l5120P 1462:1987PhRvB..36.8192V 1405:1992PhRvB..4511568M 1399:(20): 11568–11579. 1356:1982PhRvL..49..758D 1313:2007PhRvB..75n4201M 1227:1976JPhC....9.2021E 1192:1975JPhC....8L..49E 908:is proportional to 546:{\displaystyle N/2} 16:Physical phenomenon 1112: 1092: 1046: 976: 944: 898: 871: 844: 824: 775: 755: 642: 622: 602: 543: 515: 464: 403: 374: 354: 334: 297: 270: 250: 219: 136: 116: 96: 72: 1679:Physical Review B 1550:(23): 4266–4269. 1497:Physical Review B 1456:(15): 8192–8195. 1450:Physical Review B 1393:Physical Review B 1291:Physical Review B 778:{\displaystyle C} 645:{\displaystyle N} 625:{\displaystyle d} 467:{\displaystyle .} 377:{\displaystyle j} 357:{\displaystyle i} 273:{\displaystyle i} 139:{\displaystyle j} 119:{\displaystyle i} 99:{\displaystyle i} 29:density of states 1744: 1711: 1710: 1666: 1660: 1657: 1651: 1650: 1644: 1636: 1602: 1600:cond-mat/0006025 1582: 1576: 1575: 1539: 1533: 1532: 1530: 1512: 1488: 1482: 1481: 1445: 1439: 1438: 1432: 1424: 1388: 1382: 1381: 1375: 1367: 1339: 1333: 1332: 1306: 1304:cond-mat/0611021 1286: 1280: 1279: 1273: 1265: 1245: 1239: 1238: 1210: 1204: 1203: 1175: 1169: 1168: 1148: 1121: 1119: 1118: 1113: 1101: 1099: 1098: 1093: 1091: 1090: 1089: 1088: 1079: 1055: 1053: 1052: 1047: 1045: 1044: 1043: 1042: 1038: 1025: 985: 983: 982: 977: 953: 951: 950: 945: 943: 942: 933: 932: 907: 905: 904: 899: 897: 896: 880: 878: 877: 872: 870: 869: 853: 851: 850: 845: 833: 831: 830: 825: 814: 813: 801: 800: 784: 782: 781: 776: 764: 762: 761: 756: 748: 747: 743: 727: 719: 718: 697: 696: 681: 680: 668: 667: 651: 649: 648: 643: 631: 629: 628: 623: 611: 609: 608: 603: 601: 600: 596: 577: 552: 550: 549: 544: 539: 524: 522: 521: 516: 508: 507: 473: 471: 470: 465: 451: 450: 432: 431: 412: 410: 409: 404: 383: 381: 380: 375: 363: 361: 360: 355: 343: 341: 340: 335: 330: 329: 306: 304: 303: 298: 296: 295: 279: 277: 276: 271: 259: 257: 256: 251: 249: 248: 228: 226: 225: 220: 218: 217: 205: 200: 199: 187: 186: 174: 173: 145: 143: 142: 137: 125: 123: 122: 117: 105: 103: 102: 97: 81: 79: 78: 73: 71: 70: 1752: 1751: 1747: 1746: 1745: 1743: 1742: 1741: 1717: 1716: 1715: 1714: 1676: 1672: 1667: 1663: 1658: 1654: 1638: 1637: 1583: 1579: 1540: 1536: 1489: 1485: 1446: 1442: 1426: 1425: 1389: 1385: 1369: 1368: 1350:(10): 758-761. 1340: 1336: 1287: 1283: 1267: 1266: 1246: 1242: 1211: 1207: 1176: 1172: 1149: 1145: 1140: 1128: 1107: 1104: 1103: 1084: 1080: 1075: 1068: 1064: 1062: 1059: 1058: 1034: 1030: 1026: 1021: 1014: 1010: 1008: 1005: 1004: 996: 959: 956: 955: 938: 934: 928: 924: 913: 910: 909: 892: 888: 886: 883: 882: 865: 861: 859: 856: 855: 839: 836: 835: 809: 805: 796: 792: 790: 787: 786: 770: 767: 766: 739: 735: 731: 723: 714: 710: 692: 688: 676: 672: 663: 659: 657: 654: 653: 637: 634: 633: 617: 614: 613: 592: 585: 581: 573: 559: 556: 555: 535: 530: 527: 526: 503: 499: 479: 476: 475: 446: 442: 427: 423: 418: 415: 414: 389: 386: 385: 369: 366: 365: 349: 346: 345: 325: 321: 313: 310: 309: 291: 287: 285: 282: 281: 265: 262: 261: 244: 240: 238: 235: 234: 210: 206: 201: 195: 191: 182: 178: 169: 165: 154: 151: 150: 131: 128: 127: 111: 108: 107: 91: 88: 87: 66: 62: 60: 57: 56: 37: 17: 12: 11: 5: 1750: 1740: 1739: 1734: 1729: 1713: 1712: 1674: 1670: 1661: 1652: 1577: 1534: 1503:(12): 125120. 1483: 1440: 1383: 1334: 1297:(14): 144201. 1281: 1240: 1205: 1170: 1142: 1141: 1139: 1136: 1135: 1134: 1127: 1124: 1111: 1087: 1083: 1078: 1074: 1071: 1067: 1041: 1037: 1033: 1029: 1024: 1020: 1017: 1013: 995: 992: 975: 972: 969: 966: 963: 941: 937: 931: 927: 923: 920: 917: 895: 891: 868: 864: 843: 823: 820: 817: 812: 808: 804: 799: 795: 774: 754: 751: 746: 742: 738: 734: 730: 726: 722: 717: 713: 709: 706: 703: 700: 695: 691: 687: 684: 679: 675: 671: 666: 662: 641: 621: 599: 595: 591: 588: 584: 580: 576: 572: 569: 566: 563: 542: 538: 534: 525:As explained, 514: 511: 506: 502: 498: 495: 492: 489: 486: 483: 463: 460: 457: 454: 449: 445: 441: 438: 435: 430: 426: 422: 402: 399: 396: 393: 373: 353: 333: 328: 324: 320: 317: 294: 290: 269: 247: 243: 231: 230: 216: 213: 209: 204: 198: 194: 190: 185: 181: 177: 172: 168: 164: 161: 158: 135: 115: 95: 69: 65: 36: 33: 15: 9: 6: 4: 3: 2: 1749: 1738: 1735: 1733: 1730: 1728: 1725: 1724: 1722: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1665: 1656: 1648: 1642: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1606: 1601: 1596: 1593:(7): 1543–6. 1592: 1588: 1581: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1545: 1538: 1529: 1524: 1520: 1516: 1511: 1506: 1502: 1498: 1494: 1487: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1444: 1436: 1430: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1379: 1373: 1365: 1361: 1357: 1353: 1349: 1345: 1338: 1330: 1326: 1322: 1318: 1314: 1310: 1305: 1300: 1296: 1292: 1285: 1277: 1271: 1263: 1259: 1256:(32): L1153. 1255: 1251: 1244: 1236: 1232: 1228: 1224: 1220: 1216: 1209: 1201: 1197: 1193: 1189: 1185: 1181: 1174: 1166: 1162: 1158: 1154: 1147: 1143: 1133: 1132:Coulomb's law 1130: 1129: 1123: 1109: 1085: 1081: 1076: 1072: 1069: 1065: 1039: 1035: 1031: 1027: 1022: 1018: 1015: 1011: 1002: 991: 987: 973: 970: 967: 964: 961: 939: 929: 925: 921: 918: 893: 889: 866: 862: 841: 821: 818: 815: 810: 806: 802: 797: 793: 772: 752: 749: 744: 740: 736: 728: 724: 715: 711: 704: 701: 693: 689: 685: 682: 677: 673: 669: 664: 660: 639: 619: 597: 593: 589: 586: 578: 574: 570: 564: 561: 540: 536: 532: 512: 504: 500: 493: 490: 487: 484: 481: 461: 455: 452: 447: 443: 439: 436: 433: 428: 424: 400: 397: 394: 371: 351: 326: 322: 315: 292: 288: 267: 245: 241: 214: 211: 207: 202: 196: 192: 188: 183: 179: 175: 170: 166: 162: 159: 149: 148: 147: 133: 113: 93: 85: 67: 63: 54: 50: 46: 42: 32: 30: 26: 22: 1682: 1678: 1664: 1655: 1641:cite journal 1590: 1586: 1580: 1547: 1543: 1537: 1500: 1496: 1486: 1453: 1449: 1443: 1429:cite journal 1396: 1392: 1386: 1372:cite journal 1347: 1343: 1337: 1294: 1290: 1284: 1270:cite journal 1253: 1249: 1243: 1221:(11): 2021. 1218: 1214: 1208: 1183: 1179: 1173: 1156: 1152: 1146: 997: 988: 232: 53:ground state 41:Fermi energy 38: 20: 18: 954:shows that 21:Coulomb gap 1721:Categories 1186:(4): L49. 1138:References 49:Shklovskii 1707:0163-1829 1677:alloys". 1510:1012.2396 1329:119419036 1110:α 1086:α 1070:− 1016:− 971:− 962:α 940:α 922:− 842:ϵ 822:ϵ 803:− 702:ϵ 683:− 670:− 587:− 565:∼ 491:ϵ 456:ϵ 437:ϵ 434:− 392:Δ 189:− 176:− 157:Δ 1633:40065110 1625:11017563 1572:10059861 1421:10001170 1126:See also 612:, where 86:at site 84:electron 25:soft gap 1687:Bibcode 1605:Bibcode 1552:Bibcode 1515:Bibcode 1478:9942629 1458:Bibcode 1401:Bibcode 1352:Bibcode 1309:Bibcode 1223:Bibcode 1188:Bibcode 1705:  1631:  1623:  1570:  1476:  1419:  1327:  1159:: 13. 765:where 35:Theory 1675:100−x 1629:S2CID 1595:arXiv 1505:arXiv 1325:S2CID 1299:arXiv 965:>= 398:>= 45:Efros 23:is a 1703:ISSN 1647:link 1621:PMID 1568:PMID 1474:PMID 1435:link 1417:PMID 1378:link 1276:link 816:< 750:> 47:and 1695:doi 1613:doi 1560:doi 1523:doi 1466:doi 1409:doi 1360:doi 1317:doi 1258:doi 1231:doi 1196:doi 1161:doi 1723:: 1701:. 1693:. 1683:61 1681:. 1673:Si 1643:}} 1639:{{ 1627:. 1619:. 1611:. 1603:. 1591:84 1589:. 1566:. 1558:. 1548:75 1546:. 1521:. 1513:. 1501:84 1499:. 1495:. 1472:. 1464:. 1454:36 1452:. 1431:}} 1427:{{ 1415:. 1407:. 1397:45 1395:. 1374:}} 1370:{{ 1358:. 1348:49 1346:. 1323:. 1315:. 1307:. 1295:75 1293:. 1272:}} 1268:{{ 1254:15 1252:. 1229:. 1217:. 1194:. 1182:. 1157:50 1155:. 1709:. 1697:: 1689:: 1671:x 1649:) 1635:. 1615:: 1607:: 1597:: 1574:. 1562:: 1554:: 1531:. 1525:: 1517:: 1507:: 1480:. 1468:: 1460:: 1437:) 1423:. 1411:: 1403:: 1380:) 1366:. 1362:: 1354:: 1331:. 1319:: 1311:: 1301:: 1278:) 1264:. 1260:: 1237:. 1233:: 1225:: 1219:9 1202:. 1198:: 1190:: 1184:8 1167:. 1163:: 1082:T 1077:/ 1073:1 1066:e 1040:2 1036:/ 1032:1 1028:T 1023:/ 1019:1 1012:e 974:1 968:d 936:) 930:f 926:E 919:E 916:( 894:f 890:E 867:f 863:E 819:2 811:i 807:E 798:j 794:E 773:C 753:0 745:d 741:/ 737:1 733:) 729:V 725:/ 721:) 716:f 712:E 708:( 705:g 699:( 694:2 690:e 686:C 678:i 674:E 665:j 661:E 640:N 620:d 598:d 594:/ 590:1 583:) 579:V 575:/ 571:N 568:( 562:R 541:2 537:/ 533:N 513:. 510:) 505:f 501:E 497:( 494:g 488:2 485:= 482:N 462:. 459:] 453:+ 448:f 444:E 440:, 429:f 425:E 421:[ 401:0 395:E 372:j 352:i 332:) 327:f 323:E 319:( 316:g 293:f 289:E 268:i 246:j 242:E 229:. 215:j 212:i 208:r 203:/ 197:2 193:e 184:i 180:E 171:j 167:E 163:= 160:E 134:j 114:i 94:i 68:i 64:E

Index

soft gap
density of states
Fermi energy
Efros
Shklovskii
ground state
electron
Mott variable-range hopping
Coulomb's law
doi
10.1039/DF9705000013
Bibcode
1975JPhC....8L..49E
doi
10.1088/0022-3719/8/4/003
Bibcode
1976JPhC....9.2021E
doi
10.1088/0022-3719/9/11/012
doi
10.1088/0022-3719/15/32/007
cite journal
link
arXiv
cond-mat/0611021
Bibcode
2007PhRvB..75n4201M
doi
10.1103/PhysRevB.75.144201
S2CID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.