Knowledge

Crystallographic defects in diamond

Source 📝

713: 606:, both in synthetic and natural diamonds. Three major structures can be distinguished: substitutional Ni, nickel-vacancy and nickel-vacancy complex decorated by one or more substitutional nitrogen atoms. The "nickel-vacancy" structure, also called "semi-divacancy" is specific for most large impurities in diamond and silicon (e.g., tin in silicon). Its production mechanism is generally accepted as follows: large nickel atom incorporates substitutionally, then expels a nearby carbon (creating a neighboring vacancy), and shifts in-between the two sites. 536:(CVD) techniques in an atmosphere rich in hydrogen (typical hydrogen/carbon ratio >100), under strong bombardment of growing diamond by the plasma ions. As a result, CVD diamond is always rich in hydrogen and lattice vacancies. In polycrystalline films, much of the hydrogen may be located at the boundaries between diamond 'grains', or in non-diamond carbon inclusions. Within the diamond lattice itself, hydrogen-vacancy and hydrogen-nitrogen-vacancy complexes have been identified in negative charge states by 812:. Similar to single interstitials, divacancies do not produce photoluminescence. Divacancies, in turn, anneal out at ~900 °C creating multivacancy chains detected by EPR and presumably hexavacancy rings. The latter should be invisible to most spectroscopies, and indeed, they have not been detected thus far. Annealing of vacancies changes diamond color from green to yellow-brown. Similar mechanism (vacancy aggregation) is also believed to cause brown color of plastically deformed natural diamonds. 30: 19: 463:, so its structure is well justified from the analysis of the EPR spectrum P2. This defect produces a characteristic absorption and luminescence line at 415 nm and thus does not induce color on its own. However, the N3 center is always accompanied by the N2 center, having an absorption line at 478 nm (and no luminescence). As a result, diamonds rich in N3/N2 centers are yellow in color. 776: 910: 882: 447: 926:. A and B centers upon trapping a vacancy create corresponding 2N-V (H3 and H2 centers, where H2 is simply a negatively charged H3 center) and the neutral 4N-2V (H4 center). The H2, H3 and H4 centers are important because they are present in many natural diamonds and their optical absorption can be strong enough to alter the diamond color (H3 or H4 – yellow, H2 – green). 576: 565: 418: 382: 313: 630: 852: 897:. Laboratory experiments demonstrated that annealing of type-IaB diamond at high temperatures and pressures (>2600 °C) results in break-up of the platelets and formation of dislocation loops and voidites, i.e. that voidites are a result of thermal degradation of platelets. Contrary to platelets, voidites do contain much nitrogen, in the molecular form. 742: 937:
A similar mechanism is expected for nickel, for which both substitutional and semi-divacancy configurations are reliably identified (see subsection "nickel and cobalt" above). In an unpublished study, diamonds rich in substitutional nickel were electron irradiated and annealed, with following careful
724:
has never been observed in diamond and is considered unstable. Its interaction with a regular carbon lattice atom produces a "split-interstitial", a defect where two carbon atoms share a lattice site and are covalently bonded with the carbon neighbors. This defect has been thoroughly characterized by
872:
Platelets produce sharp absorption peaks at 1359–1375 and 330 cm in IR absorption spectra; remarkably, the position of the first peak depends on the platelet size. As with dislocations, a broad photoluminescence centered at ~1000 nm was associated with platelets by direct observation in an
514:
Phosphorus could be intentionally introduced into diamond grown by chemical vapor deposition (CVD) at concentrations up to ~0.01%. Phosphorus substitutes carbon in the diamond lattice. Similar to nitrogen, phosphorus has one more electron than carbon and thus acts as a donor; however, the ionization
373:
The C center produces a characteristic infrared absorption spectrum with a sharp peak at 1344 cm and a broader feature at 1130 cm. Absorption at those peaks is routinely used to measure the concentration of single nitrogen. Another proposed way, using the UV absorption at ~260 nm, has
917:
Most important is the interaction of vacancies and interstitials with nitrogen. Carbon interstitials react with substitutional nitrogen producing a bond-centered nitrogen interstitial showing strong IR absorption at 1450 cm. Vacancies are efficiently trapped by the A, B and C nitrogen centers.
394:
The A center is probably the most common defect in natural diamonds. It consists of a neutral nearest-neighbor pair of nitrogen atoms substituting for the carbon atoms. The A center produces UV absorption threshold at ~4 eV (310 nm, i.e. invisible to eye) and thus causes no coloration. Diamond
3527:
Trusheim, Matthew E.; Pingault, Benjamin; Wan, Noel H.; Gündoğan, Mustafa; De Santis, Lorenzo; Debroux, Romain; Gangloff, Dorian; Purser, Carola; Chen, Kevin C.; Walsh, Michael; Rose, Joshua J.; Becker, Jonas N.; Lienhard, Benjamin; Bersin, Eric; Paradeisanos, Ioannis; Wang, Gang; Lyzwa, Dominika;
590:
When diamonds are grown by the high-pressure high-temperature technique, nickel, cobalt, chromium or some other metals are usually added into the growth medium to facilitate catalytically the conversion of graphite into diamond. As a result, metallic inclusions are formed. Besides, isolated nickel
438:
Similar to the A centers, B centers do not induce color, and no UV or visible absorption can be attributed to the B centers. Early assignment of the N9 absorption system to the B center have been disproven later. The B center has a characteristic IR absorption spectrum (see the infrared absorption
301:
The most common impurity in diamond is nitrogen, which can comprise up to 1% of a diamond by mass. Previously, all lattice defects in diamond were thought to be the result of structural anomalies; later research revealed nitrogen to be present in most diamonds and in many different configurations.
341:
form. Most synthetic diamonds produced by high-pressure high-temperature (HPHT) technique contain a high level of nitrogen in the C form; nitrogen impurity originates from the atmosphere or from the graphite source. One nitrogen atom per 100,000 carbon atoms will produce yellow color. Because the
546:
In natural diamonds, several hydrogen-related IR absorption peaks are commonly observed; the strongest ones are located at 1405, 3107 and 3237 cm (see IR absorption figure above). The microscopic structure of the corresponding defects is yet unknown and it is not even certain whether or not
430:
There is a general consensus that B center (sometimes called B1) consists of a carbon vacancy surrounded by four nitrogen atoms substituting for carbon atoms. This model is consistent with other experimental results, but there is no direct spectroscopic data corroborating it. Diamonds where most
123:
Whereas some acronyms are logical, such as N3 (N for natural, i.e. observed in natural diamond) or H3 (H for heated, i.e. observed after irradiation and heating), many are not. In particular, there is no clear distinction between the meaning of labels GR (general radiation), R (radiation) and TR
762:
Most high-energy particles, beside displacing carbon atom from the lattice site, also pass it enough surplus energy for a rapid migration through the lattice. However, when relatively gentle gamma irradiation is used, this extra energy is minimal. Thus the interstitials remain near the original
672:
Around the year 2000, there was a wave of attempts to dope synthetic CVD diamond films by sulfur aiming at n-type conductivity with low activation energy. Successful reports have been published, but then dismissed as the conductivity was rendered p-type instead of n-type and associated not with
638:
Silicon is a common impurity in diamond films grown by chemical vapor deposition and it originates either from silicon substrate or from silica windows or walls of the CVD reactor. It was also observed in natural diamonds in dispersed form. Isolated silicon defects have been detected in diamond
864:
via their luminescence. For a long time, platelets were tentatively associated with large nitrogen complexes — nitrogen sinks produced as a result of nitrogen aggregation at high temperatures of the diamond synthesis. However, the direct measurement of nitrogen in the platelets by
688:
The easiest way to produce intrinsic defects in diamond is by displacing carbon atoms through irradiation with high-energy particles, such as alpha (helium), beta (electrons) or gamma particles, protons, neutrons, ions, etc. The irradiation can occur in the laboratory or in nature (see
442:
Many optical peaks in diamond accidentally have similar spectral positions, which causes much confusion among gemologists. Spectroscopists use the whole spectrum rather than one peak for defect identification and consider the history of the growth and processing of individual diamond.
680:) for isolated sulfur defects in diamond. The corresponding center called W31 has been observed in natural type-Ib diamonds in small concentrations (parts per million). It was assigned to a sulfur-vacancy complex – again, as in case of nickel and silicon, a semi-divacancy site. 701:) and remaining lattice vacancies. An important difference between the vacancies and interstitials in diamond is that whereas interstitials are mobile during the irradiation, even at liquid nitrogen temperatures, however vacancies start migrating only at temperatures ~700 °C. 2805:
Nadolinny, V. A.; Yelisseyev, A. P.; Baker, J. M.; Newton, M. E.; Twitchen, D. J.; Lawson, S. C.; Yuryeva, O. P.; Feigelson, B. N. (1999). "A study of C hyperfine structure in the EPR of nickel-nitrogen-containing centres in diamond and correlation with their optical properties".
766:
Vacancy-di-interstitial pairs have been also produced, though by electron irradiation and through a different mechanism: Individual interstitials migrate during the irradiation and aggregate to form di-interstitials; this process occurs preferentially near the lattice vacancies.
595:, optical absorption and photoluminescence spectra, and the concentration of isolated nickel can reach 0.01%. This fact is by all means unusual considering the large difference in size between carbon and transition metal atoms and the superior rigidity of the diamond lattice. 649:
constitute minor fraction of total silicon. It is believed (though no proof exists) that much silicon substitutes for carbon thus becoming invisible to most spectroscopic techniques because silicon and carbon atoms have the same configuration of the outer electronic shells.
643:. Similar to other large impurities, the major form of silicon in diamond has been identified with a Si-vacancy complex (semi-divacancy site). This center is a deep donor having an ionization energy of 2 eV, and thus again is unsuitable for electronic applications. 609:
Although the physical and chemical properties of cobalt and nickel are rather similar, the concentrations of isolated cobalt in diamond are much smaller than those of nickel (parts per billion range). Several defects related to isolated cobalt have been detected by
377:
Acceptor defects in diamond ionize the fifth nitrogen electron in the C center converting it into C+ center. The latter has a characteristic IR absorption spectrum with a sharp peak at 1332 cm and broader and weaker peaks at 1115, 1046 and 950 cm.
2263:
Kociniewski, T.; Barjon, J.; Pinault, M. -A.; Jomard, F.; Lusson, A.; Ballutaud, D.; Gorochov, O.; Laroche, J. M.; Rzepka, E.; Chevallier, J.; Saguy, C. (2006). "N-type CVD diamond doped with phosphorus using the MOCVD technology for dopant incorporation".
475:. Only one percent of natural diamonds are of this type, and most are blue to grey. Boron is an acceptor in diamond: boron atoms have one less available electron than the carbon atoms; therefore, each boron atom substituting for a carbon atom creates an 112:
There is a tradition in diamond spectroscopy to label a defect-induced spectrum by a numbered acronym (e.g. GR1). This tradition has been followed in general with some notable deviations, such as A, B and C centers. Many acronyms are confusing though:
1304:
d’Haenens-Johansson, U.; Edmonds, A.; Newton, M.; Goss, J.; Briddon, P.; Baker, J.; Martineau, P.; Khan, R.; Twitchen, D.; Williams, S. D. (2010). "EPR of a defect in CVD diamond involving both silicon and hydrogen that shows preferential alignment".
212:. However, introducing any defect (even "very symmetrical", such as N-N substitutional pair) breaks the crystal symmetry resulting in defect-induced infrared absorption, which is the most common tool to measure the defect concentrations in diamond. 933:
In contrast, silicon does react with vacancies, creating the described above optical absorption at 738 nm. The assumed mechanism is trapping of migrating vacancy by substitutional silicon resulting in the Si-V (semi-divacancy) configuration.
413:
The A center shows an IR absorption spectrum with no sharp features, which is distinctly different from that of the C or B centers. Its strongest peak at 1282 cm is routinely used to estimate the nitrogen concentration in the A form.
792:, which gives diamond green, or sometimes even green–blue color (in pure diamond). The characteristic feature of this absorption is a series of sharp lines called GR1-8, where GR1 line at 741 nm is the most prominent and important. 292:
centers (OK1 and N3) have been initially assigned to nitrogen–oxygen complexes, and later to titanium-related complexes. However, the assignment is indirect and the corresponding concentrations are rather low (few parts per million).
531:
Hydrogen is one of the most technological important impurities in semiconductors, including diamond. Hydrogen-related defects are very different in natural diamond and in synthetic diamond films. Those films are produced by various
4410: 33:
Infrared absorption spectrum of type IaB diamond. (1) region of nitrogen impurities absorption (here mostly due to the B-centers), (2) platelets peak, (3) self-absorption of diamond lattice, (4) hydrogen peaks at 3107 and 3237
905:
Extrinsic and intrinsic defects can interact producing new defect complexes. Such interaction usually occurs if a diamond containing extrinsic defects (impurities) is either plastically deformed or is irradiated and annealed.
3340:
Iwasaki, T.; Ishibashi, F.; Miyamoto, Y.; Doi, Y.; Kobayashi, S.; Miyazaki, T.; Tahara, K.; Jahnke, K. D.; Rogers, L. J.; Naydenov, B.; Jelezko, F.; Yamasaki, S.; Nagamachi, S.; Inubushi, T.; Mizuochi, N.; Hatano, M. (2015).
3039:
Aharonovich, Igor; Castelletto, Stefania; Johnson, Brett C.; McCallum, Jeffrey C.; Simpson, David A.; Greentree, Andrew D.; Prawer, Steven (2010). "Chromium single-photon emitters in diamond fabricated by ion implantation".
929:
Boron interacts with carbon interstitials forming a neutral boron–interstitial complex with a sharp optical absorption at 0.552 eV (2250 nm). No evidence is known so far (2009) for complexes of boron and vacancy.
1250:
Edmonds, A.; d’Haenens-Johansson, U.; Cruddace, R.; Newton, M.; Fu, K. -M.; Santori, C.; Beausoleil, R.; Twitchen, D.; Markham, M. (2012). "Production of oriented nitrogen-vacancy color centers in synthetic diamond".
779:
Pure diamonds, before and after irradiation and annealing. Clockwise from left bottom: 1) Initial (2×2 mm) 2–4) Irradiated by different doses of 2-MeV electrons 5–6) Irradiated by different doses and annealed at 800
859:
Most natural diamonds contain extended planar defects in the <100> lattice planes, which are called "platelets". Their size ranges from nanometers to many micrometers, and large ones are easily observed in an
633:
The semi-divacancy (impurity-vacancy) model for a large impurity in diamond (Ni, Co, Si, S, etc.), where a large pink impurity atom substitutes for two carbon atoms. Details on bonding with the diamond lattice are
3528:
Montblanch, Alejandro R-P.; Malladi, Girish; Bakhru, Hassaram; Ferrari, Andrea C.; Walmsley, Ian A.; Atatüre, Mete; Englund, Dirk (2020). "Transform-Limited Photons from a Coherent Tin-Vacancy Spin in Diamond".
749:
The isolated split-interstitial moves through the diamond crystal during irradiation. When it meets other interstitials it aggregates into larger complexes of two and three split-interstitials, identified by
795:
The vacancy behaves as a deep electron donor/acceptor, whose electronic properties depend on the charge state. The energy level for the +/0 states is at 0.6 eV and for the 0/- states is at 2.5 eV above the
231:
Various elemental analyses of diamond reveal a wide range of impurities. They mostly originate, however, from inclusions of foreign materials in diamond, which could be nanometer-small and invisible in an
2520:
Fuchs, F.; Wild, C.; Schwarz, K.; MüLler-Sebert, W.; Koidl, P. (1995). "Hydrogen induced vibrational and electronic transitions in chemical vapor deposited diamond, identified by isotopic substitution".
4452: 3694:
Newton, M. E.; Campbell, B. A.; Twitchen, D. J.; Baker, J. M.; Anthony, T. R. (2002). "Recombination-enhanced diffusion of self-interstitial atoms and vacancy–interstitial recombination in diamond".
835:, in which the breaks occur between atoms of the same index. The dislocations produce dangling bonds which introduce energy levels into the band gap, enabling the absorption of light. Broadband blue 2626:
Teukam, Z. P.; Chevallier, J.; Saguy, C. C.; Kalish, R.; Ballutaud, D.; Barbé, M.; Jomard, F. O.; Tromson-Carli, A.; Cytermann, C.; Butler, J. E.; Bernard, M.; Baron, C. L.; Deneuville, A. (2003).
3305:
d'Haenens-Johansson, U.; Edmonds, A.; Green, B.; Newton, M.; Davies, G.; Martineau, P.; Khan, R.; Twitchen, D. (2011). "Optical properties of the neutral silicon split-vacancy center in diamond".
49:
are common. Such defects may be the result of lattice irregularities or extrinsic substitutional or interstitial impurities, introduced during or after the diamond growth. The defects affect the
2765:
Collins, A. T.; Kanda, H.; Isoya, J.; Ammerlaan, C. A. J.; Van Wyk, J. A. (1998). "Correlation between optical absorption and EPR in high-pressure diamond grown from a nickel solvent catalyst".
918:
The trapping rate is the highest for the C centers, 8 times lower for the A centers and 30 times lower for the B centers. The C center (single nitrogen) by trapping a vacancy forms the famous
543:
It is experimentally demonstrated that hydrogen passivates electrically active boron and phosphorus impurities. As a result of such passivation, shallow donor centers are presumably produced.
4818:
Lawson, S. C.; Davies, G.; Collins, A. T.; Mainwood, A. (1992). "The 'H2' optical transition in diamond: The effects of uniaxial stress perturbations, temperature and isotopic substitution".
302:
Most nitrogen enters the diamond lattice as a single atom (i.e. nitrogen-containing molecules dissociate before incorporation), however, molecular nitrogen incorporates into diamond as well.
3799:
Twitchen, D.; Newton, M.; Baker, J.; Tucker, O.; Anthony, T.; Banholzer, W. (1996). "Electron-paramagnetic-resonance measurements on the di-〈001〉-split interstitial center (R1) in diamond".
305:
Absorption of light and other material properties of diamond are highly dependent upon nitrogen content and aggregation state. Although all aggregate configurations cause absorption in the
653:
Germanium, tin and lead are normally absent in diamond, but they can be introduced during the growth or by subsequent ion implantation. Those impurities can be detected optically via the
483:. This allows red light absorption, and due to the small energy (0.37 eV) needed for the electron to leave the valence band, holes can be thermally released from the boron atoms to the 1414:
Lal, S.; Dallas, T.; Yi, S.; Gangopadhyay, S.; Holtz, M.; Anderson, F. (1996). "Defect photoluminescence in polycrystalline diamond films grown by arc-jet chemical-vapor deposition".
141:
describing the symmetry of crystals by absence of translations, and thus are much fewer in number. In diamond, only defects of the following symmetries have been observed thus far:
3466:
Iwasaki, Takayuki; Miyamoto, Yoshiyuki; Taniguchi, Takashi; Siyushev, Petr; Metsch, Mathias H.; Jelezko, Fedor; Hatano, Mutsuko (2017). "Tin-Vacancy Quantum Emitters in Diamond".
240:. More essential are elements that can be introduced into the diamond lattice as isolated atoms (or small atomic clusters) during the diamond growth. By 2008, those elements are 2849:
Isoya, J.; Kanda, H.; Norris, J.; Tang, J.; Bowman, M. (1990). "Fourier-transform and continuous-wave EPR studies of nickel in synthetic diamond: Site and spin multiplicity".
584:
A micrograph (top) and UV-excited photoluminescence (bottom) from a synthetic diamond plate (width ~3 mm). Most of the yellow color and green emission originate from nickel.
208:
The defect symmetry allows predicting many optical properties. For example, one-phonon (infrared) absorption in pure diamond lattice is forbidden because the lattice has an
3729:
Hunt, D.; Twitchen, D.; Newton, M.; Baker, J.; Anthony, T.; Banholzer, W.; Vagarali, S. (2000). "Identification of the neutral carbon 〈100〉-split interstitial in diamond".
1340:
Hogg, R. A.; Takahei, K.; Taguchi, A.; Horikoshi, Y. (1996). "Preferential alignment of Er–2O centers in GaAs:Er,O revealed by anisotropic host-excited photoluminescence".
869:(an analytical technique of electron microscopy) revealed very little nitrogen. The currently accepted model of platelets is a large regular array of carbon interstitials. 439:
picture above) with a sharp peak at 1332 cm and a broader feature at 1280 cm. The latter is routinely used to estimate the nitrogen concentration in the B form.
4101:
Twitchen, D.; Newton, M.; Baker, J.; Anthony, T.; Banholzer, W. (1999). "Electron-paramagnetic-resonance measurements on the divacancy defect center R4/W6 in diamond".
3842:
Hunt, D.; Twitchen, D.; Newton, M.; Baker, J.; Kirui, J.; Van Wyk, J.; Anthony, T.; Banholzer, W. (2000). "EPR data on the self-interstitial complex O3 in diamond".
1915:
Tucker, O.; Newton, M.; Baker, J. (1994). "EPR and N14 electron-nuclear double-resonance measurements on the ionized nearest-neighbor dinitrogen center in diamond".
3004:
Lawson, S. C.; Kanda, H.; Watanabe, K.; Kiflawi, I.; Sato, Y.; Collins, A. T. (1996). "Spectroscopic study of cobalt-related optical centers in synthetic diamond".
309:, diamonds containing aggregated nitrogen are usually colorless, i.e. have little absorption in the visible spectrum. The four main nitrogen forms are as follows: 288:
produced during the diamond synthesis. Oxygen is believed to be a major impurity in diamond, but it has not been spectroscopically identified in diamond yet. Two
120:
Accidentally, the same labels were given to different centers detected by EPR and optical techniques (e.g., N3 EPR center and N3 optical center have no relation).
843:, however, it was noted that not all dislocations are luminescent, and there is no correlation between the dislocation type and the parameters of the emission. 4775:
Davies, G.; Nazare, M. H.; Hamer, M. F. (1976). "The H3 (2.463 eV) Vibronic Band in Diamond: Uniaxial Stress Effects and the Breakdown of Mirror Symmetry".
3231:
Edmonds, A.; Newton, M.; Martineau, P.; Twitchen, D.; Williams, S. (2008). "Electron paramagnetic resonance studies of silicon-related defects in diamond".
4982:
Goss, J.; Jones, R.; Breuer, S.; Briddon, P.; Öberg, S. (1996). "The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex".
459:
The N3 center consists of three nitrogen atoms surrounding a vacancy. Its concentration is always just a fraction of the A and B centers. The N3 center is
3093:
Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Greentree, A. D.; Prawer, S. (2010). "Photophysics of chromium-related diamond single-photon emitters".
1108: 506:
blue after exposure to shortwave ultraviolet light. Apart from optical absorption, boron acceptors have been detected by electron paramagnetic resonance.
3589:
Sakaguchi, I.; n.-Gamo, M.; Kikuchi, Y.; Yasu, E.; Haneda, H.; Suzuki, T.; Ando, T. (1999). "Sulfur: A donor dopant for n-type diamond semiconductors".
788:
is the most studied defect in diamond, both experimentally and theoretically. Its most important practical property is optical absorption, like in the
1610: 2477:
Glover, C.; Newton, M.; Martineau, P.; Twitchen, D.; Baker, J. (2003). "Hydrogen Incorporation in Diamond: The Nitrogen-Vacancy-Hydrogen Complex".
2434:
Glover, C.; Newton, M. E.; Martineau, P. M.; Quinn, S.; Twitchen, D. J. (2004). "Hydrogen incorporation in diamond: The vacancy-hydrogen complex".
1837:
Lawson, S. C.; Fisher, D.; Hunt, D. C.; Newton, M. E. (1998). "On the existence of positively charged single-substitutional nitrogen in diamond".
4947:
Collins, A. T.; Allers, L.; Wort, C. J. H.; Scarsbrook, G. A. (1994). "The annealing of radiation damage in De Beers colourless CVD diamond".
2556:
Chevallier, J.; Theys, B.; Lusson, A.; Grattepain, C.; Deneuville, A.; Gheeraert, E. (1998). "Hydrogen-boron interactions in p-type diamond".
2591:
Chevallier, J.; Jomard, F.; Teukam, Z.; Koizumi, S.; Kanda, H.; Sato, Y.; Deneuville, A.; Bernard, M. (2002). "Hydrogen in n-type diamond".
2102:
Anderson, B.; Payne, J.; Mitchell, R.K. (ed.) (1998) "The spectroscope and gemology", p. 215, Robert Hale Limited, Clerkwood House, London.
938:
optical measurements performed after each annealing step, but no evidence for creation or enhancement of Ni-vacancy centers was obtained.
1958:
Boyd, S. R.; Kiflawi, I.; Woods, G. S. (1994). "The relationship between infrared absorption and the a defect concentration in diamond".
333:
spectra (in which they are confusingly called P1 centers). C centers impart a deep yellow to brown color; these diamonds are classed as
4226:
Hanley, P. L.; Kiflawi, I.; Lang, A. R. (1977). "On Topographically Identifiable Sources of Cathodoluminescence in Natural Diamonds".
4178:
Hounsome, L.; Jones, R.; Martineau, P.; Fisher, D.; Shaw, M.; Briddon, P.; Öberg, S. (2006). "Origin of brown coloration in diamond".
3659:
Baker, J.; Van Wyk, J.; Goss, J.; Briddon, P. (2008). "Electron paramagnetic resonance of sulfur at a split-vacancy site in diamond".
4374:
Goss, J.; Coomer, B.; Jones, R.; Fall, C.; Briddon, P.; Öberg, S. (2003). "Extended defects in diamond: The interstitial platelet".
4861:
Mita, Y.; Nisida, Y.; Suito, K.; Onodera, A.; Yazu, S. (1990). "Photochromism of H2 and H3 centres in synthetic type Ib diamonds".
4904:
Sa, E. S. D.; Davies, G. (1977). "Uniaxial Stress Studies of the 2.498 eV (H4), 2.417 eV and 2.536 eV Vibronic Bands in Diamond".
3411:
Trusheim, Matthew E.; Wan, Noel H.; Chen, Kevin C.; et al. (February 21, 2019). "Lead-related quantum emitters in diamond".
502:
Boron-doped diamonds transmit light down to ~250 nm and absorb some red and infrared light (hence the blue color); they may
58: 1136:
Wyk, J. A. V. (1982). "Carbon-12 hyperfine interaction of the unique carbon of the P2 (ESR) or N3 (optical) centre in diamond".
808:
Upon annealing of pure diamond at ~700 °C, vacancies migrate and form divacancies, characterized by optical absorption and
1400: 219:, defects with symmetry lower than tetrahedral align to the direction of the growth. Such alignment has also been observed in 1180: 1827:
I. Kiflawi et al. "Infrared-absorption by the single nitrogen and a defect centers in diamond" Philos. Mag. B 69 (1994) 1141
4306: 948: 704:
Vacancies and interstitials can also be produced in diamond by plastic deformation, though in much smaller concentrations.
4213: 654: 96:
is used not only to identify the defects, but also to estimate their concentration; it can also distinguish natural from
2033:
Shiryaev, A. A.; Hutchison, M. T.; Dembo, K. A.; Dembo, A. T.; Iakoubovskii, K.; Klyuev, Y. A.; Naletov, A. M. (2001).
1377:"Characterization of Defects in as-Grown CVD Diamond Films and HPHT Diamond Powders by Electron Paramagnetic Resonance" 515:
energy of phosphorus (0.6 eV) is much smaller than that of nitrogen (1.7 eV) and is small enough for room-temperature
499:). Very few boron atoms are required for this to happen—a typical ratio is one boron atom per 1,000,000 carbon atoms. 5037: 4331:
Kiflawi, I.; Lang, A. R. (1977). "Polarised infrared cathodoluminescence from platelet defects in natural diamonds".
2166: 2161:
O'Donoghue, M. (2002) "Synthetic, imitation & treated gemstones", Elsevier Butterworth-Heinemann, Great Britain.
2107: 1765: 658: 646: 519:. This important property of phosphorus in diamond favors electronic applications, such as UV light-emitting diodes ( 280:
have been unambiguously detected in diamond, but they might originate from foreign inclusions. Detection of isolated
2969:
Twitchen, D.; Baker, J.; Newton, M.; Johnston, K. (2000). "Identification of cobalt on a lattice site in diamond".
1757: 4048:"Defects in electron irradiated boron-doped diamonds investigated by positron annihilation and optical absorption" 664:
Similar to N-V centers, Si-V, Ge-V, Sn-V and Pb-V complexes all have potential applications in quantum computing.
809: 751: 726: 690: 677: 640: 611: 599: 592: 591:
and cobalt atoms incorporate into diamond lattice, as demonstrated through characteristic hyperfine structure in
537: 407: 330: 289: 73: 2628:"Shallow donors with high n-type electrical conductivity in homoepitaxial deuterated boron-doped diamond layers" 1722:
Smith, W.; Sorokin, P.; Gelles, I.; Lasher, G. (1959). "Electron-Spin Resonance of Nitrogen Donors in Diamond".
621:
A chromium-related optical center has been detected in diamond after ion implantation and subsequent annealing.
1059: 973: 873:
electron microscope. By studying this luminescence, it was deduced that platelets have a "bandgap" of ~1.7 eV.
50: 4560:
Kiflawi, I.; Bruley, J. (2000). "The nitrogen aggregation sequence and the formation of voidites in diamond".
2383:
Koizumi, S.; Watanabe, K.; Hasegawa, M.; Kanda, H. (2001). "Ultraviolet Emission from a Diamond pn Junction".
1008:
Collins, A. T. (2003). "The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy".
2068:
Boyd, S. R.; Kiflawi, I.; Woods, G. S. (1995). "Infrared absorption by the B nitrogen aggregate in diamond".
551:
in Australia is often associated with those hydrogen defects, but again, this assignment is yet unproven.
2309:"Lattice location of phosphorus in n-type homoepitaxial diamond films grown by chemical-vapor deposition" 922:, which can be neutral or negatively charged; the negatively charged state has potential applications in 831:
break between layers of atoms with different indices (those not lying directly above each other) and the
3410: 25:
of various colors grown by the high-pressure and high-temperature technique, the diamond size is ~2 mm.
3764:
Smith, H.; Davies, G.; Newton, M.; Kanda, H. (2004). "Structure of the self-interstitial in diamond".
2225:
Ammerlaan, C. A. J.; Kemp, R. V. (1985). "Magnetic resonance spectroscopy in semiconducting diamond".
823:
are the most common structural defect in natural diamond. The two major types of dislocations are the
4439: 1205:"Alignment of Ni- and Co-related centres during the growth of high-pressure–high-temperature diamond" 533: 216: 62: 712: 657:, tin-vacancy and lead-vacancy centers, respectively, which have similar properties to those of the 4732:
Mita, Y. (1996). "Change of absorption spectra in type-Ib diamond with heavy neutron irradiation".
1087: 4228:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2184:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
729:(R2 center) and optical absorption, and unlike most other defects in diamond, it does not produce 547:
those defects originate in diamond or in foreign inclusions. Gray color in some diamonds from the
1590: 978: 953: 919: 492: 38: 4411:"The relationship between platelet size and the B′ infrared peak of natural diamonds revisited" 3624:
Kalish, R.; Reznik, A.; Uzan-Saguy, C.; Cytermann, C. (2000). "Is sulfur a donor in diamond?".
1082: 855:
Electron micrograph of platelets in diamond viewed normal to the cubic axis. Image width 1.5 μm
676:
So far (2009), there is only one reliable evidence (through hyperfine interaction structure in
4595:
Kiflawi, I.; Mainwood, A.; Kanda, H.; Fisher, D. (1996). "Nitrogen interstitials in diamond".
1880:
Davies, G. (1976). "The A nitrogen aggregate in diamond-its symmetry and possible structure".
1677:"Nitrogen incorporation in diamond films homoepitaxially grown by chemical vapour deposition" 1632:
Newton, M. E.; Baker, J. M. (1989). "N ENDOR of the OK1 centre in natural type Ib diamond".
4991: 4956: 4913: 4870: 4827: 4784: 4741: 4698: 4651: 4604: 4569: 4534: 4487: 4418: 4383: 4340: 4290: 4235: 4187: 4152: 4110: 4059: 4017: 3978: 3969:
Iakoubovskii, K.; Kiflawi, I.; Johnston, K.; Collins, A.; Davies, G.; Stesmans, A. (2003).
3935: 3893: 3851: 3808: 3773: 3738: 3703: 3668: 3633: 3598: 3547: 3485: 3364: 3314: 3279: 3240: 3194: 3159: 3112: 3059: 3013: 2978: 2943: 2908: 2858: 2815: 2774: 2736: 2697: 2639: 2600: 2565: 2530: 2486: 2443: 2392: 2357: 2320: 2273: 2234: 2191: 2128: 2077: 2042: 2007: 1967: 1924: 1889: 1846: 1794: 1731: 1688: 1641: 1563: 1517: 1470: 1423: 1388: 1349: 1314: 1270: 1216: 1145: 1074: 1017: 968: 496: 2182:
Collins, A. T. (1993). "The Optical and Electronic Properties of Semiconducting Diamond".
2119:
Thomaz, M. F.; Davies, G. (1978). "The Decay Time of N3 Luminescence in Natural Diamond".
8: 4071: 963: 894: 840: 721: 548: 354:"; that is, each substituting nitrogen has an extra electron to donate and forms a donor 101: 93: 85: 4995: 4960: 4917: 4874: 4831: 4788: 4745: 4702: 4655: 4608: 4573: 4538: 4491: 4422: 4387: 4344: 4294: 4239: 4191: 4156: 4114: 4063: 4021: 3982: 3947: 3939: 3897: 3855: 3812: 3777: 3742: 3707: 3672: 3637: 3602: 3551: 3489: 3368: 3318: 3283: 3244: 3198: 3163: 3116: 3063: 3017: 2982: 2947: 2912: 2862: 2819: 2778: 2740: 2701: 2643: 2604: 2569: 2534: 2490: 2447: 2396: 2361: 2324: 2277: 2238: 2195: 2132: 2081: 2046: 2011: 1971: 1928: 1893: 1850: 1798: 1735: 1692: 1645: 1567: 1521: 1474: 1427: 1392: 1353: 1318: 1274: 1220: 1149: 1078: 1021: 53:
and determine to which type a diamond is assigned; the most dramatic effects are on the
4929: 4886: 4843: 4800: 4714: 4667: 4503: 4444: 4356: 4251: 4083: 3951: 3571: 3537: 3509: 3475: 3422: 3385: 3354: 3342: 3128: 3102: 3075: 3049: 2831: 2663: 2416: 2289: 2207: 2144: 1862: 1810: 1704: 1657: 1533: 1486: 1286: 1260: 1232: 1100: 861: 673:
sulfur, but with residual boron, which is a highly efficient p-type dopant in diamond.
516: 233: 4663: 4581: 3715: 3171: 2827: 2786: 2709: 2612: 2246: 2054: 2019: 1998:
Collins, A. T. (1999). "Things we still don't know about optical centres in diamond".
1858: 1700: 1529: 1228: 1157: 1096: 1029: 763:
vacancies and form vacancy-interstitials pairs identified through optical absorption.
5007: 4968: 4890: 4882: 4847: 4839: 4757: 4718: 4710: 4686: 4671: 4639: 4620: 4522: 4507: 4475: 4448: 4255: 4140: 4075: 4005: 3970: 3923: 3881: 3824: 3563: 3513: 3501: 3440: 3413: 3390: 3267: 3210: 3147: 2896: 2874: 2835: 2724: 2685: 2655: 2502: 2459: 2408: 2369: 2211: 2162: 2103: 2034: 1940: 1901: 1866: 1814: 1806: 1782: 1761: 1708: 1676: 1661: 1653: 1537: 1505: 1490: 1482: 1458: 1439: 1376: 1290: 1236: 1204: 1176: 1104: 983: 923: 836: 730: 698: 615: 603: 97: 81: 22: 4933: 4804: 4047: 3955: 3575: 3185:
Clark, C.; Kanda, H.; Kiflawi, I.; Sittas, G. (1995). "Silicon defects in diamond".
3132: 3079: 2667: 2627: 2420: 2293: 2148: 1554:
Kaiser, W.; Bond, W. (1959). "Nitrogen, A Major Impurity in Common Type I Diamond".
435:; most gem diamonds contain a mixture of A and B centers, together with N3 centers. 5032: 4999: 4964: 4921: 4906:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
4878: 4835: 4792: 4777:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
4749: 4706: 4659: 4612: 4577: 4542: 4495: 4434: 4426: 4391: 4360: 4348: 4298: 4243: 4195: 4160: 4118: 4087: 4067: 4025: 3986: 3943: 3901: 3859: 3816: 3781: 3746: 3711: 3676: 3641: 3606: 3559: 3555: 3497: 3493: 3448: 3432: 3380: 3372: 3322: 3287: 3248: 3202: 3167: 3120: 3067: 3021: 2986: 2951: 2916: 2866: 2823: 2782: 2744: 2705: 2647: 2608: 2573: 2538: 2494: 2451: 2400: 2365: 2328: 2281: 2242: 2199: 2136: 2121:
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
2085: 2050: 2015: 1975: 1932: 1897: 1854: 1802: 1739: 1696: 1649: 1602: 1591:"Titanium-related color centers in diamond: a density functional theory prediction" 1571: 1525: 1478: 1431: 1396: 1357: 1322: 1278: 1224: 1153: 1092: 1025: 237: 220: 2934:
Watkins, G. (1975). "Defects in irradiated silicon: EPR of the tin-vacancy pair".
2498: 2455: 4430: 3924:"Electron irradiation and the formation of vacancy–interstitial pairs in diamond" 503: 367: 89: 42: 5003: 4275: 3990: 3146:
Iakoubovskii, K.; Adriaenssens, G. J.; Dogadkin, N. N.; Shiryaev, A. A. (2001).
325:
The C center corresponds to electrically neutral single substitutional nitrogen
4395: 4199: 4164: 3905: 3785: 3680: 3436: 3326: 3252: 3124: 3071: 2920: 2748: 1589:
Czelej, K.; Ćwieka, K.; Śpiewadoi, Piotr; Kurzydłowskia, Krzysztof Jan (2018).
1326: 1282: 785: 694: 488: 351: 209: 4753: 4616: 4122: 3610: 3291: 3206: 2089: 1979: 1936: 1435: 215:
In synthetic diamond grown by the high-pressure high-temperature synthesis or
5026: 3863: 3820: 3750: 3444: 2955: 2870: 2577: 1743: 958: 828: 540:. In addition, numerous hydrogen-related IR absorption peaks are documented. 476: 460: 363: 54: 4546: 4499: 4302: 3452: 2404: 1575: 5011: 4925: 4796: 4521:
Chen, J. H.; Bernaerts, D.; Seo, J. W.; Van Tendeloo, G.; Kagi, H. (1998).
4247: 4079: 4029: 3567: 3505: 3394: 2659: 2506: 2463: 2412: 2285: 2203: 2140: 839:
has been reliably identified with dislocations by direct observation in an
797: 789: 484: 480: 355: 77: 69: 4761: 4624: 4214:
Investigation of band gap energy states at dislocations in natural diamond
3828: 3214: 2990: 2878: 1944: 1443: 893:
nanometer-sized clusters present in many natural diamonds, as revealed by
3304: 3148:"Optical characterization of some irradiation-induced centers in diamond" 2348:
Farrer, R. G. (1969). "On the substitutional nitrogen donor in diamond".
820: 403: 142: 138: 134: 4006:"Electron spin resonance study of perturbed di-interstitials in diamond" 3145: 1249: 284:
in diamond has later been re-interpreted in terms of micro-particles of
4476:"Characterization of platelet-related infrared luminescence in diamond" 4409:
Speich, L.; Kohn, S.C.; Wirth, R.; Bulanova, G.P.; Smith, C.B. (2017).
1606: 890: 257: 178: 150: 3376: 3092: 2333: 2308: 1783:"Optical transitions at the substitutional nitrogen centre in diamond" 1401:
10.1002/1521-396X(200108)186:2<199::AID-PSSA199>3.0.CO;2-R
900: 4352: 3645: 3038: 3025: 2542: 1361: 639:
lattice through the sharp optical absorption peak at 738 nm and
410:
spectrum W24, whose analysis unambiguously proves the N=N structure.
273: 194: 29: 4216:. Cavendish Laboratory, University of Cambridge; Cambridge, England. 2651: 1303: 3542: 3480: 3427: 3359: 745:
One of the configurations of the carbon di-interstitials in diamond
359: 343: 338: 306: 277: 249: 241: 158: 3968: 3922:
Kiflawi, I.; Collins, A. T.; Iakoubovskii, K.; Fisher, D. (2007).
3107: 3054: 2897:"Ni-vacancy defect in diamond detected by electron spin resonance" 1588: 1265: 471:
Diamonds containing boron as a substitutional impurity are termed
1506:"Comment on 'Evidence for a Fe-related defect centre in diamond'" 253: 170: 46: 4684: 3921: 3465: 18: 4273: 3623: 2555: 754:(R1 and O3 centers), optical absorption and photoluminescence. 406:, but if ionized by UV light or deep acceptors, it produces an 347: 337:
and are commonly known as "canary diamonds", which are rare in
269: 265: 261: 4274:
Kiflawi, I.; Bruley, J.; Luyten, W.; Van Tendeloo, G. (1998).
3230: 2804: 2262: 395:
containing nitrogen predominantly in the A form as classed as
236:. Also, virtually any element can be hammered into diamond by 3879: 2590: 2519: 2476: 1674: 775: 245: 4685:
Iakoubovskii, K.; Adriaenssens, G. J.; Nesladek, M. (2000).
4520: 4177: 3882:"Evidence for vacancy-interstitial pairs in Ib-type diamond" 2382: 1675:
Iakoubovskii, K.; Adriaenssens, G. J.; Vohra, Y. K. (2000).
851: 4946: 4817: 3693: 3588: 3526: 3339: 2968: 2625: 2032: 1339: 909: 881: 866: 446: 326: 285: 281: 4594: 4100: 3003: 2764: 2725:"Vibronic effects in the 1.4-eV optical center in diamond" 2433: 417: 381: 312: 3798: 575: 564: 520: 4637: 4473: 4276:"'Natural' and 'man-made' platelets in type-Ia diamonds" 3265: 2683: 1780: 1721: 1503: 1456: 697:(carbon atoms knocked off their normal lattice sites to 629: 133:
The symmetry of defects in crystals is described by the
4408: 4003: 3841: 3728: 3658: 3184: 1413: 885:
Electron micrograph showing several octahedral voidites
4981: 4860: 4638:
Iakoubovskii, Konstantin; Adriaenssens, Guy J (2001).
4141:"Dominant paramagnetic centers in O-implanted diamond" 4004:
Iakoubovskii, K.; Baker, J. M.; Newton, M. E. (2004).
3880:
Iakoubovskii, K.; Dannefaer, S.; Stesmans, A. (2005).
3763: 1836: 487:
even at room temperatures. These holes can move in an
4687:"Photochromism of vacancy-related centres in diamond" 4045: 3971:"Annealing of vacancies and interstitials in diamond" 2686:"Optical characterization of natural Argyle diamonds" 2306: 2035:"High-temperature high-pressure annealing of diamond" 741: 479:
in the band gap that can accept an electron from the
431:
nitrogen forms B centers are rare and are classed as
4138: 2848: 1459:"Evidence for a Fe-related defect centre in diamond" 1374: 1173:
Optical Properties of Diamond : A Data Handbook
4373: 3343:"Germanium-Vacancy Single Color Centers in Diamond" 1202: 901:
Interaction between intrinsic and extrinsic defects
624: 2722: 598:Numerous Ni-related defects have been detected by 68:The defects can be detected by different types of 4774: 4225: 1914: 757: 716:Model of the carbon split-interstitial in diamond 329:in the diamond lattice. These are easily seen in 5024: 2067: 1957: 1060:"Optical absorption and luminescence in diamond" 92:(IR), visible and UV parts of the spectrum. The 707: 117:Some symbols are too similar (e.g., 3H and H3). 4474:Iakoubovskii, K.; Adriaenssens, G. J. (2000). 2684:Iakoubovskii, K.; Adriaenssens, G. J. (2002). 2307:Hasegawa, M.; Teraji, T.; Koizumi, S. (2001). 2258: 2256: 1781:Iakoubovskii, K.; Adriaenssens, G. J. (2000). 1504:Iakoubovskii, K.; Adriaenssens, G. J. (2002). 1457:Iakoubovskii, K.; Adriaenssens, G. J. (2002). 1170: 554: 107: 4640:"Trapping of vacancies by defects in diamond" 4559: 4523:"Voidites in polycrystalline natural diamond" 2224: 3268:"Luminescence excitation spectra in diamond" 2894: 2118: 4330: 3333: 3266:Iakoubovskii, K.; Adriaenssens, G. (2000). 2253: 1993: 1991: 1989: 1631: 3226: 3224: 1553: 1003: 1001: 999: 4440:1983/34ba5767-e947-43d2-a4da-41dd88455f70 4438: 4134: 4132: 3541: 3479: 3426: 3384: 3358: 3106: 3053: 2679: 2677: 2332: 2227:Journal of Physics C: Solid State Physics 1882:Journal of Physics C: Solid State Physics 1549: 1547: 1264: 1203:Iakoubovskii, K.; Collins, A. T. (2004). 1138:Journal of Physics C: Solid State Physics 1086: 803: 736: 4903: 4046:Dannefaer, S.; Iakoubovskii, K. (2008). 2800: 2798: 2796: 2177: 2175: 1986: 1053: 1051: 1049: 1047: 1045: 1043: 1041: 1039: 908: 880: 850: 774: 740: 711: 628: 445: 416: 380: 366:can excite the donor electrons into the 311: 28: 17: 4402: 4269: 4267: 4265: 4139:Iakoubovskii, K.; Stesmans, A. (2002). 3221: 2933: 2376: 2181: 1997: 1756:Nassau, Kurt (1980) "Gems made by man" 1375:Iakoubovskii, K.; Stesmans, A. (2001). 1198: 1196: 1194: 1192: 1007: 996: 350:atoms they replace), they act as "deep 5025: 4312:from the original on February 12, 2019 4129: 3406: 3404: 2890: 2888: 2674: 2347: 1879: 1544: 1164: 1057: 691:Diamond enhancement – Irradiation 618:, but their structure is yet unknown. 88:, CL), and absorption of light in the 4041: 4039: 3917: 3915: 3875: 3873: 2793: 2760: 2758: 2723:Iakoubovskii, K.; Davies, G. (2004). 2172: 1776: 1774: 1036: 693:); it produces primary defects named 454: 4863:Journal of Physics: Condensed Matter 4820:Journal of Physics: Condensed Matter 4731: 4691:Journal of Physics: Condensed Matter 4644:Journal of Physics: Condensed Matter 4262: 4052:Journal of Physics: Condensed Matter 3928:Journal of Physics: Condensed Matter 2808:Journal of Physics: Condensed Matter 1839:Journal of Physics: Condensed Matter 1787:Journal of Physics: Condensed Matter 1681:Journal of Physics: Condensed Matter 1634:Journal of Physics: Condensed Matter 1510:Journal of Physics: Condensed Matter 1463:Journal of Physics: Condensed Matter 1209:Journal of Physics: Condensed Matter 1189: 1131: 1129: 949:Chemical vapor deposition of diamond 683: 425: 389: 374:later been discarded as unreliable. 320: 226: 3401: 2885: 1135: 770: 342:nitrogen atoms have five available 223:and thus is not unique to diamond. 13: 4455:from the original on June 30, 2023 4212:Kolodzie, A.T. and Bleloch, A.L. 4036: 3912: 3870: 2755: 1771: 1613:from the original on June 30, 2023 1114:from the original on July 23, 2018 913:Schematic of the H3 and H2 centers 128: 14: 5049: 1873: 1126: 370:, resulting in the yellow color. 1758:Gemological Institute of America 625:Silicon, germanium, tin and lead 574: 563: 4975: 4940: 4897: 4854: 4811: 4768: 4725: 4678: 4631: 4588: 4553: 4514: 4467: 4367: 4324: 4219: 4206: 4171: 4094: 3997: 3962: 3835: 3792: 3757: 3722: 3687: 3652: 3617: 3582: 3520: 3459: 3298: 3259: 3178: 3139: 3086: 3032: 2997: 2962: 2927: 2842: 2716: 2619: 2584: 2549: 2513: 2470: 2427: 2341: 2300: 2218: 2155: 2112: 2096: 2061: 2026: 1951: 1908: 1830: 1821: 1750: 1715: 1668: 1625: 1582: 1497: 1450: 1407: 815: 810:electron paramagnetic resonance 752:electron paramagnetic resonance 727:electron paramagnetic resonance 678:electron paramagnetic resonance 641:electron paramagnetic resonance 612:electron paramagnetic resonance 600:electron paramagnetic resonance 593:electron paramagnetic resonance 538:electron paramagnetic resonance 408:electron paramagnetic resonance 362:. Light with energy above ~2.2 331:electron paramagnetic resonance 290:electron paramagnetic resonance 74:electron paramagnetic resonance 4527:Philosophical Magazine Letters 4480:Philosophical Magazine Letters 4072:10.1088/0953-8984/20/23/235225 3560:10.1103/PhysRevLett.124.023602 3498:10.1103/PhysRevLett.119.253601 1368: 1333: 1297: 1243: 1067:Reports on Progress in Physics 974:Material properties of diamond 758:Vacancy-interstitial complexes 51:material properties of diamond 1: 4949:Diamond and Related Materials 4582:10.1016/S0925-9635(99)00265-4 4562:Diamond and Related Materials 3948:10.1088/0953-8984/19/4/046216 3716:10.1016/S0925-9635(01)00623-9 3696:Diamond and Related Materials 3172:10.1016/S0925-9635(00)00361-7 3152:Diamond and Related Materials 2787:10.1016/S0925-9635(97)00270-7 2767:Diamond and Related Materials 2710:10.1016/S0925-9635(01)00533-7 2690:Diamond and Related Materials 2613:10.1016/S0925-9635(02)00063-8 2593:Diamond and Related Materials 2499:10.1103/PhysRevLett.90.185507 2456:10.1103/PhysRevLett.92.135502 2055:10.1016/S0921-4526(01)00750-5 2020:10.1016/S0925-9635(99)00013-8 2000:Diamond and Related Materials 1030:10.1016/S0925-9635(03)00262-0 1010:Diamond and Related Materials 990: 509: 4969:10.1016/0925-9635(94)90302-6 4431:10.1016/j.lithos.2017.02.010 2370:10.1016/0038-1098(69)90593-6 1760:, Santa Monica, California, 846: 708:Isolated carbon interstitial 7: 5004:10.1103/PhysRevLett.77.3041 4664:10.1088/0953-8984/13/26/316 3991:10.1016/j.physb.2003.09.005 3975:Physica B: Condensed Matter 2828:10.1088/0953-8984/11/38/314 2247:10.1088/0022-3719/18/13/009 2039:Physica B: Condensed Matter 1859:10.1088/0953-8984/10/27/016 1701:10.1088/0953-8984/12/30/106 1530:10.1088/0953-8984/14/21/401 1229:10.1088/0953-8984/16/39/022 1158:10.1088/0022-3719/15/27/007 1097:10.1088/0034-4885/42/10/001 941: 876: 555:Nickel, cobalt and chromium 526: 296: 108:Labeling of diamond centers 10: 5054: 4883:10.1088/0953-8984/2/43/002 4840:10.1088/0953-8984/4/13/008 4711:10.1088/0953-8984/12/2/308 4396:10.1103/PhysRevB.67.165208 4200:10.1103/PhysRevB.73.125203 4165:10.1103/PhysRevB.66.045406 3906:10.1103/PhysRevB.71.233201 3786:10.1103/PhysRevB.69.045203 3681:10.1103/PhysRevB.78.235203 3437:10.1103/PHYSREVB.99.075430 3327:10.1103/PhysRevB.84.245208 3253:10.1103/PhysRevB.77.245205 3125:10.1103/PhysRevA.81.043813 3072:10.1103/PhysRevB.81.121201 3006:Journal of Applied Physics 2921:10.1103/PhysRevB.70.205211 2749:10.1103/PhysRevB.70.245206 2350:Solid State Communications 1902:10.1088/0022-3719/9/19/005 1807:10.1088/0953-8984/12/6/102 1654:10.1088/0953-8984/1/51/024 1483:10.1088/0953-8984/14/4/104 1327:10.1103/PhysRevB.82.155205 1283:10.1103/PhysRevB.86.035201 450:Schematic of the N3 center 4754:10.1103/PhysRevB.53.11360 4617:10.1103/PhysRevB.54.16719 4123:10.1103/PhysRevB.59.12900 3611:10.1103/PhysRevB.60.R2139 3292:10.1103/PhysRevB.61.10174 3207:10.1103/PhysRevB.51.16681 2895:Iakoubovskii, K. (2004). 2090:10.1080/13642819508239089 1980:10.1080/01418639408240185 1937:10.1103/PhysRevB.50.15586 1436:10.1103/PhysRevB.54.13428 667: 602:, optical absorption and 534:chemical vapor deposition 421:Schematic of the B center 385:Schematic of the A center 316:Schematic of the C center 217:chemical vapor deposition 63:electronic band structure 5038:Crystallographic defects 4283:Philosophical Magazine B 3864:10.1103/PhysRevB.62.6587 3821:10.1103/PhysRevB.54.6988 3751:10.1103/PhysRevB.61.3863 2956:10.1103/PhysRevB.12.4383 2871:10.1103/PhysRevB.41.3905 2578:10.1103/PhysRevB.58.7966 2070:Philosophical Magazine B 1960:Philosophical Magazine B 1744:10.1103/PhysRev.115.1546 466: 84:, PL) or electron beam ( 4984:Physical Review Letters 4547:10.1080/095008398178561 4500:10.1080/095008300403594 4303:10.1080/014186398258104 4010:Physica Status Solidi A 3626:Applied Physics Letters 3530:Physical Review Letters 3468:Physical Review Letters 2523:Applied Physics Letters 2479:Physical Review Letters 2436:Physical Review Letters 2405:10.1126/science.1060258 2313:Applied Physics Letters 2266:Physica Status Solidi A 1576:10.1103/PhysRev.115.857 1381:Physica Status Solidi A 1342:Applied Physics Letters 1171:Zaitsev, A. M. (2001). 979:Nitrogen-vacancy center 954:Crystallographic defect 920:nitrogen-vacancy center 493:electrically conductive 491:and render the diamond 137:. They differ from the 59:electrical conductivity 4926:10.1098/rspa.1977.0165 4797:10.1098/rspa.1976.0140 4248:10.1098/rsta.1977.0012 4030:10.1002/pssa.200405163 2286:10.1002/pssa.200671113 2204:10.1098/rsta.1993.0017 2141:10.1098/rspa.1978.0141 914: 886: 856: 804:Multivacancy complexes 781: 746: 737:Interstitial complexes 717: 635: 451: 422: 386: 317: 61:, as explained by the 35: 26: 2991:10.1103/PhysRevB.61.9 912: 884: 854: 778: 744: 715: 632: 449: 420: 384: 315: 32: 21: 4417:. 278–281: 419–426. 2041:. 308–310: 598–603. 1016:(10–11): 1976–1983. 969:Gemstone irradiation 497:p-type semiconductor 124:(type-II radiation). 4996:1996PhRvL..77.3041G 4961:1994DRM.....3..932C 4918:1977RSPSA.357..231S 4875:1990JPCM....2.8567M 4832:1992JPCM....4.3439L 4789:1976RSPSA.351..245D 4746:1996PhRvB..5311360M 4740:(17): 11360–11364. 4703:2000JPCM...12..189I 4656:2001JPCM...13.6015I 4609:1996PhRvB..5416719K 4603:(23): 16719–16726. 4574:2000DRM.....9...87K 4539:1998PMagL..77..135H 4492:2000PMagL..80..441A 4423:2017Litho.278..419S 4388:2003PhRvB..67p5208G 4345:1977Natur.267...36K 4295:1998PMagB..78..299K 4240:1977RSPTA.284..329H 4192:2006PhRvB..73l5203H 4157:2002PhRvB..66d5406I 4115:1999PhRvB..5912900T 4064:2008JPCM...20w5225D 4022:2004PSSAR.201.2516I 3983:2003PhyB..340...67I 3940:2007JPCM...19d6216K 3898:2005PhRvB..71w3201I 3856:2000PhRvB..62.6587H 3813:1996PhRvB..54.6988T 3778:2004PhRvB..69d5203S 3743:2000PhRvB..61.3863H 3708:2002DRM....11..618N 3673:2008PhRvB..78w5203B 3638:2000ApPhL..76..757K 3603:1999PhRvB..60.2139S 3552:2020PhRvL.124b3602T 3490:2017PhRvL.119y3601I 3369:2015NatSR...512882I 3319:2011PhRvB..84x5208D 3284:2000PhRvB..6110174I 3245:2008PhRvB..77x5205E 3199:1995PhRvB..5116681C 3193:(23): 16681–16688. 3164:2001DRM....10...18I 3117:2010PhRvA..81d3813A 3064:2010PhRvB..81l1201A 3018:1996JAP....79.4348L 2983:2000PhRvB..61....9T 2948:1975PhRvB..12.4383W 2913:2004PhRvB..70t5211I 2863:1990PhRvB..41.3905I 2820:1999JPCM...11.7357N 2779:1998DRM.....7..333C 2741:2004PhRvB..70x5206I 2702:2002DRM....11..125I 2644:2003NatMa...2..482T 2605:2002DRM....11.1566C 2570:1998PhRvB..58.7966C 2535:1995ApPhL..66..177F 2491:2003PhRvL..90r5507G 2448:2004PhRvL..92m5502G 2397:2001Sci...292.1899K 2391:(5523): 1899–1901. 2362:1969SSCom...7..685F 2325:2001ApPhL..79.3068H 2278:2006PSSAR.203.3136K 2239:1985JPhC...18.2623A 2196:1993RSPTA.342..233C 2133:1978RSPSA.362..405T 2082:1995PMagB..72..351B 2047:2001PhyB..308..598S 2012:1999DRM.....8.1455C 1972:1994PMagB..69.1149B 1929:1994PhRvB..5015586T 1923:(21): 15586–15596. 1894:1976JPhC....9L.537D 1851:1998JPCM...10.6171L 1799:2000JPCM...12L..77I 1736:1959PhRv..115.1546S 1693:2000JPCM...12L.519I 1646:1989JPCM....110549N 1568:1959PhRv..115..857K 1522:2002JPCM...14R.401I 1475:2002JPCM...14L..95I 1428:1996PhRvB..5413428L 1422:(19): 13428–13431. 1393:2001PSSAR.186..199I 1354:1996ApPhL..68.3317H 1319:2010PhRvB..82o5205D 1275:2012PhRvB..86c5201E 1221:2004JPCM...16.6897I 1150:1982JPhC...15L.981V 1079:1979RPPh...42.1605W 1058:Walker, J. (1979). 1022:2003DRM....12.1976C 964:Diamond enhancement 895:electron microscopy 841:electron microscope 523:, at 235 nm). 346:(one more than the 94:absorption spectrum 86:cathodoluminescence 3977:. 340–342: 67–75. 3347:Scientific Reports 2006:(8–9): 1455–1462. 1607:10.1039/C8TC00097B 915: 887: 862:optical microscope 857: 782: 747: 718: 699:interstitial sites 636: 517:thermal ionization 455:N3 nitrogen center 452: 423: 387: 318: 234:optical microscope 80:induced by light ( 36: 27: 23:Synthetic diamonds 4990:(14): 3041–3044. 4734:Physical Review B 4597:Physical Review B 4376:Physical Review B 4180:Physical Review B 4145:Physical Review B 4103:Physical Review B 3886:Physical Review B 3844:Physical Review B 3807:(10): 6988–6998. 3801:Physical Review B 3766:Physical Review B 3731:Physical Review B 3661:Physical Review B 3591:Physical Review B 3414:Physical Review B 3377:10.1038/srep12882 3307:Physical Review B 3272:Physical Review B 3233:Physical Review B 3187:Physical Review B 3095:Physical Review A 3042:Physical Review B 2971:Physical Review B 2942:(10): 4383–4390. 2936:Physical Review B 2901:Physical Review B 2851:Physical Review B 2729:Physical Review B 2558:Physical Review B 2334:10.1063/1.1417514 2190:(1664): 233–244. 1917:Physical Review B 1888:(19): L537–L542. 1601:(19): 5261–5268. 1595:J. Mater. Chem. C 1416:Physical Review B 1307:Physical Review B 1253:Physical Review B 1182:978-3-540-66582-3 1144:(27): L981–L983. 1073:(10): 1605–1659. 984:Synthetic diamond 924:quantum computing 837:photoluminescence 731:photoluminescence 684:Intrinsic defects 659:Si-vacancy center 655:germanium-vacancy 616:photoluminescence 604:photoluminescence 426:B-nitrogen center 390:A-nitrogen center 321:C-nitrogen center 227:Extrinsic defects 102:enhanced diamonds 82:photoluminescence 5045: 5016: 5015: 4979: 4973: 4972: 4944: 4938: 4937: 4901: 4895: 4894: 4858: 4852: 4851: 4815: 4809: 4808: 4772: 4766: 4765: 4729: 4723: 4722: 4682: 4676: 4675: 4635: 4629: 4628: 4592: 4586: 4585: 4557: 4551: 4550: 4518: 4512: 4511: 4471: 4465: 4464: 4462: 4460: 4442: 4406: 4400: 4399: 4371: 4365: 4364: 4353:10.1038/267036a0 4328: 4322: 4321: 4319: 4317: 4311: 4280: 4271: 4260: 4259: 4223: 4217: 4210: 4204: 4203: 4175: 4169: 4168: 4136: 4127: 4126: 4098: 4092: 4091: 4043: 4034: 4033: 4001: 3995: 3994: 3966: 3960: 3959: 3919: 3910: 3909: 3877: 3868: 3867: 3839: 3833: 3832: 3796: 3790: 3789: 3761: 3755: 3754: 3726: 3720: 3719: 3691: 3685: 3684: 3656: 3650: 3649: 3646:10.1063/1.125885 3621: 3615: 3614: 3586: 3580: 3579: 3545: 3524: 3518: 3517: 3483: 3463: 3457: 3456: 3430: 3408: 3399: 3398: 3388: 3362: 3337: 3331: 3330: 3302: 3296: 3295: 3263: 3257: 3256: 3228: 3219: 3218: 3182: 3176: 3175: 3143: 3137: 3136: 3110: 3090: 3084: 3083: 3057: 3036: 3030: 3029: 3026:10.1063/1.361744 3001: 2995: 2994: 2966: 2960: 2959: 2931: 2925: 2924: 2892: 2883: 2882: 2857:(7): 3905–3913. 2846: 2840: 2839: 2802: 2791: 2790: 2762: 2753: 2752: 2720: 2714: 2713: 2681: 2672: 2671: 2632:Nature Materials 2623: 2617: 2616: 2588: 2582: 2581: 2553: 2547: 2546: 2543:10.1063/1.113126 2517: 2511: 2510: 2474: 2468: 2467: 2431: 2425: 2424: 2380: 2374: 2373: 2345: 2339: 2338: 2336: 2304: 2298: 2297: 2260: 2251: 2250: 2222: 2216: 2215: 2179: 2170: 2159: 2153: 2152: 2116: 2110: 2100: 2094: 2093: 2065: 2059: 2058: 2030: 2024: 2023: 1995: 1984: 1983: 1955: 1949: 1948: 1912: 1906: 1905: 1877: 1871: 1870: 1834: 1828: 1825: 1819: 1818: 1778: 1769: 1754: 1748: 1747: 1719: 1713: 1712: 1672: 1666: 1665: 1629: 1623: 1622: 1620: 1618: 1586: 1580: 1579: 1551: 1542: 1541: 1501: 1495: 1494: 1454: 1448: 1447: 1411: 1405: 1404: 1372: 1366: 1365: 1362:10.1063/1.116043 1337: 1331: 1330: 1301: 1295: 1294: 1268: 1247: 1241: 1240: 1200: 1187: 1186: 1168: 1162: 1161: 1133: 1124: 1123: 1121: 1119: 1113: 1090: 1064: 1055: 1034: 1033: 1005: 771:Isolated vacancy 578: 567: 402:The A center is 238:ion implantation 221:gallium arsenide 210:inversion center 5053: 5052: 5048: 5047: 5046: 5044: 5043: 5042: 5023: 5022: 5019: 4980: 4976: 4945: 4941: 4902: 4898: 4859: 4855: 4816: 4812: 4773: 4769: 4730: 4726: 4683: 4679: 4636: 4632: 4593: 4589: 4558: 4554: 4519: 4515: 4472: 4468: 4458: 4456: 4407: 4403: 4372: 4368: 4329: 4325: 4315: 4313: 4309: 4278: 4272: 4263: 4224: 4220: 4211: 4207: 4176: 4172: 4137: 4130: 4099: 4095: 4044: 4037: 4002: 3998: 3967: 3963: 3920: 3913: 3878: 3871: 3840: 3836: 3797: 3793: 3762: 3758: 3727: 3723: 3692: 3688: 3657: 3653: 3622: 3618: 3587: 3583: 3525: 3521: 3464: 3460: 3409: 3402: 3338: 3334: 3303: 3299: 3264: 3260: 3229: 3222: 3183: 3179: 3144: 3140: 3091: 3087: 3037: 3033: 3002: 2998: 2967: 2963: 2932: 2928: 2893: 2886: 2847: 2843: 2803: 2794: 2763: 2756: 2721: 2717: 2682: 2675: 2652:10.1038/nmat929 2624: 2620: 2589: 2585: 2554: 2550: 2518: 2514: 2475: 2471: 2432: 2428: 2381: 2377: 2346: 2342: 2305: 2301: 2261: 2254: 2223: 2219: 2180: 2173: 2160: 2156: 2117: 2113: 2101: 2097: 2066: 2062: 2031: 2027: 1996: 1987: 1956: 1952: 1913: 1909: 1878: 1874: 1835: 1831: 1826: 1822: 1779: 1772: 1755: 1751: 1724:Physical Review 1720: 1716: 1673: 1669: 1630: 1626: 1616: 1614: 1587: 1583: 1556:Physical Review 1552: 1545: 1502: 1498: 1455: 1451: 1412: 1408: 1373: 1369: 1338: 1334: 1302: 1298: 1248: 1244: 1201: 1190: 1183: 1169: 1165: 1134: 1127: 1117: 1115: 1111: 1062: 1056: 1037: 1006: 997: 993: 988: 944: 903: 879: 849: 818: 806: 773: 760: 739: 710: 695:Frenkel defects 686: 670: 627: 588: 587: 586: 585: 581: 580: 579: 570: 569: 568: 557: 529: 512: 469: 457: 428: 392: 368:conduction band 323: 299: 229: 204: 200: 192: 188: 184: 176: 168: 164: 156: 148: 131: 129:Defect symmetry 110: 43:crystal lattice 12: 11: 5: 5051: 5041: 5040: 5035: 5018: 5017: 4974: 4939: 4896: 4853: 4810: 4767: 4724: 4677: 4630: 4587: 4552: 4513: 4466: 4401: 4382:(16): 165208. 4366: 4323: 4261: 4218: 4205: 4186:(12): 125203. 4170: 4128: 4093: 4058:(23): 235225. 4035: 3996: 3961: 3911: 3892:(23): 233201. 3869: 3834: 3791: 3756: 3721: 3686: 3667:(23): 235203. 3651: 3616: 3581: 3519: 3474:(25): 253601. 3458: 3400: 3332: 3313:(24): 245208. 3297: 3258: 3239:(24): 245205. 3220: 3177: 3138: 3085: 3048:(12): 121201. 3031: 2996: 2961: 2926: 2907:(20): 205211. 2884: 2841: 2792: 2754: 2735:(24): 245206. 2715: 2673: 2638:(7): 482–486. 2618: 2583: 2548: 2512: 2485:(18): 185507. 2469: 2442:(13): 135502. 2426: 2375: 2356:(9): 685–688. 2340: 2299: 2252: 2217: 2171: 2154: 2111: 2095: 2060: 2025: 1985: 1950: 1907: 1872: 1829: 1820: 1770: 1749: 1714: 1667: 1624: 1581: 1543: 1496: 1449: 1406: 1367: 1332: 1313:(15): 155205. 1296: 1242: 1188: 1181: 1163: 1125: 1088:10.1.1.467.443 1035: 994: 992: 989: 987: 986: 981: 976: 971: 966: 961: 956: 951: 945: 943: 940: 902: 899: 878: 875: 848: 845: 817: 814: 805: 802: 772: 769: 759: 756: 738: 735: 709: 706: 685: 682: 669: 666: 626: 623: 583: 582: 573: 572: 571: 562: 561: 560: 559: 558: 556: 553: 528: 525: 511: 508: 489:electric field 468: 465: 456: 453: 427: 424: 391: 388: 322: 319: 298: 295: 228: 225: 202: 198: 190: 186: 182: 174: 166: 162: 154: 146: 130: 127: 126: 125: 121: 118: 109: 106: 9: 6: 4: 3: 2: 5050: 5039: 5036: 5034: 5031: 5030: 5028: 5021: 5013: 5009: 5005: 5001: 4997: 4993: 4989: 4985: 4978: 4970: 4966: 4962: 4958: 4954: 4950: 4943: 4935: 4931: 4927: 4923: 4919: 4915: 4912:(1689): 231. 4911: 4907: 4900: 4892: 4888: 4884: 4880: 4876: 4872: 4868: 4864: 4857: 4849: 4845: 4841: 4837: 4833: 4829: 4825: 4821: 4814: 4806: 4802: 4798: 4794: 4790: 4786: 4783:(1665): 245. 4782: 4778: 4771: 4763: 4759: 4755: 4751: 4747: 4743: 4739: 4735: 4728: 4720: 4716: 4712: 4708: 4704: 4700: 4696: 4692: 4688: 4681: 4673: 4669: 4665: 4661: 4657: 4653: 4649: 4645: 4641: 4634: 4626: 4622: 4618: 4614: 4610: 4606: 4602: 4598: 4591: 4583: 4579: 4575: 4571: 4567: 4563: 4556: 4548: 4544: 4540: 4536: 4532: 4528: 4524: 4517: 4509: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4477: 4470: 4454: 4450: 4446: 4441: 4436: 4432: 4428: 4424: 4420: 4416: 4412: 4405: 4397: 4393: 4389: 4385: 4381: 4377: 4370: 4362: 4358: 4354: 4350: 4346: 4342: 4338: 4334: 4327: 4308: 4304: 4300: 4296: 4292: 4288: 4284: 4277: 4270: 4268: 4266: 4257: 4253: 4249: 4245: 4241: 4237: 4234:(1324): 329. 4233: 4229: 4222: 4215: 4209: 4201: 4197: 4193: 4189: 4185: 4181: 4174: 4166: 4162: 4158: 4154: 4151:(4): 045406. 4150: 4146: 4142: 4135: 4133: 4124: 4120: 4116: 4112: 4109:(20): 12900. 4108: 4104: 4097: 4089: 4085: 4081: 4077: 4073: 4069: 4065: 4061: 4057: 4053: 4049: 4042: 4040: 4031: 4027: 4023: 4019: 4015: 4011: 4007: 4000: 3992: 3988: 3984: 3980: 3976: 3972: 3965: 3957: 3953: 3949: 3945: 3941: 3937: 3934:(4): 046216. 3933: 3929: 3925: 3918: 3916: 3907: 3903: 3899: 3895: 3891: 3887: 3883: 3876: 3874: 3865: 3861: 3857: 3853: 3849: 3845: 3838: 3830: 3826: 3822: 3818: 3814: 3810: 3806: 3802: 3795: 3787: 3783: 3779: 3775: 3772:(4): 045203. 3771: 3767: 3760: 3752: 3748: 3744: 3740: 3736: 3732: 3725: 3717: 3713: 3709: 3705: 3701: 3697: 3690: 3682: 3678: 3674: 3670: 3666: 3662: 3655: 3647: 3643: 3639: 3635: 3631: 3627: 3620: 3612: 3608: 3604: 3600: 3596: 3592: 3585: 3577: 3573: 3569: 3565: 3561: 3557: 3553: 3549: 3544: 3539: 3536:(2): 023602. 3535: 3531: 3523: 3515: 3511: 3507: 3503: 3499: 3495: 3491: 3487: 3482: 3477: 3473: 3469: 3462: 3454: 3450: 3446: 3442: 3438: 3434: 3429: 3424: 3420: 3416: 3415: 3407: 3405: 3396: 3392: 3387: 3382: 3378: 3374: 3370: 3366: 3361: 3356: 3352: 3348: 3344: 3336: 3328: 3324: 3320: 3316: 3312: 3308: 3301: 3293: 3289: 3285: 3281: 3278:(15): 10174. 3277: 3273: 3269: 3262: 3254: 3250: 3246: 3242: 3238: 3234: 3227: 3225: 3216: 3212: 3208: 3204: 3200: 3196: 3192: 3188: 3181: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3142: 3134: 3130: 3126: 3122: 3118: 3114: 3109: 3104: 3101:(4): 043813. 3100: 3096: 3089: 3081: 3077: 3073: 3069: 3065: 3061: 3056: 3051: 3047: 3043: 3035: 3027: 3023: 3019: 3015: 3011: 3007: 3000: 2992: 2988: 2984: 2980: 2976: 2972: 2965: 2957: 2953: 2949: 2945: 2941: 2937: 2930: 2922: 2918: 2914: 2910: 2906: 2902: 2898: 2891: 2889: 2880: 2876: 2872: 2868: 2864: 2860: 2856: 2852: 2845: 2837: 2833: 2829: 2825: 2821: 2817: 2813: 2809: 2801: 2799: 2797: 2788: 2784: 2780: 2776: 2772: 2768: 2761: 2759: 2750: 2746: 2742: 2738: 2734: 2730: 2726: 2719: 2711: 2707: 2703: 2699: 2695: 2691: 2687: 2680: 2678: 2669: 2665: 2661: 2657: 2653: 2649: 2645: 2641: 2637: 2633: 2629: 2622: 2614: 2610: 2606: 2602: 2598: 2594: 2587: 2579: 2575: 2571: 2567: 2563: 2559: 2552: 2544: 2540: 2536: 2532: 2528: 2524: 2516: 2508: 2504: 2500: 2496: 2492: 2488: 2484: 2480: 2473: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2437: 2430: 2422: 2418: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2371: 2367: 2363: 2359: 2355: 2351: 2344: 2335: 2330: 2326: 2322: 2318: 2314: 2310: 2303: 2295: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2259: 2257: 2248: 2244: 2240: 2236: 2232: 2228: 2221: 2213: 2209: 2205: 2201: 2197: 2193: 2189: 2185: 2178: 2176: 2168: 2167:0-7506-3173-2 2164: 2158: 2150: 2146: 2142: 2138: 2134: 2130: 2127:(1710): 405. 2126: 2122: 2115: 2109: 2108:0-7198-0261-X 2105: 2099: 2091: 2087: 2083: 2079: 2075: 2071: 2064: 2056: 2052: 2048: 2044: 2040: 2036: 2029: 2021: 2017: 2013: 2009: 2005: 2001: 1994: 1992: 1990: 1981: 1977: 1973: 1969: 1965: 1961: 1954: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1911: 1903: 1899: 1895: 1891: 1887: 1883: 1876: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1833: 1824: 1816: 1812: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1777: 1775: 1767: 1766:0-87311-016-1 1763: 1759: 1753: 1745: 1741: 1737: 1733: 1729: 1725: 1718: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1671: 1663: 1659: 1655: 1651: 1647: 1643: 1640:(51): 10549. 1639: 1635: 1628: 1612: 1608: 1604: 1600: 1596: 1592: 1585: 1577: 1573: 1569: 1565: 1561: 1557: 1550: 1548: 1539: 1535: 1531: 1527: 1523: 1519: 1515: 1511: 1507: 1500: 1492: 1488: 1484: 1480: 1476: 1472: 1468: 1464: 1460: 1453: 1445: 1441: 1437: 1433: 1429: 1425: 1421: 1417: 1410: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1371: 1363: 1359: 1355: 1351: 1347: 1343: 1336: 1328: 1324: 1320: 1316: 1312: 1308: 1300: 1292: 1288: 1284: 1280: 1276: 1272: 1267: 1262: 1259:(3): 035201. 1258: 1254: 1246: 1238: 1234: 1230: 1226: 1222: 1218: 1214: 1210: 1206: 1199: 1197: 1195: 1193: 1184: 1178: 1174: 1167: 1159: 1155: 1151: 1147: 1143: 1139: 1132: 1130: 1110: 1106: 1102: 1098: 1094: 1089: 1084: 1080: 1076: 1072: 1068: 1061: 1054: 1052: 1050: 1048: 1046: 1044: 1042: 1040: 1031: 1027: 1023: 1019: 1015: 1011: 1004: 1002: 1000: 995: 985: 982: 980: 977: 975: 972: 970: 967: 965: 962: 960: 959:Diamond color 957: 955: 952: 950: 947: 946: 939: 935: 931: 927: 925: 921: 911: 907: 898: 896: 892: 889:Voidites are 883: 874: 870: 868: 863: 853: 844: 842: 838: 834: 830: 826: 822: 813: 811: 801: 799: 793: 791: 790:color centers 787: 777: 768: 764: 755: 753: 743: 734: 732: 728: 723: 714: 705: 702: 700: 696: 692: 681: 679: 674: 665: 662: 660: 656: 651: 648: 644: 642: 631: 622: 619: 617: 613: 607: 605: 601: 596: 594: 577: 566: 552: 550: 544: 541: 539: 535: 524: 522: 518: 507: 505: 500: 498: 494: 490: 486: 482: 478: 477:electron hole 474: 464: 462: 448: 444: 440: 436: 434: 419: 415: 411: 409: 405: 400: 398: 383: 379: 375: 371: 369: 365: 361: 357: 353: 349: 345: 340: 336: 332: 328: 314: 310: 308: 303: 294: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 243: 239: 235: 224: 222: 218: 213: 211: 206: 196: 180: 172: 160: 152: 144: 140: 136: 122: 119: 116: 115: 114: 105: 103: 99: 95: 91: 87: 83: 79: 75: 71: 66: 64: 60: 56: 55:diamond color 52: 48: 44: 40: 39:Imperfections 31: 24: 20: 16: 5020: 4987: 4983: 4977: 4955:(4–6): 932. 4952: 4948: 4942: 4909: 4905: 4899: 4869:(43): 8567. 4866: 4862: 4856: 4826:(13): 3439. 4823: 4819: 4813: 4780: 4776: 4770: 4737: 4733: 4727: 4694: 4690: 4680: 4650:(26): 6015. 4647: 4643: 4633: 4600: 4596: 4590: 4565: 4561: 4555: 4530: 4526: 4516: 4483: 4479: 4469: 4457:. Retrieved 4414: 4404: 4379: 4375: 4369: 4339:(5606): 36. 4336: 4332: 4326: 4316:February 12, 4314:. Retrieved 4286: 4282: 4231: 4227: 4221: 4208: 4183: 4179: 4173: 4148: 4144: 4106: 4102: 4096: 4055: 4051: 4016:(11): 2516. 4013: 4009: 3999: 3974: 3964: 3931: 3927: 3889: 3885: 3850:(10): 6587. 3847: 3843: 3837: 3804: 3800: 3794: 3769: 3765: 3759: 3734: 3730: 3724: 3702:(3–6): 618. 3699: 3695: 3689: 3664: 3660: 3654: 3629: 3625: 3619: 3597:(4): R2139. 3594: 3590: 3584: 3533: 3529: 3522: 3471: 3467: 3461: 3418: 3412: 3350: 3346: 3335: 3310: 3306: 3300: 3275: 3271: 3261: 3236: 3232: 3190: 3186: 3180: 3155: 3151: 3141: 3098: 3094: 3088: 3045: 3041: 3034: 3009: 3005: 2999: 2974: 2970: 2964: 2939: 2935: 2929: 2904: 2900: 2854: 2850: 2844: 2814:(38): 7357. 2811: 2807: 2773:(2–5): 333. 2770: 2766: 2732: 2728: 2718: 2693: 2689: 2635: 2631: 2621: 2596: 2592: 2586: 2564:(12): 7966. 2561: 2557: 2551: 2526: 2522: 2515: 2482: 2478: 2472: 2439: 2435: 2429: 2388: 2384: 2378: 2353: 2349: 2343: 2319:(19): 3068. 2316: 2312: 2302: 2272:(12): 3136. 2269: 2265: 2233:(13): 2623. 2230: 2226: 2220: 2187: 2183: 2157: 2124: 2120: 2114: 2098: 2073: 2069: 2063: 2038: 2028: 2003: 1999: 1963: 1959: 1953: 1920: 1916: 1910: 1885: 1881: 1875: 1845:(27): 6171. 1842: 1838: 1832: 1823: 1790: 1786: 1752: 1727: 1723: 1717: 1687:(30): L519. 1684: 1680: 1670: 1637: 1633: 1627: 1617:November 24, 1615:. Retrieved 1598: 1594: 1584: 1559: 1555: 1516:(21): 5459. 1513: 1509: 1499: 1466: 1462: 1452: 1419: 1415: 1409: 1384: 1380: 1370: 1348:(23): 3317. 1345: 1341: 1335: 1310: 1306: 1299: 1256: 1252: 1245: 1215:(39): 6897. 1212: 1208: 1175:. Springer. 1172: 1166: 1141: 1137: 1118:February 12, 1116:. Retrieved 1070: 1066: 1013: 1009: 936: 932: 928: 916: 904: 888: 871: 858: 832: 824: 821:Dislocations 819: 816:Dislocations 807: 798:valence band 794: 783: 765: 761: 748: 722:interstitial 719: 703: 687: 675: 671: 663: 652: 647:Si-vacancies 645: 637: 620: 608: 597: 589: 545: 542: 530: 513: 504:phosphoresce 501: 485:valence band 481:valence band 472: 470: 461:paramagnetic 458: 441: 437: 432: 429: 412: 401: 396: 393: 376: 372: 356:energy level 334: 324: 304: 300: 268:and perhaps 230: 214: 207: 139:space groups 135:point groups 132: 111: 78:luminescence 72:, including 70:spectroscopy 67: 37: 15: 3737:(6): 3863. 3012:(8): 4348. 2599:(8): 1566. 1966:(6): 1149. 1730:(6): 1546. 833:shuffle set 827:, in which 549:Argyle mine 404:diamagnetic 358:within the 143:tetrahedral 5027:Categories 4697:(2): 189. 4533:(3): 135. 4486:(6): 441. 4459:August 11, 4289:(3): 299. 3632:(6): 757. 3543:1811.07777 3481:1708.03576 3453:Q105746117 3428:1805.12202 3360:1503.04938 2696:(1): 125. 2529:(2): 177. 2076:(3): 351. 1793:(6): L77. 1562:(4): 857. 1469:(4): L95. 1387:(2): 199. 991:References 891:octahedral 634:uncertain. 510:Phosphorus 258:phosphorus 179:monoclinic 151:tetragonal 4891:250878505 4848:250824280 4719:250820432 4672:250804678 4568:(1): 87. 4508:138243923 4449:131914804 4256:120959202 3514:206305034 3445:0163-1829 3353:: 12882. 3158:(1): 18. 3108:0909.1873 3055:1001.4373 2836:250759333 2212:202574625 1867:250841408 1815:250734213 1709:250888444 1662:250823139 1538:250752181 1491:250871851 1291:118609894 1266:1112.5757 1237:250836558 1105:250857323 1083:CiteSeerX 847:Platelets 825:glide set 784:Isolated 720:Isolated 495:(i.e., a 344:electrons 274:Manganese 195:triclinic 98:synthetic 5012:10062116 4934:98842822 4805:93034755 4453:Archived 4307:Archived 4080:21694316 3956:97742332 3576:53959613 3568:32004012 3506:29303349 3449:Wikidata 3395:26250337 3133:54887620 3080:56165312 2977:(1): 9. 2668:21797000 2660:12876564 2507:12786024 2464:15089622 2421:10675358 2413:11397942 2294:96415838 2149:98179513 1768:, p. 191 1611:Archived 1109:Archived 942:See also 877:Voidites 527:Hydrogen 473:type IIb 433:type IaB 397:type IaA 360:band gap 307:infrared 297:Nitrogen 278:tungsten 250:hydrogen 242:nitrogen 159:trigonal 90:infrared 5033:Diamond 4992:Bibcode 4957:Bibcode 4914:Bibcode 4871:Bibcode 4828:Bibcode 4785:Bibcode 4762:9982752 4742:Bibcode 4699:Bibcode 4652:Bibcode 4625:9985801 4605:Bibcode 4570:Bibcode 4535:Bibcode 4488:Bibcode 4419:Bibcode 4384:Bibcode 4361:4277090 4341:Bibcode 4291:Bibcode 4236:Bibcode 4188:Bibcode 4153:Bibcode 4111:Bibcode 4088:2988243 4060:Bibcode 4018:Bibcode 3979:Bibcode 3936:Bibcode 3894:Bibcode 3852:Bibcode 3829:9984317 3809:Bibcode 3774:Bibcode 3739:Bibcode 3704:Bibcode 3669:Bibcode 3634:Bibcode 3599:Bibcode 3548:Bibcode 3486:Bibcode 3386:4528202 3365:Bibcode 3315:Bibcode 3280:Bibcode 3241:Bibcode 3215:9978673 3195:Bibcode 3160:Bibcode 3113:Bibcode 3060:Bibcode 3014:Bibcode 2979:Bibcode 2944:Bibcode 2909:Bibcode 2879:9994206 2859:Bibcode 2816:Bibcode 2775:Bibcode 2737:Bibcode 2698:Bibcode 2640:Bibcode 2601:Bibcode 2566:Bibcode 2531:Bibcode 2487:Bibcode 2444:Bibcode 2393:Bibcode 2385:Science 2358:Bibcode 2321:Bibcode 2274:Bibcode 2235:Bibcode 2192:Bibcode 2169:, p. 52 2129:Bibcode 2078:Bibcode 2043:Bibcode 2008:Bibcode 1968:Bibcode 1945:9975922 1925:Bibcode 1890:Bibcode 1847:Bibcode 1795:Bibcode 1732:Bibcode 1689:Bibcode 1642:Bibcode 1564:Bibcode 1518:Bibcode 1471:Bibcode 1444:9985239 1424:Bibcode 1389:Bibcode 1350:Bibcode 1315:Bibcode 1271:Bibcode 1217:Bibcode 1146:Bibcode 1075:Bibcode 1018:Bibcode 786:vacancy 335:type Ib 254:silicon 171:rhombic 76:(EPR), 47:diamond 41:in the 5010:  4932:  4889:  4846:  4803:  4760:  4717:  4670:  4623:  4506:  4447:  4415:Lithos 4359:  4333:Nature 4254:  4086:  4078:  3954:  3827:  3574:  3566:  3512:  3504:  3451:  3443:  3393:  3383:  3213:  3131:  3078:  2877:  2834:  2666:  2658:  2505:  2462:  2419:  2411:  2292:  2210:  2165:  2147:  2106:  1943:  1865:  1813:  1764:  1707:  1660:  1536:  1489:  1442:  1289:  1235:  1179:  1103:  1085:  668:Sulfur 352:donors 348:carbon 270:sulfur 266:cobalt 262:nickel 193:) and 4930:S2CID 4887:S2CID 4844:S2CID 4801:S2CID 4715:S2CID 4668:S2CID 4504:S2CID 4445:S2CID 4357:S2CID 4310:(PDF) 4279:(PDF) 4252:S2CID 4084:S2CID 3952:S2CID 3572:S2CID 3538:arXiv 3510:S2CID 3476:arXiv 3423:arXiv 3421:(7). 3355:arXiv 3129:S2CID 3103:arXiv 3076:S2CID 3050:arXiv 2832:S2CID 2664:S2CID 2417:S2CID 2290:S2CID 2208:S2CID 2145:S2CID 1863:S2CID 1811:S2CID 1705:S2CID 1658:S2CID 1534:S2CID 1487:S2CID 1287:S2CID 1261:arXiv 1233:S2CID 1112:(PDF) 1101:S2CID 1063:(PDF) 829:bonds 467:Boron 327:atoms 246:boron 5008:PMID 4758:PMID 4621:PMID 4461:2019 4318:2019 4076:PMID 3825:PMID 3564:PMID 3502:PMID 3441:ISSN 3391:PMID 3211:PMID 2875:PMID 2656:PMID 2503:PMID 2460:PMID 2409:PMID 2163:ISBN 2104:ISBN 1941:PMID 1762:ISBN 1619:2020 1440:PMID 1177:ISBN 1120:2019 867:EELS 614:and 521:LEDs 286:ruby 282:iron 276:and 201:or C 57:and 5000:doi 4965:doi 4922:doi 4910:357 4879:doi 4836:doi 4793:doi 4781:351 4750:doi 4707:doi 4660:doi 4613:doi 4578:doi 4543:doi 4496:doi 4435:hdl 4427:doi 4392:doi 4349:doi 4337:267 4299:doi 4244:doi 4232:284 4196:doi 4161:doi 4119:doi 4068:doi 4026:doi 4014:201 3987:doi 3944:doi 3902:doi 3860:doi 3817:doi 3782:doi 3747:doi 3712:doi 3677:doi 3642:doi 3607:doi 3556:doi 3534:124 3494:doi 3472:119 3433:doi 3381:PMC 3373:doi 3323:doi 3288:doi 3249:doi 3203:doi 3168:doi 3121:doi 3068:doi 3022:doi 2987:doi 2952:doi 2917:doi 2867:doi 2824:doi 2783:doi 2745:doi 2706:doi 2648:doi 2609:doi 2574:doi 2539:doi 2495:doi 2452:doi 2401:doi 2389:292 2366:doi 2329:doi 2282:doi 2270:203 2243:doi 2200:doi 2188:342 2137:doi 2125:362 2086:doi 2051:doi 2016:doi 1976:doi 1933:doi 1898:doi 1855:doi 1803:doi 1740:doi 1728:115 1697:doi 1650:doi 1603:doi 1572:doi 1560:115 1526:doi 1479:doi 1432:doi 1397:doi 1385:186 1358:doi 1323:doi 1279:doi 1225:doi 1154:doi 1093:doi 1026:doi 780:°C. 339:gem 205:). 189:, C 185:, C 177:), 169:), 165:, C 157:), 149:), 100:or 45:of 5029:: 5006:. 4998:. 4988:77 4986:. 4963:. 4951:. 4928:. 4920:. 4908:. 4885:. 4877:. 4865:. 4842:. 4834:. 4822:. 4799:. 4791:. 4779:. 4756:. 4748:. 4738:53 4736:. 4713:. 4705:. 4695:12 4693:. 4689:. 4666:. 4658:. 4648:13 4646:. 4642:. 4619:. 4611:. 4601:54 4599:. 4576:. 4564:. 4541:. 4531:77 4529:. 4525:. 4502:. 4494:. 4484:80 4482:. 4478:. 4451:. 4443:. 4433:. 4425:. 4413:. 4390:. 4380:67 4378:. 4355:. 4347:. 4335:. 4305:. 4297:. 4287:78 4285:. 4281:. 4264:^ 4250:. 4242:. 4230:. 4194:. 4184:73 4182:. 4159:. 4149:66 4147:. 4143:. 4131:^ 4117:. 4107:59 4105:. 4082:. 4074:. 4066:. 4056:20 4054:. 4050:. 4038:^ 4024:. 4012:. 4008:. 3985:. 3973:. 3950:. 3942:. 3932:19 3930:. 3926:. 3914:^ 3900:. 3890:71 3888:. 3884:. 3872:^ 3858:. 3848:62 3846:. 3823:. 3815:. 3805:54 3803:. 3780:. 3770:69 3768:. 3745:. 3735:61 3733:. 3710:. 3700:11 3698:. 3675:. 3665:78 3663:. 3640:. 3630:76 3628:. 3605:. 3595:60 3593:. 3570:. 3562:. 3554:. 3546:. 3532:. 3508:. 3500:. 3492:. 3484:. 3470:. 3447:. 3439:. 3431:. 3419:99 3417:. 3403:^ 3389:. 3379:. 3371:. 3363:. 3349:. 3345:. 3321:. 3311:84 3309:. 3286:. 3276:61 3274:. 3270:. 3247:. 3237:77 3235:. 3223:^ 3209:. 3201:. 3191:51 3189:. 3166:. 3156:10 3154:. 3150:. 3127:. 3119:. 3111:. 3099:81 3097:. 3074:. 3066:. 3058:. 3046:81 3044:. 3020:. 3010:79 3008:. 2985:. 2975:61 2973:. 2950:. 2940:12 2938:. 2915:. 2905:70 2903:. 2899:. 2887:^ 2873:. 2865:. 2855:41 2853:. 2830:. 2822:. 2812:11 2810:. 2795:^ 2781:. 2769:. 2757:^ 2743:. 2733:70 2731:. 2727:. 2704:. 2694:11 2692:. 2688:. 2676:^ 2662:. 2654:. 2646:. 2634:. 2630:. 2607:. 2597:11 2595:. 2572:. 2562:58 2560:. 2537:. 2527:66 2525:. 2501:. 2493:. 2483:90 2481:. 2458:. 2450:. 2440:92 2438:. 2415:. 2407:. 2399:. 2387:. 2364:. 2352:. 2327:. 2317:79 2315:. 2311:. 2288:. 2280:. 2268:. 2255:^ 2241:. 2231:18 2229:. 2206:. 2198:. 2186:. 2174:^ 2143:. 2135:. 2123:. 2084:. 2074:72 2072:. 2049:. 2037:. 2014:. 2002:. 1988:^ 1974:. 1964:69 1962:. 1939:. 1931:. 1921:50 1919:. 1896:. 1884:. 1861:. 1853:. 1843:10 1841:. 1809:. 1801:. 1791:12 1789:. 1785:. 1773:^ 1738:. 1726:. 1703:. 1695:. 1685:12 1683:. 1679:. 1656:. 1648:. 1636:. 1609:. 1597:. 1593:. 1570:. 1558:. 1546:^ 1532:. 1524:. 1514:14 1512:. 1508:. 1485:. 1477:. 1467:14 1465:. 1461:. 1438:. 1430:. 1420:54 1418:. 1395:. 1383:. 1379:. 1356:. 1346:68 1344:. 1321:. 1311:82 1309:. 1285:. 1277:. 1269:. 1257:86 1255:. 1231:. 1223:. 1213:16 1211:. 1207:. 1191:^ 1152:. 1142:15 1140:. 1128:^ 1107:. 1099:. 1091:. 1081:. 1071:42 1069:. 1065:. 1038:^ 1024:. 1014:12 1012:. 998:^ 800:. 733:. 661:. 399:. 364:eV 272:. 264:, 260:, 256:, 252:, 248:, 244:, 197:(C 187:1h 183:2h 181:(C 175:2v 173:(C 167:3v 163:3d 161:(D 155:2d 153:(D 145:(T 104:. 65:. 34:cm 5014:. 5002:: 4994:: 4971:. 4967:: 4959:: 4953:3 4936:. 4924:: 4916:: 4893:. 4881:: 4873:: 4867:2 4850:. 4838:: 4830:: 4824:4 4807:. 4795:: 4787:: 4764:. 4752:: 4744:: 4721:. 4709:: 4701:: 4674:. 4662:: 4654:: 4627:. 4615:: 4607:: 4584:. 4580:: 4572:: 4566:9 4549:. 4545:: 4537:: 4510:. 4498:: 4490:: 4463:. 4437:: 4429:: 4421:: 4398:. 4394:: 4386:: 4363:. 4351:: 4343:: 4320:. 4301:: 4293:: 4258:. 4246:: 4238:: 4202:. 4198:: 4190:: 4167:. 4163:: 4155:: 4125:. 4121:: 4113:: 4090:. 4070:: 4062:: 4032:. 4028:: 4020:: 3993:. 3989:: 3981:: 3958:. 3946:: 3938:: 3908:. 3904:: 3896:: 3866:. 3862:: 3854:: 3831:. 3819:: 3811:: 3788:. 3784:: 3776:: 3753:. 3749:: 3741:: 3718:. 3714:: 3706:: 3683:. 3679:: 3671:: 3648:. 3644:: 3636:: 3613:. 3609:: 3601:: 3578:. 3558:: 3550:: 3540:: 3516:. 3496:: 3488:: 3478:: 3455:. 3435:: 3425:: 3397:. 3375:: 3367:: 3357:: 3351:5 3329:. 3325:: 3317:: 3294:. 3290:: 3282:: 3255:. 3251:: 3243:: 3217:. 3205:: 3197:: 3174:. 3170:: 3162:: 3135:. 3123:: 3115:: 3105:: 3082:. 3070:: 3062:: 3052:: 3028:. 3024:: 3016:: 2993:. 2989:: 2981:: 2958:. 2954:: 2946:: 2923:. 2919:: 2911:: 2881:. 2869:: 2861:: 2838:. 2826:: 2818:: 2789:. 2785:: 2777:: 2771:7 2751:. 2747:: 2739:: 2712:. 2708:: 2700:: 2670:. 2650:: 2642:: 2636:2 2615:. 2611:: 2603:: 2580:. 2576:: 2568:: 2545:. 2541:: 2533:: 2509:. 2497:: 2489:: 2466:. 2454:: 2446:: 2423:. 2403:: 2395:: 2372:. 2368:: 2360:: 2354:7 2337:. 2331:: 2323:: 2296:. 2284:: 2276:: 2249:. 2245:: 2237:: 2214:. 2202:: 2194:: 2151:. 2139:: 2131:: 2092:. 2088:: 2080:: 2057:. 2053:: 2045:: 2022:. 2018:: 2010:: 2004:8 1982:. 1978:: 1970:: 1947:. 1935:: 1927:: 1904:. 1900:: 1892:: 1886:9 1869:. 1857:: 1849:: 1817:. 1805:: 1797:: 1746:. 1742:: 1734:: 1711:. 1699:: 1691:: 1664:. 1652:: 1644:: 1638:1 1621:. 1605:: 1599:6 1578:. 1574:: 1566:: 1540:. 1528:: 1520:: 1493:. 1481:: 1473:: 1446:. 1434:: 1426:: 1403:. 1399:: 1391:: 1364:. 1360:: 1352:: 1329:. 1325:: 1317:: 1293:. 1281:: 1273:: 1263:: 1239:. 1227:: 1219:: 1185:. 1160:. 1156:: 1148:: 1122:. 1095:: 1077:: 1032:. 1028:: 1020:: 203:S 199:1 191:2 147:d

Index


Synthetic diamonds

Imperfections
crystal lattice
diamond
material properties of diamond
diamond color
electrical conductivity
electronic band structure
spectroscopy
electron paramagnetic resonance
luminescence
photoluminescence
cathodoluminescence
infrared
absorption spectrum
synthetic
enhanced diamonds
point groups
space groups
tetrahedral
tetragonal
trigonal
rhombic
monoclinic
triclinic
inversion center
chemical vapor deposition
gallium arsenide

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.