Knowledge

Curvature form

Source đź“ť

1916: 991: 1747: 1226: 1435: 703: 430: 250: 573: 1281: 1604: 1081: 626: 874: 838: 802: 766: 174: 134: 85: 1760: 882: 1317: 1630: 641:
if its curvature vanishes: Ω = 0. Equivalently, a connection is flat if the structure group can be reduced to the same underlying group but with the discrete topology.
1170: 1147: 1124: 726: 1960: 273: 309: 1635: 657:
is a vector bundle, then one can also think of ω as a matrix of 1-forms and the above formula becomes the structure equation of E. Cartan:
1178: 1336: 663: 329: 1101: 186: 1938: 2022: 468: 2069: 629: 2157: 2094: 1990: 1248: 2044: 2000: 2236: 1965: 1955: 1474: 1440: 1236: 1095: 320: 1026: 1980: 1452: 2124: 593: 2231: 2064: 843: 807: 771: 735: 1911:{\displaystyle \sigma \Omega (X,Y)=\sigma d\omega (X,Y)=X\omega (Y)-Y\omega (X)-\omega ()=-\omega ().} 986:{\displaystyle \Omega _{j}^{i}=d{\omega ^{i}}_{j}+\sum _{k}{\omega ^{i}}_{k}\wedge {\omega ^{k}}_{j}.} 155: 115: 66: 2187: 2162: 2084: 1975: 1448: 1017: 587: 37: 1292: 2134: 2015: 312: 112: 2139: 2129: 1609: 586:, on the right we identified a vertical vector field and a Lie algebra element generating it ( 2036: 1155: 1132: 1109: 1013: 711: 17: 104: 8: 2177: 2149: 2104: 1930: 1127: 1001: 276: 41: 2109: 2059: 2008: 1942: 637: 258: 282: 1985: 628:
is the inverse of the normalization factor used by convention in the formula for the
138: 2172: 2074: 1327: 96: 33: 2167: 2079: 2030: 1970: 1444: 1323: 1150: 29: 2200: 2114: 1934: 1742:{\displaystyle d\omega (X,Y)={\frac {1}{2}}(X\omega (Y)-Y\omega (X)-\omega ())} 997: 729: 1632:
Kobayashi convention for the exterior derivative of a one form which is then
2225: 2119: 1995: 2205: 61: 2054: 2032: 57: 25: 2210: 1941:, Vol.I, Chapter 2.5 Curvature form and structure equation, p 75, 1086:
using the standard notation for the Riemannian curvature tensor.
1221:{\displaystyle \Theta =d\theta +\omega \wedge \theta =D\theta ,} 1430:{\displaystyle R_{abmn;\ell }+R_{ab\ell m;n}+R_{abn\ell ;m}=0.} 1126:
is the canonical vector-valued 1-form on the frame bundle, the
1016:. In this case the form Ω is an alternative description of the 1172:
is the vector-valued 2-form defined by the structure equation
1333:
The Bianchi identities can be written in tensor notation as:
1961:
Basic introduction to the mathematics of curved spacetime
1102:
Riemann curvature tensor § Symmetries and identities
698:{\displaystyle \,\Omega =d\omega +\omega \wedge \omega ,} 1008:) and Ω is a 2-form with values in the Lie algebra of O( 425:{\displaystyle \,\Omega (X,Y)=d\omega (X,Y)+{1 \over 2}} 804:
denote components of ω and Ω correspondingly, (so each
245:{\displaystyle \Omega =d\omega +{1 \over 2}=D\omega .} 1763: 1638: 1612: 1477: 1339: 1295: 1251: 1181: 1158: 1135: 1112: 1029: 885: 846: 810: 774: 738: 714: 666: 596: 471: 332: 285: 261: 189: 158: 118: 69: 644: 255:(In another convention, 1/2 does not appear.) Here 1910: 1741: 1624: 1598: 1429: 1311: 1275: 1220: 1164: 1141: 1118: 1075: 985: 868: 832: 796: 760: 720: 697: 620: 568:{\displaystyle \sigma \Omega (X,Y)=-\omega ()=-+h} 567: 424: 303: 267: 244: 168: 128: 79: 2223: 1276:{\displaystyle D\Theta =\Omega \wedge \theta .} 2016: 615: 603: 1286:The second Bianchi identity takes the form 450:There is also another expression for Ω: if 2023: 2009: 1242:The first Bianchi identity takes the form 1296: 1030: 667: 333: 1599:{\displaystyle (X,Y)={\frac {1}{2}}(-)} 2224: 1076:{\displaystyle \,R(X,Y)=\Omega (X,Y),} 2004: 1089: 44:can be considered as a special case. 1939:Foundations of Differential Geometry 1322:and is valid more generally for any 161: 121: 72: 13: 2070:Radius of curvature (applications) 1767: 1300: 1261: 1255: 1182: 1136: 1052: 887: 850: 778: 668: 621:{\displaystyle \sigma \in \{1,2\}} 582:means the horizontal component of 475: 334: 190: 14: 2248: 2158:Curvature of Riemannian manifolds 1991:Curvature of Riemannian manifolds 869:{\displaystyle {\Omega ^{i}}_{j}} 833:{\displaystyle {\omega ^{i}}_{j}} 797:{\displaystyle {\Omega ^{i}}_{j}} 761:{\displaystyle {\omega ^{i}}_{j}} 645:Curvature form in a vector bundle 458:are horizontal vector fields on 169:{\displaystyle {\mathfrak {g}}} 129:{\displaystyle {\mathfrak {g}}} 80:{\displaystyle {\mathfrak {g}}} 1902: 1899: 1887: 1884: 1872: 1869: 1857: 1854: 1845: 1839: 1827: 1821: 1809: 1797: 1782: 1770: 1751: 1736: 1733: 1730: 1718: 1715: 1706: 1700: 1688: 1682: 1673: 1657: 1645: 1593: 1590: 1587: 1581: 1572: 1566: 1560: 1554: 1551: 1545: 1536: 1530: 1524: 1521: 1505: 1493: 1490: 1478: 1465: 1067: 1055: 1046: 1034: 562: 550: 541: 529: 520: 517: 505: 502: 490: 478: 419: 416: 410: 401: 395: 389: 373: 361: 349: 337: 298: 286: 227: 215: 1: 1966:Contracted Bianchi identities 1956:Connection (principal bundle) 1924: 1441:contracted Bianchi identities 1237:exterior covariant derivative 1096:Contracted Bianchi identities 321:exterior covariant derivative 47: 1981:General theory of relativity 1453:general theory of relativity 1312:{\displaystyle \,D\Omega =0} 7: 1949: 1004:, the structure group is O( 840:is a usual 1-form and each 635:A connection is said to be 311:is defined in the article " 10: 2253: 1099: 1093: 2186: 2148: 2093: 2043: 1625:{\displaystyle \sigma =2} 2188:Curvature of connections 2163:Riemann curvature tensor 2085:Total absolute curvature 1976:Einstein field equations 1458: 1449:Einstein field equations 876:is a usual 2-form) then 588:fundamental vector field 38:Riemann curvature tensor 2135:Second fundamental form 2125:Gauss–Codazzi equations 1606:. Here we use also the 1443:are used to derive the 1165:{\displaystyle \omega } 1142:{\displaystyle \Theta } 1119:{\displaystyle \theta } 721:{\displaystyle \wedge } 443:are tangent vectors to 313:Lie algebra-valued form 2140:Third fundamental form 2130:First fundamental form 2095:Differential geometry 2065:Frenet–Serret formulas 2045:Differential geometry 1912: 1743: 1626: 1600: 1431: 1313: 1277: 1222: 1166: 1143: 1120: 1077: 1014:antisymmetric matrices 987: 870: 834: 798: 762: 722: 699: 622: 569: 426: 305: 269: 246: 170: 130: 81: 2237:Differential geometry 2037:differential geometry 1913: 1744: 1627: 1601: 1432: 1314: 1278: 1223: 1167: 1144: 1121: 1078: 996:For example, for the 988: 871: 835: 799: 763: 732:. More precisely, if 723: 700: 623: 570: 427: 306: 270: 247: 171: 131: 82: 18:differential geometry 2105:Principal curvatures 1761: 1636: 1610: 1475: 1337: 1293: 1249: 1179: 1156: 1133: 1110: 1027: 883: 844: 808: 772: 736: 712: 664: 594: 469: 330: 283: 259: 187: 156: 116: 105:Ehresmann connection 67: 2178:Sectional curvature 2150:Riemannian geometry 2031:Various notions of 1931:Shoshichi Kobayashi 1002:Riemannian manifold 900: 630:exterior derivative 277:exterior derivative 42:Riemannian geometry 2110:Gaussian curvature 2060:Torsion of a curve 1943:Wiley Interscience 1908: 1739: 1622: 1596: 1427: 1309: 1273: 1218: 1162: 1139: 1116: 1090:Bianchi identities 1073: 983: 938: 886: 866: 830: 794: 758: 718: 695: 618: 565: 422: 323:. In other terms, 301: 265: 242: 176:-valued 2-form on 166: 126: 77: 2232:Curvature tensors 2219: 2218: 1986:Chern-Simons form 1671: 1519: 929: 387: 268:{\displaystyle d} 213: 2244: 2173:Scalar curvature 2075:Affine curvature 2025: 2018: 2011: 2002: 2001: 1918: 1917: 1915: 1914: 1909: 1755: 1749: 1748: 1746: 1745: 1740: 1672: 1664: 1631: 1629: 1628: 1623: 1605: 1603: 1602: 1597: 1520: 1512: 1469: 1436: 1434: 1433: 1428: 1420: 1419: 1392: 1391: 1364: 1363: 1328:principal bundle 1318: 1316: 1315: 1310: 1282: 1280: 1279: 1274: 1227: 1225: 1224: 1219: 1171: 1169: 1168: 1163: 1148: 1146: 1145: 1140: 1125: 1123: 1122: 1117: 1082: 1080: 1079: 1074: 1018:curvature tensor 992: 990: 989: 984: 979: 978: 973: 972: 971: 957: 956: 951: 950: 949: 937: 925: 924: 919: 918: 917: 899: 894: 875: 873: 872: 867: 865: 864: 859: 858: 857: 839: 837: 836: 831: 829: 828: 823: 822: 821: 803: 801: 800: 795: 793: 792: 787: 786: 785: 767: 765: 764: 759: 757: 756: 751: 750: 749: 727: 725: 724: 719: 704: 702: 701: 696: 627: 625: 624: 619: 574: 572: 571: 566: 431: 429: 428: 423: 388: 380: 310: 308: 307: 304:{\displaystyle } 302: 274: 272: 271: 266: 251: 249: 248: 243: 214: 206: 175: 173: 172: 167: 165: 164: 135: 133: 132: 127: 125: 124: 86: 84: 83: 78: 76: 75: 34:principal bundle 2252: 2251: 2247: 2246: 2245: 2243: 2242: 2241: 2222: 2221: 2220: 2215: 2182: 2168:Ricci curvature 2144: 2096: 2089: 2080:Total curvature 2046: 2039: 2029: 1971:Einstein tensor 1952: 1927: 1922: 1921: 1762: 1759: 1758: 1756: 1752: 1663: 1637: 1634: 1633: 1611: 1608: 1607: 1511: 1476: 1473: 1472: 1470: 1466: 1461: 1445:Einstein tensor 1400: 1396: 1372: 1368: 1344: 1340: 1338: 1335: 1334: 1294: 1291: 1290: 1250: 1247: 1246: 1231:where as above 1180: 1177: 1176: 1157: 1154: 1153: 1151:connection form 1134: 1131: 1130: 1111: 1108: 1107: 1104: 1098: 1092: 1028: 1025: 1024: 974: 967: 963: 962: 961: 952: 945: 941: 940: 939: 933: 920: 913: 909: 908: 907: 895: 890: 884: 881: 880: 860: 853: 849: 848: 847: 845: 842: 841: 824: 817: 813: 812: 811: 809: 806: 805: 788: 781: 777: 776: 775: 773: 770: 769: 752: 745: 741: 740: 739: 737: 734: 733: 713: 710: 709: 665: 662: 661: 647: 595: 592: 591: 470: 467: 466: 379: 331: 328: 327: 284: 281: 280: 260: 257: 256: 205: 188: 185: 184: 160: 159: 157: 154: 153: 120: 119: 117: 114: 113: 103:. Let ω be an 71: 70: 68: 65: 64: 50: 12: 11: 5: 2250: 2240: 2239: 2234: 2217: 2216: 2214: 2213: 2208: 2203: 2201:Torsion tensor 2198: 2196:Curvature form 2192: 2190: 2184: 2183: 2181: 2180: 2175: 2170: 2165: 2160: 2154: 2152: 2146: 2145: 2143: 2142: 2137: 2132: 2127: 2122: 2117: 2115:Mean curvature 2112: 2107: 2101: 2099: 2091: 2090: 2088: 2087: 2082: 2077: 2072: 2067: 2062: 2057: 2051: 2049: 2041: 2040: 2028: 2027: 2020: 2013: 2005: 1999: 1998: 1993: 1988: 1983: 1978: 1973: 1968: 1963: 1958: 1951: 1948: 1947: 1946: 1935:Katsumi Nomizu 1926: 1923: 1920: 1919: 1907: 1904: 1901: 1898: 1895: 1892: 1889: 1886: 1883: 1880: 1877: 1874: 1871: 1868: 1865: 1862: 1859: 1856: 1853: 1850: 1847: 1844: 1841: 1838: 1835: 1832: 1829: 1826: 1823: 1820: 1817: 1814: 1811: 1808: 1805: 1802: 1799: 1796: 1793: 1790: 1787: 1784: 1781: 1778: 1775: 1772: 1769: 1766: 1750: 1738: 1735: 1732: 1729: 1726: 1723: 1720: 1717: 1714: 1711: 1708: 1705: 1702: 1699: 1696: 1693: 1690: 1687: 1684: 1681: 1678: 1675: 1670: 1667: 1662: 1659: 1656: 1653: 1650: 1647: 1644: 1641: 1621: 1618: 1615: 1595: 1592: 1589: 1586: 1583: 1580: 1577: 1574: 1571: 1568: 1565: 1562: 1559: 1556: 1553: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1529: 1526: 1523: 1518: 1515: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1480: 1463: 1462: 1460: 1457: 1451:, the bulk of 1426: 1423: 1418: 1415: 1412: 1409: 1406: 1403: 1399: 1395: 1390: 1387: 1384: 1381: 1378: 1375: 1371: 1367: 1362: 1359: 1356: 1353: 1350: 1347: 1343: 1320: 1319: 1308: 1305: 1302: 1299: 1284: 1283: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1229: 1228: 1217: 1214: 1211: 1208: 1205: 1202: 1199: 1196: 1193: 1190: 1187: 1184: 1161: 1138: 1115: 1091: 1088: 1084: 1083: 1072: 1069: 1066: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1036: 1033: 998:tangent bundle 994: 993: 982: 977: 970: 966: 960: 955: 948: 944: 936: 932: 928: 923: 916: 912: 906: 903: 898: 893: 889: 863: 856: 852: 827: 820: 816: 791: 784: 780: 755: 748: 744: 717: 706: 705: 694: 691: 688: 685: 682: 679: 676: 673: 670: 646: 643: 617: 614: 611: 608: 605: 602: 599: 576: 575: 564: 561: 558: 555: 552: 549: 546: 543: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 510: 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 433: 432: 421: 418: 415: 412: 409: 406: 403: 400: 397: 394: 391: 386: 383: 378: 375: 372: 369: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 300: 297: 294: 291: 288: 264: 253: 252: 241: 238: 235: 232: 229: 226: 223: 220: 217: 212: 209: 204: 201: 198: 195: 192: 163: 150:curvature form 123: 74: 49: 46: 22:curvature form 9: 6: 4: 3: 2: 2249: 2238: 2235: 2233: 2230: 2229: 2227: 2212: 2209: 2207: 2204: 2202: 2199: 2197: 2194: 2193: 2191: 2189: 2185: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2155: 2153: 2151: 2147: 2141: 2138: 2136: 2133: 2131: 2128: 2126: 2123: 2121: 2120:Darboux frame 2118: 2116: 2113: 2111: 2108: 2106: 2103: 2102: 2100: 2098: 2092: 2086: 2083: 2081: 2078: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2053: 2052: 2050: 2048: 2042: 2038: 2034: 2026: 2021: 2019: 2014: 2012: 2007: 2006: 2003: 1997: 1994: 1992: 1989: 1987: 1984: 1982: 1979: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1953: 1944: 1940: 1936: 1932: 1929: 1928: 1905: 1896: 1893: 1890: 1881: 1878: 1875: 1866: 1863: 1860: 1851: 1848: 1842: 1836: 1833: 1830: 1824: 1818: 1815: 1812: 1806: 1803: 1800: 1794: 1791: 1788: 1785: 1779: 1776: 1773: 1764: 1754: 1727: 1724: 1721: 1712: 1709: 1703: 1697: 1694: 1691: 1685: 1679: 1676: 1668: 1665: 1660: 1654: 1651: 1648: 1642: 1639: 1619: 1616: 1613: 1584: 1578: 1575: 1569: 1563: 1557: 1548: 1542: 1539: 1533: 1527: 1516: 1513: 1508: 1502: 1499: 1496: 1487: 1484: 1481: 1468: 1464: 1456: 1454: 1450: 1446: 1442: 1437: 1424: 1421: 1416: 1413: 1410: 1407: 1404: 1401: 1397: 1393: 1388: 1385: 1382: 1379: 1376: 1373: 1369: 1365: 1360: 1357: 1354: 1351: 1348: 1345: 1341: 1331: 1329: 1325: 1306: 1303: 1297: 1289: 1288: 1287: 1270: 1267: 1264: 1258: 1252: 1245: 1244: 1243: 1240: 1238: 1234: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1175: 1174: 1173: 1159: 1152: 1129: 1113: 1103: 1097: 1087: 1070: 1064: 1061: 1058: 1049: 1043: 1040: 1037: 1031: 1023: 1022: 1021: 1019: 1015: 1011: 1007: 1003: 999: 980: 975: 968: 964: 958: 953: 946: 942: 934: 930: 926: 921: 914: 910: 904: 901: 896: 891: 879: 878: 877: 861: 854: 825: 818: 814: 789: 782: 753: 746: 742: 731: 730:wedge product 715: 692: 689: 686: 683: 680: 677: 674: 671: 660: 659: 658: 656: 652: 642: 640: 639: 633: 631: 612: 609: 606: 600: 597: 589: 585: 581: 559: 556: 553: 547: 544: 538: 535: 532: 526: 523: 514: 511: 508: 499: 496: 493: 487: 484: 481: 472: 465: 464: 463: 461: 457: 453: 448: 446: 442: 438: 413: 407: 404: 398: 392: 384: 381: 376: 370: 367: 364: 358: 355: 352: 346: 343: 340: 326: 325: 324: 322: 318: 314: 295: 292: 289: 278: 262: 239: 236: 233: 230: 224: 221: 218: 210: 207: 202: 199: 196: 193: 183: 182: 181: 179: 151: 146: 144: 140: 137: 110: 106: 102: 100: 94: 90: 63: 59: 55: 45: 43: 39: 35: 31: 27: 23: 19: 2195: 1996:Gauge theory 1753: 1467: 1438: 1332: 1321: 1285: 1241: 1235:denotes the 1232: 1230: 1105: 1085: 1012:), i.e. the 1009: 1005: 995: 707: 654: 650: 648: 636: 634: 583: 579: 577: 459: 455: 451: 449: 444: 440: 436: 434: 319:denotes the 316: 254: 177: 149: 147: 142: 111:(which is a 108: 98: 92: 88: 53: 51: 21: 15: 2206:Cocurvature 2097:of surfaces 2035:defined in 275:stands for 180:defined by 62:Lie algebra 2226:Categories 1925:References 1324:connection 1100:See also: 1094:See also: 97:principal 48:Definition 30:connection 24:describes 2055:Curvature 2047:of curves 2033:curvature 1882:ω 1879:− 1852:ω 1849:− 1837:ω 1831:− 1819:ω 1795:ω 1789:σ 1768:Ω 1765:σ 1713:ω 1710:− 1698:ω 1692:− 1680:ω 1643:ω 1614:σ 1579:ω 1564:ω 1558:− 1543:ω 1528:ω 1488:ω 1485:∧ 1482:ω 1411:ℓ 1380:ℓ 1361:ℓ 1301:Ω 1268:θ 1265:∧ 1262:Ω 1256:Θ 1213:θ 1204:θ 1201:∧ 1198:ω 1192:θ 1183:Θ 1160:ω 1137:Θ 1114:θ 1053:Ω 965:ω 959:∧ 943:ω 931:∑ 911:ω 888:Ω 851:Ω 815:ω 779:Ω 743:ω 716:∧ 690:ω 687:∧ 684:ω 678:ω 669:Ω 601:∈ 598:σ 527:− 500:ω 497:− 476:Ω 473:σ 408:ω 393:ω 359:ω 335:Ω 296:⋅ 293:∧ 290:⋅ 237:ω 225:ω 222:∧ 219:ω 200:ω 191:Ω 148:Then the 58:Lie group 26:curvature 2211:Holonomy 1950:See also 139:one-form 1937:(1963) 1757:Proof: 1447:in the 1149:of the 1128:torsion 1020:, i.e. 728:is the 590:), and 462:, then 152:is the 136:-valued 101:-bundle 1471:since 708:where 578:where 435:where 315:" and 87:, and 36:. The 20:, the 1459:Notes 1326:in a 1000:of a 95:be a 60:with 56:be a 32:on a 28:of a 1933:and 1439:The 768:and 638:flat 145:). 52:Let 1106:If 649:If 141:on 107:on 40:in 16:In 2228:: 1455:. 1425:0. 1330:. 1239:. 653:→ 632:. 580:hZ 454:, 447:. 439:, 279:, 91:→ 2024:e 2017:t 2010:v 1945:. 1906:. 1903:) 1900:] 1897:Y 1894:, 1891:X 1888:[ 1885:( 1876:= 1873:) 1870:] 1867:Y 1864:, 1861:X 1858:[ 1855:( 1846:) 1843:X 1840:( 1834:Y 1828:) 1825:Y 1822:( 1816:X 1813:= 1810:) 1807:Y 1804:, 1801:X 1798:( 1792:d 1786:= 1783:) 1780:Y 1777:, 1774:X 1771:( 1737:) 1734:) 1731:] 1728:Y 1725:, 1722:X 1719:[ 1716:( 1707:) 1704:X 1701:( 1695:Y 1689:) 1686:Y 1683:( 1677:X 1674:( 1669:2 1666:1 1661:= 1658:) 1655:Y 1652:, 1649:X 1646:( 1640:d 1620:2 1617:= 1594:) 1591:] 1588:) 1585:X 1582:( 1576:, 1573:) 1570:Y 1567:( 1561:[ 1555:] 1552:) 1549:Y 1546:( 1540:, 1537:) 1534:X 1531:( 1525:[ 1522:( 1517:2 1514:1 1509:= 1506:) 1503:Y 1500:, 1497:X 1494:( 1491:] 1479:[ 1422:= 1417:m 1414:; 1408:n 1405:b 1402:a 1398:R 1394:+ 1389:n 1386:; 1383:m 1377:b 1374:a 1370:R 1366:+ 1358:; 1355:n 1352:m 1349:b 1346:a 1342:R 1307:0 1304:= 1298:D 1271:. 1259:= 1253:D 1233:D 1216:, 1210:D 1207:= 1195:+ 1189:d 1186:= 1071:, 1068:) 1065:Y 1062:, 1059:X 1056:( 1050:= 1047:) 1044:Y 1041:, 1038:X 1035:( 1032:R 1010:n 1006:n 981:. 976:j 969:k 954:k 947:i 935:k 927:+ 922:j 915:i 905:d 902:= 897:i 892:j 862:j 855:i 826:j 819:i 790:j 783:i 754:j 747:i 693:, 681:+ 675:d 672:= 655:B 651:E 616:} 613:2 610:, 607:1 604:{ 584:Z 563:] 560:Y 557:, 554:X 551:[ 548:h 545:+ 542:] 539:Y 536:, 533:X 530:[ 524:= 521:) 518:] 515:Y 512:, 509:X 506:[ 503:( 494:= 491:) 488:Y 485:, 482:X 479:( 460:P 456:Y 452:X 445:P 441:Y 437:X 420:] 417:) 414:Y 411:( 405:, 402:) 399:X 396:( 390:[ 385:2 382:1 377:+ 374:) 371:Y 368:, 365:X 362:( 356:d 353:= 350:) 347:Y 344:, 341:X 338:( 317:D 299:] 287:[ 263:d 240:. 234:D 231:= 228:] 216:[ 211:2 208:1 203:+ 197:d 194:= 178:P 162:g 143:P 122:g 109:P 99:G 93:B 89:P 73:g 54:G

Index

differential geometry
curvature
connection
principal bundle
Riemann curvature tensor
Riemannian geometry
Lie group
Lie algebra
principal G-bundle
Ehresmann connection
g {\displaystyle {\mathfrak {g}}} -valued
one-form
exterior derivative
Lie algebra-valued form
exterior covariant derivative
fundamental vector field
exterior derivative
flat
wedge product
tangent bundle
Riemannian manifold
antisymmetric matrices
curvature tensor
Contracted Bianchi identities
Riemann curvature tensor § Symmetries and identities
torsion
connection form
exterior covariant derivative
connection
principal bundle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑