Knowledge

Critical plane analysis

Source 📝

54: 73:, is the ability to account for damage on specific material planes. This means that cases involving multiple out-of-phase load inputs, or crack closure can be treated with high accuracy. Additionally, critical plane analysis offers the flexibility to adapt to a wide range of materials. Critical plane models for both metals and polymers are widely used. 38:
of materials and structures. When a structure is under cyclic multiaxial loading, it is necessary to use multiaxial fatigue criteria that account for the multiaxial loading. If the cyclic multiaxial loading is nonproportional it is mandatory to use a proper multiaxial fatigue criteria. The multiaxial
81:
Modern procedures for critical plane analysis trace back to research published in 1973 in which M. W. Brown and K. J. Miller observed that fatigue life under multiaxial conditions is governed by the experience of the plane receiving the most damage, and that both tension and shear loads on the
46:. For the general 3D case, the orientation may be specified via a unit normal vector of the plane, and the associated stresses strains may be computed via a tensor coordinate 42:
For the plane stress case, the orientation of the plane may be specified by an angle in the plane, and the stresses and strains acting on this plane may be computed via
321: 126:
Park, J.; Nelson, D. (2000). "Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life".
351: 153:
Susmel, L. (2010). "A simple and efficient numerical algorithm to determine the orientation of the critical plane in multiaxial fatigue problems".
30:
as they are experienced by a particular plane in a material, as well as the identification of which plane is likely to experience the most extreme
62: 198:
Glinka, G.; Shen, G.; Plumtree, A. (1995). "A multiaxial fatigue strain energy density parameter related to the critical fracture plane".
346: 66: 47: 364: 34:. Critical plane analysis is widely used in engineering to account for the effects of cyclic, multiaxial load histories on the 57:
Animation showing a series of crack orientations, each of which is evaluated for fatigue life during Critical plane analysis
99:
Fatemi, A.; Socie, D. F. (1988). "A Critical Plane Approach to Multiaxial Fatigue Damage Including Out-Of-Phase Loading".
398: 356: 225:
Barbash, Kevin P.; Mars, William V. (2016). "Critical Plane Analysis of Rubber Bushing Durability under Road Loads".
336: 331: 388: 326: 70: 311: 281:
Brown, M. W.; Miller, K. J. (1973). "A theory for fatigue failure under multiaxial stress-strain conditions".
408: 393: 403: 27: 8: 211: 112: 35: 23: 361: 294: 139: 357:
Metal FE-Based Fatigue Analysis software: winLIFE (by Steinbeis-Transferzentrum)
332:
Metal FE-Based Fatigue Analysis software: fe-safe (by Dassault Systemes SIMULIA)
266: 249: 166: 347:
Metal FE-Based Fatigue Analysis software: LMS Virtual.Lab Durability (by LMS)
316: 290: 261: 230: 207: 162: 135: 108: 43: 31: 188:
Socie, D. F.;Marquis, G. B. (2000). Multiaxial Fatigue.Ed. SAE International, USA.
368: 341: 382: 39:
criteria based on the Critical Plane Method are the most effective criteria.
362:
Metal FE-Based Fatigue Analysis software: fatiga (by Fatec Engineering)
342:
Metal FE-Based Fatigue Analysis software: MSC.Fatigue (by MSC Software)
61:
The chief advantage of critical plane analysis over earlier approaches like
337:
Metal FE-Based Fatigue Analysis software: FEMFAT (by Magna Powertrain)
53: 352:
Metal FE-Based Fatigue Analysis software: NX Durability (by Siemens)
234: 327:
Metal FE-Based Fatigue Analysis software: nCode DesignLife (by HBM)
374:
Rubber Fatigue Analysis software: Endurica (by Endurica LLC)
254:
Fatigue & Fracture of Engineering Materials & Structures
200:
Fatigue & Fracture of Engineering Materials & Structures
101:
Fatigue & Fracture of Engineering Materials & Structures
312:
Book on Multiaxial Fatigue (by Darrell Socie and Gary Marquis)
373: 179:
Draper, John. Modern metal fatigue analysis. EMAS, 2008.
283:
Proceedings of the Institution of Mechanical Engineers
317:Class notes on Multiaxial Fatigue (by Ali Fatemi) 197: 322:Multiaxial Fatigue Theory (by MSC.Fatigue' Help) 380: 229:. SAE Technical Paper Series. 2016-01-0393. 280: 224: 98: 16:Analysis of multiaxial stresses and strains 125: 265: 247: 52: 381: 152: 82:critical plane must be considered. 13: 212:10.1111/j.1460-2695.1995.tb00140.x 113:10.1111/j.1460-2695.1988.tb01169.x 14: 420: 305: 295:10.1243/PIME_PROC_1973_187_161_02 267:10.1111/j.1460-2695.2006.01058.x 155:International Journal of Fatigue 128:International Journal of Fatigue 167:10.1016/j.ijfatigue.2010.05.004 274: 241: 218: 191: 182: 173: 146: 119: 92: 65:, or like correlation against 1: 140:10.1016/S0142-1123(99)00111-5 85: 248:Francois, Dominique (2006). 7: 10: 425: 76: 22:refers to the analysis of 399:Mechanical failure modes 67:maximum principal stress 20:Critical plane analysis 58: 389:Materials degradation 260:(8). FFEMS: 655–657. 71:strain energy density 56: 235:10.4271/2016-01-0393 227:SAE Technical Paper 409:Mechanical failure 394:Fracture mechanics 367:2016-03-03 at the 59: 48:transformation law 161:(11): 1875–1883. 416: 299: 298: 278: 272: 271: 269: 245: 239: 238: 222: 216: 215: 195: 189: 186: 180: 177: 171: 170: 150: 144: 143: 123: 117: 116: 96: 424: 423: 419: 418: 417: 415: 414: 413: 404:Solid mechanics 379: 378: 369:Wayback Machine 308: 303: 302: 279: 275: 246: 242: 223: 219: 196: 192: 187: 183: 178: 174: 151: 147: 124: 120: 97: 93: 88: 79: 17: 12: 11: 5: 422: 412: 411: 406: 401: 396: 391: 377: 376: 371: 359: 354: 349: 344: 339: 334: 329: 324: 319: 314: 307: 306:External links 304: 301: 300: 289:(1): 745–755. 273: 240: 217: 190: 181: 172: 145: 118: 107:(3): 149–165. 90: 89: 87: 84: 78: 75: 15: 9: 6: 4: 3: 2: 421: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 386: 384: 375: 372: 370: 366: 363: 360: 358: 355: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 328: 325: 323: 320: 318: 315: 313: 310: 309: 296: 292: 288: 284: 277: 268: 263: 259: 255: 251: 244: 236: 232: 228: 221: 213: 209: 205: 201: 194: 185: 176: 168: 164: 160: 156: 149: 141: 137: 133: 129: 122: 114: 110: 106: 102: 95: 91: 83: 74: 72: 68: 64: 55: 51: 49: 45: 44:Mohr's circle 40: 37: 33: 29: 25: 21: 286: 282: 276: 257: 253: 243: 226: 220: 206:(1): 37–46. 203: 199: 193: 184: 175: 158: 154: 148: 134:(1): 23–39. 131: 127: 121: 104: 100: 94: 80: 60: 41: 36:fatigue life 19: 18: 383:Categories 250:"Obituary" 86:References 63:Sines rule 365:Archived 24:stresses 77:History 28:strains 32:damage 291:doi 287:187 262:doi 231:doi 208:doi 163:doi 136:doi 109:doi 69:or 50:. 26:or 385:: 285:. 258:29 256:. 252:. 204:18 202:. 159:32 157:. 132:22 130:. 105:11 103:. 297:. 293:: 270:. 264:: 237:. 233:: 214:. 210:: 169:. 165:: 142:. 138:: 115:. 111::

Index

stresses
strains
damage
fatigue life
Mohr's circle
transformation law

Sines rule
maximum principal stress
strain energy density
doi
10.1111/j.1460-2695.1988.tb01169.x
doi
10.1016/S0142-1123(99)00111-5
doi
10.1016/j.ijfatigue.2010.05.004
doi
10.1111/j.1460-2695.1995.tb00140.x
doi
10.4271/2016-01-0393
"Obituary"
doi
10.1111/j.1460-2695.2006.01058.x
doi
10.1243/PIME_PROC_1973_187_161_02
Book on Multiaxial Fatigue (by Darrell Socie and Gary Marquis)
Class notes on Multiaxial Fatigue (by Ali Fatemi)
Multiaxial Fatigue Theory (by MSC.Fatigue' Help)
Metal FE-Based Fatigue Analysis software: nCode DesignLife (by HBM)
Metal FE-Based Fatigue Analysis software: fe-safe (by Dassault Systemes SIMULIA)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.