Knowledge

DNA nanotechnology

Source 📝

414: 998:
such systems are a "molecular tweezers" design that has an open and a closed state, a device that could switch from a paranemic-crossover (PX) conformation to a (JX2) conformation with two non-junction juxtapositions of the DNA backbone, undergoing rotational motion in the process, and a two-dimensional array that could dynamically expand and contract in response to control strands. Structures have also been made that dynamically open or close, potentially acting as a molecular cage to release or reveal a functional cargo upon opening. In another example, a DNA origami nanostructure was coupled to T7 RNA polymerase and could thus be operated as a chemical energy-driven motor that can be coupled to a passive follower, which it then drives.
1480:. In both, the sequence of monomers is designed to favor the desired target structure and to disfavor other structures. Nucleic acid design has the advantage of being much computationally easier than protein design, because the simple base pairing rules are sufficient to predict a structure's energetic favorability, and detailed information about the overall three-dimensional folding of the structure is not required. This allows the use of simple heuristic methods that yield experimentally robust designs. Nucleic acid structures are less versatile than proteins in their function because of proteins' increased ability to fold into complex structures, and the limited chemical diversity of the four 733: 488:, in which molecular components spontaneously organize into stable structures; the particular form of these structures is induced by the physical and chemical properties of the components selected by the designers. In DNA nanotechnology, the component materials are strands of nucleic acids such as DNA; these strands are often synthetic and are almost always used outside the context of a living cell. DNA is well-suited to nanoscale construction because the binding between two nucleic acid strands depends on simple 653: 38: 551:, nucleic acid strands are expected in most cases to bind to each other in the conformation that maximizes the number of correctly paired bases. The sequences of bases in a system of strands thus determine the pattern of binding and the overall structure in an easily controllable way. In DNA nanotechnology, the base sequences of strands are rationally designed by researchers so that the base pairing interactions cause the strands to assemble in the desired conformation. While 7091: 1596: 71: 724: 949: 127: 7066: 882:, a coarse map of the Western Hemisphere, and the Mona Lisa painting. Solid three-dimensional structures can be made by using parallel DNA helices arranged in a honeycomb pattern, and structures with two-dimensional faces can be made to fold into a hollow overall three-dimensional shape, akin to a cardboard box. These can be programmed to open and reveal or release a molecular cargo in response to a stimulus, making them potentially useful as programmable 450: 704: 291:, but Seeman's insight was that immobile nucleic acid junctions could be created by properly designing the strand sequences to remove symmetry in the assembled molecule, and that these immobile junctions could in principle be combined into rigid crystalline lattices. The first theoretical paper proposing this scheme was published in 1982, and the first experimental demonstration of an immobile DNA junction was published the following year. 7103: 1610: 83: 814:, and while they lack the electrical conductance of carbon nanotubes, DNA nanotubes are more easily modified and connected to other structures. One of many schemes for constructing DNA nanotubes uses a lattice of curved DX tiles that curls around itself and closes into a tube. In an alternative method that allows the circumference to be specified in a simple, modular fashion using single-stranded tiles, the rigidity of the tube is an 1497: 908:. This allows the construction of materials and devices with a range of functionalities much greater than is possible with nucleic acids alone. The goal is to use the self-assembly of the nucleic acid structures to template the assembly of the nanoparticles hosted on them, controlling their position and in some cases orientation. Many of these schemes use a covalent attachment scheme, using oligonucleotides with 662: 7078: 596:, which contains two parallel double helical domains with individual strands crossing between the domains at two crossover points. Each crossover point is, topologically, a four-arm junction, but is constrained to one orientation, in contrast to the flexible single four-arm junction, providing a rigidity that makes the DX motif suitable as a structural building block for larger DNA complexes. 1181:(FRET). The constructed box was shown to have a unique reclosing mechanism, which enabled it to repeatedly open and close in response to a unique set of DNA or RNA keys. The authors proposed that this "DNA device can potentially be used for a broad range of applications such as controlling the function of single molecules, controlled drug delivery, and molecular computing." 374:'s DNA octahedron, which consisted mostly of one very long strand. Rothemund's DNA origami contains a long strand which folding is assisted by several short strands. This method allowed forming much larger structures than formerly possible, and which are less technically demanding to design and synthesize. DNA origami was the cover story of 1252:, but there are limits of safety and imprecise targeting, in addition to short shelf life in the blood stream. The DNA nanostructure created by the team consists of six strands of DNA to form a tetrahedron, with one strand of RNA affixed to each of the six edges. The tetrahedron is further equipped with targeting protein, three 1448:
After any of the above approaches are used to design the secondary structure of a target complex, an actual sequence of nucleotides that will form into the desired structure must be devised. Nucleic acid design is the process of assigning a specific nucleic acid base sequence to each of a structure's
1376:
The first step in designing a nucleic acid nanostructure is to decide how a given structure should be represented by a specific arrangement of nucleic acid strands. This design step determines the secondary structure, or the positions of the base pairs that hold the individual strands together in the
1276:
drug efflux pump. The results of the experiment showed the DOX was not being pumped out and apoptosis of the cancer cells was achieved. The tetrahedron without DOX was loaded into cells to test its biocompatibility, and the structure showed no cytotoxicity itself. The DNA tetrahedron was also used as
1004:
are a class of nucleic acid nanomachines that exhibit directional motion along a linear track. A large number of schemes have been demonstrated. One strategy is to control the motion of the walker along the track using control strands that need to be manually added in sequence. It is also possible to
636:
has a robust, defined three-dimensional geometry that makes it possible to simulate, predict and design the structures of more complicated nucleic acid complexes. Many such structures have been created, including two- and three-dimensional structures, and periodic, aperiodic, and discrete structures.
401:
after one reviewer praised its originality while another criticized it for its lack of biological relevance. By the early 2010s the field was considered to have increased its abilities to the point that applications for basic science research were beginning to be realized, and practical applications
1389:
Folding structures. An alternative to the tile-based approach, folding approaches make the nanostructure from one long strand, which can either have a designed sequence that folds due to its interactions with itself, or it can be folded into the desired shape by using shorter, "staple" strands. This
997:
conditions by undergoing a twisting motion. This reliance on buffer conditions caused all devices to change state at the same time. Subsequent systems could change states based upon the presence of control strands, allowing multiple devices to be independently operated in solution. Some examples of
1061:
as inputs and outputs, molecular computers use the concentrations of specific chemical species as signals. In the case of nucleic acid strand displacement circuits, the signal is the presence of nucleic acid strands that are released or consumed by binding and unbinding events to other strands in
1040:
where the newly revealed output sequence of one reaction can initiate another strand displacement reaction elsewhere. This in turn allows for the construction of chemical reaction networks with many components, exhibiting complex computational and information processing abilities. These cascades
861:
polyhedra. Subsequent work yielded polyhedra whose synthesis was much easier. These include a DNA octahedron made from a long single strand designed to fold into the correct conformation, and a tetrahedron that can be produced from four DNA strands in one step, pictured at the top of this article.
576:
end state. On the other hand, dynamic DNA nanotechnology focuses on complexes with useful non-equilibrium behavior such as the ability to reconfigure based on a chemical or physical stimulus. Some complexes, such as nucleic acid nanomechanical devices, combine features of both the structural and
1045:
gain from disassembly reactions. Strand displacement cascades allow isothermal operation of the assembly or computational process, in contrast to traditional nucleic acid assembly's requirement for a thermal annealing step, where the temperature is raised and then slowly lowered to ensure proper
571:
DNA nanotechnology is sometimes divided into two overlapping subfields: structural DNA nanotechnology and dynamic DNA nanotechnology. Structural DNA nanotechnology, sometimes abbreviated as SDN, focuses on synthesizing and characterizing nucleic acid complexes and materials that assemble into a
1381:
Tile-based structures. This approach breaks the target structure into smaller units with strong binding between the strands contained in each unit, and weaker interactions between the units. It is often used to make periodic lattices, but can also be used to implement algorithmic self-assembly,
1145:
DNA nanotechnology is moving toward potential real-world applications. The ability of nucleic acid arrays to arrange other molecules indicates its potential applications in molecular scale electronics. The assembly of a nucleic acid structure could be used to template the assembly of molecular
1077:
structure for the reactants, so that when the input strand binds, the newly revealed sequence is on the same molecule rather than disassembling. This allows new opened hairpins to be added to a growing complex. This approach has been used to make simple structures such as three- and four-arm
966:
Dynamic DNA nanotechnology focuses on forming nucleic acid systems with designed dynamic functionalities related to their overall structures, such as computation and mechanical motion. There is some overlap between structural and dynamic DNA nanotechnology, as structures can be formed through
767:
pattern of the individual molecular tiles. The earliest example of this used double-crossover (DX) complexes as the basic tiles, each containing four sticky ends designed with sequences that caused the DX units to combine into periodic two-dimensional flat sheets that are essentially rigid
1013:
to cleave the strands and cause the walker to move forward, which has the advantage of running autonomously. A later system could walk upon a two-dimensional surface rather than a linear track, and demonstrated the ability to selectively pick up and move molecular cargo. In 2018, a
1035:
Cascades of strand displacement reactions can be used for either computational or structural purposes. An individual strand displacement reaction involves revealing a new sequence in response to the presence of some initiator strand. Many such reactions can be linked into a
985:. These structures are initially formed in the same way as the static structures made in structural DNA nanotechnology, but are designed so that dynamic reconfiguration is possible after the initial assembly. The earliest such device made use of the transition between the 295: 402:
in medicine and other fields were beginning to be considered feasible. The field had grown from very few active laboratories in 2001 to at least 60 in 2010, which increased the talent pool and thus the number of scientific advances in the field during that decade.
362:. The idea of using DNA arrays to template the assembly of other molecules such as nanoparticles and proteins, first suggested by Bruche Robinson and Seeman in 1987, was demonstrated in 2002 by Seeman, Kiehl et al. and subsequently by many other groups. 413: 957:
process across region 2, the blue strand is displaced and freed from the complex. Reactions like these are used to dynamically reconfigure or assemble nucleic acid nanostructures. In addition, the red and blue strands can be used as signals in a
1264:, dropped by more than half. This study shows promise in using DNA nanotechnology as an effective tool to deliver treatment using the emerging RNA Interference technology. The DNA tetrahedron was also used in an effort to overcome the phenomena 869:
method. These structures consist of a long, natural virus strand as a "scaffold", which is made to fold into the desired shape by computationally designed short "staple" strands. This method has the advantages of being easy to design, as the
936:. In addition, there are nucleic acid metallization methods, in which the nucleic acid is replaced by a metal which assumes the general shape of the original nucleic acid structure, and schemes for using nucleic acid nanostructures as 346:—a motif that changes its structure in response to an input—was demonstrated in 1999 by Seeman. An improved system, which was the first nucleic acid device to make use of toehold-mediated strand displacement, was demonstrated by 778:
Two-dimensional arrays can be made to exhibit aperiodic structures whose assembly implements a specific algorithm, exhibiting one form of DNA computing. The DX tiles can have their sticky end sequences chosen so that they act as
369:
method for easily and robustly forming folded DNA structures of arbitrary shape. Rothemund had conceived of this method as being conceptually intermediate between Seeman's DX lattices, which used many short strands, and
952:
Dynamic DNA nanotechnology often makes use of toehold-mediated strand displacement reactions. In this example, the red strand binds to the single stranded toehold region on the green strand (region 1), and then in a
334:
in their 2004 paper on the algorithmic self-assembly of a Sierpinski gasket structure, and for which they shared the 2006 Feynman Prize in Nanotechnology. Winfree's key insight was that the DX tiles could be used as
1277:
barcode for profiling the subcellular expression and distribution of proteins in cells for diagnostic purposes. The tetrahedral-nanostructured showed enhanced signal due to higher labeling efficiency and stability.
106: 330:, published the creation of two-dimensional lattices of DX tiles. These tile-based structures had the advantage that they provided the ability to implement DNA computing, which was demonstrated by Winfree and 1106:, where molecules that are difficult to crystallize in isolation could be arranged within a three-dimensional nucleic acid lattice, allowing determination of their structure. Another application is the use of 1572:, which is well suited to extended two-dimensional structures, but less useful for discrete three-dimensional structures because of the microscope tip's interaction with the fragile nucleic acid structure; 1026:
as the walker advances along the track, allowing autonomous multistep chemical synthesis directed by the walker. The synthetic DNA walkers' function is similar to that of the proteins dynein and kinesin.
611:
process. The overall effect is that one of the strands in the complex is replaced with another one. In addition, reconfigurable structures and devices can be made using functional nucleic acids such as
632:
Structural DNA nanotechnology, sometimes abbreviated as SDN, focuses on synthesizing and characterizing nucleic acid complexes and materials where the assembly has a static, equilibrium endpoint. The
339:, meaning that their assembly could perform computation. The synthesis of a three-dimensional lattice was finally published by Seeman in 2009, nearly thirty years after he had set out to achieve it. 928:
polyamides on a DX array was used to arrange streptavidin proteins in a specific pattern on a DX array. Carbon nanotubes have been hosted on DNA arrays in a pattern allowing the assembly to act as a
1364:
of the target complex is determined, specifying the arrangement of nucleic acid strands within the structure, and which portions of those strands should be bound to each other. The last step is the
391:
DNA nanotechnology was initially met with some skepticism due to the unusual non-biological use of nucleic acids as materials for building structures and doing computation, and the preponderance of
1623: 821:
Forming three-dimensional lattices of DNA was the earliest goal of DNA nanotechnology, but this proved to be one of the most difficult to realize. Success using a motif based on the concept of
1507:
on a DX complex, are used to ascertain whether the desired structures are forming properly. Each vertical lane contains a series of bands, where each band is characteristic of a particular
1296:
modifications and induce ionic currents across the membrane. This first demonstration of a synthetic DNA ion channel was followed by a variety of pore-inducing designs ranging from a single
580:
The complexes constructed in structural DNA nanotechnology use topologically branched nucleic acid structures containing junctions. (In contrast, most biological DNA exists as an unbranched
584:.) One of the simplest branched structures is a four-arm junction that consists of four individual DNA strands, portions of which are complementary in a specific pattern. Unlike in natural 306:
reportedly inspired Nadrian Seeman to consider using three-dimensional lattices of DNA to orient hard-to-crystallize molecules. This led to the beginning of the field of DNA nanotechnology.
310:
In 1991, Seeman's laboratory published a report on the synthesis of a cube made of DNA, the first synthetic three-dimensional nucleic acid nanostructure, for which he received the 1995
1090:
DNA nanotechnology provides one of the few ways to form designed, complex structures with precise control over nanoscale features. The field is beginning to see application to solve
1661:
Goodman RP, Schaap IA, Tardin CF, Erben CM, Berry RM, Schmidt CF, Turberfield AJ (December 2005). "Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication".
1453:, and is thus the most thermodynamically favorable, while incorrectly assembled structures have higher energies and are thus disfavored. This is done either through simple, faster 5415:
Sundah NR, Ho NR, Lim GS, Natalia A, Ding X, Liu Y, et al. (September 2019). "Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution".
1458: 380:
on March 15, 2006. Rothemund's research demonstrating two-dimensional DNA origami structures was followed by the demonstration of solid three-dimensional DNA origami by Douglas
5380:
Kim KR, Kim DR, Lee T, Yhee JY, Kim BS, Kwon IC, Ahn DR (March 2013). "Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells".
395:
experiments that extended the abilities of the field but were far from actual applications. Seeman's 1991 paper on the synthesis of the DNA cube was rejected by the journal
1449:
constituent strands so that they will associate into a desired conformation. Most methods have the goal of designing sequences so that the target structure has the lowest
592:, causing the junction point to be fixed at a certain position. Multiple junctions can be combined in the same complex, such as in the widely used double-crossover (DX) 247:
features. Several assembly methods are used to make these structures, including tile-based structures that assemble from smaller structures, folding structures using the
113: 275:
by eliminating the difficult process of obtaining pure crystals. This idea had reportedly come to him in late 1980, after realizing the similarity between the woodcut
5157:
Zadegan RM, Jepsen MD, Thomsen KE, Okholm AH, Schaffert DH, Andersen ES, et al. (November 2012). "Construction of a 4 zeptoliters switchable 3D DNA box origami".
1220:
reported the self-assembly of four short strands of synthetic DNA into a cage which can enter cells and survive for at least 48 hours. The fluorescently labeled DNA
896:
Nucleic acid structures can be made to incorporate molecules other than nucleic acids, sometimes called heteroelements, including proteins, metallic nanoparticles,
350:
in 2000. The next advance was to translate this into mechanical motion, and in 2004 and 2005, several DNA walker systems were demonstrated by the groups of Seeman,
4086:
Liu J, Geng Y, Pound E, Gyawali S, Ashton JR, Hickey J, et al. (March 2011). "Metallization of branched DNA origami for nanoelectronic circuit fabrication".
803:, displaying a representation of increasing binary numbers as it grows. These results show that computation can be incorporated into the assembly of DNA arrays. 547:, meaning that they form matching sequences of base pairs, with A only binding to T, and C only to G. Because the formation of correctly matched base pairs is 603:
to allow the nucleic acid complexes to reconfigure in response to the addition of a new nucleic acid strand. In this reaction, the incoming strand binds to a
271:
in the early 1980s. Seeman's original motivation was to create a three-dimensional DNA lattice for orienting other large molecules, which would simplify their
6324:
Lin C, Ke Y, Chhabra R, Sharma J, Liu Y, Yan H (2011). "Synthesis and Characterization of Self-Assembled DNA Nanostructures". In Zuccheri G, Samorì B (eds.).
2196:
Xiao S, Liu F, Rosen AE, Hainfeld JF, Seeman NC, Musier-Forsyth K, Kiehl RA (August 2002). "Selfassembly of metallic nanoparticle arrays by DNA scaffolding".
4358:
Goodman RP, Heilemann M, Doose S, Erben CM, Kapanidis AN, Turberfield AJ (February 2008). "Reconfigurable, braced, three-dimensional DNA nanostructures".
4453:
Centola, Mathias; Poppleton, Erik; Ray, Sujay; Centola, Martin; Welty, Robb; Valero, Julián; Walter, Nils G.; Šulc, Petr; Famulok, Michael (2023-10-19).
3693:
Andersen ES, Dong M, Nielsen MM, Jahn K, Subramani R, Mamdouh W, et al. (May 2009). "Self-assembly of a nanoscale DNA box with a controllable lid".
1308:, this ensemble of synthetic DNA-made counterparts thereby spans multiple orders of magnitude in conductance. The study of the membrane-inserting single 1119: 775:
lattice, and various DX-based arrays making use of a double-cohesion scheme. The top two images at right show examples of tile-based periodic lattices.
311: 206: 2868:
Doye JP, Ouldridge TE, Louis AA, Romano F, Šulc P, Matek C, et al. (December 2013). "Coarse-graining DNA for simulations of DNA nanotechnology".
2981:
Yan H, Park SH, Finkelstein G, Reif JH, LaBean TH (September 2003). "DNA-templated self-assembly of protein arrays and highly conductive nanowires".
385: 1312:
showed that current must also flow on the DNA-lipid interface as no central channel lumen is present in the design that lets ions pass across the
810:
in diameter, essentially two-dimensional lattices which curve back upon themselves. These DNA nanotubes are somewhat similar in size and shape to
1957:
Rothemund PW (2006). "Scaffolded DNA origami: from generalized multicrossovers to polygonal networks". In Chen J, Jonoska N, Rozenberg G (eds.).
2612:
Chworos A, Severcan I, Koyfman AY, Weinkam P, Oroudjev E, Hansma HG, Jaeger L (December 2004). "Building programmable jigsaw puzzles with RNA".
1628: 1356:
so that individual nucleic acid strands will assemble into the desired structures. This process usually begins with specification of a desired
371: 1204:. There has additionally been interest in expressing these artificial structures in engineered living bacterial cells, most likely using the 849:
of a polyhedron with a DNA junction at each vertex. The earliest demonstrations of DNA polyhedra were very work-intensive, requiring multiple
224:
in the early 1980s, and the field began to attract widespread interest in the mid-2000s. This use of nucleic acids is enabled by their strict
359: 1022:
was shown to walk along a DNA-path, guided by the generated RNA strand. Additionally, a linear walker has been demonstrated that performs
255:, but the same principles have been used with other types of nucleic acids as well, leading to the occasional use of the alternative name 4979:
Zadegan RM, Jepsen MD, Hildebrandt LL, Birkedal V, Kjems J (April 2015). "Construction of a fuzzy and Boolean logic gates based on DNA".
3304:
Barish RD, Rothemund PW, Winfree E (December 2005). "Two computational primitives for algorithmic self-assembly: copying and counting".
465:
domains, on the top and the bottom in this image. There are two crossover points where the strands cross from one domain into the other.
3168:
Mao C, Sun W, Seeman NC (16 June 1999). "Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy".
1329: 99: 4585:Škugor M, Valero J, Murayama K, Centola M, Asanuma H, Famulok M (May 2019). "Orthogonally Photocontrolled Non-Autonomous DNA Walker". 543:(T). Nucleic acids have the property that two molecules will only bind to each other to form a double helix if the two sequences are 6822: 1462: 1208:
RNA for the assembly, although it is unknown whether these complex structures are able to efficiently fold or assemble in the cell's
4629:
Tian Y, He Y, Chen Y, Yin P, Mao C (July 2005). "A DNAzyme that walks processively and autonomously along a one-dimensional track".
1386:. This was the dominant design strategy used from the mid-1990s until the mid-2000s, when the DNA origami methodology was developed. 1150:, providing a method for nanometer-scale control of the placement and overall architecture of the device analogous to a molecular 1169:, researchers were able to construct a small multi-switchable 3D DNA Box Origami. The proposed nanoparticle was characterized by 933: 1465:
thermodynamic model, which is more accurate but slower and more computationally intensive. Geometric models are used to examine
1005:
control individual steps of a DNA walker by irradiation with light of different wavelengths. Another approach is to make use of
693:
image of the assembled array. The individual DX tiles are clearly visible within the assembled structure. The field is 150 
1184:
There are potential applications for DNA nanotechnology in nanomedicine, making use of its ability to perform computation in a
1050:
function of the initiator species, where less than one equivalent of the initiator can cause the reaction to go to completion.
6270:
Walter NG (1 February 2003). "Probing RNA Structural Dynamics and Function by Fluorescence Resonance Energy Transfer (FRET)".
6120:
Ellington A, Pollard JD (1 May 2001). "Purification of Oligonucleotides Using Denaturing Polyacrylamide Gel Electrophoresis".
1280:
Applications for DNA nanotechnology in nanomedicine also focus on mimicking the structure and function of naturally occurring
251:
method, and dynamically reconfigurable structures using strand displacement methods. The field's name specifically references
6375: 6341: 5243: 5134: 2595: 2569: 1984: 1727: 5782:"A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane" 3755:
Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H (June 2009). "Scaffolded DNA origami of a DNA tetrahedron molecular container".
1232:
after two days. This experiment showed the potential of drug delivery inside the living cells using the DNA ‘cage’. A DNA
6852: 4402:
Douglas SM, Bachelet I, Church GM (February 2012). "A logic-gated nanorobot for targeted transport of molecular payloads".
3583:
Shih WM, Quispe JD, Joyce GF (February 2004). "A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron".
2409: 1554: 1543: 1504: 1162: 1122:; using DNA origami is advantageous because, unlike liquid crystals, they are tolerant of the detergents needed to suspend 600: 322:, were not rigid enough to form extended three-dimensional lattices. Seeman developed the more rigid double-crossover (DX) 1562: 1178: 283:
and an array of DNA six-arm junctions. Several natural branched DNA structures were known at the time, including the DNA
5301: 4262:
Yan H, Zhang X, Shen Z, Seeman NC (January 2002). "A robust DNA mechanical device controlled by hybridization topology".
916:
functional groups as a chemical handle to bind the heteroelements. This covalent binding scheme has been used to arrange
679: 544: 438: 229: 1433:
step where a temperature change is required to trigger the assembly and favor proper formation of the desired structure.
878:, as most other DNA nanotechnology methods do. DNA origami was first demonstrated for two-dimensional shapes, such as a 6291: 6237: 6191: 6141: 6087: 4210:
Yurke B, Turberfield AJ, Mills AP, Simmel FC, Neumann JL (August 2000). "A DNA-fuelled molecular machine made of DNA".
6942: 1344:. This development highlights the potential of synthetic DNA nanostructures for personalized drugs and therapeutics. 161:
structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for
3088:
Winfree E, Liu F, Wenzler LA, Seeman NC (August 1998). "Design and self-assembly of two-dimensional DNA crystals".
2053:
Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P.; Simmel, Friedrich C.; Neumann, Jennifer L. (August 2000).
1573: 1361: 1174: 1023: 2160:
Robinson BH, Seeman NC (August 1987). "The design of a biochip: a self-assembling molecular-scale memory device".
7082: 6719:
Lin C, Liu Y, Rinker S, Yan H (August 2006). "DNA tile based self-assembly: building complex nanoarchitectures".
5975:
Lin C, Liu Y, Rinker S, Yan H (August 2006). "DNA tile based self-assembly: building complex nanoarchitectures".
1466: 1357: 768:
two-dimensional crystals of DNA. Two-dimensional arrays have been made from other motifs as well, including the
442: 417:
These four strands associate into a DNA four-arm junction because this structure maximizes the number of correct
6876: 5071:
Qian L, Winfree E (June 2011). "Scaling up digital circuit computation with DNA strand displacement cascades".
1365: 1340:
that flips lipids in biological membranes orders of magnitudes faster than naturally occurring proteins called
150:, and each vertex is a three-arm junction. The 4 DNA strands that form the 4 tetrahedral faces are color-coded. 4158:
Mao C, Sun W, Shen Z, Seeman NC (January 1999). "A nanomechanical device based on the B-Z transition of DNA".
3140:
Liu F, Sha R, Seeman NC (10 February 1999). "Modifying the surface features of two-dimensional DNA crystals".
2832:
Lu Y, Liu J (December 2006). "Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers".
7023: 6815: 685:. The DX complex at top will combine with other DX complexes into the two-dimensional array shown at bottom. 482: 607:
of a double-stranded complex, and then displaces one of the strands bound in the original complex through a
6899: 6216:
Chory J, Pollard JD (1 May 2001). "Separation of Small DNA Fragments by Conventional Gel Electrophoresis".
1429:, at a constant temperature. This is in contrast to the thermodynamic approaches, which require a thermal 1272:(DOX) was conjugated with the tetrahedron and was loaded into MCF-7 breast cancer cells that contained the 4314:
Feng L, Park SH, Reif JH, Yan H (September 2003). "A two-state DNA lattice switched by DNA nanoactuator".
7128: 6995: 1532: 1520: 1066:
such as AND, OR, and NOT gates. More recently, a four-bit circuit was demonstrated that can compute the
929: 548: 210: 5265:
Walsh AS, Yin H, Erben CM, Wood MJ, Turberfield AJ (July 2011). "DNA cage delivery to mammalian cells".
1196:
applications. One such system being investigated uses a hollow DNA box containing proteins that induce
981:
DNA complexes have been made that change their conformation upon some stimulus, making them one form of
833:
Researchers have synthesized many three-dimensional DNA complexes that each have the connectivity of a
6749:
Zhang DY, Seelig G (February 2011). "Dynamic DNA nanotechnology using strand-displacement reactions".
4673:
Bath J, Green SJ, Turberfield AJ (July 2005). "A free-running DNA motor powered by a nicking enzyme".
2729:
Zhang DY, Seelig G (February 2011). "Dynamic DNA nanotechnology using strand-displacement reactions".
1073:
Another use of strand displacement cascades is to make dynamically assembled structures. These use a
342:
New abilities continued to be discovered for designed DNA structures throughout the 2000s. The first
7010: 6862: 6857: 6847: 6839: 1539: 1528: 1524: 1309: 1297: 1115: 633: 581: 493: 236: 147: 5600: 1967: 967:
annealing and then reconfigured dynamically, or can be made to form dynamically in the first place.
874:
is predetermined by the scaffold strand sequence, and not requiring high strand purity and accurate
7033: 6977: 6962: 6872: 6808: 5578:
Burns JR, Stulz E, Howorka S (June 2013). "Self-assembled DNA nanopores that span lipid bilayers".
3326: 1577: 1485: 1205: 47: 1515:
The sequences of the DNA strands making up a target structure are designed computationally, using
799:. The third image at right shows this type of array. Another system has the function of a binary 7070: 7018: 6967: 6954: 5016: 4924: 4827:"Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker" 4510: 4039: 3635: 3442: 3402: 1633: 1569: 1325: 1170: 883: 690: 485: 52: 29: 5732:
Göpfrich K, Zettl T, Meijering AE, Hernández-Ainsa S, Kocabey S, Liedl T, Keyser UF (May 2015).
1553:
gel electrophoresis, which gives size and shape information for the nucleic acid complexes. An
318:. It soon became clear that these structures, polygonal shapes with flexible junctions as their 5595: 4040:"Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates" 3321: 3196:
Constantinou PE, Wang T, Kopatsch J, Israel LB, Zhang X, Ding B, et al. (September 2006).
1962: 1336:
between the lipid bilayer leaflets. Utilizing this effect, they designed a synthetic DNA-built
1189: 516: 454: 5124: 4709:
Lund K, Manzo AJ, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, et al. (May 2010).
1102:. The earliest such application envisaged for the field, and one still in development, is in 4038:
Maune HT, Han SP, Barish RD, Bockrath M, Goddard WA, Rothemund PW, Winfree E (January 2010).
3950:"Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures" 2246: 1581: 1508: 1406: 1368:
design, which is the specification of the actual base sequences of each nucleic acid strand.
871: 854: 589: 232: 202: 169:. Researchers in the field have created static structures such as two- and three-dimensional 5828:
Göpfrich K, Li CY, Ricci M, Bhamidimarri SP, Yoo J, Gyenes B, et al. (September 2016).
4882:
Pan J, Li F, Cha TG, Chen H, Choi JH (August 2015). "Recent progress on DNA based walkers".
3497:
Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R, Constantinou PE, et al. (September 2009).
924:
protein molecules into specific patterns on a DX array. A non-covalent hosting scheme using
388:
and Yan demonstrated hollow three-dimensional structures made out of two-dimensional faces.
243:
that will selectively assemble to form complex target structures with precisely controlled
6894: 6758: 6660: 6541: 6449: 6407: 5891: 5793: 5745: 5587: 5533: 5472: 5336: 5325:"Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery" 5080: 5028: 4936: 4838: 4780: 4722: 4638: 4558: 4411: 4367: 4323: 4271: 4219: 4167: 4051: 3961: 3903: 3764: 3702: 3647: 3592: 3510: 3454: 3401:
Rothemund PW, Ekani-Nkodo A, Papadakis N, Kumar A, Fygenson DK, Winfree E (December 2004).
3313: 3259: 3097: 2990: 2887: 2738: 2677: 2621: 2458: 2373: 2320: 2261: 2205: 2125: 2066: 2019: 1909: 1762: 1670: 1558: 1265: 1054: 959: 741:
An example of an aperiodic two-dimensional lattice that assembles into a fractal pattern.
573: 560: 315: 6505: 5632:
Burns JR, Göpfrich K, Wood JW, Thacker VV, Stulz E, Keyser UF, Howorka S (November 2013).
5459:
Langecker M, Arnaut V, Martin TG, List J, Renner S, Mayer M, et al. (November 2012).
5323:
Lee H, Lytton-Jean AK, Chen Y, Love KT, Park AI, Karagiannis ED, et al. (June 2012).
4455:"A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower" 3723: 3499:"From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal" 1846: 1531:, and strands of custom sequences are commercially available. Strands can be purified by 477:
is often defined as the study of materials and devices with features on a scale below 100
8: 7041: 6930: 6594:.—A news article focusing on the history of the field and development of new applications 1535: 1500: 1443: 1430: 1418: 1155: 1037: 497: 240: 131: 6762: 6664: 6545: 6453: 6411: 6174:
Gallagher SR, Desjardins P (1 July 2011). "Quantitation of nucleic acids and proteins".
6066:
Ellington A, Pollard JD (1 May 2001). "Synthesis and Purification of Oligonucleotides".
5895: 5878:
Ohmann A, Li CY, Maffeo C, Al Nahas K, Baumann KN, Göpfrich K, et al. (June 2018).
5797: 5749: 5591: 5537: 5476: 5340: 5084: 5032: 4940: 4842: 4784: 4726: 4642: 4562: 4485: 4415: 4371: 4327: 4275: 4223: 4171: 4055: 3965: 3907: 3892:"Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs" 3768: 3706: 3651: 3596: 3514: 3458: 3317: 3263: 3101: 2994: 2891: 2742: 2681: 2625: 2462: 2377: 2324: 2265: 2209: 2129: 2070: 2023: 1913: 1766: 1674: 1260:
found on some tumors. The result showed that the gene expression targeted by the RNAi,
6626: 6599: 6514: 6489: 6470: 6437: 6305: 6251: 6197: 6155: 6101: 5912: 5879: 5854: 5829: 5708: 5683: 5658: 5633: 5554: 5521: 5493: 5460: 5440: 5357: 5324: 5219: 5194: 5104: 5052: 4960: 4859: 4826: 4801: 4768: 4743: 4710: 4610: 4435: 4295: 4243: 4191: 3924: 3891: 3871: 3827: 3736: 3671: 3616: 3531: 3498: 3478: 3280: 3247: 3222: 3197: 3121: 3014: 2911: 2877: 2808: 2783: 2698: 2665: 2645: 2479: 2446: 2341: 2308: 2285: 2221: 2090: 1930: 1897: 1855: 1830: 1694: 1516: 1470: 1426: 1413:
in addition to the final product. This is done using starting materials which adopt a
1410: 1213: 1131: 1095: 1006: 788: 496:. These qualities make the assembly of nucleic acid structures easy to control through 392: 355: 194: 16:
The design and manufacture of artificial nucleic acid structures for technological uses
6419: 6042: 6017: 5959: 5942: 5880:"A synthetic enzyme built from DNA flips 10 lipids per second in biological membranes" 5733: 5520:
Göpfrich K, Li CY, Mames I, Bhamidimarri SP, Ricci M, Yoo J, et al. (July 2016).
4549:
Sherman WB, Seeman NC (July 2004). "A precisely controlled DNA biped walking device".
3799: 3064: 3037: 2958: 2931: 2536: 2509: 1774: 7107: 6774: 6736: 6706: 6676: 6631: 6585: 6557: 6519: 6475: 6423: 6371: 6347: 6337: 6297: 6287: 6243: 6233: 6187: 6147: 6137: 6105: 6093: 6083: 6047: 5992: 5917: 5859: 5809: 5761: 5713: 5684:"Bilayer-spanning DNA nanopores with voltage-switching between open and closed state" 5663: 5613: 5559: 5498: 5444: 5432: 5397: 5362: 5282: 5224: 5174: 5130: 5096: 5044: 4996: 4952: 4899: 4864: 4806: 4748: 4690: 4654: 4602: 4530: 4490: 4472: 4454: 4427: 4383: 4339: 4287: 4235: 4183: 4139: 4103: 4067: 4019: 3979: 3929: 3890:
Zheng J, Constantinou PE, Micheel C, Alivisatos AP, Kiehl RA, Seeman NC (July 2006).
3875: 3863: 3831: 3819: 3780: 3728: 3663: 3608: 3536: 3470: 3422: 3382: 3339: 3285: 3227: 3113: 3069: 3018: 3006: 2963: 2903: 2849: 2813: 2754: 2703: 2637: 2591: 2565: 2541: 2484: 2389: 2346: 2277: 2177: 2141: 2082: 2035: 1980: 1935: 1860: 1778: 1723: 1686: 1638: 1615: 1450: 1402: 1324:
reorient to face towards the membrane-inserted part of the DNA. Researchers from the
1281: 1217: 1166: 1019: 917: 815: 800: 796: 769: 753:, DNA arrays that display a representation of the Sierpinski gasket on their surfaces 746: 585: 397: 319: 288: 182: 170: 87: 6255: 6201: 6159: 5108: 5056: 4614: 4299: 3482: 2915: 1698: 1057:
capable of complex computation. Unlike traditional electronic computers, which use
555:
is the dominant material used, structures incorporating other nucleic acids such as
7051: 6766: 6728: 6698: 6668: 6621: 6611: 6577: 6549: 6509: 6501: 6465: 6457: 6415: 6329: 6309: 6279: 6225: 6183: 6179: 6129: 6075: 6037: 6029: 5984: 5954: 5907: 5899: 5849: 5841: 5801: 5753: 5703: 5695: 5653: 5645: 5605: 5549: 5541: 5488: 5480: 5424: 5389: 5352: 5344: 5274: 5214: 5206: 5166: 5088: 5036: 4988: 4964: 4944: 4891: 4854: 4846: 4796: 4788: 4738: 4730: 4682: 4646: 4594: 4566: 4522: 4480: 4462: 4439: 4419: 4375: 4331: 4279: 4247: 4227: 4195: 4175: 4131: 4095: 4059: 4011: 3969: 3919: 3911: 3855: 3811: 3772: 3740: 3718: 3710: 3675: 3655: 3620: 3600: 3564: 3526: 3518: 3462: 3414: 3374: 3331: 3275: 3267: 3217: 3209: 3177: 3149: 3125: 3105: 3059: 3049: 2998: 2953: 2943: 2895: 2841: 2803: 2795: 2746: 2693: 2685: 2649: 2629: 2531: 2521: 2474: 2466: 2381: 2336: 2328: 2289: 2269: 2225: 2213: 2169: 2133: 2094: 2074: 2027: 1972: 1925: 1917: 1850: 1842: 1770: 1678: 1237: 1185: 1123: 1058: 954: 608: 593: 376: 323: 284: 244: 6689:
Feldkamp U, Niemeyer CM (March 2006). "Rational design of DNA nanoarchitectures".
6581: 6553: 3948:
Park SH, Pistol C, Ahn SJ, Reif JH, Lebeck AR, Dwyer C, LaBean TH (January 2006).
3365:
Feldkamp U, Niemeyer CM (March 2006). "Rational design of DNA nanoarchitectures".
2385: 2031: 1580:
are often used in this case. Extended three-dimensional lattices are analyzed by
1041:
are made energetically favorable through the formation of new base pairs, and the
825:, a balance between tension and compression forces, was finally reported in 2009. 492:
rules which are well understood, and form the specific nanoscale structure of the
7000: 6987: 6925: 6283: 6229: 6133: 6079: 5781: 5757: 5682:
Seifert A, Göpfrich K, Burns JR, Fertig N, Keyser UF, Howorka S (February 2015).
5545: 4895: 3636:"Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns" 3555:
Zhang Y, Seeman NC (1 March 1994). "Construction of a DNA-truncated octahedron".
3054: 2948: 2845: 2526: 1353: 1301: 1257: 1139: 1111: 1103: 994: 846: 811: 763:
and combined into larger two-dimensional periodic lattices containing a specific
732: 272: 6333: 3846:
Endo M, Sugiyama H (October 2009). "Chemical approaches to DNA nanotechnology".
2417: 1804: 500:. This property is absent in other materials used in nanotechnology, including 7095: 6889: 6831: 5903: 4467: 3441:
Yin P, Hariadi RF, Sahu S, Choi HM, Park SH, Labean TH, Reif JH (August 2008).
1797: 1601: 1477: 1273: 1244:. Delivery of the interfering RNA for treatment has showed some success using 1147: 710:, a model of a DNA tile used to make another two-dimensional periodic lattice. 505: 474: 331: 268: 221: 166: 162: 75: 37: 6794: 5428: 4792: 4122:
Deng Z, Mao C (August 2004). "Molecular lithography with DNA nanostructures".
3815: 2799: 2217: 2173: 652: 7122: 6909: 4769:"A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks" 4476: 3999: 3823: 2086: 1383: 1332:
then demonstrated that such a DNA-induced toroidal pore can facilitate rapid
1313: 1289: 1091: 1010: 875: 783:, allowing them to perform computation. A DX array whose assembly encodes an 613: 347: 190: 186: 6528:—A more comprehensive review including both old and new results in the field 5845: 5484: 5092: 5040: 4423: 3466: 3002: 2633: 1976: 1682: 1134:. Further, DNA origami structures have aided in the biophysical studies of 1130:
have been used as nanoscale assembly lines to move nanoparticles and direct
7046: 6937: 6884: 6778: 6740: 6732: 6710: 6702: 6680: 6672: 6635: 6589: 6561: 6532:
Service RF (June 2011). "DNA nanotechnology. DNA nanotechnology grows up".
6523: 6479: 6427: 6351: 6301: 6247: 6151: 6097: 6051: 5996: 5988: 5921: 5863: 5813: 5805: 5765: 5717: 5667: 5649: 5634:"Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor" 5617: 5563: 5502: 5436: 5401: 5366: 5286: 5228: 5178: 5100: 5048: 5000: 4992: 4956: 4903: 4868: 4850: 4810: 4752: 4694: 4686: 4658: 4650: 4606: 4598: 4534: 4494: 4431: 4387: 4343: 4335: 4291: 4239: 4143: 4135: 4107: 4071: 4063: 4023: 4015: 3983: 3974: 3949: 3933: 3867: 3859: 3784: 3732: 3667: 3612: 3540: 3474: 3426: 3386: 3378: 3343: 3289: 3231: 3073: 3010: 2967: 2907: 2853: 2817: 2758: 2707: 2689: 2641: 2545: 2488: 2393: 2364:
Service RF (June 2011). "DNA nanotechnology. DNA nanotechnology grows up".
2350: 2281: 2145: 2137: 2054: 2039: 2010:
Service RF (June 2011). "DNA nanotechnology. DNA nanotechnology grows up".
1939: 1921: 1864: 1782: 1690: 1550: 1523:
software. The nucleic acids themselves are then synthesized using standard
1305: 982: 925: 921: 865:
Nanostructures of arbitrary, non-regular shapes are usually made using the
784: 764: 509: 462: 351: 327: 303: 280: 214: 158: 135: 5348: 4187: 3117: 2181: 1565:(FRET) are sometimes used to characterize the structure of the complexes. 1070:
of the integers 0–15, using a system of gates containing 130 DNA strands.
787:
operation has been demonstrated; this allows the DNA array to implement a
6616: 6033: 5461:"Synthetic lipid membrane channels formed by designed DNA nanostructures" 4379: 3798:
Zaborova, O. V.; Voinova, A. D.; Shmykov, B. D.; Sergeyev, V. G. (2021).
1624:
International Society for Nanoscale Science, Computation, and Engineering
1391: 1341: 1293: 1288:
introduced a pore-shaped DNA origami structure that can self-insert into
1269: 1233: 1221: 1201: 1107: 1067: 1063: 976: 937: 897: 866: 366: 343: 248: 4948: 4734: 3714: 3659: 3604: 3568: 3522: 2332: 2273: 1394:, which allows forming nanoscale two- and three-dimensional shapes (see 588:, each arm in the artificial immobile four-arm junction has a different 126: 6370:. Sausalito, Calif: University Science Books. pp. 84–86, 396–407. 5393: 2899: 1481: 1333: 1261: 1193: 1151: 1099: 1015: 1001: 850: 842: 834: 822: 760: 682: 604: 524: 520: 267:
The conceptual foundation for DNA nanotechnology was first laid out by
220:
The conceptual foundation for DNA nanotechnology was first laid out by
198: 178: 7090: 6770: 6568:
Service RF (June 2011). "DNA nanotechnology. Next step: DNA robots?".
6461: 5699: 5609: 5278: 5210: 5170: 4570: 4526: 4099: 3915: 3776: 3418: 3335: 3271: 3246:
Mathieu F, Liao S, Kopatsch J, Wang T, Mao C, Seeman NC (April 2005).
3181: 3153: 2750: 2470: 1595: 1469:
of the nanostructures and to ensure that the complexes are not overly
1300:, to small tile-based structures, and large DNA origami transmembrane 948: 70: 6917: 6783:—A review of DNA systems making use of strand displacement mechanisms 5731: 4231: 3213: 2307:
Douglas SM, Dietz H, Liedl T, Högberg B, Graf F, Shih WM (May 2009).
2078: 1454: 1414: 1209: 1197: 1079: 1074: 1047: 905: 807: 780: 723: 703: 694: 489: 478: 449: 418: 336: 225: 143: 4283: 2586:
Long EC (1996). "Fundamentals of nucleic acids". In Hecht SM (ed.).
1538:
if needed, and precise concentrations determined via any of several
674:, schematic diagram. Each bar represents a double-helical domain of 5734:"DNA-Tile Structures Induce Ionic Currents through Lipid Membranes" 1496: 1158:
because of the coupling of computation to its material properties.
858: 617: 532: 430: 174: 7102: 4179: 3889: 3400: 3109: 2882: 1609: 1557:
can assess whether a structure incorporates all desired strands.
82: 6800: 6715:—A review coming from the viewpoint of secondary structure design 2562:
Self-assembly: the science of things that put themselves together
1720:
Self-assembly: the science of things that put themselves together
1245: 1229: 1042: 792: 772: 621: 540: 536: 528: 501: 434: 426: 422: 6438:"Structural DNA nanotechnology: growing along with Nano Letters" 4978: 2447:"Structural DNA nanotechnology: growing along with Nano Letters" 1898:"Challenges and opportunities for structural DNA nanotechnology" 1417:
structure; these then assemble into the final conformation in a
512:, which lack the capability for specific assembly on their own. 441:
for a more realistic model of the four-arm junction showing its
1961:. Natural Computing Series. New York: Springer. pp. 3–21. 1337: 1253: 1225: 1135: 879: 661: 294: 6398:
Seeman NC (June 2004). "Nanotechnology and the double helix".
6328:. Methods in Molecular Biology. Vol. 749. pp. 1–11. 5522:"Ion Channels Made from a Single Membrane-Spanning DNA Duplex" 5015:
Seelig G, Soloveichik D, Zhang DY, Winfree E (December 2006).
3800:"Solid Lipid Nanoparticles for the Nucleic Acid Encapsulation" 3797: 3195: 2309:"Self-assembly of DNA into nanoscale three-dimensional shapes" 1753:
Seeman NC (June 2004). "Nanotechnology and the double helix".
6432:—An article written for laypeople by the founder of the field 5830:"Large-Conductance Transmembrane Porin Made from DNA Origami" 5014: 4767:
Valero J, Pal N, Dhakal S, Walter NG, Famulok M (June 2018).
2611: 1321: 1317: 1249: 1224:
were found to remain intact in the laboratory cultured human
1062:
displacement complexes. This approach has been used to make
990: 986: 913: 909: 901: 165:
rather than as the carriers of genetic information in living
6600:"Structural DNA nanotechnology: from design to applications" 5302:"Researchers achieve RNA interference, in a lighter package" 1722:. New York: Chapman & Hall/CRC. pp. 201, 242, 259. 1256:
molecules, which lead the DNA nanoparticles to the abundant
1200:, or cell death, that will only open when in proximity to a 806:
DX arrays have been made to form hollow nanotubes 4–20 
6365: 5827: 5519: 4584: 4209: 3403:"Design and characterization of programmable DNA nanotubes" 2052: 1377:
desired shape. Several approaches have been demonstrated:
1240:(RNAi) in a mouse model, reported a team of researchers in 838: 6745:—A minireview specifically focusing on tile-based assembly 6016:
Dirks RM, Lin M, Winfree E, Pierce NA (15 February 2004).
5780:
Burns JR, Seifert A, Fertig N, Howorka S (February 2016).
5681: 5156: 4452: 4357: 1154:. DNA nanotechnology has been compared to the concept of 1046:
formation of the desired structure. They can also support
1018:
DNA that uses rolling circle transcription by an attached
624:, which can bind to specific proteins or small molecules. 5779: 5458: 3035: 1549:
The fully formed target structures can be verified using
1241: 675: 556: 552: 458: 252: 139: 5631: 4708: 2867: 2306: 1660: 940:
masks, transferring their pattern into a solid surface.
6651:
Bath J, Turberfield AJ (May 2007). "DNA nanomachines".
3692: 3245: 3087: 3038:"Algorithmic self-assembly of DNA Sierpinski triangles" 2116:
Bath J, Turberfield AJ (May 2007). "DNA nanomachines".
1425:
below). This approach has the advantage of proceeding
1316:. This indicated that the DNA-induced lipid pore has a 189:. The field is beginning to be used as a tool to solve 181:, and arbitrary shapes, and functional devices such as 5877: 5322: 4923:
Yin P, Choi HM, Calvert CR, Pierce NA (January 2008).
4037: 3633: 3303: 3036:
Rothemund PW, Papadakis N, Winfree E (December 2004).
2980: 1401:
Dynamic assembly. This approach directly controls the
714:, an atomic force micrograph of the assembled lattice. 481:. DNA nanotechnology, specifically, is an example of 6015: 4766: 4401: 3496: 3030: 3028: 2247:"Folding DNA to create nanoscale shapes and patterns" 1284:
with designed DNA nanostructures. In 2012, Langecker
519:
of a nucleic acid molecule consists of a sequence of
6640:—A very recent and comprehensive review in the field 6368:
Nucleic acids: structures, properties, and functions
5192: 4922: 4711:"Molecular robots guided by prescriptive landscapes" 4672: 3998:
Cohen JD, Sadowski JP, Dervan PB (22 October 2007).
2590:. New York: Oxford University Press. pp. 4–10. 2195: 2188: 1896:
Pinheiro AV, Han D, Shih WM, Yan H (November 2011).
1591: 6173: 5870: 5451: 4085: 4000:"Addressing single molecules on DNA nanostructures" 3997: 2564:. New York: Chapman & Hall/CRC. pp. 5, 7. 2239: 2237: 2235: 1890: 1888: 1886: 1884: 1882: 1880: 1878: 1876: 1874: 1161:In a study conducted by a group of scientists from 599:Dynamic DNA nanotechnology uses a mechanism called 209:to determine structures. Potential applications in 207:
nuclear magnetic resonance spectroscopy of proteins
6323: 5514: 5512: 5414: 4261: 3634:Tikhomirov G, Petersen P, Qian L (December 2017). 3440: 3198:"Double cohesion in structural DNA nanotechnology" 3025: 1895: 1568:Nucleic acid structures can be directly imaged by 1053:Strand displacement complexes can be used to make 759:Small nucleic acid complexes can be equipped with 142:tetrahedron. Each edge of the tetrahedron is a 20 6176:Current Protocols Essential Laboratory Techniques 6018:"Paradigms for computational nucleic acid design" 5577: 5264: 4925:"Programming biomolecular self-assembly pathways" 3947: 1422: 527:they contain. In DNA, the four bases present are 228:rules, which cause only portions of strands with 7120: 6688: 6685:—A review of nucleic acid nanomechanical devices 6366:Bloomfield VA, Crothers DM, Tinoco Jr I (2000). 6119: 6065: 4511:"A synthetic DNA walker for molecular transport" 4157: 3364: 2439: 2437: 2435: 2232: 1951: 1949: 1871: 1216:of nucleic acid nanostructures. Scientists at 627: 130:DNA nanotechnology involves forming artificial, 6718: 6650: 5974: 5940: 5509: 4313: 3754: 3582: 2510:"The emergence of complexity: lessons from DNA" 2115: 2110: 2108: 2106: 2104: 1030: 5935: 5933: 5931: 5820: 5195:"From DNA nanotechnology to synthetic biology" 5193:Jungmann R, Renner S, Simmel FC (April 2008). 3838: 3687: 3685: 2784:"An overview of structural DNA nanotechnology" 2159: 1747: 1745: 1743: 1741: 1739: 1629:Comparison of nucleic acid simulation software 469: 6816: 6597: 5724: 5379: 5299: 4917: 4915: 4913: 4628: 4548: 2432: 2055:"A DNA-fuelled molecular machine made of DNA" 1946: 943: 107: 6484:—A review of results in the period 2001–2010 6215: 6010: 6008: 6006: 5943:"Strand design for biomolecular computation" 5241: 4977:Fuzzy and Boolean logic gates based on DNA: 4881: 4394: 3845: 3167: 3139: 2776: 2774: 2772: 2770: 2768: 2723: 2721: 2719: 2717: 2101: 1823: 1821: 1819: 1817: 1815: 1405:of DNA self-assembly, specifying all of the 620:, which can perform chemical reactions, and 157:is the design and manufacture of artificial 6797:—a video introduction to DNA nanotechnology 6748: 6604:International Journal of Molecular Sciences 6272:Current Protocols in Nucleic Acid Chemistry 5941:Brenneman A, Condon A (25 September 2002). 5928: 5674: 5624: 5570: 5070: 3682: 3554: 3359: 3357: 3355: 3353: 2728: 1736: 1655: 1653: 1127: 6823: 6809: 4910: 4508: 2666:"The emerging field of RNA nanotechnology" 2301: 2299: 1330:University of Illinois at Urbana-Champaign 845:, meaning that the DNA duplexes trace the 365:In 2006, Rothemund first demonstrated the 114: 100: 6625: 6615: 6513: 6469: 6041: 6003: 5958: 5911: 5853: 5772: 5707: 5657: 5599: 5553: 5492: 5356: 5244:"DNA cages can unleash meds inside cells" 5218: 5017:"Enzyme-free nucleic acid logic circuits" 4858: 4800: 4742: 4484: 4466: 3973: 3923: 3722: 3530: 3325: 3279: 3221: 3063: 3053: 2957: 2947: 2881: 2807: 2765: 2714: 2697: 2535: 2525: 2478: 2340: 2244: 2004: 2002: 2000: 1998: 1996: 1966: 1956: 1929: 1854: 1812: 1712: 1710: 1708: 1476:Nucleic acid design has similar goals to 1304:. Similar to naturally occurring protein 970: 4515:Journal of the American Chemical Society 3557:Journal of the American Chemical Society 3489: 3407:Journal of the American Chemical Society 3350: 3170:Journal of the American Chemical Society 3142:Journal of the American Chemical Society 2860: 2502: 2500: 2498: 1650: 1495: 1491: 1395: 947: 702: 448: 412: 293: 125: 6567: 6531: 5122: 4121: 2559: 2363: 2296: 2152: 2009: 1959:Nanotechnology: science and computation 1717: 934:carbon nanotube field-effect transistor 408: 235:to bind together to form strong, rigid 7121: 6487: 6435: 6397: 6269: 6218:Current Protocols in Molecular Biology 6122:Current Protocols in Molecular Biology 6068:Current Protocols in Molecular Biology 2929: 2781: 2444: 2407: 1993: 1828: 1805:"DNA cages containing oriented guests" 1752: 1705: 828: 6804: 6506:10.1146/annurev-biochem-060308-102244 4824: 4509:Shin JS, Pierce NA (September 2004). 3443:"Programming DNA tube circumferences" 3248:"Six-helix bundles designed from DNA" 2831: 2495: 1847:10.1146/annurev-biochem-060308-102244 1228:cells despite the attack by cellular 891: 326:, and in 1998, in collaboration with 7077: 5126:Molecular engineering of nanosystems 3202:Organic & Biomolecular Chemistry 2585: 1802:for a statement of the problem, and 1555:electrophoretic mobility shift assay 1371: 1212:. If successful, this could enable 920:on a DX-based array, and to arrange 642: 601:toehold-mediated strand displacement 6598:Zadegan RM, Norton ML (June 2012). 2870:Physical Chemistry Chemical Physics 2663: 2588:Bioorganic chemistry: nucleic acids 2507: 1544:ultraviolet absorbance spectroscopy 1421:reaction, in a specific order (see 1320:shape, rather than cylindrical, as 13: 6830: 6387: 1798:"Current crystallization protocol" 1437: 563:(PNA) have also been constructed. 14: 7140: 6788: 6420:10.1038/scientificamerican0604-64 3804:Reviews and Advances in Chemistry 1775:10.1038/scientificamerican0604-64 1563:Förster resonance energy transfer 1527:methods, usually automated in an 1188:format to make "smart drugs" for 1179:Förster resonance energy transfer 241:rational design of base sequences 7101: 7089: 7076: 7065: 7064: 6358: 4884:Current Opinion in Biotechnology 2834:Current Opinion in Biotechnology 2198:Journal of Nanoparticle Research 1608: 1594: 1574:transmission electron microscopy 1175:transmission electron microscopy 993:forms to respond to a change in 731: 722: 660: 651: 239:structures. This allows for the 81: 69: 36: 6316: 6262: 6208: 6166: 6112: 6058: 5967: 5408: 5373: 5316: 5293: 5258: 5235: 5185: 5150: 5115: 5063: 5007: 4971: 4875: 4817: 4759: 4701: 4665: 4621: 4577: 4541: 4501: 4446: 4350: 4306: 4254: 4202: 4150: 4114: 4078: 4030: 3990: 3940: 3882: 3791: 3747: 3627: 3575: 3547: 3433: 3393: 3296: 3238: 3188: 3160: 3132: 3080: 2974: 2922: 2824: 2780:Structural DNA nanotechnology: 2656: 2604: 2578: 2552: 2400: 2357: 1360:or function. Then, the overall 1085: 678:, with the shapes representing 312:Feynman Prize in Nanotechnology 24:Part of a series of articles on 6184:10.1002/9780470089941.et0202s5 5129:. Springer. pp. 209–212. 5069:Strand displacement cascades: 5013:Strand displacement cascades: 4825:He Y, Liu DR (November 2010). 3724:11858/00-001M-0000-0010-9363-9 2866:Simulation of DNA structures: 2046: 1789: 1459:sequence symmetry minimization 605:single-stranded toehold region 1: 7024:Scanning tunneling microscope 6582:10.1126/science.332.6034.1142 6554:10.1126/science.332.6034.1140 6494:Annual Review of Biochemistry 5960:10.1016/S0304-3975(02)00135-4 5417:Nature Biomedical Engineering 5300:Trafton, Anne (4 June 2012). 2386:10.1126/science.332.6034.1140 2032:10.1126/science.332.6034.1140 1835:Annual Review of Biochemistry 1644: 628:Structural DNA nanotechnology 461:single strands that form two 314:. This was followed by a DNA 217:are also being investigated. 6490:"Nanomaterials based on DNA" 6284:10.1002/0471142700.nc1110s11 6230:10.1002/0471142727.mb0207s47 6134:10.1002/0471142727.mb0212s42 6080:10.1002/0471142727.mb0211s42 5947:Theoretical Computer Science 5758:10.1021/acs.nanolett.5b00189 5546:10.1021/acs.nanolett.6b02039 5242:Lovy, Howard (5 July 2011). 4896:10.1016/j.copbio.2014.11.017 3055:10.1371/journal.pbio.0020424 2949:10.1371/journal.pbio.0020073 2846:10.1016/j.copbio.2006.10.004 2830:Dynamic DNA nanotechnology: 2727:Dynamic DNA nanotechnology: 2527:10.1371/journal.pbio.0020431 1831:"Nanomaterials based on DNA" 1807:. Nadrian Seeman Laboratory. 1423:Strand displacement cascades 1146:electronic elements such as 1031:Strand displacement cascades 670:The assembly of a DX array. 566: 201:, including applications in 7: 6996:Molecular scale electronics 6334:10.1007/978-1-61779-142-0_1 3302:Algorithmic self-assembly: 3034:Algorithmic self-assembly: 2782:Seeman NC (November 2007). 2245:Rothemund PW (March 2006). 1587: 1529:oligonucleotide synthesizer 1382:making them a platform for 1352:DNA nanostructures must be 470:Properties of nucleic acids 453:This double-crossover (DX) 384:in 2009, while the labs of 257:nucleic acid nanotechnology 211:molecular scale electronics 10: 7145: 6795:What is Bionanotechnology? 5904:10.1038/s41467-018-04821-5 4468:10.1038/s41565-023-01516-x 3495:Three-dimensional arrays: 1809:for the proposed solution. 1484:as compared to the twenty 1441: 974: 944:Dynamic DNA nanotechnology 262: 7060: 7032: 7011:Scanning probe microscopy 7009: 6986: 6953: 6908: 6871: 6838: 5429:10.1038/s41551-019-0417-0 4793:10.1038/s41565-018-0109-z 3816:10.1134/S2079978021030055 2800:10.1007/s12033-007-0059-4 1540:nucleic acid quantitation 1525:oligonucleotide synthesis 1486:proteinogenic amino acids 1347: 1116:residual dipolar coupling 634:nucleic acid double helix 494:nucleic acid double helix 7034:Molecular nanotechnology 6978:Solid lipid nanoparticle 6963:Self-assembled monolayer 5246:. fiercedrugdelivery.com 4823:Functional DNA walkers: 4765:Functional DNA walkers: 4707:Functional DNA walkers: 2408:Hopkin K (August 2011). 1578:cryo-electron microscopy 1390:latter method is called 1120:protein NMR spectroscopy 48:Self-assembled monolayer 7019:Atomic force microscope 6968:Supramolecular assembly 6955:Molecular self-assembly 6436:Seeman NC (June 2010). 5846:10.1021/acsnano.6b03759 5485:10.1126/science.1225624 5382:Chemical Communications 5093:10.1126/science.1200520 5041:10.1126/science.1132493 4424:10.1126/science.1214081 3467:10.1126/science.1157312 3003:10.1126/science.1089389 2930:Strong M (March 2004). 2788:Molecular Biotechnology 2664:Guo P (December 2010). 2634:10.1126/science.1104686 2508:Mao C (December 2004). 2445:Seeman NC (June 2010). 2218:10.1023/A:1021145208328 2174:10.1093/protein/1.4.295 1977:10.1007/3-540-30296-4_1 1683:10.1126/science.1120367 1634:Molecular models of DNA 1570:atomic force microscopy 1326:University of Cambridge 1171:atomic force microscopy 1024:DNA-templated synthesis 691:atomic force microscopy 549:energetically favorable 523:distinguished by which 508:is very difficult, and 486:molecular self-assembly 53:Supramolecular assembly 30:Molecular self-assembly 6733:10.1002/cphc.200600260 6703:10.1002/anie.200502358 6673:10.1038/nnano.2007.104 6540:(6034): 1140–1, 1143. 6022:Nucleic Acids Research 5989:10.1002/cphc.200600260 5806:10.1038/nnano.2015.279 5650:10.1002/anie.201305765 4993:10.1002/smll.201402755 4851:10.1038/nnano.2010.190 4687:10.1002/anie.200501262 4651:10.1002/ange.200500703 4599:10.1002/anie.201901272 4336:10.1002/ange.200351818 4136:10.1002/anie.200460257 4064:10.1038/nnano.2009.311 4016:10.1002/anie.200702767 3975:10.1002/ange.200690141 3860:10.1002/cbic.200900286 3379:10.1002/anie.200502358 2932:"Protein nanomachines" 2690:10.1038/nnano.2010.231 2372:(6034): 1140–1, 1143. 2138:10.1038/nnano.2007.104 2018:(6034): 1140–1, 1143. 2008:History/applications: 1922:10.1038/nnano.2011.187 1521:thermodynamic modeling 1512: 1503:methods, such as this 1190:targeted drug delivery 971:Nanomechanical devices 963: 715: 466: 455:supramolecular complex 446: 307: 273:crystallographic study 151: 134:nanostructures out of 7108:Technology portal 6653:Nature Nanotechnology 5884:Nature Communications 5786:Nature Nanotechnology 5349:10.1038/NNANO.2012.73 5329:Nature Nanotechnology 4831:Nature Nanotechnology 4773:Nature Nanotechnology 4459:Nature Nanotechnology 4360:Nature Nanotechnology 4044:Nature Nanotechnology 2670:Nature Nanotechnology 2118:Nature Nanotechnology 1902:Nature Nanotechnology 1800:. Nadrian Seeman Lab. 1582:X-ray crystallography 1509:reaction intermediate 1499: 1492:Materials and methods 1461:, or by using a full 1055:molecular logic gates 951: 855:solid-phase synthesis 706: 452: 416: 297: 203:X-ray crystallography 129: 88:Technology portal 6895:Green nanotechnology 6645:Specific subfields: 6617:10.3390/ijms13067149 6278:: 11.10.1–11.10.23. 4380:10.1038/nnano.2008.3 2662:RNA nanotechnology: 2610:RNA nanotechnology: 1559:Fluorescent labeling 1266:multidrug resistance 1236:was used to deliver 1165:and CDNA centers in 960:molecular logic gate 930:molecular electronic 561:peptide nucleic acid 409:Fundamental concepts 316:truncated octahedron 7042:Molecular assembler 6763:2011NatCh...3..103Z 6665:2007NatNa...2..275B 6546:2011Sci...332.1140S 6454:2010NanoL..10.1971S 6412:2004SciAm.290f..64S 6400:Scientific American 5896:2018NatCo...9.2426O 5798:2016NatNa..11..152B 5750:2015NanoL..15.3134G 5644:(46): 12069–12072. 5592:2013NanoL..13.2351B 5538:2016NanoL..16.4665G 5477:2012Sci...338..932L 5341:2012NatNa...7..389L 5165:(11): 10050–10053. 5123:Rietman EA (2001). 5085:2011Sci...332.1196Q 5079:(6034): 1196–1201. 5033:2006Sci...314.1585S 5027:(5805): 1585–1588. 4949:10.1038/nature06451 4941:2008Natur.451..318Y 4843:2010NatNa...5..778H 4785:2018NatNa..13..496V 4735:10.1038/nature09012 4727:2010Natur.465..206L 4643:2005AngCh.117.4429T 4563:2004NanoL...4.1203S 4521:(35): 10834–10835. 4416:2012Sci...335..831D 4372:2008NatNa...3...93G 4328:2003AngCh.115.4478F 4276:2002Natur.415...62Y 4224:2000Natur.406..605Y 4172:1999Natur.397..144M 4056:2010NatNa...5...61M 3966:2006AngCh.118.6759P 3908:2006NanoL...6.1502Z 3769:2009NanoL...9.2445K 3715:10.1038/nature07971 3707:2009Natur.459...73A 3660:10.1038/nature24655 3652:2017Natur.552...67T 3605:10.1038/nature02307 3597:2004Natur.427..618S 3569:10.1021/ja00084a006 3523:10.1038/nature08274 3515:2009Natur.461...74Z 3459:2008Sci...321..824Y 3413:(50): 16344–16352. 3318:2005NanoL...5.2586B 3264:2005NanoL...5..661M 3102:1998Natur.394..539W 2995:2003Sci...301.1882Y 2989:(5641): 1882–1884. 2892:2013PCCP...1520395D 2876:(47): 20395–20414. 2743:2011NatCh...3..103Z 2682:2010NatNa...5..833G 2626:2004Sci...306.2068C 2620:(5704): 2068–2072. 2560:Pelesko JA (2007). 2463:2010NanoL..10.1971S 2410:"Profile: 3-D seer" 2378:2011Sci...332.1140S 2333:10.1038/nature08016 2325:2009Natur.459..414D 2274:10.1038/nature04586 2266:2006Natur.440..297R 2210:2002JNR.....4..313X 2162:Protein Engineering 2130:2007NatNa...2..275B 2071:2000Natur.406..605Y 2024:2011Sci...332.1140S 1914:2011NatNa...6..763P 1767:2004SciAm.290f..64S 1755:Scientific American 1718:Pelesko JA (2007). 1675:2005Sci...310.1661G 1669:(5754): 1661–1665. 1536:gel electrophoresis 1501:Gel electrophoresis 1444:Nucleic acid design 1396:Discrete structures 1362:secondary structure 1354:rationally designed 1156:programmable matter 1007:restriction enzymes 829:Discrete structures 577:dynamic subfields. 498:nucleic acid design 7129:DNA nanotechnology 7096:Science portal 6973:DNA nanotechnology 6488:Seeman NC (2010). 6326:DNA Nanotechnology 6074:: 2.11.1–2.11.25. 6034:10.1093/nar/gkh291 5826:DNA ion channels: 5778:DNA ion channels: 5730:DNA ion channels: 5680:DNA ion channels: 5630:DNA ion channels: 5576:DNA ion channels: 5518:DNA ion channels: 5457:DNA ion channels: 5394:10.1039/c3cc38693g 4921:Kinetic assembly: 4120:Nanoarchitecture: 4084:Nanoarchitecture: 4036:Nanoarchitecture: 3996:Nanoarchitecture: 3946:Nanoarchitecture: 3888:Nanoarchitecture: 2900:10.1039/C3CP53545B 2420:on 10 October 2011 2194:Nanoarchitecture: 2158:Nanoarchitecture: 1829:Seeman NC (2010). 1517:molecular modeling 1513: 1467:tertiary structure 1411:reaction mechanism 1214:directed evolution 1132:chemical synthesis 1096:structural biology 964: 918:gold nanoparticles 892:Templated assembly 789:cellular automaton 716: 586:Holliday junctions 467: 447: 443:tertiary structure 393:proof of principle 356:Andrew Turberfield 308: 195:structural biology 183:molecular machines 155:DNA nanotechnology 152: 76:Science portal 58:DNA nanotechnology 7116: 7115: 6771:10.1038/nchem.957 6697:(12): 1856–1876. 6691:Angewandte Chemie 6462:10.1021/nl101262u 6377:978-0-935702-49-1 6343:978-1-61779-141-3 5700:10.1021/nn5039433 5638:Angewandte Chemie 5610:10.1021/nl304147f 5471:(6109): 932–936. 5388:(20): 2010–2012. 5279:10.1021/nn2005574 5211:10.2976/1.2896331 5171:10.1021/nn303767b 5136:978-0-387-98988-4 4987:(15): 1811–1817. 4935:(7176): 318–322. 4721:(7295): 206–210. 4681:(28): 4358–4361. 4675:Angewandte Chemie 4637:(28): 4355–4358. 4631:Angewandte Chemie 4593:(21): 6948–6951. 4587:Angewandte Chemie 4571:10.1021/nl049527q 4527:10.1021/ja047543j 4410:(6070): 831–834. 4322:(36): 4342–4346. 4316:Angewandte Chemie 4218:(6796): 605–608. 4166:(6715): 144–146. 4130:(31): 4068–4070. 4124:Angewandte Chemie 4100:10.1021/nn1035075 4010:(42): 7956–7959. 4004:Angewandte Chemie 3954:Angewandte Chemie 3916:10.1021/nl060994c 3854:(15): 2420–2443. 3777:10.1021/nl901165f 3591:(6975): 618–621. 3453:(5890): 824–826. 3419:10.1021/ja044319l 3373:(12): 1856–1876. 3367:Angewandte Chemie 3336:10.1021/nl052038l 3312:(12): 2586–2592. 3272:10.1021/nl050084f 3208:(18): 3414–3419. 3182:10.1021/ja9900398 3176:(23): 5437–5443. 3154:10.1021/ja982824a 3096:(6693): 539–544. 2751:10.1038/nchem.957 2597:978-0-19-508467-2 2571:978-1-58488-687-7 2471:10.1021/nl101262u 2319:(7245): 414–418. 2260:(7082): 297–302. 2065:(6796): 605–608. 1986:978-3-540-30295-7 1729:978-1-58488-687-7 1639:Nanobiotechnology 1616:Technology portal 1372:Structural design 1366:primary structure 1282:membrane proteins 1218:Oxford University 1192:, as well as for 1167:Aarhus University 1124:membrane proteins 1020:T7 RNA polymerase 816:emergent property 797:Sierpinski gasket 791:that generates a 770:Holliday junction 747:Sierpinski gasket 643:Extended lattices 457:consists of five 289:Holliday junction 124: 123: 7136: 7106: 7105: 7094: 7093: 7080: 7079: 7068: 7067: 7052:Mechanosynthesis 6943:characterization 6825: 6818: 6811: 6802: 6801: 6782: 6751:Nature Chemistry 6744: 6727:(8): 1641–1647. 6714: 6684: 6639: 6629: 6619: 6610:(6): 7149–7162. 6593: 6565: 6527: 6517: 6483: 6473: 6448:(6): 1971–1978. 6431: 6382: 6381: 6362: 6356: 6355: 6320: 6314: 6313: 6266: 6260: 6259: 6212: 6206: 6205: 6170: 6164: 6163: 6116: 6110: 6109: 6062: 6056: 6055: 6045: 6028:(4): 1392–1403. 6012: 6001: 6000: 5983:(8): 1641–1647. 5971: 5965: 5964: 5962: 5937: 5926: 5925: 5915: 5876:DNA scramblase: 5874: 5868: 5867: 5857: 5840:(9): 8207–8214. 5824: 5818: 5817: 5776: 5770: 5769: 5744:(5): 3134–3138. 5728: 5722: 5721: 5711: 5694:(2): 1117–1126. 5678: 5672: 5671: 5661: 5628: 5622: 5621: 5603: 5586:(6): 2351–2356. 5574: 5568: 5567: 5557: 5532:(7): 4665–4669. 5516: 5507: 5506: 5496: 5455: 5449: 5448: 5412: 5406: 5405: 5377: 5371: 5370: 5360: 5320: 5314: 5313: 5311: 5309: 5297: 5291: 5290: 5273:(7): 5427–5432. 5262: 5256: 5255: 5253: 5251: 5239: 5233: 5232: 5222: 5189: 5183: 5182: 5154: 5148: 5147: 5145: 5143: 5119: 5113: 5112: 5067: 5061: 5060: 5011: 5005: 5004: 4975: 4969: 4968: 4919: 4908: 4907: 4879: 4873: 4872: 4862: 4821: 4815: 4814: 4804: 4763: 4757: 4756: 4746: 4705: 4699: 4698: 4669: 4663: 4662: 4625: 4619: 4618: 4581: 4575: 4574: 4557:(7): 1203–1207. 4545: 4539: 4538: 4505: 4499: 4498: 4488: 4470: 4450: 4444: 4443: 4398: 4392: 4391: 4354: 4348: 4347: 4310: 4304: 4303: 4258: 4252: 4251: 4232:10.1038/35020524 4206: 4200: 4199: 4154: 4148: 4147: 4118: 4112: 4111: 4094:(3): 2240–2247. 4082: 4076: 4075: 4034: 4028: 4027: 3994: 3988: 3987: 3977: 3944: 3938: 3937: 3927: 3902:(7): 1502–1504. 3886: 3880: 3879: 3842: 3836: 3835: 3810:(3–4): 178–188. 3795: 3789: 3788: 3763:(6): 2445–2447. 3751: 3745: 3744: 3726: 3689: 3680: 3679: 3631: 3625: 3624: 3579: 3573: 3572: 3563:(5): 1661–1669. 3551: 3545: 3544: 3534: 3493: 3487: 3486: 3437: 3431: 3430: 3397: 3391: 3390: 3361: 3348: 3347: 3329: 3300: 3294: 3293: 3283: 3242: 3236: 3235: 3225: 3214:10.1039/b605212f 3192: 3186: 3185: 3164: 3158: 3157: 3136: 3130: 3129: 3084: 3078: 3077: 3067: 3057: 3032: 3023: 3022: 2978: 2972: 2971: 2961: 2951: 2926: 2920: 2919: 2885: 2864: 2858: 2857: 2828: 2822: 2821: 2811: 2778: 2763: 2762: 2731:Nature Chemistry 2725: 2712: 2711: 2701: 2660: 2654: 2653: 2608: 2602: 2601: 2582: 2576: 2575: 2556: 2550: 2549: 2539: 2529: 2504: 2493: 2492: 2482: 2457:(6): 1971–1978. 2441: 2430: 2429: 2427: 2425: 2416:. Archived from 2404: 2398: 2397: 2361: 2355: 2354: 2344: 2303: 2294: 2293: 2251: 2241: 2230: 2229: 2192: 2186: 2185: 2156: 2150: 2149: 2112: 2099: 2098: 2079:10.1038/35020524 2050: 2044: 2043: 2006: 1991: 1990: 1970: 1953: 1944: 1943: 1933: 1892: 1869: 1868: 1858: 1825: 1810: 1808: 1801: 1793: 1787: 1786: 1749: 1734: 1733: 1714: 1703: 1702: 1657: 1618: 1613: 1612: 1604: 1599: 1598: 1463:nearest-neighbor 1457:methods such as 1358:target structure 1322:lipid headgroups 1292:via hydrophobic 1258:folate receptors 1238:RNA Interference 1110:rods to replace 1059:electric current 955:branch migration 857:steps to create 812:carbon nanotubes 735: 726: 664: 655: 609:branch migration 594:structural motif 324:structural motif 285:replication fork 171:crystal lattices 116: 109: 102: 86: 85: 74: 73: 40: 21: 20: 7144: 7143: 7139: 7138: 7137: 7135: 7134: 7133: 7119: 7118: 7117: 7112: 7100: 7088: 7056: 7028: 7005: 7001:Nanolithography 6988:Nanoelectronics 6982: 6949: 6904: 6867: 6858:Popular culture 6834: 6829: 6791: 6786: 6643: 6390: 6388:Further reading 6385: 6378: 6363: 6359: 6344: 6321: 6317: 6294: 6267: 6263: 6240: 6213: 6209: 6194: 6178:. Vol. 5. 6171: 6167: 6144: 6117: 6113: 6090: 6063: 6059: 6013: 6004: 5972: 5968: 5938: 5929: 5875: 5871: 5825: 5821: 5777: 5773: 5729: 5725: 5679: 5675: 5629: 5625: 5601:10.1.1.659.7660 5575: 5571: 5517: 5510: 5456: 5452: 5413: 5409: 5378: 5374: 5321: 5317: 5307: 5305: 5298: 5294: 5263: 5259: 5249: 5247: 5240: 5236: 5190: 5186: 5155: 5151: 5141: 5139: 5137: 5120: 5116: 5068: 5064: 5012: 5008: 4976: 4972: 4920: 4911: 4880: 4876: 4837:(11): 778–782. 4822: 4818: 4764: 4760: 4706: 4702: 4670: 4666: 4626: 4622: 4582: 4578: 4546: 4542: 4506: 4502: 4451: 4447: 4399: 4395: 4355: 4351: 4311: 4307: 4284:10.1038/415062a 4270:(6867): 62–65. 4259: 4255: 4207: 4203: 4155: 4151: 4119: 4115: 4083: 4079: 4035: 4031: 3995: 3991: 3945: 3941: 3887: 3883: 3843: 3839: 3796: 3792: 3752: 3748: 3701:(7243): 73–76. 3690: 3683: 3646:(7683): 67–71. 3632: 3628: 3581:DNA polyhedra: 3580: 3576: 3553:DNA polyhedra: 3552: 3548: 3509:(7260): 74–77. 3494: 3490: 3439:DNA nanotubes: 3438: 3434: 3399:DNA nanotubes: 3398: 3394: 3362: 3351: 3301: 3297: 3243: 3239: 3193: 3189: 3165: 3161: 3137: 3133: 3085: 3081: 3033: 3026: 2979: 2975: 2927: 2923: 2865: 2861: 2829: 2825: 2779: 2766: 2726: 2715: 2676:(12): 833–842. 2661: 2657: 2609: 2605: 2598: 2583: 2579: 2572: 2557: 2553: 2505: 2496: 2442: 2433: 2423: 2421: 2405: 2401: 2362: 2358: 2304: 2297: 2249: 2242: 2233: 2193: 2189: 2157: 2153: 2113: 2102: 2051: 2047: 2007: 1994: 1987: 1968:10.1.1.144.1380 1954: 1947: 1908:(12): 763–772. 1893: 1872: 1826: 1813: 1803: 1796: 1794: 1790: 1750: 1737: 1730: 1715: 1706: 1659:DNA polyhedra: 1658: 1651: 1647: 1614: 1607: 1600: 1593: 1590: 1505:formation assay 1494: 1446: 1440: 1438:Sequence design 1374: 1350: 1334:lipid flip-flop 1290:lipid membranes 1148:molecular wires 1140:protein folding 1118:experiments in 1112:liquid crystals 1104:crystallography 1088: 1033: 979: 973: 946: 894: 884:molecular cages 831: 757: 756: 755: 754: 738: 737: 736: 728: 727: 701: 700: 699: 698: 667: 666: 665: 657: 656: 645: 630: 569: 472: 411: 405: 344:DNA nanomachine 287:and the mobile 265: 138:, such as this 120: 80: 68: 17: 12: 11: 5: 7142: 7132: 7131: 7114: 7113: 7111: 7110: 7098: 7086: 7074: 7061: 7058: 7057: 7055: 7054: 7049: 7044: 7038: 7036: 7030: 7029: 7027: 7026: 7021: 7015: 7013: 7007: 7006: 7004: 7003: 6998: 6992: 6990: 6984: 6983: 6981: 6980: 6975: 6970: 6965: 6959: 6957: 6951: 6950: 6948: 6947: 6946: 6945: 6935: 6934: 6933: 6928: 6920: 6914: 6912: 6906: 6905: 6903: 6902: 6897: 6892: 6890:Nanotoxicology 6887: 6881: 6879: 6869: 6868: 6866: 6865: 6860: 6855: 6850: 6844: 6842: 6836: 6835: 6832:Nanotechnology 6828: 6827: 6820: 6813: 6805: 6799: 6798: 6790: 6789:External links 6787: 6785: 6784: 6757:(2): 103–113. 6746: 6716: 6686: 6659:(5): 275–284. 6647: 6642: 6641: 6595: 6576:(6034): 1142. 6529: 6485: 6433: 6394: 6389: 6386: 6384: 6383: 6376: 6357: 6342: 6315: 6293:978-0471142706 6292: 6261: 6239:978-0471142720 6238: 6207: 6193:978-0470089934 6192: 6165: 6143:978-0471142720 6142: 6111: 6089:978-0471142720 6088: 6057: 6002: 5966: 5927: 5869: 5819: 5792:(2): 152–156. 5771: 5723: 5673: 5623: 5569: 5508: 5450: 5423:(9): 684–694. 5407: 5372: 5335:(6): 389–393. 5315: 5292: 5257: 5234: 5191:Applications: 5184: 5149: 5135: 5121:Applications: 5114: 5062: 5006: 4970: 4909: 4874: 4816: 4779:(6): 496–503. 4758: 4700: 4664: 4620: 4576: 4540: 4500: 4445: 4400:Applications: 4393: 4356:DNA machines: 4349: 4312:DNA machines: 4305: 4260:DNA machines: 4253: 4208:DNA machines: 4201: 4156:DNA machines: 4149: 4113: 4077: 4029: 3989: 3960:(5): 735–739. 3939: 3881: 3837: 3790: 3746: 3681: 3626: 3574: 3546: 3488: 3432: 3392: 3349: 3327:10.1.1.155.676 3295: 3258:(4): 661–665. 3244:Other arrays: 3237: 3194:Other arrays: 3187: 3166:Other arrays: 3159: 3148:(5): 917–922. 3131: 3079: 3024: 2973: 2928:Other arrays: 2921: 2859: 2840:(6): 580–588. 2823: 2794:(3): 246–257. 2764: 2737:(2): 103–113. 2713: 2655: 2603: 2596: 2577: 2570: 2551: 2494: 2431: 2399: 2356: 2295: 2231: 2204:(4): 313–317. 2187: 2168:(4): 295–300. 2151: 2124:(5): 275–284. 2114:DNA machines: 2100: 2045: 1992: 1985: 1945: 1870: 1811: 1788: 1735: 1728: 1704: 1648: 1646: 1643: 1642: 1641: 1636: 1631: 1626: 1620: 1619: 1605: 1602:Science portal 1589: 1586: 1542:methods using 1493: 1490: 1478:protein design 1442:Main article: 1439: 1436: 1435: 1434: 1399: 1387: 1373: 1370: 1349: 1346: 1274:P-glycoprotein 1126:in solution. 1087: 1084: 1078:junctions and 1032: 1029: 1011:deoxyribozymes 975:Main article: 972: 969: 945: 942: 893: 890: 830: 827: 740: 739: 730: 729: 721: 720: 719: 718: 717: 669: 668: 659: 658: 650: 649: 648: 647: 646: 644: 641: 629: 626: 614:deoxyribozymes 568: 565: 506:protein design 475:Nanotechnology 471: 468: 463:double-helical 410: 407: 332:Paul Rothemund 302:(pictured) by 269:Nadrian Seeman 264: 261: 233:base sequences 222:Nadrian Seeman 163:nanotechnology 122: 121: 119: 118: 111: 104: 96: 93: 92: 91: 90: 78: 63: 62: 61: 60: 55: 50: 42: 41: 33: 32: 26: 25: 15: 9: 6: 4: 3: 2: 7141: 7130: 7127: 7126: 7124: 7109: 7104: 7099: 7097: 7092: 7087: 7085: 7084: 7075: 7073: 7072: 7063: 7062: 7059: 7053: 7050: 7048: 7045: 7043: 7040: 7039: 7037: 7035: 7031: 7025: 7022: 7020: 7017: 7016: 7014: 7012: 7008: 7002: 6999: 6997: 6994: 6993: 6991: 6989: 6985: 6979: 6976: 6974: 6971: 6969: 6966: 6964: 6961: 6960: 6958: 6956: 6952: 6944: 6941: 6940: 6939: 6938:Nanoparticles 6936: 6932: 6929: 6927: 6924: 6923: 6921: 6919: 6916: 6915: 6913: 6911: 6910:Nanomaterials 6907: 6901: 6898: 6896: 6893: 6891: 6888: 6886: 6883: 6882: 6880: 6878: 6874: 6870: 6864: 6861: 6859: 6856: 6854: 6853:Organizations 6851: 6849: 6846: 6845: 6843: 6841: 6837: 6833: 6826: 6821: 6819: 6814: 6812: 6807: 6806: 6803: 6796: 6793: 6792: 6780: 6776: 6772: 6768: 6764: 6760: 6756: 6752: 6747: 6742: 6738: 6734: 6730: 6726: 6722: 6717: 6712: 6708: 6704: 6700: 6696: 6692: 6687: 6682: 6678: 6674: 6670: 6666: 6662: 6658: 6654: 6649: 6648: 6646: 6637: 6633: 6628: 6623: 6618: 6613: 6609: 6605: 6601: 6596: 6591: 6587: 6583: 6579: 6575: 6571: 6563: 6559: 6555: 6551: 6547: 6543: 6539: 6535: 6530: 6525: 6521: 6516: 6511: 6507: 6503: 6499: 6495: 6491: 6486: 6481: 6477: 6472: 6467: 6463: 6459: 6455: 6451: 6447: 6443: 6439: 6434: 6429: 6425: 6421: 6417: 6413: 6409: 6405: 6401: 6396: 6395: 6393: 6379: 6373: 6369: 6361: 6353: 6349: 6345: 6339: 6335: 6331: 6327: 6319: 6311: 6307: 6303: 6299: 6295: 6289: 6285: 6281: 6277: 6273: 6265: 6257: 6253: 6249: 6245: 6241: 6235: 6231: 6227: 6223: 6219: 6211: 6203: 6199: 6195: 6189: 6185: 6181: 6177: 6169: 6161: 6157: 6153: 6149: 6145: 6139: 6135: 6131: 6127: 6123: 6115: 6107: 6103: 6099: 6095: 6091: 6085: 6081: 6077: 6073: 6069: 6061: 6053: 6049: 6044: 6039: 6035: 6031: 6027: 6023: 6019: 6011: 6009: 6007: 5998: 5994: 5990: 5986: 5982: 5978: 5970: 5961: 5956: 5952: 5948: 5944: 5936: 5934: 5932: 5923: 5919: 5914: 5909: 5905: 5901: 5897: 5893: 5889: 5885: 5881: 5873: 5865: 5861: 5856: 5851: 5847: 5843: 5839: 5835: 5831: 5823: 5815: 5811: 5807: 5803: 5799: 5795: 5791: 5787: 5783: 5775: 5767: 5763: 5759: 5755: 5751: 5747: 5743: 5739: 5735: 5727: 5719: 5715: 5710: 5705: 5701: 5697: 5693: 5689: 5685: 5677: 5669: 5665: 5660: 5655: 5651: 5647: 5643: 5639: 5635: 5627: 5619: 5615: 5611: 5607: 5602: 5597: 5593: 5589: 5585: 5581: 5573: 5565: 5561: 5556: 5551: 5547: 5543: 5539: 5535: 5531: 5527: 5523: 5515: 5513: 5504: 5500: 5495: 5490: 5486: 5482: 5478: 5474: 5470: 5466: 5462: 5454: 5446: 5442: 5438: 5434: 5430: 5426: 5422: 5418: 5411: 5403: 5399: 5395: 5391: 5387: 5383: 5376: 5368: 5364: 5359: 5354: 5350: 5346: 5342: 5338: 5334: 5330: 5326: 5319: 5303: 5296: 5288: 5284: 5280: 5276: 5272: 5268: 5261: 5245: 5238: 5230: 5226: 5221: 5216: 5212: 5208: 5205:(2): 99–109. 5204: 5200: 5196: 5188: 5180: 5176: 5172: 5168: 5164: 5160: 5153: 5138: 5132: 5128: 5127: 5118: 5110: 5106: 5102: 5098: 5094: 5090: 5086: 5082: 5078: 5074: 5066: 5058: 5054: 5050: 5046: 5042: 5038: 5034: 5030: 5026: 5022: 5018: 5010: 5002: 4998: 4994: 4990: 4986: 4982: 4974: 4966: 4962: 4958: 4954: 4950: 4946: 4942: 4938: 4934: 4930: 4926: 4918: 4916: 4914: 4905: 4901: 4897: 4893: 4889: 4885: 4878: 4870: 4866: 4861: 4856: 4852: 4848: 4844: 4840: 4836: 4832: 4828: 4820: 4812: 4808: 4803: 4798: 4794: 4790: 4786: 4782: 4778: 4774: 4770: 4762: 4754: 4750: 4745: 4740: 4736: 4732: 4728: 4724: 4720: 4716: 4712: 4704: 4696: 4692: 4688: 4684: 4680: 4676: 4671:DNA walkers: 4668: 4660: 4656: 4652: 4648: 4644: 4640: 4636: 4632: 4627:DNA walkers: 4624: 4616: 4612: 4608: 4604: 4600: 4596: 4592: 4588: 4583:DNA walkers: 4580: 4572: 4568: 4564: 4560: 4556: 4552: 4547:DNA walkers: 4544: 4536: 4532: 4528: 4524: 4520: 4516: 4512: 4507:DNA walkers: 4504: 4496: 4492: 4487: 4482: 4478: 4474: 4469: 4464: 4460: 4456: 4449: 4441: 4437: 4433: 4429: 4425: 4421: 4417: 4413: 4409: 4405: 4397: 4389: 4385: 4381: 4377: 4373: 4369: 4365: 4361: 4353: 4345: 4341: 4337: 4333: 4329: 4325: 4321: 4317: 4309: 4301: 4297: 4293: 4289: 4285: 4281: 4277: 4273: 4269: 4265: 4257: 4249: 4245: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4205: 4197: 4193: 4189: 4185: 4181: 4180:10.1038/16437 4177: 4173: 4169: 4165: 4161: 4153: 4145: 4141: 4137: 4133: 4129: 4125: 4117: 4109: 4105: 4101: 4097: 4093: 4089: 4081: 4073: 4069: 4065: 4061: 4057: 4053: 4049: 4045: 4041: 4033: 4025: 4021: 4017: 4013: 4009: 4005: 4001: 3993: 3985: 3981: 3976: 3971: 3967: 3963: 3959: 3955: 3951: 3943: 3935: 3931: 3926: 3921: 3917: 3913: 3909: 3905: 3901: 3897: 3893: 3885: 3877: 3873: 3869: 3865: 3861: 3857: 3853: 3849: 3841: 3833: 3829: 3825: 3821: 3817: 3813: 3809: 3805: 3801: 3794: 3786: 3782: 3778: 3774: 3770: 3766: 3762: 3758: 3750: 3742: 3738: 3734: 3730: 3725: 3720: 3716: 3712: 3708: 3704: 3700: 3696: 3688: 3686: 3677: 3673: 3669: 3665: 3661: 3657: 3653: 3649: 3645: 3641: 3637: 3630: 3622: 3618: 3614: 3610: 3606: 3602: 3598: 3594: 3590: 3586: 3578: 3570: 3566: 3562: 3558: 3550: 3542: 3538: 3533: 3528: 3524: 3520: 3516: 3512: 3508: 3504: 3500: 3492: 3484: 3480: 3476: 3472: 3468: 3464: 3460: 3456: 3452: 3448: 3444: 3436: 3428: 3424: 3420: 3416: 3412: 3408: 3404: 3396: 3388: 3384: 3380: 3376: 3372: 3368: 3360: 3358: 3356: 3354: 3345: 3341: 3337: 3333: 3328: 3323: 3319: 3315: 3311: 3307: 3299: 3291: 3287: 3282: 3277: 3273: 3269: 3265: 3261: 3257: 3253: 3249: 3241: 3233: 3229: 3224: 3219: 3215: 3211: 3207: 3203: 3199: 3191: 3183: 3179: 3175: 3171: 3163: 3155: 3151: 3147: 3143: 3135: 3127: 3123: 3119: 3115: 3111: 3110:10.1038/28998 3107: 3103: 3099: 3095: 3091: 3083: 3075: 3071: 3066: 3061: 3056: 3051: 3047: 3043: 3039: 3031: 3029: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2992: 2988: 2984: 2977: 2969: 2965: 2960: 2955: 2950: 2945: 2941: 2937: 2933: 2925: 2917: 2913: 2909: 2905: 2901: 2897: 2893: 2889: 2884: 2879: 2875: 2871: 2863: 2855: 2851: 2847: 2843: 2839: 2835: 2827: 2819: 2815: 2810: 2805: 2801: 2797: 2793: 2789: 2785: 2777: 2775: 2773: 2771: 2769: 2760: 2756: 2752: 2748: 2744: 2740: 2736: 2732: 2724: 2722: 2720: 2718: 2709: 2705: 2700: 2695: 2691: 2687: 2683: 2679: 2675: 2671: 2667: 2659: 2651: 2647: 2643: 2639: 2635: 2631: 2627: 2623: 2619: 2615: 2607: 2599: 2593: 2589: 2581: 2573: 2567: 2563: 2555: 2547: 2543: 2538: 2533: 2528: 2523: 2519: 2515: 2511: 2503: 2501: 2499: 2490: 2486: 2481: 2476: 2472: 2468: 2464: 2460: 2456: 2452: 2448: 2440: 2438: 2436: 2419: 2415: 2414:The Scientist 2411: 2403: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2367: 2360: 2352: 2348: 2343: 2338: 2334: 2330: 2326: 2322: 2318: 2314: 2310: 2305:DNA origami: 2302: 2300: 2291: 2287: 2283: 2279: 2275: 2271: 2267: 2263: 2259: 2255: 2248: 2243:DNA origami: 2240: 2238: 2236: 2227: 2223: 2219: 2215: 2211: 2207: 2203: 2199: 2191: 2183: 2179: 2175: 2171: 2167: 2163: 2155: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2119: 2111: 2109: 2107: 2105: 2096: 2092: 2088: 2084: 2080: 2076: 2072: 2068: 2064: 2060: 2056: 2049: 2041: 2037: 2033: 2029: 2025: 2021: 2017: 2013: 2005: 2003: 2001: 1999: 1997: 1988: 1982: 1978: 1974: 1969: 1964: 1960: 1955:DNA origami: 1952: 1950: 1941: 1937: 1932: 1927: 1923: 1919: 1915: 1911: 1907: 1903: 1899: 1891: 1889: 1887: 1885: 1883: 1881: 1879: 1877: 1875: 1866: 1862: 1857: 1852: 1848: 1844: 1840: 1836: 1832: 1824: 1822: 1820: 1818: 1816: 1806: 1799: 1795:History: See 1792: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1748: 1746: 1744: 1742: 1740: 1731: 1725: 1721: 1713: 1711: 1709: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1656: 1654: 1649: 1640: 1637: 1635: 1632: 1630: 1627: 1625: 1622: 1621: 1617: 1611: 1606: 1603: 1597: 1592: 1585: 1583: 1579: 1575: 1571: 1566: 1564: 1560: 1556: 1552: 1547: 1545: 1541: 1537: 1534: 1530: 1526: 1522: 1518: 1510: 1506: 1502: 1498: 1489: 1487: 1483: 1479: 1474: 1472: 1468: 1464: 1460: 1456: 1452: 1445: 1432: 1428: 1424: 1420: 1416: 1412: 1409:steps in the 1408: 1404: 1400: 1397: 1393: 1388: 1385: 1384:DNA computing 1380: 1379: 1378: 1369: 1367: 1363: 1359: 1355: 1345: 1343: 1339: 1335: 1331: 1327: 1323: 1319: 1315: 1314:lipid bilayer 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1278: 1275: 1271: 1267: 1263: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1187: 1186:biocompatible 1182: 1180: 1176: 1172: 1168: 1164: 1159: 1157: 1153: 1149: 1143: 1141: 1138:function and 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1092:basic science 1083: 1081: 1076: 1071: 1069: 1065: 1060: 1056: 1051: 1049: 1044: 1039: 1028: 1025: 1021: 1017: 1012: 1008: 1003: 999: 996: 992: 988: 984: 978: 968: 961: 956: 950: 941: 939: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 889: 887: 885: 881: 877: 876:stoichiometry 873: 872:base sequence 868: 863: 860: 856: 852: 848: 844: 840: 836: 826: 824: 819: 817: 813: 809: 804: 802: 798: 795:known as the 794: 790: 786: 782: 776: 774: 771: 766: 762: 752: 748: 744: 734: 725: 713: 709: 705: 696: 692: 688: 684: 681: 680:complementary 677: 673: 663: 654: 640: 638: 635: 625: 623: 619: 615: 610: 606: 602: 597: 595: 591: 590:base sequence 587: 583: 578: 575: 564: 562: 558: 554: 550: 546: 545:complementary 542: 538: 534: 530: 526: 522: 518: 513: 511: 510:nanoparticles 507: 503: 499: 495: 491: 487: 484: 480: 476: 464: 460: 456: 451: 444: 440: 436: 432: 428: 424: 420: 415: 406: 403: 400: 399: 394: 389: 387: 383: 379: 378: 373: 368: 363: 361: 357: 353: 349: 348:Bernard Yurke 345: 340: 338: 333: 329: 325: 321: 317: 313: 305: 301: 296: 292: 290: 286: 282: 278: 274: 270: 260: 258: 254: 250: 246: 242: 238: 234: 231: 230:complementary 227: 223: 218: 216: 212: 208: 204: 200: 196: 192: 191:basic science 188: 187:DNA computers 184: 180: 176: 172: 168: 164: 160: 156: 149: 145: 141: 137: 136:nucleic acids 133: 128: 117: 112: 110: 105: 103: 98: 97: 95: 94: 89: 84: 79: 77: 72: 67: 66: 65: 64: 59: 56: 54: 51: 49: 46: 45: 44: 43: 39: 35: 34: 31: 28: 27: 23: 22: 19: 7081: 7069: 7047:Nanorobotics 6972: 6885:Nanomedicine 6877:applications 6754: 6750: 6724: 6721:ChemPhysChem 6720: 6694: 6690: 6656: 6652: 6644: 6607: 6603: 6573: 6569: 6537: 6533: 6497: 6493: 6445: 6442:Nano Letters 6441: 6406:(6): 64–75. 6403: 6399: 6391: 6367: 6360: 6325: 6318: 6275: 6271: 6264: 6221: 6217: 6210: 6175: 6168: 6128:: Unit2.12. 6125: 6121: 6114: 6071: 6067: 6060: 6025: 6021: 5980: 5977:ChemPhysChem 5976: 5969: 5950: 5946: 5887: 5883: 5872: 5837: 5833: 5822: 5789: 5785: 5774: 5741: 5738:Nano Letters 5737: 5726: 5691: 5687: 5676: 5641: 5637: 5626: 5583: 5580:Nano Letters 5579: 5572: 5529: 5526:Nano Letters 5525: 5468: 5464: 5453: 5420: 5416: 5410: 5385: 5381: 5375: 5332: 5328: 5318: 5308:22 September 5306:. Retrieved 5295: 5270: 5266: 5260: 5250:22 September 5248:. Retrieved 5237: 5202: 5199:HFSP Journal 5198: 5187: 5162: 5158: 5152: 5140:. Retrieved 5125: 5117: 5076: 5072: 5065: 5024: 5020: 5009: 4984: 4980: 4973: 4932: 4928: 4887: 4883: 4877: 4834: 4830: 4819: 4776: 4772: 4761: 4718: 4714: 4703: 4678: 4674: 4667: 4634: 4630: 4623: 4590: 4586: 4579: 4554: 4551:Nano Letters 4550: 4543: 4518: 4514: 4503: 4458: 4448: 4407: 4403: 4396: 4366:(2): 93–96. 4363: 4359: 4352: 4319: 4315: 4308: 4267: 4263: 4256: 4215: 4211: 4204: 4163: 4159: 4152: 4127: 4123: 4116: 4091: 4087: 4080: 4050:(1): 61–66. 4047: 4043: 4032: 4007: 4003: 3992: 3957: 3953: 3942: 3899: 3896:Nano Letters 3895: 3884: 3851: 3847: 3840: 3807: 3803: 3793: 3760: 3757:Nano Letters 3756: 3749: 3698: 3694: 3643: 3639: 3629: 3588: 3584: 3577: 3560: 3556: 3549: 3506: 3502: 3491: 3450: 3446: 3435: 3410: 3406: 3395: 3370: 3366: 3309: 3306:Nano Letters 3305: 3298: 3255: 3252:Nano Letters 3251: 3240: 3205: 3201: 3190: 3173: 3169: 3162: 3145: 3141: 3134: 3093: 3089: 3082: 3048:(12): e424. 3045: 3042:PLOS Biology 3041: 2986: 2982: 2976: 2939: 2936:PLOS Biology 2935: 2924: 2873: 2869: 2862: 2837: 2833: 2826: 2791: 2787: 2734: 2730: 2673: 2669: 2658: 2617: 2613: 2606: 2587: 2584:Background: 2580: 2561: 2558:Background: 2554: 2520:(12): e431. 2517: 2514:PLOS Biology 2513: 2454: 2451:Nano Letters 2450: 2422:. Retrieved 2418:the original 2413: 2402: 2369: 2365: 2359: 2316: 2312: 2257: 2253: 2201: 2197: 2190: 2165: 2161: 2154: 2121: 2117: 2062: 2058: 2048: 2015: 2011: 1958: 1905: 1901: 1838: 1834: 1791: 1761:(6): 64–75. 1758: 1754: 1719: 1666: 1662: 1567: 1548: 1514: 1475: 1447: 1427:isothermally 1407:intermediate 1375: 1351: 1306:ion channels 1285: 1279: 1183: 1160: 1144: 1094:problems in 1089: 1086:Applications 1072: 1052: 1034: 1000: 983:nanorobotics 980: 965: 922:streptavidin 898:quantum dots 895: 888: 864: 837:, such as a 832: 820: 805: 777: 758: 750: 742: 711: 707: 686: 671: 639: 631: 598: 582:double helix 579: 570: 514: 504:, for which 490:base pairing 473: 404: 396: 390: 386:Jørgen Kjems 381: 375: 372:William Shih 364: 352:Niles Pierce 341: 328:Erik Winfree 309: 304:M. C. Escher 299: 298:The woodcut 281:M. C. Escher 276: 266: 256: 237:double helix 226:base pairing 219: 215:nanomedicine 193:problems in 159:nucleic acid 154: 153: 148:double helix 57: 18: 6224:: Unit2.7. 5890:(1): 2426. 3848:ChemBioChem 3753:DNA boxes: 3691:DNA boxes: 3138:DX arrays: 3086:DX arrays: 1482:nucleotides 1392:DNA origami 1342:scramblases 1294:cholesterol 1270:Doxorubicin 1234:tetrahedron 1206:transcribed 1202:cancer cell 1128:DNA walkers 1108:DNA origami 1068:square root 1064:logic gates 1002:DNA walkers 977:DNA machine 938:lithography 880:smiley face 867:DNA origami 765:tessellated 761:sticky ends 683:sticky ends 574:equilibrium 521:nucleotides 433:matched to 425:matched to 367:DNA origami 360:Chengde Mao 249:DNA origami 6931:Non-carbon 6922:Nanotubes 6918:Fullerenes 6900:Regulation 5973:Overview: 5304:. MIT News 3844:Overview: 2942:(3): E73. 2506:Overview: 1894:Overview: 1827:Overview: 1751:Overview: 1645:References 1533:denaturing 1310:DNA duplex 1298:DNA duplex 1262:luciferase 1222:tetrahedra 1194:diagnostic 1177:(TEM) and 1152:breadboard 1100:biophysics 1080:dendrimers 932:device, a 906:fullerenes 843:octahedron 835:polyhedron 823:tensegrity 781:Wang tiles 525:nucleobase 479:nanometers 439:this image 419:base pairs 337:Wang tiles 199:biophysics 6500:: 65–87. 6392:General: 6364:Methods: 6322:Methods: 6268:Methods: 6214:Methods: 6172:Methods: 6118:Methods: 6106:205152989 6064:Methods: 5953:: 39–58. 5596:CiteSeerX 5445:195825879 4890:: 56–64. 4477:1748-3395 3876:205554125 3832:246946068 3824:2634-8276 3322:CiteSeerX 3019:137635908 2883:1308.3843 2443:History: 2406:History: 2087:1476-4687 1963:CiteSeerX 1841:: 65–87. 1716:History: 1455:heuristic 1431:annealing 1210:cytoplasm 1198:apoptosis 1048:catalytic 1016:catenated 859:catenated 851:ligations 749:fractal. 618:ribozymes 567:Subfields 539:(G), and 517:structure 483:bottom-up 245:nanoscale 179:polyhedra 175:nanotubes 144:base pair 7123:Category 7071:Category 6840:Overview 6779:21258382 6741:16832805 6711:16470892 6681:18654284 6636:22837684 6590:21636755 6562:21636754 6524:20222824 6480:20486672 6428:15195395 6352:21674361 6302:18428904 6256:43406338 6248:18265187 6202:94329398 6160:27187583 6152:18265180 6098:18265179 6052:14990744 6014:Design: 5997:16832805 5939:Design: 5922:29930243 5864:27504755 5834:ACS Nano 5814:26751170 5766:25816075 5718:25338165 5688:ACS Nano 5668:24014236 5618:23611515 5564:27324157 5503:23161995 5437:31285580 5402:23380739 5367:22659608 5287:21696187 5267:ACS Nano 5229:19404476 5179:23030709 5159:ACS Nano 5142:17 April 5109:10053541 5101:21636773 5057:10966324 5049:17158324 5001:25565140 4957:18202654 4904:25498478 4869:20935654 4811:29632399 4753:20463735 4695:15959864 4659:15945114 4615:85446523 4607:30897257 4535:15339155 4495:37857824 4486:10873200 4461:: 1–11. 4432:22344439 4388:18654468 4344:14502706 4300:52801697 4292:11780115 4240:10949296 4144:15300697 4108:21323323 4088:ACS Nano 4072:19898497 4024:17763481 3984:16374784 3934:16834438 3868:19714700 3785:19419184 3733:19424153 3668:29219965 3613:14961116 3541:19727196 3483:12100380 3475:18687961 3427:15600335 3387:16470892 3363:Design: 3344:16351220 3290:15826105 3232:17036134 3074:15583715 3011:14512621 2968:15024422 2916:15324396 2908:24121860 2854:17056247 2818:17952671 2759:21258382 2708:21102465 2642:15604402 2546:15597116 2489:20486672 2424:8 August 2394:21636754 2351:19458720 2282:16541064 2146:18654284 2040:21636754 1940:22056726 1865:20222824 1783:15195395 1699:13678773 1691:16339440 1588:See also 1471:strained 1403:kinetics 1328:and the 1318:toroidal 622:aptamers 572:static, 533:cytosine 502:proteins 320:vertices 132:designed 7083:Commons 6863:Outline 6848:History 6759:Bibcode 6661:Bibcode 6627:3397516 6570:Science 6542:Bibcode 6534:Science 6515:3454582 6471:2901229 6450:Bibcode 6408:Bibcode 6310:9978415 5913:6013447 5892:Bibcode 5855:5043419 5794:Bibcode 5746:Bibcode 5709:4508203 5659:4016739 5588:Bibcode 5555:4948918 5534:Bibcode 5494:3716461 5473:Bibcode 5465:Science 5358:3898745 5337:Bibcode 5220:2645571 5081:Bibcode 5073:Science 5029:Bibcode 5021:Science 4965:4354536 4937:Bibcode 4860:2974042 4839:Bibcode 4802:5994166 4781:Bibcode 4744:2907518 4723:Bibcode 4639:Bibcode 4559:Bibcode 4440:9866509 4412:Bibcode 4404:Science 4368:Bibcode 4324:Bibcode 4272:Bibcode 4248:2064216 4220:Bibcode 4196:4406177 4188:9923675 4168:Bibcode 4052:Bibcode 3962:Bibcode 3925:3465979 3904:Bibcode 3765:Bibcode 3741:4430815 3703:Bibcode 3676:4455780 3648:Bibcode 3621:4419579 3593:Bibcode 3532:2764300 3511:Bibcode 3455:Bibcode 3447:Science 3314:Bibcode 3281:3464188 3260:Bibcode 3223:3491902 3126:4385579 3118:9707114 3098:Bibcode 2991:Bibcode 2983:Science 2888:Bibcode 2809:3479651 2739:Bibcode 2699:3149862 2678:Bibcode 2650:9296608 2622:Bibcode 2614:Science 2480:2901229 2459:Bibcode 2374:Bibcode 2366:Science 2342:2688462 2321:Bibcode 2290:4316391 2262:Bibcode 2226:2257083 2206:Bibcode 2182:3508280 2126:Bibcode 2095:2064216 2067:Bibcode 2020:Bibcode 2012:Science 1931:3334823 1910:Bibcode 1856:3454582 1763:Bibcode 1671:Bibcode 1663:Science 1419:cascade 1415:hairpin 1398:above). 1246:polymer 1230:enzymes 1173:(AFM), 1075:hairpin 1043:entropy 1038:cascade 801:counter 793:fractal 773:rhombus 697:across. 541:thymine 537:guanine 529:adenine 421:, with 398:Science 263:History 6926:Carbon 6873:Impact 6777:  6739:  6709:  6679:  6634:  6624:  6588:  6560:  6522:  6512:  6478:  6468:  6426:  6374:  6350:  6340:  6308:  6300:  6290:  6254:  6246:  6236:  6200:  6190:  6158:  6150:  6140:  6104:  6096:  6086:  6050:  6043:390280 6040:  5995:  5920:  5910:  5862:  5852:  5812:  5764:  5716:  5706:  5666:  5656:  5616:  5598:  5562:  5552:  5501:  5491:  5443:  5435:  5400:  5365:  5355:  5285:  5227:  5217:  5177:  5133:  5107:  5099:  5055:  5047:  4999:  4963:  4955:  4929:Nature 4902:  4867:  4857:  4809:  4799:  4751:  4741:  4715:Nature 4693:  4657:  4613:  4605:  4533:  4493:  4483:  4475:  4438:  4430:  4386:  4342:  4298:  4290:  4264:Nature 4246:  4238:  4212:Nature 4194:  4186:  4160:Nature 4142:  4106:  4070:  4022:  3982:  3932:  3922:  3874:  3866:  3830:  3822:  3783:  3739:  3731:  3695:Nature 3674:  3666:  3640:Nature 3619:  3611:  3585:Nature 3539:  3529:  3503:Nature 3481:  3473:  3425:  3385:  3342:  3324:  3288:  3278:  3230:  3220:  3124:  3116:  3090:Nature 3072:  3065:534809 3062:  3017:  3009:  2966:  2959:368168 2956:  2914:  2906:  2852:  2816:  2806:  2757:  2706:  2696:  2648:  2640:  2594:  2568:  2544:  2537:535573 2534:  2487:  2477:  2392:  2349:  2339:  2313:Nature 2288:  2280:  2254:Nature 2224:  2180:  2144:  2093:  2085:  2059:Nature 2038:  1983:  1965:  1938:  1928:  1863:  1853:  1781:  1726:  1697:  1689:  1551:native 1451:energy 1348:Design 1338:enzyme 1302:porins 1286:et al. 1254:folate 1226:kidney 1136:enzyme 995:buffer 926:Dervan 904:, and 902:amines 745:, the 437:. See 382:et al. 377:Nature 358:, and 6306:S2CID 6252:S2CID 6198:S2CID 6156:S2CID 6102:S2CID 5441:S2CID 5105:S2CID 5053:S2CID 4981:Small 4961:S2CID 4611:S2CID 4436:S2CID 4296:S2CID 4244:S2CID 4192:S2CID 3872:S2CID 3828:S2CID 3737:S2CID 3672:S2CID 3617:S2CID 3479:S2CID 3122:S2CID 3015:S2CID 2912:S2CID 2878:arXiv 2646:S2CID 2286:S2CID 2250:(PDF) 2222:S2CID 2091:S2CID 1695:S2CID 1250:lipid 1163:iNANO 991:Z-DNA 987:B-DNA 914:thiol 910:amide 847:edges 751:Right 712:Right 689:, an 687:Right 535:(C), 531:(A), 300:Depth 277:Depth 167:cells 6875:and 6775:PMID 6737:PMID 6707:PMID 6677:PMID 6632:PMID 6586:PMID 6566:and 6558:PMID 6520:PMID 6476:PMID 6424:PMID 6372:ISBN 6348:PMID 6338:ISBN 6298:PMID 6288:ISBN 6244:PMID 6234:ISBN 6188:ISBN 6148:PMID 6138:ISBN 6094:PMID 6084:ISBN 6048:PMID 5993:PMID 5918:PMID 5860:PMID 5810:PMID 5762:PMID 5714:PMID 5664:PMID 5614:PMID 5560:PMID 5499:PMID 5433:PMID 5398:PMID 5363:PMID 5310:2013 5283:PMID 5252:2013 5225:PMID 5175:PMID 5144:2011 5131:ISBN 5097:PMID 5045:PMID 4997:PMID 4953:PMID 4900:PMID 4865:PMID 4807:PMID 4749:PMID 4691:PMID 4655:PMID 4603:PMID 4531:PMID 4491:PMID 4473:ISSN 4428:PMID 4384:PMID 4340:PMID 4288:PMID 4236:PMID 4184:PMID 4140:PMID 4104:PMID 4068:PMID 4020:PMID 3980:PMID 3930:PMID 3864:PMID 3820:ISSN 3781:PMID 3729:PMID 3664:PMID 3609:PMID 3537:PMID 3471:PMID 3423:PMID 3383:PMID 3340:PMID 3286:PMID 3228:PMID 3114:PMID 3070:PMID 3007:PMID 2964:PMID 2904:PMID 2850:PMID 2814:PMID 2755:PMID 2704:PMID 2638:PMID 2592:ISBN 2566:ISBN 2542:PMID 2485:PMID 2426:2011 2390:PMID 2347:PMID 2278:PMID 2178:PMID 2142:PMID 2083:ISSN 2036:PMID 1981:ISBN 1936:PMID 1861:PMID 1779:PMID 1724:ISBN 1687:PMID 1576:and 1561:and 1519:and 1098:and 989:and 853:and 839:cube 743:Left 708:Left 672:Left 616:and 559:and 515:The 429:and 213:and 205:and 197:and 185:and 146:DNA 6767:doi 6729:doi 6699:doi 6669:doi 6622:PMC 6612:doi 6578:doi 6574:332 6550:doi 6538:332 6510:PMC 6502:doi 6466:PMC 6458:doi 6416:doi 6404:290 6330:doi 6280:doi 6226:doi 6180:doi 6130:doi 6076:doi 6038:PMC 6030:doi 5985:doi 5955:doi 5951:287 5908:PMC 5900:doi 5850:PMC 5842:doi 5802:doi 5754:doi 5704:PMC 5696:doi 5654:PMC 5646:doi 5606:doi 5550:PMC 5542:doi 5489:PMC 5481:doi 5469:338 5425:doi 5390:doi 5353:PMC 5345:doi 5275:doi 5215:PMC 5207:doi 5167:doi 5089:doi 5077:332 5037:doi 5025:314 4989:doi 4945:doi 4933:451 4892:doi 4855:PMC 4847:doi 4797:PMC 4789:doi 4739:PMC 4731:doi 4719:465 4683:doi 4647:doi 4595:doi 4567:doi 4523:doi 4519:126 4481:PMC 4463:doi 4420:doi 4408:335 4376:doi 4332:doi 4280:doi 4268:415 4228:doi 4216:406 4176:doi 4164:397 4132:doi 4096:doi 4060:doi 4012:doi 3970:doi 3920:PMC 3912:doi 3856:doi 3812:doi 3773:doi 3719:hdl 3711:doi 3699:459 3656:doi 3644:552 3601:doi 3589:427 3565:doi 3561:116 3527:PMC 3519:doi 3507:461 3463:doi 3451:321 3415:doi 3411:126 3375:doi 3332:doi 3276:PMC 3268:doi 3218:PMC 3210:doi 3178:doi 3174:121 3150:doi 3146:121 3106:doi 3094:394 3060:PMC 3050:doi 2999:doi 2987:301 2954:PMC 2944:doi 2896:doi 2842:doi 2804:PMC 2796:doi 2747:doi 2694:PMC 2686:doi 2630:doi 2618:306 2532:PMC 2522:doi 2475:PMC 2467:doi 2382:doi 2370:332 2337:PMC 2329:doi 2317:459 2270:doi 2258:440 2214:doi 2170:doi 2134:doi 2075:doi 2063:406 2028:doi 2016:332 1973:doi 1926:PMC 1918:doi 1851:PMC 1843:doi 1771:doi 1759:290 1679:doi 1667:310 1248:or 1242:MIT 1114:in 1009:or 912:or 841:or 785:XOR 676:DNA 557:RNA 553:DNA 459:DNA 279:by 253:DNA 140:DNA 7125:: 6773:. 6765:. 6753:. 6735:. 6723:. 6705:. 6695:45 6693:. 6675:. 6667:. 6655:. 6630:. 6620:. 6608:13 6606:. 6602:. 6584:. 6572:. 6556:. 6548:. 6536:. 6518:. 6508:. 6498:79 6496:. 6492:. 6474:. 6464:. 6456:. 6446:10 6444:. 6440:. 6422:. 6414:. 6402:. 6346:. 6336:. 6304:. 6296:. 6286:. 6276:11 6274:. 6250:. 6242:. 6232:. 6222:47 6220:. 6196:. 6186:. 6154:. 6146:. 6136:. 6126:42 6124:. 6100:. 6092:. 6082:. 6072:42 6070:. 6046:. 6036:. 6026:32 6024:. 6020:. 6005:^ 5991:. 5979:. 5949:. 5945:. 5930:^ 5916:. 5906:. 5898:. 5886:. 5882:. 5858:. 5848:. 5838:10 5836:. 5832:. 5808:. 5800:. 5790:11 5788:. 5784:. 5760:. 5752:. 5742:15 5740:. 5736:. 5712:. 5702:. 5690:. 5686:. 5662:. 5652:. 5642:52 5640:. 5636:. 5612:. 5604:. 5594:. 5584:13 5582:. 5558:. 5548:. 5540:. 5530:16 5528:. 5524:. 5511:^ 5497:. 5487:. 5479:. 5467:. 5463:. 5439:. 5431:. 5419:. 5396:. 5386:49 5384:. 5361:. 5351:. 5343:. 5331:. 5327:. 5281:. 5269:. 5223:. 5213:. 5201:. 5197:. 5173:. 5161:. 5103:. 5095:. 5087:. 5075:. 5051:. 5043:. 5035:. 5023:. 5019:. 4995:. 4985:11 4983:. 4959:. 4951:. 4943:. 4931:. 4927:. 4912:^ 4898:. 4888:34 4886:. 4863:. 4853:. 4845:. 4833:. 4829:. 4805:. 4795:. 4787:. 4777:13 4775:. 4771:. 4747:. 4737:. 4729:. 4717:. 4713:. 4689:. 4679:44 4677:. 4653:. 4645:. 4635:44 4633:. 4609:. 4601:. 4591:58 4589:. 4565:. 4553:. 4529:. 4517:. 4513:. 4489:. 4479:. 4471:. 4457:. 4434:. 4426:. 4418:. 4406:. 4382:. 4374:. 4362:. 4338:. 4330:. 4320:42 4318:. 4294:. 4286:. 4278:. 4266:. 4242:. 4234:. 4226:. 4214:. 4190:. 4182:. 4174:. 4162:. 4138:. 4128:43 4126:. 4102:. 4090:. 4066:. 4058:. 4046:. 4042:. 4018:. 4008:46 4006:. 4002:. 3978:. 3968:. 3958:45 3956:. 3952:. 3928:. 3918:. 3910:. 3898:. 3894:. 3870:. 3862:. 3852:10 3850:. 3826:. 3818:. 3808:11 3806:. 3802:. 3779:. 3771:. 3759:. 3735:. 3727:. 3717:. 3709:. 3697:. 3684:^ 3670:. 3662:. 3654:. 3642:. 3638:. 3615:. 3607:. 3599:. 3587:. 3559:. 3535:. 3525:. 3517:. 3505:. 3501:. 3477:. 3469:. 3461:. 3449:. 3445:. 3421:. 3409:. 3405:. 3381:. 3371:45 3369:. 3352:^ 3338:. 3330:. 3320:. 3308:. 3284:. 3274:. 3266:. 3254:. 3250:. 3226:. 3216:. 3204:. 3200:. 3172:. 3144:. 3120:. 3112:. 3104:. 3092:. 3068:. 3058:. 3044:. 3040:. 3027:^ 3013:. 3005:. 2997:. 2985:. 2962:. 2952:. 2938:. 2934:. 2910:. 2902:. 2894:. 2886:. 2874:15 2872:. 2848:. 2838:17 2836:. 2812:. 2802:. 2792:37 2790:. 2786:. 2767:^ 2753:. 2745:. 2733:. 2716:^ 2702:. 2692:. 2684:. 2672:. 2668:. 2644:. 2636:. 2628:. 2616:. 2540:. 2530:. 2516:. 2512:. 2497:^ 2483:. 2473:. 2465:. 2455:10 2453:. 2449:. 2434:^ 2412:. 2388:. 2380:. 2368:. 2345:. 2335:. 2327:. 2315:. 2311:. 2298:^ 2284:. 2276:. 2268:. 2256:. 2252:. 2234:^ 2220:. 2212:. 2200:. 2176:. 2164:. 2140:. 2132:. 2120:. 2103:^ 2089:. 2081:. 2073:. 2061:. 2057:. 2034:. 2026:. 2014:. 1995:^ 1979:. 1971:. 1948:^ 1934:. 1924:. 1916:. 1904:. 1900:. 1873:^ 1859:. 1849:. 1839:79 1837:. 1833:. 1814:^ 1777:. 1769:. 1757:. 1738:^ 1707:^ 1693:. 1685:. 1677:. 1665:. 1652:^ 1584:. 1546:. 1488:. 1473:. 1268:. 1142:. 1082:. 900:, 886:. 818:. 808:nm 695:nm 354:, 259:. 177:, 173:, 6824:e 6817:t 6810:v 6781:. 6769:: 6761:: 6755:3 6743:. 6731:: 6725:7 6713:. 6701:: 6683:. 6671:: 6663:: 6657:2 6638:. 6614:: 6592:. 6580:: 6564:. 6552:: 6544:: 6526:. 6504:: 6482:. 6460:: 6452:: 6430:. 6418:: 6410:: 6380:. 6354:. 6332:: 6312:. 6282:: 6258:. 6228:: 6204:. 6182:: 6162:. 6132:: 6108:. 6078:: 6054:. 6032:: 5999:. 5987:: 5981:7 5963:. 5957:: 5924:. 5902:: 5894:: 5888:9 5866:. 5844:: 5816:. 5804:: 5796:: 5768:. 5756:: 5748:: 5720:. 5698:: 5692:9 5670:. 5648:: 5620:. 5608:: 5590:: 5566:. 5544:: 5536:: 5505:. 5483:: 5475:: 5447:. 5427:: 5421:3 5404:. 5392:: 5369:. 5347:: 5339:: 5333:7 5312:. 5289:. 5277:: 5271:5 5254:. 5231:. 5209:: 5203:2 5181:. 5169:: 5163:6 5146:. 5111:. 5091:: 5083:: 5059:. 5039:: 5031:: 5003:. 4991:: 4967:. 4947:: 4939:: 4906:. 4894:: 4871:. 4849:: 4841:: 4835:5 4813:. 4791:: 4783:: 4755:. 4733:: 4725:: 4697:. 4685:: 4661:. 4649:: 4641:: 4617:. 4597:: 4573:. 4569:: 4561:: 4555:4 4537:. 4525:: 4497:. 4465:: 4442:. 4422:: 4414:: 4390:. 4378:: 4370:: 4364:3 4346:. 4334:: 4326:: 4302:. 4282:: 4274:: 4250:. 4230:: 4222:: 4198:. 4178:: 4170:: 4146:. 4134:: 4110:. 4098:: 4092:5 4074:. 4062:: 4054:: 4048:5 4026:. 4014:: 3986:. 3972:: 3964:: 3936:. 3914:: 3906:: 3900:6 3878:. 3858:: 3834:. 3814:: 3787:. 3775:: 3767:: 3761:9 3743:. 3721:: 3713:: 3705:: 3678:. 3658:: 3650:: 3623:. 3603:: 3595:: 3571:. 3567:: 3543:. 3521:: 3513:: 3485:. 3465:: 3457:: 3429:. 3417:: 3389:. 3377:: 3346:. 3334:: 3316:: 3310:5 3292:. 3270:: 3262:: 3256:5 3234:. 3212:: 3206:4 3184:. 3180:: 3156:. 3152:: 3128:. 3108:: 3100:: 3076:. 3052:: 3046:2 3021:. 3001:: 2993:: 2970:. 2946:: 2940:2 2918:. 2898:: 2890:: 2880:: 2856:. 2844:: 2820:. 2798:: 2761:. 2749:: 2741:: 2735:3 2710:. 2688:: 2680:: 2674:5 2652:. 2632:: 2624:: 2600:. 2574:. 2548:. 2524:: 2518:2 2491:. 2469:: 2461:: 2428:. 2396:. 2384:: 2376:: 2353:. 2331:: 2323:: 2292:. 2272:: 2264:: 2228:. 2216:: 2208:: 2202:4 2184:. 2172:: 2166:1 2148:. 2136:: 2128:: 2122:2 2097:. 2077:: 2069:: 2042:. 2030:: 2022:: 1989:. 1975:: 1942:. 1920:: 1912:: 1906:6 1867:. 1845:: 1785:. 1773:: 1765:: 1732:. 1701:. 1681:: 1673:: 1511:. 962:. 445:. 435:G 431:C 427:T 423:A 115:e 108:t 101:v

Index

Molecular self-assembly

Self-assembled monolayer
Supramolecular assembly
DNA nanotechnology
icon
Science portal
icon
Technology portal
v
t
e

designed
nucleic acids
DNA
base pair
double helix
nucleic acid
nanotechnology
cells
crystal lattices
nanotubes
polyhedra
molecular machines
DNA computers
basic science
structural biology
biophysics
X-ray crystallography

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.