Knowledge

Topoisomerase

Source 📝

717:, targets human topo I and derivatives such as topotecan and irinotecan are widely used in cancer chemotherapy. Camptothecin and its derivatives act by stabilizing the topo I cleavage complex, preventing religation of the protein-mediated nick in the DNA. These interfacial inhibitors are stabilized by stacking interactions with the nicked DNA and hydrogen bonding to the enzyme. Although CPT derivatives stabilize a single-strand cleavage complex, subsequent collisions with replication or transcription machinery are thought to generate toxic double-stranded DNA breaks. These compounds are used as first or second line therapies to treat cancers including colorectal, ovarian, lung, breast, and cervical. However, CPT derivatives suffer from limitations associated with toxicity and limited therapeutic half-lives due to chemical instability. New topo I inhibitors, the indenoisoquinolines and fluoroindenoisoquinolines, overcome the limitations of CPT derivatives and are currently in clinical trials. 586:
Whereas all type II topoisomerases can catalyze DNA relaxation, gyrase, an archetypal bacterial topoisomerase, can also introduce negative supercoils. In contrast to type I topoisomerases that are generally monomeric, type II topoisomerases are homodimers or heterotetramers. They are classified into two subtypes based on evolutionary, structural, and mechanistic considerations. The general strand-passage mechanism for the type II topos begins with the binding of one DNA duplex, termed the gate segment (G-segment), at the DNA gate. Another duplex, termed the transport segment (T-segment), is captured by an ATP-operated clamp and passed through a transient break in the G-segment, involving 5ʹ phosphotyrosine linkages in both strands, before it is released through the C-gate and the G-segment is re-ligated (Fig. 5). Enzyme turnover requires the binding and hydrolysis of ATP.
398:. If left unchanged, this torsion would eventually stop the DNA or RNA polymerases involved in these processes from continuing along the DNA helix. A second topological challenge results from the linking or tangling of DNA during replication. Left unresolved, links between replicated DNA will impede cell division. The DNA topoisomerases prevent and correct these types of topological problems. They do this by binding to DNA and cutting the sugar-phosphate backbone of either one (type I topoisomerases) or both (type II topoisomerases) of the DNA strands. This transient break allows the DNA to be untangled or unwound, and, at the end of these processes, the DNA backbone is resealed. Since the overall chemical composition and connectivity of the DNA do not change, the DNA substrate and product are chemical isomers, differing only in their topology. 453: 1155: 449:
conformations of DNA, such as supercoils, knots and catenanes. Potential topological issues associated with the double-helical structure of DNA were recognized soon after its structure was first elucidated in 1953 by James Watson, Francis Crick and Rosalind Franklin and developed further by the work of Max Delbruck and John Cairns. Closed-circular double-stranded DNA can be described by 3 parameters: Linking number (Lk), Twist (Tw) and Writhe (Wr) (Fig. 1). Where Lk refers to the number of times the two strands are linked, Tw refers to the number of helical turns in the DNA, measured relative to the helical axis, and Wr quantifies the coiling of the path of the DNA helix in space and is often equated with 'supercoiling'.
618:, in addition to bacterial gyrase and topo IV. DNA gyrase conforms to the same double-strand passage mechanism as other type II enzymes but has unique features connected with its ability to introduce negative supercoils into DNA. The G segment is part of a much longer piece of DNA (>100 bp) that is wrapped around the enzyme, one arm of which forms the T-segment that is passed through the double-stranded break (Fig. 5). In the case of gyrase, a substantial amount of the free energy from ATP hydrolysis is transduced into torsional stress in DNA, i.e. supercoiling is an energy-requiring process. Further, in the absence of ATP, gyrase is able to remove negative supercoils in a slower DNA relaxation reaction. 486: 474:
recombination reactions. In general, knots in DNA are detrimental and need to be removed (by topoisomerases). DNA catenanes are formed upon the replication of circular molecules and need to be resolved by topoisomerases or recombinases to allow proper separation of daughter molecules during cell division. In addition to the detrimental aspects of DNA topology that require resolution, there are also beneficial aspects. For example, plasmid replication requires negative supercoiling of the origin, which facilitates local melting and exposes single-stranded DNA required to initiate replication. Similarly, initiation of replication from the main bacterial origin
561:'controlled rotation' of the cleaved strand around the intact strand. This controlled-rotation mechanism was first described for Vaccinia topo I and permits DNA rotation of the free end around the intact strand, the speed being controlled by 'friction' within the enzyme cavity, before the nick is re-ligated (Fig. 3). This results in a variable change of linking number per cleavage and religation event. This mechanism is distinct from that of the type IA enzymes, and the two groups of enzymes are structurally and evolutionarily unrelated. Examples of type IB topoisomerases include eukaryotic nuclear and mitochondrial topo I in addition to viral 735: 750:
and remain among the most widely employed and effective treatments for a broad range of cancers including breast cancer, lymphoma, leukemias, carcinomas, sarcomas, and other tumors. These compounds are DNA intercalating agents and as such can impact a wide range of cellular DNA processes in addition to specifically poisoning topo II. Additional cytotoxicity stems from redox reactions involving anthracyclines that generate reactive oxygen species. Generation of reactive oxygen, along with poisoning of topo IIβ, result in the dose-limiting cardiotoxicity of the anthracyclines.
658:
DNA at the cleavage site to stabilize the DNA-protein covalent cleavage intermediate. Specifically, they intercalate into the DNA and prevent the DNA religation step of the topoisomerase reaction (Fig. 5). This is a highly-effective mechanism of inhibition that is also used by several topoisomerase-targeted anti-cancer drugs. Despite their spectacular success, resistance to FQs is a serious problem. A variety of other compounds, such as quinazolinediones and imidazolpyrazinones, work in a similar manner and it is hoped that some of these will replace FQs in the future.
506: 465:
interconvertible and depend upon the solution conditions. Supercoiling is a vernacular term for DNA with a non-zero linking difference, more correctly referred to as specific linking difference (σ = ΔLk/Lk, where Lk is the mean linking number of the relaxed DNA circle). DNA is said to be positively supercoiled if Lk of it is higher than Lk for the relaxed state (Lk-Lk = ΔLk, ΔLk>0); that means that Tw and/or Wr are increased relative to the relaxed molecule. Conversely, DNA is negatively supercoiled if Lk of the molecule is lower than the Lk (ΔLk<0).
590: 545: 683: 492:. Topological consequences of DNA metabolism. i) During DNA replication, strand separation leads to positive supercoiling ahead of the advancing protein machinery, and precatenane formation behind. Precatenanes form as the newly-synthesised duplexes wrap around one and other, and, if not removed prior to complete of replication, catenated DNA molecules are formed. ii) During transcription, strand separation leads to positive supercoiling ahead of the advancing protein machinery, and negative supercoil formation behind. 532:
or G-segment, and its cleavage allows the passage of another segment of DNA, the 'transport' or T-segment, to be passed through in a 'strand-passage' process. This is followed by ligation of the G-segment. For strand passage to occur, topo IA must undergo a conformational change to open the DNA gate and allow T-segment transfer. During a DNA relaxation reaction this process changes the linking number of the DNA by +/-1 (Fig. 4). Examples of type IA topoisomerases include prokaryotic topo I and III, eukaryotic
460:
in the double helix, approximately once per 10.5 base-pairs (Tw~ 10.5). Supercoiling corresponds to increases or decreases of the linking number (∆Lk) that result from cellular processes such as DNA transcription and replication (Figure 2). Changes in linking number are accommodated by changes in twist (torsion) (Tw) and writhe (Wr), which change the structure and mechanics of DNA. Knotting within a DNA molecule and links between DNA molecules (catenanes) represent higher order topological conformations of DNA.
551:. Strand-passage mechanism for type IA topos. (1) Topo binds the G-segment ssDNA region, (2) the G-segment is cleaved. (3) The topo DNA gate is opened, (4) which allows T-segment transfer through the cleaved G-strand. (5) The DNA gate is closed, (6) and the G-strand is re-ligated, changing the linking number by 1. (7) The topo can then go through another round of relaxation or dissociate from the DNA. Type IA topo (domains 1-4) is in pink, the active site tyrosine is yellow and the DNA is grey. 596:. Type II topoisomerase strand-passage mechanism. (1) G-segment is bound at the DNA-gate and the T-segment is captured. (2) ATP binding stimulates dimerization of the N-gate, the G-segment is cleaved and the T-segment is passed through the break. (3) The G-segment is re-ligated and the T-segment exits through the C-gate. For type IIB topos, there is no C-gate so once the T-segment passes through the G-segment, it is released from the enzyme. (4) Dissociation of ADP and P 1528:
by Singh et al., "about 80% of highly expressed genes in HeLa cells are paused". Very short-term, but not immediately resealed, topo IIβ-induced DNA double-strand breaks occur at sites of RNA polymerase II pausing, and appear to be required for efficient release of the paused state and progression to gene transcription. For the genes at which it occurs, the DNA double-stranded break induced by TOP2B is thought to be part of the process of regulation of gene expression.
469:
strands (precatenanes) behind (Fig. 2). If the positive supercoils are not relaxed, progression of the replication fork is impeded, whereas failure to unlink the daughter strands prevents genome segregation, which is required for cell division. Transcription by RNA polymerase also generates positive supercoiling ahead of, and negative supercoiling behind, the transcriptional complex (Fig. 2). This effect is known as the twin-supercoiled domain model, as described by
6251: 627:
structural differences, but are evolutionarily related to the type IIA enzymes. These differences include the lack of one of the protein 'gates' (the C gate) (Fig. 5). Originally found in archaea, they have also been found in eukaryotes, and, in particular, in plants; examples include topo VI and topo VIII. Topo VI is the best-studied enzyme of this sub-type and is thought to be a preferential decatenase.
513:
5ʹ DNA phosphate and function via a strand passage mechanism. Type IB and IC form a transient covalent bond to the 3ʹ DNA phosphate and function via a controlled-rotation mechanism. Type II topoisomerases are further subdivided into type IIA and IIB. Both form a transient covalent bond to the 5ʹ DNA phosphate of both strands of the duplex and function via a strand-passage mechanism.
640:. The reason for this prominence is that their reactions proceed via transient breaks in DNA, which, if stabilized by drug binding, can lead to cell death due to the generation of toxic single- or double-stranded breaks in genomic DNA. The majority of topo-targeted drugs act in this way, i.e. they stabilize the enzyme-DNA covalent cleavage intermediate. 725:
Etoposide (Fig. 7) and its close relative teniposide (VM-26) are epipodophyllotoxin derivatives obtained from the rhizome of wild mandrake that target topo II by stabilizing the covalent cleavage complex and preventing religation of the cleaved DNA. These are typically used in conjunction with other
585:
Type II topoisomerases catalyze changes in DNA topology via transient double-stranded breaks in DNA. Reactions occur on double-stranded DNA substrates and proceed via a strand-passage mechanism (Fig. 5). The range of reactions include DNA relaxation, DNA supercoiling, unknotting, and decatenation.
1527:
RNA polymerase II frequently has a pausing site that is about 30–60 nucleotides downstream of the transcription start site of a gene. The pausing of RNA polymerase II at these sites and the controlled release of the pausing is thought to have a regulatory role in gene transcription. As pointed out
657:
Quinolone antibacterial compounds were first developed in the 1960s and have been in clinical use since the 1980s. FQ derivatives, such as ciprofloxacin, levofloxacin and moxifloxacin (Fig. 6) have been highly-successful. These compounds work by interacting with their target (gyrase or topo IV) and
648:
Although type I topos, such as bacterial topo I, are viable antibiotic targets, there are currently no compounds in clinical use that target these enzymes. However, the type II enzymes, DNA gyrase and DNA topoisomerase IV, have enjoyed enormous success as targets for the widely-used fluoroquinolone
626:
Type IIB also catalyze transient double-stranded breaks through the formation of tyrosyl-phosphate bonds between tyrosines in the enzyme and 5′-phosphates in opposite strands of the DNA, but in the case of IIB enzymes the double-stranded breaks have a 2-base stagger. Type IIB enzymes show important
609:
Type IIA topoisomerases catalyze transient double-stranded breaks in DNA through the formation of tyrosyl-phosphate bonds between tyrosines in the enzyme (one on each subunit) and 5′-phosphates staggered by 4 bases in opposite DNA strands. The strand-passage reaction can be intra- or intermolecular
531:
Type IA are monomeric and bind to single-stranded segments of DNA. They introduce a transient single-stranded break through the formation of a tyrosyl-phosphate bond between a tyrosine in the enzyme and a 5′-phosphate in the DNA. The segment of DNA within which the break occurs is called the 'gate'
512:
Summary of topoisomerase types and catalytic mechanisms. The topoisomerases are categorized based on whether they catalyze single- (type I) or double-stranded (type II) DNA breaks. The type I topoisomerases are further subdivided to type IA, IB and IC. Type IA form a transient covalent bond to the
468:
The consequences of topological perturbations in DNA are exemplified by DNA replication during which the strands of the duplex are separated; this separation leads to the formation of positive supercoils (DNA overwinding or overtwisting) ahead of the replication fork and intertwining of the daughter
459:
Overview of DNA topology. The linking number (Lk) describes the number of times that the two single-strands of DNA cross each other in a closed circular DNA molecule. Relaxed DNA molecules have an intrinsic linking number (Lk) corresponding to the twisting of the two single-strands around each other
749:
that target human topo II, stabilizing the cleavage complex in a similar manner to other topoisomerase poisons. Mitoxantrone is a synthetic anthracenedione that is chemically and functionally similar to anthracyclines. The anthracyclines were the first topoisomerase inhibitors used to treat cancer
1186:
DNA repair pathway, including DNA-PKcs, Ku70/Ku80 and DNA ligase IV assembled with topo IIβ and PARP-1. This assemblage was all present at the linker DNA adjacent to a single nucleosome in the promoter region of a gene (see Figure). The nucleosome was close to the transcription start site of the
1134:
Stimulus-induced DNA double-strand breaks (DSBs) that are limited to a short-term (10 minutes to 2 hours) are induced by topo IIβ in the promoter regions of signal-regulated genes. These DSBs allow rapid up-regulation of expression of such signal responsive genes in a number of systems (see Table
758:
Merbarone is a thiobarbituric acid derivative, and dexrazoxane (ICRF-187), one of several related bisdioxopiperazine derivatives, (Fig. 7) are examples of catalytic inhibitors of topo II, i.e. they prevent completion of the catalytic cycle of topo II but do not stabilize the DNA cleavage complex.
540:
and the archaeal enzyme reverse gyrase. Reverse gyrase, which occurs in thermophilic archaea, comprises a type IA topo coupled to a helicase, and is the only known enzyme that can introduce positive supercoils into DNA. The gene encoding reverse gyrase is also found in some groups of thermophilic
448:
The double-helical structure of DNA involves the intertwining of the two polynucleotide strands around each other, which potentially gives rise to topological problems. DNA topology refers to the crossing of the two DNA strands that alters the twist of the double helix and gives rise to tertiary
853:
Removes (-), but not (+) supercoils; assists in the unlinking of precatenanes in cellular DNA replication; can catalyze the knotting, unknotting, and interlinking of single-stranded circles as well as the knotting, unknotting, catenation, and decatenation of gapped or nicked duplex DNA circles
698:
Both human topo I and topo II (both α and β isoforms) can be targeted in anticancer chemotherapy (Fig. 7). Most of these compounds act in a similar way to FQs, i.e. by stabilizing the DNA-protein covalent cleavage complex; for this they have become known as topoisomerase poisons, distinct from
560:
Type IB topoisomerases catalyze reactions involving transient single-stranded breaks in DNA through the formation of a tyrosyl-phosphate bond between a tyrosine in the enzyme and a 3′-phosphate in the DNA. Rather than utilizing a strand-passage mechanism, these enzymes operate via a 'swivel' or
501:
DNA topoisomerases are enzymes that have evolved to resolve topological problems in DNA (Table 2). They do this via transient breakage of one or both strands of DNA. This has led to the classification of topos into two types: type I, which catalyze reactions involving transient single-stranded
522:
These enzymes catalyze changes in DNA topology via transient single-stranded breaks in DNA. Reactions can occur on both single- and double-stranded DNA substrates and can proceed via a 'swivel' or 'strand-passage' mechanism (Fig. 3). The range of reactions includes: DNA supercoil relaxation,
464:
The 3 parameters are related as follows: Lk = Tw +Wr. This is a mathematical identity originally obtained by Călugăreanu in 1959 and is referred to as the Călugăreanu, or Călugăreanu–White–Fuller, theorem. Lk cannot be altered without breaking one or both strands of the helix; Tw and Wr are
679:
antibacterial compounds. Other protein inhibitors of gyrase prevent DNA binding by the topoisomerase rather than stabilizing cleavage complexes. These include YacG and pentapeptide repeat proteins, such as QnrB1 and MfpA; these protein inhibitors also confer resistance to fluoroquinolones.
678:
There are a number of protein inhibitors of gyrase, including the bacterial toxins CcdB, MccB17, and ParE, that stabilize the cleavage complex, in a similar manner to FQs. Although these proteins are not viable as antibacterials, their mode of action could inspire the development of novel
473:
and James Wang in 1987. These topological perturbations must be resolved for DNA metabolism to proceed, allowing the cell to efficiently replicate, transcribe and partition the genome to enable cellular division and vitality. Knots in DNA can be found in bacteriophages and as products of
426:
from bacteria, by Martin Gellert and coworkers in 1976, and also characterized by Nicholas Cozzarelli and co-workers. DNA gyrase catalyzes the introduction of negative supercoils into DNA and is the only type II enzyme to do this, all the others catalyze DNA relaxation. Type II enzymes are
390:, interconverting relaxed and supercoiled forms, linked (catenated) and unlinked species, and knotted and unknotted DNA. Topological issues in DNA arise due to the intertwined nature of its double-helical structure, which, for example, can lead to overwinding of the DNA duplex during DNA 759:
Whereas these catalytic inhibitors exhibit cytotoxicity and have been tested in clinical trials, they are not currently in clinical use for cancer therapy. However, dexrazoxane, which blocks ATP hydrolysis by topo II, is used to prevent cardiotoxicity associated with the anthracyclines.
635:
For the non-specialist perhaps the most important aspect of topoisomerases is their role as drug targets both for antibacterial and anti-cancer chemotherapy; several topoisomerase-targeted antibacterial and anti-cancer drugs are listed among the 2019 World Health Organization
670:, are natural products from Streptomyces that inhibit the ATPase reaction of gyrase and topo IV. Although they can be very potent against their target, they suffer from permeability and toxicity issues, and thus have not enjoyed the level of clinical success of the FQs. 427:
mechanistically distinct from type I in being ATP-dependent and transiently cleaving both DNA strands rather than just one. Type II topoisomerases were subsequently identified from bacterial viruses and eukaryotes. Topo EC-codes are as follows: ATP-independent (type I),
1169:
Topo IIβ and PARP-1 were found to be constitutively present at a moderate level near the transcription start site of a promoter of a signal-responsive gene. After the signal occurred, topo IIβ caused a double-strand break and PARP-1 was involved in replacing
1121:
At least one topoisomerase, DNA topoisomerase II beta (topo IIβ), has a regulatory role in gene transcription. Topo IIβ–dependent double-strand DNA breaks and components of the DNA damage repair machinery are important for rapid expression of
435:
5.6.2.2. The exception among the type I topoisomerases, reverse gyrase, which contains a helicase domain (EC 3.6.4.12) and introduces positive supercoiling in an ATP-dependent manner. Therefore it is the sole type I topoisomerase classified as
726:
chemotherapy drugs to treat cancers including testicular tumors, small-cell lung cancer, and leukemia. Etoposide treatment can result in secondary leukemias arising from specific genomic translocations, mainly involving topo IIβ.
3991:
Speyer JL, Green MD, Kramer E, Rey M, Sanger J, Ward C, et al. (September 1988). "Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer".
523:
unknotting of single-stranded circles, and decatenation, provided at least one partner has a single-stranded region. In the case of the archaeal enzyme, reverse gyrase, positive supercoiling of DNA is possible.
610:(Fig. 5), thus permitting changes in supercoiling and knotting, or unlinking, respectively. This process changes the linking number of the DNA by +/-2. Examples of type IIA topoisomerases include eukaryotic 4276:
Dellino GI, Palluzzi F, Chiariello AM, Piccioni R, Bianco S, Furia L, De Conti G, Bouwman BA, Melloni G, Guido D, Giacò L, Luzi L, Cittaro D, Faretta M, Nicodemi M, Crosetto N, Pelicci PG (June 2019).
1126:, as well as for signal-responsive gene regulation. Topo IIβ, with other associated enzymes, appears to be important for the release of paused RNA polymerase at highly transcribed or long genes. 422:
and Renato Dulbecco; the enzyme responsible, eukaryotic topo I, has a distinct mechanism and is representative of the type IB family. The first type II topoisomerase to be discovered was
2529:
Sundin O, Varshavsky A (September 1981). "Arrest of segregation leads to accumulation of highly intertwined catenated dimers: dissection of the final stages of SV40 DNA replication".
4222:
Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (June 2006). "A topoisomerase II beta-mediated dsDNA break required for regulated transcription".
4439:
Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK, Rosenfeld MG (June 2006). "A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription".
2779:
Liu LF, Liu CC, Alberts BM (March 1980). "Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break".
1909:
Baldi MI, Benedetti P, Mattoccia E, Tocchini-Valentini GP (June 1980). "In vitro catenation and decatenation of DNA and a novel eucaryotic ATP-dependent topoisomerase".
1151:) and activation of neurons. When the induced DNA double-strand break has been repaired, then transcription of the signal-responsive gene returns to a low basal level. 600:
allows N-gate opening, a scenario where the enzyme either remains bound to the G-segment, ready to capture a successive T-segment, or (5) dissociates from the G-segment.
573:
Type IC topoisomerases share a similar mechanism to the type IB enzymes but are structurally distinct. The sole representative is topo V, found in the hyperthermophile
1742:"An activity from mammalian cells that untwists superhelical DNA--a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay)" 343: 172: 418:) topoisomerase I (topo I) and is a representative of the type IA family of enzymes. Subsequently, a similar activity was found in eukaryotic cells (rat liver) by 1852:"Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme" 2919:
Stivers JT, Harris TK, Mildvan AS (April 1997). "Vaccinia DNA topoisomerase I: evidence supporting a free rotation mechanism for DNA supercoil relaxation".
1952:
Liu LF, Liu CC, Alberts BM (October 1979). "T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication".
6026: 2824:"Widespread distribution of archaeal reverse gyrase in thermophilic bacteria suggests a complex history of vertical inheritance and lateral gene transfers" 502:
breaks, and type II, which catalyze reactions involving transient double-stranded breaks (Fig. 3; Table 2). Sub-types exist within these classifications.
5189: 1191:
Agents causing temporary DNA double-strand breaks (DSBs) required for transcription and proteins associated with the DSBs in signal-responsive genes.
1388: 1392: 362: 191: 1467: 1407: 1292: 1243: 3712:"Mechanism of antitumor drug action: poisoning of mammalian DNA topoisomerase II on DNA by 4'-(9-acridinylamino)-methanesulfon-m-anisidide" 1187:
gene. The components of the non-homologous end joining DNA repair pathway were essential to the closing of the DNA double-strand break.
745:
Doxorubicin (Fig. 7) and the related derivatives daunorubicin, epirubicin, and idarubicin are anthracyclines obtained from the bacterium
5247: 1165:
DNA repair pathway components DNA-PKcs, Ku70/Ku80 and DNA ligase are also closely associated with the topo IIβ dimer-PARP-1 complex.
5163: 4278:"Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations" 4118:
Bunch H, Jeong J, Kang K, Jo DS, Cong AT, Kim D, Kim D, Cho DH, Lee YM, Chen BP, Schellenberg MJ, Calderwood SK (October 2021).
2005:"T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity" 355: 184: 6001: 5811: 5774: 5352: 1182:, which can promote transcription. Topo IIβ and PARP-1 increased at the site of the double-strand break and components of the 4824: 3786: 3382: 2078: 1601:"DNA topoisomerases: Advances in understanding of cellular roles and multi-protein complexes via structure-function analysis" 700: 5746: 322: 151: 4027:
Cvetković RS, Scott LJ (2005). "Dexrazoxane: a review of its use for cardioprotection during anthracycline chemotherapy".
3506:"A strand-passage conformation of DNA gyrase is required to allow the bacterial toxin, CcdB, to access its binding site" 2204:
Franklin RE, Gosling RG (July 1953). "Evidence for 2-chain helix in crystalline structure of sodium deoxyribonucleate".
5894: 2876:
Stewart L, Redinbo MR, Qiu X, Hol WG, Champoux JJ (March 1998). "A model for the mechanism of human topoisomerase I".
5903: 5469: 4872: 3888: 3373:
Maxwell A, Bush NG, Germe T, McKie SJ (2018). "Non-quinolone topoisomerase inhibitors". In Fong IW, Drlica K (eds.).
17: 5617: 5285: 2153:
Watson JD, Crick FH (April 1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid".
1053:
Essential; Unlinks intertwined daughter duplexes in replication; contributes to DNA relaxation during transcription
6183: 5956: 2728:
Kikuchi A, Asai K (1984). "Reverse gyrase--a topoisomerase which introduces positive superhelical turns into DNA".
485: 5816: 3871:
Murphy MB, Mercer SL, Deweese JE (January 2017). "Inhibitors and Poisons of Mammalian Type II Topoisomerases".
809:
Removes (-), but not (+) supercoils. Prevents excessive supercoiling of the genome, and supports transcription
316: 298: 145: 127: 6054: 5626: 5476: 5240: 5028: 4390:"Pausing sites of RNA polymerase II on actively transcribed genes are enriched in DNA double-stranded breaks" 1448: 5939: 4598:"Glucocorticoid Receptor Transcriptional Activation via the BRG1-Dependent Recruitment of TOP2β and Ku70/86" 2255:
Cairns J (March 1963). "The bacterial chromosome and its manner of replication as seen by autoradiography".
303: 132: 5273: 5156: 5260: 3604:"The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic" 5605: 5225: 3005:"The ancestral role of ATP hydrolysis in type II topoisomerases: prevention of DNA double-strand breaks" 367: 196: 6241: 6031: 5994: 5722: 5591: 5423: 5370: 5264: 3769:
Pommier Y, Tanizawa A, Kohn KW (1994). "Mechanisms of topoisomerase I inhibition by anticancer drugs".
1183: 1162: 291: 120: 4539:
Bunch H, Lawney BP, Lin YF, Asaithamby A, Murshid A, Wang YE, Chen BP, Calderwood SK (December 2015).
55: 5800: 5129: 5116: 5103: 5090: 5077: 5064: 5051: 5013: 2633:"The Stringent Response Inhibits DNA Replication Initiation in E. coli by Modulating Supercoiling of 3661:
Mazurek Ł, Ghilarov D, Michalczyk E, Pakosz Z, Metelev M, Czyszczoń W, et al. (February 2021).
2102:
Watson JD, Crick FH (May 1953). "Genetical implications of the structure of deoxyribonucleic acid".
1161:
The 5' ends of DNA are covalently joined to tyrosine within the topo IIβ dimer-PARP-1 complex. The
6276: 5961: 5233: 5180: 5023: 4977: 4920: 4844: 3907:
Hande KR (October 1998). "Clinical applications of anticancer drugs targeted to topoisomerase II".
3663:"Pentapeptide repeat protein QnrB1 requires ATP hydrolysis to rejuvenate poisoned gyrase complexes" 3457:"ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase" 1656:
Sutormin DA, Galivondzhyan AK, Polkhovskiy AV, Kamalyan SO, Severinov KV, Dubiley SA (2021-03-15).
437: 432: 428: 221: 38: 734: 637: 319: 148: 6059: 5363: 5294: 5149: 4925: 3555:"Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein" 1154: 395: 243: 72: 6036: 5860: 5791: 4647:"Profiling DNA break sites and transcriptional changes in response to contextual fear learning" 3553:
Vos SM, Lyubimov AY, Hershey DM, Schoeffler AJ, Sengupta S, Nagaraja V, Berger JM (July 2014).
1135:
below). These signal-regulated genes include genes activated in response to stimulation with
4840: 6218: 5987: 5786: 5555: 5202: 4946: 4865: 3408:"The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents" 1552: 1312: 910:
Removes (+) and (-) supercoils; supports fork movement during replication and transcription
713: 3944:"The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives" 1577: 1572: 537: 533: 5833: 5806: 5757: 5197: 5018: 4766: 4658: 4552: 4448: 4339: 4231: 3723: 3615: 2885: 2737: 2585: 2483: 2381: 2303: 2213: 2162: 2111: 2016: 1961: 1863: 1804: 1547: 1452: 1123: 689:. Structures of antibiotic compounds that target bacterial DNA gyrase and topoisomerase IV. 1705:
Wang JC (February 1971). "Interaction between DNA and an Escherichia coli protein omega".
1567: 1562: 615: 611: 279: 108: 8: 5563: 4982: 2686:"The level of supercoiling affects the regulation of DNA replication in Escherichia coli" 1277: 505: 50: 4770: 4662: 4556: 4452: 4388:
Singh S, Szlachta K, Manukyan A, Raimer HM, Dinda M, Bekiranov S, Wang YH (March 2020).
4343: 4235: 3727: 3619: 3602:
Feng L, Mundy JE, Stevenson CE, Mitchenall LA, Lawson DM, Mi K, Maxwell A (March 2021).
2889: 2741: 2589: 2487: 2385: 2307: 2217: 2166: 2115: 2020: 1965: 1867: 1808: 589: 255: 84: 6271: 6157: 4915: 4789: 4754: 4730: 4705: 4681: 4646: 4622: 4597: 4573: 4540: 4516: 4491: 4472: 4416: 4389: 4360: 4327: 4305: 4255: 4199: 4144: 4119: 4095: 4070: 3968: 3943: 3880: 3841: 3816: 3687: 3662: 3638: 3603: 3579: 3554: 3530: 3505: 3486: 3432: 3407: 3347: 3320: 3293: 3268: 3244: 3219: 3192: 3167: 3132: 3107: 3080: 3053: 3029: 3004: 2980: 2955: 2850: 2823: 2804: 2761: 2661: 2632: 2554: 2452: 2237: 2186: 2135: 1985: 1934: 1682: 1657: 1638: 1625: 1600: 1496:
Fear conditioning (evaluated in mouse hippocampal and medial prefontal cortex neurons)
1159:
Paused RNA polymerase and limited, short-term topo IIβ-induced DNA double-strand break.
1092:
Relaxes (+) and (-) supercoils; responsible for decatenating replication intermediates
544: 226: 43: 4817:
Untangling the Double Helix: DNA entanglement and the action of the DNA topoisomerases
3920: 3778: 3746: 3711: 3269:"Targeting bacterial topoisomerase I to meet the challenge of finding new antibiotics" 2792: 2608: 2573: 2404: 2369: 2349:
Călugăreanu G (1959). "L'intégrale de Gauss et l'analyse des nœuds tridimensionnels".
2326: 2291: 2268: 2039: 2004: 1886: 1851: 1827: 1792: 1768: 1741: 5769: 5586: 5141: 4820: 4794: 4735: 4686: 4627: 4578: 4521: 4476: 4464: 4421: 4365: 4328:"A nucleotide resolution map of Top2-linked DNA breaks in the yeast and human genome" 4309: 4297: 4259: 4247: 4203: 4191: 4149: 4100: 4044: 4040: 4009: 3973: 3924: 3884: 3846: 3792: 3782: 3751: 3692: 3643: 3584: 3535: 3478: 3473: 3456: 3437: 3388: 3378: 3352: 3298: 3249: 3197: 3137: 3085: 3034: 2985: 2936: 2901: 2855: 2796: 2753: 2707: 2702: 2685: 2666: 2613: 2546: 2542: 2511: 2506: 2471: 2444: 2409: 2331: 2272: 2229: 2178: 2127: 2084: 2074: 2044: 1977: 1926: 1922: 1891: 1832: 1773: 1722: 1718: 1687: 1642: 1630: 310: 139: 3490: 2558: 1938: 541:
bacteria, where it was likely transferred by horizontal gene transfer from Archaea.
6193: 6046: 5726: 5575: 5570: 5462: 5212: 4961: 4956: 4930: 4858: 4784: 4774: 4725: 4717: 4676: 4666: 4617: 4609: 4568: 4560: 4511: 4503: 4456: 4411: 4401: 4355: 4347: 4289: 4277: 4239: 4183: 4139: 4131: 4090: 4082: 4036: 4001: 3963: 3955: 3916: 3876: 3836: 3828: 3774: 3741: 3731: 3682: 3674: 3633: 3623: 3574: 3566: 3525: 3517: 3468: 3427: 3419: 3342: 3332: 3321:"Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance" 3288: 3280: 3239: 3231: 3187: 3183: 3179: 3127: 3119: 3075: 3065: 3024: 3016: 2975: 2967: 2928: 2893: 2845: 2835: 2808: 2788: 2765: 2745: 2697: 2656: 2648: 2603: 2593: 2538: 2501: 2491: 2436: 2399: 2389: 2321: 2311: 2264: 2241: 2221: 2190: 2170: 2139: 2119: 2034: 2024: 1989: 1969: 1918: 1881: 1871: 1822: 1812: 1763: 1753: 1714: 1677: 1669: 1620: 1612: 1384: 1228: 1021: 4326:
Gittens WH, Johnson DJ, Allison RM, Cooper TJ, Thomas H, Neale MJ (October 2019).
3959: 2897: 682: 6167: 6162: 6152: 6147: 6142: 6137: 6132: 6127: 5731: 5323: 5256: 5008: 4992: 4905: 4671: 1557: 699:
catalytic inhibitors. Several human topoisomerase inhibitors are included on the
562: 391: 4005: 3832: 3817:"Topoisomerase II Poisons: Converting Essential Enzymes into Molecular Scissors" 836:
Removes (-), but not (+) supercoils; overlapping function with topoisomerase IV
6255: 6117: 6112: 6107: 6102: 6097: 6092: 6087: 6082: 6077: 5579: 5559: 5046: 4987: 4507: 4351: 3716:
Proceedings of the National Academy of Sciences of the United States of America
3608:
Proceedings of the National Academy of Sciences of the United States of America
2578:
Proceedings of the National Academy of Sciences of the United States of America
2476:
Proceedings of the National Academy of Sciences of the United States of America
2374:
Proceedings of the National Academy of Sciences of the United States of America
2296:
Proceedings of the National Academy of Sciences of the United States of America
2009:
Proceedings of the National Academy of Sciences of the United States of America
1856:
Proceedings of the National Academy of Sciences of the United States of America
1797:
Proceedings of the National Academy of Sciences of the United States of America
1746:
Proceedings of the National Academy of Sciences of the United States of America
1673: 871:
Has been shown to be a putative RNA topoisomerase. Involved in RNA processing
419: 338: 167: 4721: 4293: 4086: 3423: 3337: 3168:"DNA topoisomerases and their poisoning by anticancer and antibacterial drugs" 6265: 6018: 5318: 4951: 4910: 4406: 3392: 2448: 2427:
White JH (1969). "Self-Linking and the Gauss Integral in Higher Dimensions".
1148: 1140: 407: 4779: 4460: 4243: 3628: 2598: 2088: 1876: 1817: 6213: 6010: 5920: 4900: 4798: 4739: 4706:"Regulation of Promoter Proximal Pausing of RNA Polymerase II in Metazoans" 4690: 4631: 4582: 4525: 4492:"A role of DNA-PK for the metabolic gene regulation in response to insulin" 4468: 4425: 4369: 4301: 4251: 4195: 4153: 4104: 4048: 3977: 3850: 3736: 3696: 3678: 3647: 3588: 3570: 3539: 3482: 3441: 3356: 3302: 3253: 3201: 3141: 3089: 3052:
McKie SJ, Desai PR, Seol Y, Allen AM, Maxwell A, Neuman KC (January 2022).
3038: 2989: 2859: 2670: 2515: 2496: 2335: 2276: 2233: 2182: 2131: 2029: 1691: 1634: 1616: 1537: 452: 4120:"BRCA1-BARD1 regulates transcription through modulating topoisomerase IIβ" 4013: 3928: 3796: 3755: 2971: 2940: 2905: 2840: 2800: 2757: 2711: 2652: 2617: 2550: 2413: 2394: 2316: 1930: 1777: 1758: 1726: 666:
Aminocoumarins (Fig. 6), such as novobiocin, clorobiocin and coumermycin A
6198: 6069: 5865: 5255: 5124: 5059: 4895: 4613: 3521: 3020: 2048: 1981: 1908: 1895: 1836: 1073:
Role in suppressing recombination or supporting transcription in neurons
4819:. Cold Spring Harbor: Cold Spring Harbor Laboratory Press. p. 245. 4564: 4187: 4135: 3070: 1655: 6203: 5951: 5925: 5713: 5698: 5207: 3284: 3054:"Topoisomerase VI is a chirally-selective, preferential DNA decatenase" 2456: 1171: 980: 423: 267: 96: 3375:
Antimicrobial resistance and implications for the twenty-first century
3123: 2932: 2472:"Topological challenges to DNA replication: conformations at the fork" 1116: 6208: 5889: 5703: 5693: 5172: 5098: 5072: 3773:. Advances in Pharmacology. Vol. 29B. Elsevier. pp. 73–92. 2749: 2470:
Postow L, Crisona NJ, Peter BJ, Hardy CD, Cozzarelli NR (July 2001).
2225: 2174: 2123: 1973: 1542: 1222: 1136: 478:
also requires negative supercoiling. Furthermore, compaction of the
470: 3235: 2440: 882:
Removes (-), but not (+) supercoils, introduces positive supercoils
410:
in 1971 and was initially named ω (omega) protein; it is now called
6250: 6223: 5966: 5947: 5519: 5510: 5308: 4171: 3909:
Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression
2073:. Anthony Maxwell (2nd ed.). Oxford: Oxford University Press. 1793:"DNA gyrase: an enzyme that introduces superhelical turns into DNA" 1475: 1415: 1363: 1300: 1251: 1033:
Decatenates replicated DNA; relaxes (+) supercoils faster than (-)
998:
Generates (-) supercoils (the only topoisomerase known to do this)
741:
Structures of antitumor compounds that target human topoisomerases.
4541:"Transcriptional elongation requires DNA break-induced signalling" 4490:
Wong RH, Chang I, Hudak CS, Hyun S, Kwan HY, Sul HS (March 2009).
5530: 5505: 5500: 5332: 4275: 1850:
Sugino A, Peebles CL, Kreuzer KN, Cozzarelli NR (November 1977).
1271: 1144: 565:, though they have been identified in all three domains of life. 286: 115: 4170:
Austin CA, Cowell IG, Khazeem MM, Lok D, Ng HT (December 2021).
4071:"Emerging themes in neuronal activity-dependent gene expression" 386:) are enzymes that catalyze changes in the topological state of 5979: 5111: 4881: 3660: 1471: 1411: 1332: 1296: 1247: 350: 262: 250: 238: 179: 91: 79: 67: 3454: 3319:
Bush NG, Diez-Santos I, Abbott LR, Maxwell A (December 2020).
1849: 6188: 6122: 5880: 5875: 5870: 5853: 5848: 5843: 5838: 5826: 5821: 5539: 5534: 5491: 5486: 5481: 5085: 4438: 4221: 1440: 1436:
KCl or NMDA activation of cultured primary cortical neurons
1340: 1336: 1179: 1175: 1061: 1041: 859: 841: 3601: 3552: 3318: 3220:"Interfacial inhibitors: targeting macromolecular complexes" 1790: 5762: 5686: 5681: 5676: 5671: 5666: 5661: 5656: 5651: 5646: 5641: 5636: 5631: 5523: 5453: 5448: 5443: 5438: 5433: 5428: 5416: 5409: 5400: 5395: 5390: 5385: 5380: 5375: 5337: 5313: 5301: 4387: 4325: 1483: 1479: 1444: 1423: 1419: 1367: 1344: 1316: 1308: 1304: 1259: 1255: 893: 274: 103: 4850: 3455:
Jiang Y, Pogliano J, Helinski DR, Konieczny I (May 2002).
1791:
Gellert M, Mizuuchi K, O'Dea MH, Nash HA (November 1976).
1129: 406:
The first DNA topoisomerase was discovered in bacteria by
1522: 1348: 387: 4538: 2821: 2683: 956:
Relaxes (+) and (-) supercoils. Involved in DNA repair.
711:
Camptothecin (Fig. 7), originally derived from the tree
3165: 2574:"Supercoiling of the DNA template during transcription" 2469: 1499:>200 genes with new DSBs and up-regulated expression 701:
World Health Organization's List of Essential Medicines
5171: 4169: 6239: 3372: 482:
genome is achieved in part by negative supercoiling.
6027:
Branched-chain alpha-keto acid dehydrogenase complex
3990: 2918: 2875: 2630: 2292:"On the Replication of Desoxyribonucleic Acid (Dna)" 3870: 3768: 3051: 2953: 1658:"Diversity and Functions of Type II Topoisomerases" 1117:
Role of topoisomerase in transcriptional regulation
4489: 3814: 3166:Pommier Y, Leo E, Zhang H, Marchand C (May 2010). 3002: 2684:von Freiesleben U, Rasmussen KV (September 1992). 1598: 4595: 3771:DNA Topoisomerases: Topoisomerase-Targeting Drugs 3108:"Drugging topoisomerases: lessons and challenges" 6263: 4703: 4644: 4117: 2954:Baker NM, Rajan R, Mondragón A (February 2009). 2528: 2002: 1739: 3217: 2631:Kraemer JA, Sanderlin AG, Laub MT (July 2019). 2203: 1214:Duration of DSB after signal-induced activation 4596:Trotter KW, King HA, Archer TK (August 2015). 4026: 3941: 3709: 3003:Bates AD, Berger JM, Maxwell A (August 2011). 5995: 5241: 5157: 4866: 4068: 4064: 4062: 4060: 4058: 3405: 2956:"Structural studies of type I topoisomerases" 2778: 2003:Stetler GL, King GJ, Huang WM (August 1979). 1951: 1599:McKie SJ, Neuman KC, Maxwell A (April 2021). 4746: 4697: 4638: 4589: 4532: 4483: 4432: 4111: 3875:. Vol. 11. Elsevier. pp. 203–240. 3815:Vann KR, Oviatt AA, Osheroff N (June 2021). 3503: 2822:Brochier-Armanet C, Forterre P (May 2007). 2727: 2348: 2152: 2101: 673: 6002: 5988: 5248: 5234: 5164: 5150: 4873: 4859: 4321: 4319: 4271: 4269: 4055: 3710:Nelson EM, Tewey KM, Liu LF (March 1984). 643: 211:DNA Topoisomerase, ATP-dependent (type II) 4843:at the U.S. National Library of Medicine 4788: 4778: 4729: 4680: 4670: 4621: 4572: 4515: 4415: 4405: 4359: 4165: 4163: 4143: 4094: 3967: 3840: 3745: 3735: 3686: 3637: 3627: 3578: 3529: 3472: 3431: 3346: 3336: 3292: 3243: 3191: 3131: 3079: 3069: 3028: 2979: 2849: 2839: 2701: 2660: 2607: 2597: 2505: 2495: 2403: 2393: 2351:Revue de Mathématiques Pure et Appliquées 2325: 2315: 2038: 2028: 1885: 1875: 1826: 1816: 1767: 1757: 1681: 1624: 652: 4755:"Transient pausing by RNA polymerase II" 4383: 4381: 4379: 4172:"TOP2B's contributions to transcription" 3377:. New York: Springer. pp. 593–618. 3266: 2289: 1740:Champoux JJ, Dulbecco R (January 1972). 1514:10 minutes and second peak at 30 minutes 1153: 733: 693: 681: 588: 543: 504: 484: 451: 4316: 4266: 3218:Pommier Y, Marchand C (December 2011). 3105: 2571: 1505:DSBs were correlated with transcription 1130:Topo IIβ in initiation of transcription 14: 6264: 4160: 3902: 3900: 3866: 3864: 3862: 3860: 2370:"The writhing number of a space curve" 2367: 2254: 1523:Topo IIβ regulation of gene expression 5983: 5229: 5145: 4854: 4752: 4704:Dollinger R, Gilmour DS (July 2021). 4645:Stott RT, Kritsky O, Tsai LH (2021). 4376: 4217: 4215: 4213: 3906: 3810: 3808: 3806: 3368: 3366: 3314: 3312: 3213: 3211: 3161: 3159: 3157: 3155: 3153: 3151: 3101: 3099: 2871: 2869: 2723: 2721: 2426: 2068: 2064: 2062: 2060: 2058: 820: 783:Single- or double-stranded cleavage? 706: 4814: 1704: 1594: 1592: 720: 4069:Madabhushi R, Kim TK (March 2018). 3994:The New England Journal of Medicine 3897: 3857: 3406:Collin F, Maxwell A (August 2019). 1202:DSB after signal-induced activation 24: 4808: 4210: 3881:10.1016/b978-0-12-812522-9.00005-1 3803: 3363: 3309: 3208: 3148: 3096: 2866: 2718: 2055: 1205:DSB was required for transcription 630: 431:5.6.2.1; ATP-dependent (type II): 25: 6288: 5904:Control of chromosome duplication 5470:Autonomously replicating sequence 4834: 3942:Pommier Y, Cushman M (May 2009). 1589: 1360:promoter & POLII pausing site 661: 638:Model List of essential Medicines 6249: 6009: 4041:10.2165/00003495-200565070-00008 3873:Advances in Molecular Toxicology 3474:10.1046/j.1365-2958.2002.02921.x 2572:Liu LF, Wang JC (October 1987). 4020: 3984: 3935: 3762: 3703: 3654: 3595: 3546: 3497: 3448: 3399: 3260: 3045: 2996: 2947: 2912: 2815: 2772: 2677: 2624: 2565: 2522: 2463: 2429:American Journal of Mathematics 2420: 2361: 2342: 2283: 2248: 2197: 2146: 2095: 443: 3224:Nature Reviews. Drug Discovery 3184:10.1016/j.chembiol.2010.04.012 1996: 1945: 1902: 1843: 1784: 1733: 1698: 1649: 729: 13: 1: 5627:DNA polymerase III holoenzyme 5477:Single-strand binding protein 3960:10.1158/1535-7163.mct-08-0706 3948:Molecular Cancer Therapeutics 3921:10.1016/s0167-4781(98)00134-1 3779:10.1016/s1054-3589(08)61132-1 2898:10.1126/science.279.5356.1534 2793:10.1016/s0092-8674(80)80046-8 2290:Delbrück M (September 1954). 2269:10.1016/s0022-2836(63)80070-4 1583: 4672:10.1371/journal.pone.0249691 3504:Smith AB, Maxwell A (2006). 3412:Journal of Molecular Biology 2703:10.1016/0923-2508(92)90060-2 2543:10.1016/0092-8674(81)90173-2 2257:Journal of Molecular Biology 1923:10.1016/0092-8674(80)90632-7 1719:10.1016/0022-2836(71)90334-2 1707:Journal of Molecular Biology 753: 401: 7: 4880: 4006:10.1056/nejm198809223191203 3833:10.1021/acs.biochem.1c00240 1531: 1380:Dexamethasone or Estradiol 1147:, glucocorticoids (such as 621: 604: 10: 6293: 6055:Epidermal transglutaminase 6032:Oxoglutarate dehydrogenase 5723:Prokaryotic DNA polymerase 5424:Minichromosome maintenance 5371:Origin recognition complex 4508:10.1016/j.cell.2008.12.040 4352:10.1038/s41467-019-12802-5 3273:Future Medicinal Chemistry 3106:Pommier Y (January 2013). 1674:10.32607/actanaturae.11058 1199:Gene(s) evaluated for DSBs 1196:Ligand or activating agent 1184:non-homologous end joining 1163:non-homologous end joining 789:Change in link number (L) 580: 568: 555: 526: 6176: 6068: 6045: 6017: 5938: 5912: 5801:Eukaryotic DNA polymerase 5742: 5613: 5604: 5548: 5348: 5281: 5272: 5188: 5037: 5029:Michaelis–Menten kinetics 5001: 4970: 4939: 4888: 4722:10.1016/j.jmb.2021.166897 4294:10.1038/s41588-019-0421-z 4087:10.1016/j.mcn.2017.11.009 3424:10.1016/j.jmb.2019.05.050 3338:10.3390/molecules25235662 1015: 1012: 1009: 1006: 1003: 992: 927: 924: 921: 918: 915: 912: 909: 817: 814: 811: 803: 649:antibiotics, (Fig. 6). 517: 361: 349: 337: 332: 328: 309: 297: 285: 273: 261: 249: 237: 232: 220: 215: 210: 190: 178: 166: 161: 157: 138: 126: 114: 102: 90: 78: 66: 61: 49: 37: 32: 6209:Filaggrin (Citrullinate) 4921:Diffusion-limited enzyme 4845:Medical Subject Headings 4759:Proc Natl Acad Sci U S A 4407:10.1074/jbc.RA119.011665 2690:Research in Microbiology 2368:Fuller FB (April 1971). 2263:(3). Elsevier: 208–213. 885:Monomer and Heterodimer 674:Proteinaceous inhibitors 496: 6060:Tissue transglutaminase 5364:Pre-replication complex 5295:Pre-replication complex 4780:10.1073/pnas.1805129115 4461:10.1126/science.1127196 4244:10.1126/science.1127196 3629:10.1073/pnas.2016705118 3559:Genes & Development 3172:Chemistry & Biology 2599:10.1073/pnas.84.20.7024 1877:10.1073/pnas.74.11.4767 1818:10.1073/pnas.73.11.3872 1373:30 seconds to 5 minutes 1211:Proteins present at DSB 644:Antibacterial compounds 6184:Acetylcholine receptor 6037:Pyruvate dehydrogenase 3737:10.1073/pnas.81.5.1361 3667:Nucleic Acids Research 3571:10.1101/gad.241984.114 3510:Nucleic Acids Research 3461:Molecular Microbiology 3009:Nucleic Acids Research 2960:Nucleic Acids Research 2497:10.1073/pnas.111006998 2030:10.1073/pnas.76.8.3737 1617:10.1002/bies.202000286 1166: 742: 690: 653:Fluoroquinolones (FQs) 601: 552: 514: 493: 461: 6219:Sp100 nuclear antigen 5787:Replication protein A 5556:Origin of replication 5203:Type II topoisomerase 5014:Eadie–Hofstee diagram 4947:Allosteric regulation 4753:Price DH (May 2018). 2653:10.1128/mbio.01330-19 2395:10.1073/pnas.68.4.815 2317:10.1073/pnas.40.9.783 1759:10.1073/pnas.69.1.143 1553:Type II topoisomerase 1313:protein phosphatase 1 1157: 1124:immediate early genes 737: 714:Camptotheca acuminata 694:Anti-cancer compounds 685: 592: 575:Methanopyrus kandleri 547: 508: 488: 455: 5758:Replication factor C 5198:Type I topoisomerase 5024:Lineweaver–Burk plot 4614:10.1128/MCB.00230-15 3679:10.1093/nar/gkaa1266 3267:Tse-Dinh YC (2015). 3112:ACS Chemical Biology 1548:Type I topoisomerase 1328:Heat shock or Serum 4771:2018PNAS..115.4810P 4663:2021PLoSO..1649691S 4565:10.1038/ncomms10191 4557:2015NatCo...610191B 4453:2006Sci...312.1798J 4344:2019NatCo..10.4846G 4236:2006Sci...312.1798J 4188:10.1042/BST20200454 4136:10.1098/rsob.210221 3728:1984PNAS...81.1361N 3620:2021PNAS..11816705F 3071:10.7554/eLife.67021 2972:10.1093/nar/gkn1009 2890:1998Sci...279.1534S 2884:(5356): 1534–1541. 2841:10.1155/2006/582916 2742:1984Natur.309..677K 2590:1987PNAS...84.7024L 2488:2001PNAS...98.8219P 2386:1971PNAS...68..815B 2308:1954PNAS...40..783D 2218:1953Natur.172..156F 2167:1953Natur.171..737W 2116:1953Natur.171..964W 2021:1979PNAS...76.3737S 1966:1979Natur.281..456L 1868:1977PNAS...74.4767S 1809:1976PNAS...73.3872G 1192: 979:Topoisomerase II ( 440:5.6.2.2 (Table 1). 4983:Enzyme superfamily 4916:Enzyme promiscuity 4841:DNA+Topoisomerases 4447:(5781): 1798–802. 4230:(5781): 1798–802. 3522:10.1093/nar/gkl636 3285:10.4155/fmc.14.157 3021:10.1093/nar/gkr258 1578:Topoisomerase IIIβ 1573:Topoisomerase IIIα 1190: 1167: 860:Topoisomerase IIIβ 842:Topoisomerase IIIα 826:Topoisomerase III 786:Cleavage polarity 743: 707:Camptothecin (CPT) 691: 602: 553: 515: 494: 462: 380:DNA topoisomerases 6237: 6236: 5977: 5976: 5934: 5933: 5770:Flap endonuclease 5600: 5599: 5587:Okazaki fragments 5223: 5222: 5139: 5138: 4826:978-0-87969-879-9 4765:(19): 4810–4812. 4400:(12): 3990–4000. 4176:Biochem Soc Trans 4075:Mol Cell Neurosci 3827:(21): 1630–1641. 3788:978-0-12-032930-4 3565:(13): 1485–1497. 3516:(17): 4667–4676. 3418:(18): 3400–3426. 3384:978-0-387-72417-1 3124:10.1021/cb300648v 3015:(15): 6327–6339. 2933:10.1021/bi962880t 2927:(17): 5212–5222. 2736:(5970): 677–681. 2584:(20): 7024–7027. 2482:(15): 8219–8226. 2212:(4369): 156–157. 2161:(4356): 737–738. 2110:(4361): 964–967. 2080:978-0-19-154658-7 2069:Bates AD (2005). 1960:(5731): 456–461. 1862:(11): 4767–4771. 1803:(11): 3872–3876. 1568:Topoisomerase IIβ 1563:Topoisomerase IIα 1520: 1519: 1114: 1113: 1081:Topoisomerase VI 1062:Topoisomerase IIβ 1042:Topoisomerase IIα 777:Metal dependence 721:Etoposide (VP-16) 377: 376: 373: 372: 292:metabolic pathway 206: 205: 202: 201: 121:metabolic pathway 18:DNA topoisomerase 16:(Redirected from 6284: 6254: 6253: 6245: 6194:Apolipoprotein H 6047:Transglutaminase 6004: 5997: 5990: 5981: 5980: 5727:DNA polymerase I 5611: 5610: 5571:Replication fork 5463:Licensing factor 5279: 5278: 5250: 5243: 5236: 5227: 5226: 5213:topoisomerase IV 5166: 5159: 5152: 5143: 5142: 5019:Hanes–Woolf plot 4962:Enzyme activator 4957:Enzyme inhibitor 4931:Enzyme catalysis 4875: 4868: 4861: 4852: 4851: 4830: 4815:Wang JC (2009). 4803: 4802: 4792: 4782: 4750: 4744: 4743: 4733: 4701: 4695: 4694: 4684: 4674: 4642: 4636: 4635: 4625: 4608:(16): 2799–817. 4593: 4587: 4586: 4576: 4536: 4530: 4529: 4519: 4487: 4481: 4480: 4436: 4430: 4429: 4419: 4409: 4385: 4374: 4373: 4363: 4323: 4314: 4313: 4288:(6): 1011–1023. 4273: 4264: 4263: 4219: 4208: 4207: 4182:(6): 2483–2493. 4167: 4158: 4157: 4147: 4115: 4109: 4108: 4098: 4066: 4053: 4052: 4035:(7): 1005–1024. 4024: 4018: 4017: 3988: 3982: 3981: 3971: 3954:(5): 1008–1014. 3939: 3933: 3932: 3915:(1–3): 173–184. 3904: 3895: 3894: 3868: 3855: 3854: 3844: 3812: 3801: 3800: 3766: 3760: 3759: 3749: 3739: 3722:(5): 1361–1365. 3707: 3701: 3700: 3690: 3673:(3): 1581–1596. 3658: 3652: 3651: 3641: 3631: 3599: 3593: 3592: 3582: 3550: 3544: 3543: 3533: 3501: 3495: 3494: 3476: 3452: 3446: 3445: 3435: 3403: 3397: 3396: 3370: 3361: 3360: 3350: 3340: 3316: 3307: 3306: 3296: 3264: 3258: 3257: 3247: 3215: 3206: 3205: 3195: 3163: 3146: 3145: 3135: 3103: 3094: 3093: 3083: 3073: 3049: 3043: 3042: 3032: 3000: 2994: 2993: 2983: 2951: 2945: 2944: 2916: 2910: 2909: 2873: 2864: 2863: 2853: 2843: 2819: 2813: 2812: 2776: 2770: 2769: 2750:10.1038/309677a0 2725: 2716: 2715: 2705: 2681: 2675: 2674: 2664: 2628: 2622: 2621: 2611: 2601: 2569: 2563: 2562: 2526: 2520: 2519: 2509: 2499: 2467: 2461: 2460: 2424: 2418: 2417: 2407: 2397: 2365: 2359: 2358: 2346: 2340: 2339: 2329: 2319: 2287: 2281: 2280: 2252: 2246: 2245: 2226:10.1038/172156a0 2201: 2195: 2194: 2175:10.1038/171737a0 2150: 2144: 2143: 2124:10.1038/171964b0 2099: 2093: 2092: 2066: 2053: 2052: 2042: 2032: 2015:(8): 3737–3741. 2000: 1994: 1993: 1974:10.1038/281456a0 1949: 1943: 1942: 1906: 1900: 1899: 1889: 1879: 1847: 1841: 1840: 1830: 1820: 1788: 1782: 1781: 1771: 1761: 1737: 1731: 1730: 1702: 1696: 1695: 1685: 1653: 1647: 1646: 1628: 1596: 1370:, γH2AX, TRIM28 1193: 1189: 1022:Topoisomerase IV 945:Topoisomerase V 936:(Vaccinia virus) 933:Topoisomerase I 794:Topoisomerase I 762: 761: 412:Escherichia coli 330: 329: 208: 207: 159: 158: 30: 29: 27:Class of enzymes 21: 6292: 6291: 6287: 6286: 6285: 6283: 6282: 6281: 6277:DNA replication 6262: 6261: 6260: 6248: 6240: 6238: 6233: 6172: 6064: 6041: 6013: 6008: 5978: 5973: 5930: 5908: 5748: 5744: 5738: 5732:Klenow fragment 5615: 5596: 5580:leading strands 5544: 5354: 5350: 5344: 5283: 5268: 5257:DNA replication 5254: 5224: 5219: 5184: 5170: 5140: 5135: 5047:Oxidoreductases 5033: 5009:Enzyme kinetics 4997: 4993:List of enzymes 4966: 4935: 4906:Catalytic triad 4884: 4879: 4837: 4827: 4811: 4809:Further reading 4806: 4751: 4747: 4702: 4698: 4657:(7): e0249691. 4643: 4639: 4594: 4590: 4537: 4533: 4488: 4484: 4437: 4433: 4386: 4377: 4324: 4317: 4274: 4267: 4220: 4211: 4168: 4161: 4116: 4112: 4067: 4056: 4025: 4021: 4000:(12): 745–752. 3989: 3985: 3940: 3936: 3905: 3898: 3891: 3869: 3858: 3813: 3804: 3789: 3767: 3763: 3708: 3704: 3659: 3655: 3600: 3596: 3551: 3547: 3502: 3498: 3453: 3449: 3404: 3400: 3385: 3371: 3364: 3317: 3310: 3265: 3261: 3236:10.1038/nrd3404 3216: 3209: 3164: 3149: 3104: 3097: 3050: 3046: 3001: 2997: 2952: 2948: 2917: 2913: 2874: 2867: 2820: 2816: 2777: 2773: 2726: 2719: 2682: 2678: 2629: 2625: 2570: 2566: 2527: 2523: 2468: 2464: 2441:10.2307/2373348 2425: 2421: 2366: 2362: 2347: 2343: 2288: 2284: 2253: 2249: 2202: 2198: 2151: 2147: 2100: 2096: 2081: 2067: 2056: 2001: 1997: 1950: 1946: 1907: 1903: 1848: 1844: 1789: 1785: 1738: 1734: 1703: 1699: 1654: 1650: 1611:(4): e2000286. 1597: 1590: 1586: 1558:Topoisomerase I 1534: 1525: 1132: 1119: 1095:Heterotetramer 1036:Heterotetramer 1001:Heterotetramer 894:Topoisomerase I 876:Reverse gyrase 780:ATP dependence 768:Subfamily type 756: 732: 723: 709: 696: 676: 669: 664: 655: 646: 633: 631:As drug targets 624: 607: 599: 583: 571: 558: 529: 520: 499: 446: 404: 28: 23: 22: 15: 12: 11: 5: 6290: 6280: 6279: 6274: 6259: 6258: 6235: 6234: 6232: 6231: 6226: 6221: 6216: 6211: 6206: 6201: 6196: 6191: 6186: 6180: 6178: 6174: 6173: 6171: 6170: 6165: 6160: 6155: 6150: 6145: 6140: 6135: 6130: 6125: 6120: 6115: 6110: 6105: 6100: 6095: 6090: 6085: 6080: 6074: 6072: 6066: 6065: 6063: 6062: 6057: 6051: 6049: 6043: 6042: 6040: 6039: 6034: 6029: 6023: 6021: 6015: 6014: 6007: 6006: 5999: 5992: 5984: 5975: 5974: 5972: 5971: 5970: 5969: 5964: 5959: 5944: 5942: 5936: 5935: 5932: 5931: 5929: 5928: 5923: 5916: 5914: 5910: 5909: 5907: 5906: 5900: 5899: 5898: 5897: 5886: 5885: 5884: 5883: 5878: 5873: 5868: 5858: 5857: 5856: 5851: 5846: 5841: 5831: 5830: 5829: 5824: 5819: 5814: 5804: 5797: 5796: 5795: 5794: 5784: 5779: 5778: 5777: 5767: 5766: 5765: 5754: 5752: 5740: 5739: 5737: 5736: 5735: 5734: 5719: 5718: 5717: 5716: 5706: 5701: 5696: 5691: 5690: 5689: 5684: 5679: 5674: 5669: 5664: 5659: 5654: 5649: 5644: 5639: 5634: 5623: 5621: 5608: 5602: 5601: 5598: 5597: 5595: 5594: 5589: 5584: 5583: 5582: 5567: 5566: 5552: 5550: 5546: 5545: 5543: 5542: 5537: 5527: 5526: 5516: 5515: 5514: 5513: 5508: 5497: 5496: 5495: 5494: 5489: 5484: 5473: 5472: 5466: 5465: 5459: 5458: 5457: 5456: 5451: 5446: 5441: 5436: 5431: 5420: 5419: 5413: 5412: 5406: 5405: 5404: 5403: 5398: 5393: 5388: 5383: 5378: 5367: 5366: 5360: 5358: 5353:preparation in 5346: 5345: 5343: 5342: 5341: 5340: 5329: 5328: 5327: 5326: 5321: 5316: 5305: 5304: 5298: 5297: 5291: 5289: 5276: 5270: 5269: 5253: 5252: 5245: 5238: 5230: 5221: 5220: 5218: 5217: 5216: 5215: 5210: 5200: 5194: 5192: 5186: 5185: 5177:topoisomerases 5169: 5168: 5161: 5154: 5146: 5137: 5136: 5134: 5133: 5120: 5107: 5094: 5081: 5068: 5055: 5041: 5039: 5035: 5034: 5032: 5031: 5026: 5021: 5016: 5011: 5005: 5003: 4999: 4998: 4996: 4995: 4990: 4985: 4980: 4974: 4972: 4971:Classification 4968: 4967: 4965: 4964: 4959: 4954: 4949: 4943: 4941: 4937: 4936: 4934: 4933: 4928: 4923: 4918: 4913: 4908: 4903: 4898: 4892: 4890: 4886: 4885: 4878: 4877: 4870: 4863: 4855: 4849: 4848: 4836: 4835:External links 4833: 4832: 4831: 4825: 4810: 4807: 4805: 4804: 4745: 4716:(14): 166897. 4696: 4637: 4588: 4531: 4502:(6): 1056–72. 4482: 4431: 4375: 4315: 4265: 4209: 4159: 4130:(10): 210221. 4110: 4054: 4019: 3983: 3934: 3896: 3889: 3856: 3802: 3787: 3761: 3702: 3653: 3594: 3545: 3496: 3467:(4): 971–979. 3447: 3398: 3383: 3362: 3308: 3279:(4): 459–471. 3259: 3207: 3178:(5): 421–433. 3147: 3095: 3044: 2995: 2966:(3): 693–701. 2946: 2911: 2865: 2814: 2787:(3): 697–707. 2771: 2717: 2696:(7): 655–663. 2676: 2623: 2564: 2537:(3): 659–669. 2521: 2462: 2435:(3): 693–728. 2419: 2380:(4): 815–819. 2360: 2341: 2302:(9): 783–788. 2282: 2247: 2196: 2145: 2094: 2079: 2054: 1995: 1944: 1917:(2): 461–467. 1901: 1842: 1783: 1752:(1): 143–146. 1732: 1713:(3): 523–533. 1697: 1648: 1587: 1585: 1582: 1581: 1580: 1575: 1570: 1565: 1560: 1555: 1550: 1545: 1540: 1533: 1530: 1524: 1521: 1518: 1517: 1515: 1512: 1509: 1506: 1503: 1500: 1497: 1493: 1492: 1490: 1487: 1465: 1462: 1459: 1456: 1437: 1433: 1432: 1430: 1427: 1405: 1402: 1399: 1396: 1381: 1377: 1376: 1374: 1371: 1361: 1358: 1355: 1352: 1329: 1325: 1324: 1322: 1319: 1290: 1287: 1284: 1281: 1274: 1268: 1267: 1265: 1262: 1241: 1238: 1235: 1232: 1225: 1219: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1131: 1128: 1118: 1115: 1112: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1085: 1078: 1077: 1074: 1071: 1058: 1057: 1054: 1051: 1038: 1037: 1034: 1031: 1018: 1017: 1014: 1011: 1008: 1005: 1002: 999: 996: 991: 976: 975: 972: 969: 966: 963: 960: 957: 954: 949: 942: 941: 939: 930: 929: 926: 923: 920: 917: 914: 911: 908: 903: 890: 889: 886: 883: 880: 873: 872: 869: 856: 855: 851: 838: 837: 834: 823: 822: 819: 816: 813: 810: 807: 802: 791: 790: 787: 784: 781: 778: 775: 774:Multimericity 772: 769: 766: 765:Topoisomerase 755: 752: 731: 728: 722: 719: 708: 705: 695: 692: 675: 672: 667: 663: 662:Aminocoumarins 660: 654: 651: 645: 642: 632: 629: 623: 620: 606: 603: 597: 582: 579: 570: 567: 557: 554: 528: 525: 519: 516: 498: 495: 445: 442: 420:James Champoux 403: 400: 384:topoisomerases 375: 374: 371: 370: 365: 359: 358: 353: 347: 346: 341: 335: 334: 326: 325: 314: 307: 306: 301: 295: 294: 289: 283: 282: 277: 271: 270: 265: 259: 258: 253: 247: 246: 241: 235: 234: 230: 229: 224: 218: 217: 213: 212: 204: 203: 200: 199: 194: 188: 187: 182: 176: 175: 170: 164: 163: 155: 154: 143: 136: 135: 130: 124: 123: 118: 112: 111: 106: 100: 99: 94: 88: 87: 82: 76: 75: 70: 64: 63: 59: 58: 53: 47: 46: 41: 35: 34: 26: 9: 6: 4: 3: 2: 6289: 6278: 6275: 6273: 6270: 6269: 6267: 6257: 6252: 6247: 6246: 6243: 6230: 6229:Topoisomerase 6227: 6225: 6222: 6220: 6217: 6215: 6212: 6210: 6207: 6205: 6202: 6200: 6197: 6195: 6192: 6190: 6187: 6185: 6182: 6181: 6179: 6175: 6169: 6166: 6164: 6161: 6159: 6156: 6154: 6151: 6149: 6146: 6144: 6141: 6139: 6136: 6134: 6131: 6129: 6126: 6124: 6121: 6119: 6116: 6114: 6111: 6109: 6106: 6104: 6101: 6099: 6096: 6094: 6091: 6089: 6086: 6084: 6081: 6079: 6076: 6075: 6073: 6071: 6067: 6061: 6058: 6056: 6053: 6052: 6050: 6048: 6044: 6038: 6035: 6033: 6030: 6028: 6025: 6024: 6022: 6020: 6019:Dehydrogenase 6016: 6012: 6005: 6000: 5998: 5993: 5991: 5986: 5985: 5982: 5968: 5965: 5963: 5960: 5958: 5955: 5954: 5953: 5949: 5946: 5945: 5943: 5941: 5937: 5927: 5924: 5922: 5918: 5917: 5915: 5911: 5905: 5902: 5901: 5896: 5893: 5892: 5891: 5888: 5887: 5882: 5879: 5877: 5874: 5872: 5869: 5867: 5864: 5863: 5862: 5859: 5855: 5852: 5850: 5847: 5845: 5842: 5840: 5837: 5836: 5835: 5832: 5828: 5825: 5823: 5820: 5818: 5815: 5813: 5810: 5809: 5808: 5805: 5802: 5799: 5798: 5793: 5790: 5789: 5788: 5785: 5783: 5782:Topoisomerase 5780: 5776: 5773: 5772: 5771: 5768: 5764: 5761: 5760: 5759: 5756: 5755: 5753: 5750: 5741: 5733: 5730: 5729: 5728: 5724: 5721: 5720: 5715: 5712: 5711: 5710: 5709:Topoisomerase 5707: 5705: 5702: 5700: 5697: 5695: 5692: 5688: 5685: 5683: 5680: 5678: 5675: 5673: 5670: 5668: 5665: 5663: 5660: 5658: 5655: 5653: 5650: 5648: 5645: 5643: 5640: 5638: 5635: 5633: 5630: 5629: 5628: 5625: 5624: 5622: 5619: 5612: 5609: 5607: 5603: 5593: 5590: 5588: 5585: 5581: 5577: 5574: 5573: 5572: 5569: 5568: 5565: 5561: 5557: 5554: 5553: 5551: 5547: 5541: 5538: 5536: 5532: 5529: 5528: 5525: 5521: 5518: 5517: 5512: 5509: 5507: 5504: 5503: 5502: 5499: 5498: 5493: 5490: 5488: 5485: 5483: 5480: 5479: 5478: 5475: 5474: 5471: 5468: 5467: 5464: 5461: 5460: 5455: 5452: 5450: 5447: 5445: 5442: 5440: 5437: 5435: 5432: 5430: 5427: 5426: 5425: 5422: 5421: 5418: 5415: 5414: 5411: 5408: 5407: 5402: 5399: 5397: 5394: 5392: 5389: 5387: 5384: 5382: 5379: 5377: 5374: 5373: 5372: 5369: 5368: 5365: 5362: 5361: 5359: 5356: 5347: 5339: 5336: 5335: 5334: 5331: 5330: 5325: 5322: 5320: 5317: 5315: 5312: 5311: 5310: 5307: 5306: 5303: 5300: 5299: 5296: 5293: 5292: 5290: 5287: 5280: 5277: 5275: 5271: 5266: 5262: 5258: 5251: 5246: 5244: 5239: 5237: 5232: 5231: 5228: 5214: 5211: 5209: 5206: 5205: 5204: 5201: 5199: 5196: 5195: 5193: 5191: 5187: 5182: 5178: 5174: 5167: 5162: 5160: 5155: 5153: 5148: 5147: 5144: 5131: 5127: 5126: 5121: 5118: 5114: 5113: 5108: 5105: 5101: 5100: 5095: 5092: 5088: 5087: 5082: 5079: 5075: 5074: 5069: 5066: 5062: 5061: 5056: 5053: 5049: 5048: 5043: 5042: 5040: 5036: 5030: 5027: 5025: 5022: 5020: 5017: 5015: 5012: 5010: 5007: 5006: 5004: 5000: 4994: 4991: 4989: 4988:Enzyme family 4986: 4984: 4981: 4979: 4976: 4975: 4973: 4969: 4963: 4960: 4958: 4955: 4953: 4952:Cooperativity 4950: 4948: 4945: 4944: 4942: 4938: 4932: 4929: 4927: 4924: 4922: 4919: 4917: 4914: 4912: 4911:Oxyanion hole 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4893: 4891: 4887: 4883: 4876: 4871: 4869: 4864: 4862: 4857: 4856: 4853: 4846: 4842: 4839: 4838: 4828: 4822: 4818: 4813: 4812: 4800: 4796: 4791: 4786: 4781: 4776: 4772: 4768: 4764: 4760: 4756: 4749: 4741: 4737: 4732: 4727: 4723: 4719: 4715: 4711: 4707: 4700: 4692: 4688: 4683: 4678: 4673: 4668: 4664: 4660: 4656: 4652: 4648: 4641: 4633: 4629: 4624: 4619: 4615: 4611: 4607: 4603: 4602:Mol Cell Biol 4599: 4592: 4584: 4580: 4575: 4570: 4566: 4562: 4558: 4554: 4550: 4546: 4542: 4535: 4527: 4523: 4518: 4513: 4509: 4505: 4501: 4497: 4493: 4486: 4478: 4474: 4470: 4466: 4462: 4458: 4454: 4450: 4446: 4442: 4435: 4427: 4423: 4418: 4413: 4408: 4403: 4399: 4395: 4391: 4384: 4382: 4380: 4371: 4367: 4362: 4357: 4353: 4349: 4345: 4341: 4337: 4333: 4329: 4322: 4320: 4311: 4307: 4303: 4299: 4295: 4291: 4287: 4283: 4279: 4272: 4270: 4261: 4257: 4253: 4249: 4245: 4241: 4237: 4233: 4229: 4225: 4218: 4216: 4214: 4205: 4201: 4197: 4193: 4189: 4185: 4181: 4177: 4173: 4166: 4164: 4155: 4151: 4146: 4141: 4137: 4133: 4129: 4125: 4121: 4114: 4106: 4102: 4097: 4092: 4088: 4084: 4080: 4076: 4072: 4065: 4063: 4061: 4059: 4050: 4046: 4042: 4038: 4034: 4030: 4023: 4015: 4011: 4007: 4003: 3999: 3995: 3987: 3979: 3975: 3970: 3965: 3961: 3957: 3953: 3949: 3945: 3938: 3930: 3926: 3922: 3918: 3914: 3910: 3903: 3901: 3892: 3890:9780128125229 3886: 3882: 3878: 3874: 3867: 3865: 3863: 3861: 3852: 3848: 3843: 3838: 3834: 3830: 3826: 3822: 3818: 3811: 3809: 3807: 3798: 3794: 3790: 3784: 3780: 3776: 3772: 3765: 3757: 3753: 3748: 3743: 3738: 3733: 3729: 3725: 3721: 3717: 3713: 3706: 3698: 3694: 3689: 3684: 3680: 3676: 3672: 3668: 3664: 3657: 3649: 3645: 3640: 3635: 3630: 3625: 3621: 3617: 3613: 3609: 3605: 3598: 3590: 3586: 3581: 3576: 3572: 3568: 3564: 3560: 3556: 3549: 3541: 3537: 3532: 3527: 3523: 3519: 3515: 3511: 3507: 3500: 3492: 3488: 3484: 3480: 3475: 3470: 3466: 3462: 3458: 3451: 3443: 3439: 3434: 3429: 3425: 3421: 3417: 3413: 3409: 3402: 3394: 3390: 3386: 3380: 3376: 3369: 3367: 3358: 3354: 3349: 3344: 3339: 3334: 3330: 3326: 3322: 3315: 3313: 3304: 3300: 3295: 3290: 3286: 3282: 3278: 3274: 3270: 3263: 3255: 3251: 3246: 3241: 3237: 3233: 3229: 3225: 3221: 3214: 3212: 3203: 3199: 3194: 3189: 3185: 3181: 3177: 3173: 3169: 3162: 3160: 3158: 3156: 3154: 3152: 3143: 3139: 3134: 3129: 3125: 3121: 3117: 3113: 3109: 3102: 3100: 3091: 3087: 3082: 3077: 3072: 3067: 3063: 3059: 3055: 3048: 3040: 3036: 3031: 3026: 3022: 3018: 3014: 3010: 3006: 2999: 2991: 2987: 2982: 2977: 2973: 2969: 2965: 2961: 2957: 2950: 2942: 2938: 2934: 2930: 2926: 2922: 2915: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2870: 2861: 2857: 2852: 2847: 2842: 2837: 2833: 2829: 2825: 2818: 2810: 2806: 2802: 2798: 2794: 2790: 2786: 2782: 2775: 2767: 2763: 2759: 2755: 2751: 2747: 2743: 2739: 2735: 2731: 2724: 2722: 2713: 2709: 2704: 2699: 2695: 2691: 2687: 2680: 2672: 2668: 2663: 2658: 2654: 2650: 2646: 2642: 2638: 2636: 2627: 2619: 2615: 2610: 2605: 2600: 2595: 2591: 2587: 2583: 2579: 2575: 2568: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2525: 2517: 2513: 2508: 2503: 2498: 2493: 2489: 2485: 2481: 2477: 2473: 2466: 2458: 2454: 2450: 2446: 2442: 2438: 2434: 2430: 2423: 2415: 2411: 2406: 2401: 2396: 2391: 2387: 2383: 2379: 2375: 2371: 2364: 2356: 2352: 2345: 2337: 2333: 2328: 2323: 2318: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2278: 2274: 2270: 2266: 2262: 2258: 2251: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2200: 2192: 2188: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2149: 2141: 2137: 2133: 2129: 2125: 2121: 2117: 2113: 2109: 2105: 2098: 2090: 2086: 2082: 2076: 2072: 2065: 2063: 2061: 2059: 2050: 2046: 2041: 2036: 2031: 2026: 2022: 2018: 2014: 2010: 2006: 1999: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1948: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1912: 1905: 1897: 1893: 1888: 1883: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1846: 1838: 1834: 1829: 1824: 1819: 1814: 1810: 1806: 1802: 1798: 1794: 1787: 1779: 1775: 1770: 1765: 1760: 1755: 1751: 1747: 1743: 1736: 1728: 1724: 1720: 1716: 1712: 1708: 1701: 1693: 1689: 1684: 1679: 1675: 1671: 1667: 1663: 1659: 1652: 1644: 1640: 1636: 1632: 1627: 1622: 1618: 1614: 1610: 1606: 1602: 1595: 1593: 1588: 1579: 1576: 1574: 1571: 1569: 1566: 1564: 1561: 1559: 1556: 1554: 1551: 1549: 1546: 1544: 1541: 1539: 1536: 1535: 1529: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1494: 1491: 1489:Up to 2 hours 1488: 1485: 1481: 1477: 1473: 1469: 1466: 1463: 1460: 1457: 1455: 1454: 1450: 1446: 1442: 1438: 1435: 1434: 1431: 1428: 1425: 1421: 1417: 1413: 1409: 1406: 1403: 1400: 1397: 1395: 1394: 1390: 1386: 1382: 1379: 1378: 1375: 1372: 1369: 1365: 1362: 1359: 1356: 1353: 1351: 1350: 1346: 1342: 1338: 1334: 1330: 1327: 1326: 1323: 1320: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1291: 1288: 1285: 1282: 1280: 1279: 1275: 1273: 1270: 1269: 1266: 1263: 1261: 1257: 1253: 1249: 1245: 1242: 1239: 1236: 1233: 1231: 1230: 1226: 1224: 1221: 1220: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1194: 1188: 1185: 1181: 1177: 1173: 1164: 1160: 1156: 1152: 1150: 1149:dexamethasone 1146: 1142: 1138: 1127: 1125: 1109: 1106: 1103: 1100: 1097: 1094: 1091: 1089: 1086: 1084: 1080: 1079: 1075: 1072: 1070: 1068: 1063: 1060: 1059: 1055: 1052: 1050: 1048: 1043: 1040: 1039: 1035: 1032: 1030: 1028: 1023: 1020: 1019: 1000: 997: 995: 990: 988: 982: 978: 977: 973: 970: 967: 964: 961: 958: 955: 953: 950: 948: 944: 943: 940: 938: 937: 932: 931: 907: 904: 902: 900: 895: 892: 891: 887: 884: 881: 879: 875: 874: 870: 868: 866: 861: 858: 857: 852: 850: 848: 843: 840: 839: 835: 833: 831: 825: 824: 808: 806: 801: 799: 793: 792: 788: 785: 782: 779: 776: 773: 770: 767: 764: 763: 760: 751: 748: 740: 736: 727: 718: 716: 715: 704: 702: 688: 684: 680: 671: 659: 650: 641: 639: 628: 619: 617: 613: 595: 591: 587: 578: 576: 566: 564: 550: 546: 542: 539: 535: 524: 511: 507: 503: 491: 487: 483: 481: 477: 472: 466: 458: 454: 450: 441: 439: 434: 430: 425: 421: 417: 413: 409: 408:James C. Wang 399: 397: 396:transcription 393: 389: 385: 381: 369: 366: 364: 360: 357: 354: 352: 348: 345: 342: 340: 336: 331: 327: 324: 321: 318: 315: 312: 308: 305: 302: 300: 296: 293: 290: 288: 284: 281: 278: 276: 272: 269: 268:NiceZyme view 266: 264: 260: 257: 254: 252: 248: 245: 242: 240: 236: 231: 228: 225: 223: 219: 214: 209: 198: 195: 193: 189: 186: 183: 181: 177: 174: 171: 169: 165: 160: 156: 153: 150: 147: 144: 141: 137: 134: 131: 129: 125: 122: 119: 117: 113: 110: 107: 105: 101: 98: 97:NiceZyme view 95: 93: 89: 86: 83: 81: 77: 74: 71: 69: 65: 60: 57: 54: 52: 48: 45: 42: 40: 36: 31: 19: 6228: 6214:Gangliosides 6070:Nucleoporins 6011:Autoantigens 5921:Processivity 5781: 5747:synthesis in 5708: 5176: 5125:Translocases 5122: 5109: 5096: 5083: 5070: 5060:Transferases 5057: 5044: 4901:Binding site 4816: 4762: 4758: 4748: 4713: 4709: 4699: 4654: 4650: 4640: 4605: 4601: 4591: 4548: 4544: 4534: 4499: 4495: 4485: 4444: 4440: 4434: 4397: 4393: 4335: 4331: 4285: 4281: 4227: 4223: 4179: 4175: 4127: 4123: 4113: 4078: 4074: 4032: 4028: 4022: 3997: 3993: 3986: 3951: 3947: 3937: 3912: 3908: 3872: 3824: 3821:Biochemistry 3820: 3770: 3764: 3719: 3715: 3705: 3670: 3666: 3656: 3611: 3607: 3597: 3562: 3558: 3548: 3513: 3509: 3499: 3464: 3460: 3450: 3415: 3411: 3401: 3374: 3331:(23): 5662. 3328: 3324: 3276: 3272: 3262: 3230:(1): 25–36. 3227: 3223: 3175: 3171: 3118:(1): 82–95. 3115: 3111: 3061: 3057: 3047: 3012: 3008: 2998: 2963: 2959: 2949: 2924: 2921:Biochemistry 2920: 2914: 2881: 2877: 2834:(2): 83–93. 2831: 2827: 2817: 2784: 2780: 2774: 2733: 2729: 2693: 2689: 2679: 2644: 2640: 2634: 2626: 2581: 2577: 2567: 2534: 2530: 2524: 2479: 2475: 2465: 2432: 2428: 2422: 2377: 2373: 2363: 2354: 2350: 2344: 2299: 2295: 2285: 2260: 2256: 2250: 2209: 2205: 2199: 2158: 2154: 2148: 2107: 2103: 2097: 2071:DNA topology 2070: 2012: 2008: 1998: 1957: 1953: 1947: 1914: 1910: 1904: 1859: 1855: 1845: 1800: 1796: 1786: 1749: 1745: 1735: 1710: 1706: 1700: 1668:(1): 59–75. 1665: 1662:Acta Naturae 1661: 1651: 1608: 1604: 1538:DNA topology 1526: 1439: 1383: 1331: 1276: 1227: 1208:DSB location 1168: 1158: 1133: 1120: 1087: 1082: 1066: 1064: 1046: 1044: 1026: 1024: 993: 986: 984: 951: 946: 935: 934: 905: 898: 896: 877: 864: 862: 846: 844: 829: 827: 804: 797: 795: 757: 747:Streptomyces 746: 744: 738: 724: 712: 710: 697: 686: 677: 665: 656: 647: 634: 625: 608: 593: 584: 574: 572: 559: 548: 530: 521: 509: 500: 489: 479: 475: 467: 463: 456: 447: 444:DNA topology 415: 411: 405: 383: 379: 378: 256:BRENDA entry 85:BRENDA entry 6199:Cardiolipin 5940:Termination 5614:Prokaryotic 5606:Replication 5282:Prokaryotic 5261:prokaryotic 5259:(comparing 4896:Active site 4394:J Biol Chem 4338:(1): 4846. 730:Doxorubicin 392:replication 244:IntEnz view 216:Identifiers 73:IntEnz view 56:80449-01-0 33:Identifiers 6266:Categories 6204:Centromere 5952:Telomerase 5926:DNA ligase 5919:Movement: 5743:Eukaryotic 5714:DNA gyrase 5699:DNA ligase 5618:elongation 5349:Eukaryotic 5286:initiation 5274:Initiation 5265:eukaryotic 5099:Isomerases 5073:Hydrolases 4940:Regulation 4710:J Mol Biol 4545:Nat Commun 4332:Nat Commun 1584:References 1511:not tested 1429:15 minutes 1264:10 minutes 1172:histone H1 1083:(Archaea) 1076:Homodimer 1067:H. sapiens 1056:Homodimer 1047:H. sapiens 981:DNA gyrase 947:(Archaea) 899:H. sapiens 878:(Archaea) 865:H. sapiens 847:H. sapiens 424:DNA gyrase 313:structures 280:KEGG entry 142:structures 109:KEGG entry 6272:EC 5.99.1 5890:DNA clamp 5704:DNA clamp 5694:Replisome 5173:Isomerase 4978:EC number 4551:: 10191. 4477:206508330 4310:256819778 4282:Nat Genet 4260:206508330 4204:243846627 4124:Open Biol 4081:: 27–34. 3393:227210110 3325:Molecules 2449:0002-9327 1643:231679533 1605:BioEssays 1543:Supercoil 1508:promoters 1223:Estradiol 1098:Yes (Mg) 1004:Yes (Mg) 815:Yes (Mg) 771:Function 754:Merbarone 739:Figure 7. 534:topo IIIα 510:Figure 3. 471:Leroy Liu 457:Figure 1. 402:Discovery 233:Databases 62:Databases 6224:Thrombin 5948:Telomere 5564:Replicon 5520:Helicase 5511:RNASEH2A 5355:G1 phase 5309:Helicase 5002:Kinetics 4926:Cofactor 4889:Activity 4799:29691322 4740:33640324 4691:34197463 4651:PLOS ONE 4632:26055322 4583:26671524 4526:19303849 4469:16794079 4426:32029477 4370:31649282 4302:31110352 4252:16794079 4196:34747992 4154:34610268 4105:29254824 4049:15892593 3978:19383846 3851:34008964 3697:33434265 3648:33836580 3589:24990966 3540:16963775 3491:40019620 3483:12010492 3442:31181289 3357:33271787 3303:25875873 3254:22173432 3202:20534341 3142:23259582 3090:35076393 3039:21525132 2990:19106140 2860:17350929 2671:31266875 2559:24408315 2516:11459956 2336:16589559 2277:14017761 2234:13072614 2183:13054692 2132:13063483 2089:64239232 1939:42645648 1692:33959387 1635:33480441 1532:See also 1476:DNA-PKcs 1468:topo IIβ 1464:promoter 1416:DNA-PKcs 1408:topo IIβ 1404:promoter 1387:, MMTV, 1364:DNA-PKcs 1301:DNA-PKcs 1293:topo IIβ 1289:promoter 1252:DNA-PKcs 1244:topo IIβ 1240:promoter 1137:estrogen 1088:Type IIB 994:Type IIA 959:Monomer 913:Monomer 812:Monomer 687:Figure 6 622:Type IIB 616:topo IIβ 612:topo IIα 605:Type IIA 594:Figure 5 549:Figure 4 490:Figure 2 368:proteins 356:articles 344:articles 317:RCSB PDB 197:proteins 185:articles 173:articles 146:RCSB PDB 6256:Biology 5861:epsilon 5749:S phase 5576:Lagging 5531:Primase 5506:RNASEH1 5501:RNase H 5333:Primase 5112:Ligases 4882:Enzymes 4790:5949015 4767:Bibcode 4731:8184617 4682:8248687 4659:Bibcode 4623:4508321 4574:4703865 4553:Bibcode 4517:2768498 4449:Bibcode 4441:Science 4417:7086017 4361:6813358 4340:Bibcode 4232:Bibcode 4224:Science 4145:8492178 4096:5894330 4014:3137469 3969:2888777 3929:9748560 3842:8209676 3797:8996602 3756:6324188 3724:Bibcode 3688:7897471 3639:7980463 3616:Bibcode 3580:4083091 3531:1635281 3433:6722960 3348:7730664 3294:4415981 3245:7380715 3193:7316379 3133:3549721 3081:8837201 3030:3159449 2981:2647283 2941:9136883 2906:9488652 2886:Bibcode 2878:Science 2851:2686386 2828:Archaea 2809:8921868 2801:6244895 2766:4242694 2758:6328327 2738:Bibcode 2712:1488550 2662:6606810 2618:2823250 2586:Bibcode 2551:6269752 2484:Bibcode 2457:2373348 2414:5279522 2382:Bibcode 2357:: 5–20. 2304:Bibcode 2242:4169572 2214:Bibcode 2191:4253007 2163:Bibcode 2140:4256010 2112:Bibcode 2017:Bibcode 1990:4343962 1962:Bibcode 1931:6248247 1864:Bibcode 1805:Bibcode 1778:4333036 1727:4927945 1683:8084294 1626:7614492 1393:HSD11B2 1321:3 hours 1315:(PP1), 1272:Insulin 1145:insulin 1027:E. coli 987:E. coli 952:Type IC 906:Type IB 830:E. coli 805:Type IA 798:E. coli 581:Type II 569:Type IC 556:Type IB 527:Type IA 480:E. coli 416:E. coli 304:profile 287:MetaCyc 227:5.6.2.2 133:profile 116:MetaCyc 51:CAS no. 44:5.6.2.1 6242:Portal 6168:NUP214 6163:NUP205 6158:NUP210 6153:NUP188 6148:NUP160 6143:NUP155 6138:NUP153 6133:NUP133 6128:NUP107 5592:Primer 5208:gyrase 5086:Lyases 4847:(MeSH) 4823:  4797:  4787:  4738:  4728:  4689:  4679:  4630:  4620:  4581:  4571:  4524:  4514:  4475:  4467:  4424:  4414:  4368:  4358:  4308:  4300:  4258:  4250:  4202:  4194:  4152:  4142:  4103:  4093:  4047:  4012:  3976:  3966:  3927:  3887:  3849:  3839:  3795:  3785:  3754:  3747:344833 3744:  3695:  3685:  3646:  3636:  3614:(11). 3587:  3577:  3538:  3528:  3489:  3481:  3440:  3430:  3391:  3381:  3355:  3345:  3301:  3291:  3252:  3242:  3200:  3190:  3140:  3130:  3088:  3078:  3037:  3027:  2988:  2978:  2939:  2904:  2858:  2848:  2807:  2799:  2764:  2756:  2730:Nature 2710:  2669:  2659:  2616:  2609:299221 2606:  2557:  2549:  2514:  2504:  2455:  2447:  2412:  2405:389050 2402:  2334:  2327:534166 2324:  2275:  2240:  2232:  2206:Nature 2189:  2181:  2155:Nature 2138:  2130:  2104:Nature 2087:  2077:  2049:226976 2047:  2040:383908 2037:  1988:  1982:226889 1980:  1954:Nature 1937:  1929:  1896:200930 1894:  1887:432036 1884:  1837:186775 1835:  1828:431247 1825:  1776:  1769:427563 1766:  1725:  1690:  1680:  1641:  1633:  1623:  1486:, CTCF 1472:PARP-1 1426:, BRG1 1412:PARP-1 1333:HSPA1B 1297:PARP-1 1248:PARP-1 563:topo I 518:Type I 351:PubMed 333:Search 323:PDBsum 263:ExPASy 251:BRENDA 239:IntEnz 222:EC no. 180:PubMed 162:Search 152:PDBsum 92:ExPASy 80:BRENDA 68:IntEnz 39:EC no. 6189:Actin 6177:Other 6123:NUP98 6118:NUP93 6113:NUP88 6108:NUP85 6103:NUP62 6098:NUP54 6093:NUP50 6088:NUP43 6083:NUP37 6078:NUP35 5881:POLE4 5876:POLE3 5871:POLE2 5854:POLD4 5849:POLD3 5844:POLD2 5839:POLD1 5834:delta 5827:PRIM2 5822:PRIM1 5817:POLA2 5812:POLA1 5807:alpha 5540:PRIM2 5535:PRIM1 5492:SSBP4 5487:SSBP3 5482:SSBP2 5190:5.6.2 5038:Types 4473:S2CID 4306:S2CID 4256:S2CID 4200:S2CID 4029:Drugs 3487:S2CID 3058:eLife 2805:S2CID 2762:S2CID 2647:(4). 2555:S2CID 2507:37424 2453:JSTOR 2238:S2CID 2187:S2CID 2136:S2CID 1986:S2CID 1935:S2CID 1639:S2CID 1453:NR4A1 1449:NPAS4 1317:P/CAF 1217:Refs 1180:HMGA2 1176:HMGB1 1141:serum 497:Types 299:PRIAM 128:PRIAM 5967:DKC1 5962:TERC 5957:TERT 5913:Both 5895:PCNA 5866:POLE 5792:RPA1 5775:FEN1 5763:RFC1 5687:holE 5682:holD 5677:holC 5672:holB 5667:holA 5662:dnaX 5657:dnaT 5652:dnaQ 5647:dnaN 5642:dnaH 5637:dnaE 5632:dnaC 5578:and 5549:Both 5524:HFM1 5454:MCM7 5449:MCM6 5444:MCM5 5439:MCM4 5434:MCM3 5429:MCM2 5417:Cdt1 5410:Cdc6 5401:ORC6 5396:ORC5 5391:ORC4 5386:ORC3 5381:ORC2 5376:ORC1 5338:dnaG 5319:dnaB 5314:dnaA 5302:dnaC 5183:5.6) 5130:list 5123:EC7 5117:list 5110:EC6 5104:list 5097:EC5 5091:list 5084:EC4 5078:list 5071:EC3 5065:list 5058:EC2 5052:list 5045:EC1 4821:ISBN 4795:PMID 4736:PMID 4687:PMID 4628:PMID 4579:PMID 4522:PMID 4496:Cell 4465:PMID 4422:PMID 4366:PMID 4298:PMID 4248:PMID 4192:PMID 4150:PMID 4101:PMID 4045:PMID 4010:PMID 3974:PMID 3925:PMID 3913:1400 3885:ISBN 3847:PMID 3793:PMID 3783:ISBN 3752:PMID 3693:PMID 3644:PMID 3585:PMID 3536:PMID 3479:PMID 3438:PMID 3389:OCLC 3379:ISBN 3353:PMID 3299:PMID 3250:PMID 3198:PMID 3138:PMID 3086:PMID 3035:PMID 2986:PMID 2937:PMID 2902:PMID 2856:PMID 2797:PMID 2781:Cell 2754:PMID 2708:PMID 2667:PMID 2641:mBio 2635:oriC 2614:PMID 2547:PMID 2531:Cell 2512:PMID 2445:ISSN 2410:PMID 2332:PMID 2273:PMID 2230:PMID 2179:PMID 2128:PMID 2085:OCLC 2075:ISBN 2045:PMID 1978:PMID 1927:PMID 1911:Cell 1892:PMID 1833:PMID 1774:PMID 1723:PMID 1688:PMID 1631:PMID 1484:Ku80 1480:Ku70 1445:EGR1 1424:Ku80 1420:Ku70 1389:PLZF 1368:Ku70 1345:EGR1 1309:Ku80 1305:Ku70 1278:FASN 1260:Ku80 1256:Ku70 1101:Yes 1007:Yes 888:Yes 614:and 538:IIIβ 536:and 476:oriC 394:and 382:(or 363:NCBI 320:PDBe 275:KEGG 192:NCBI 149:PDBe 104:KEGG 5560:Ori 5263:to 4785:PMC 4775:doi 4763:115 4726:PMC 4718:doi 4714:433 4677:PMC 4667:doi 4618:PMC 4610:doi 4569:PMC 4561:doi 4512:PMC 4504:doi 4500:136 4457:doi 4445:312 4412:PMC 4402:doi 4398:295 4356:PMC 4348:doi 4290:doi 4240:doi 4228:312 4184:doi 4140:PMC 4132:doi 4091:PMC 4083:doi 4037:doi 4002:doi 3998:319 3964:PMC 3956:doi 3917:doi 3877:doi 3837:PMC 3829:doi 3775:doi 3742:PMC 3732:doi 3683:PMC 3675:doi 3634:PMC 3624:doi 3612:118 3575:PMC 3567:doi 3526:PMC 3518:doi 3469:doi 3428:PMC 3420:doi 3416:431 3343:PMC 3333:doi 3289:PMC 3281:doi 3240:PMC 3232:doi 3188:PMC 3180:doi 3128:PMC 3120:doi 3076:PMC 3066:doi 3025:PMC 3017:doi 2976:PMC 2968:doi 2929:doi 2894:doi 2882:279 2846:PMC 2836:doi 2789:doi 2746:doi 2734:309 2698:doi 2694:143 2657:PMC 2649:doi 2604:PMC 2594:doi 2539:doi 2502:PMC 2492:doi 2437:doi 2400:PMC 2390:doi 2322:PMC 2312:doi 2265:doi 2222:doi 2210:172 2171:doi 2159:171 2120:doi 2108:171 2035:PMC 2025:doi 1970:doi 1958:281 1919:doi 1882:PMC 1872:doi 1823:PMC 1813:doi 1764:PMC 1754:doi 1715:doi 1678:PMC 1670:doi 1621:PMC 1613:doi 1502:yes 1461:yes 1458:yes 1441:FOS 1401:yes 1398:yes 1385:PS2 1357:yes 1354:yes 1349:MYC 1341:FOS 1337:JUN 1286:yes 1283:yes 1237:yes 1234:yes 1229:pS2 1174:by 1110:±2 1107:5' 1104:DS 1016:±2 1013:5' 1010:DS 974:±n 971:3' 968:SS 965:No 962:No 928:±n 925:3' 922:SS 919:No 916:No 821:SS 818:No 388:DNA 339:PMC 311:PDB 168:PMC 140:PDB 6268:: 5950:: 5725:: 5533:: 5522:: 5324:T7 5181:EC 5175:: 4793:. 4783:. 4773:. 4761:. 4757:. 4734:. 4724:. 4712:. 4708:. 4685:. 4675:. 4665:. 4655:16 4653:. 4649:. 4626:. 4616:. 4606:35 4604:. 4600:. 4577:. 4567:. 4559:. 4547:. 4543:. 4520:. 4510:. 4498:. 4494:. 4471:. 4463:. 4455:. 4443:. 4420:. 4410:. 4396:. 4392:. 4378:^ 4364:. 4354:. 4346:. 4336:10 4334:. 4330:. 4318:^ 4304:. 4296:. 4286:51 4284:. 4280:. 4268:^ 4254:. 4246:. 4238:. 4226:. 4212:^ 4198:. 4190:. 4180:49 4178:. 4174:. 4162:^ 4148:. 4138:. 4128:11 4126:. 4122:. 4099:. 4089:. 4079:87 4077:. 4073:. 4057:^ 4043:. 4033:65 4031:. 4008:. 3996:. 3972:. 3962:. 3950:. 3946:. 3923:. 3911:. 3899:^ 3883:. 3859:^ 3845:. 3835:. 3825:60 3823:. 3819:. 3805:^ 3791:. 3781:. 3750:. 3740:. 3730:. 3720:81 3718:. 3714:. 3691:. 3681:. 3671:49 3669:. 3665:. 3642:. 3632:. 3622:. 3610:. 3606:. 3583:. 3573:. 3563:28 3561:. 3557:. 3534:. 3524:. 3514:34 3512:. 3508:. 3485:. 3477:. 3465:44 3463:. 3459:. 3436:. 3426:. 3414:. 3410:. 3387:. 3365:^ 3351:. 3341:. 3329:25 3327:. 3323:. 3311:^ 3297:. 3287:. 3275:. 3271:. 3248:. 3238:. 3228:11 3226:. 3222:. 3210:^ 3196:. 3186:. 3176:17 3174:. 3170:. 3150:^ 3136:. 3126:. 3114:. 3110:. 3098:^ 3084:. 3074:. 3064:. 3062:11 3060:. 3056:. 3033:. 3023:. 3013:39 3011:. 3007:. 2984:. 2974:. 2964:37 2962:. 2958:. 2935:. 2925:36 2923:. 2900:. 2892:. 2880:. 2868:^ 2854:. 2844:. 2830:. 2826:. 2803:. 2795:. 2785:19 2783:. 2760:. 2752:. 2744:. 2732:. 2720:^ 2706:. 2692:. 2688:. 2665:. 2655:. 2645:10 2643:. 2639:. 2612:. 2602:. 2592:. 2582:84 2580:. 2576:. 2553:. 2545:. 2535:25 2533:. 2510:. 2500:. 2490:. 2480:98 2478:. 2474:. 2451:. 2443:. 2433:91 2431:. 2408:. 2398:. 2388:. 2378:68 2376:. 2372:. 2353:. 2330:. 2320:. 2310:. 2300:40 2298:. 2294:. 2271:. 2259:. 2236:. 2228:. 2220:. 2208:. 2185:. 2177:. 2169:. 2157:. 2134:. 2126:. 2118:. 2106:. 2083:. 2057:^ 2043:. 2033:. 2023:. 2013:76 2011:. 2007:. 1984:. 1976:. 1968:. 1956:. 1933:. 1925:. 1915:20 1913:. 1890:. 1880:. 1870:. 1860:74 1858:. 1854:. 1831:. 1821:. 1811:. 1801:73 1799:. 1795:. 1772:. 1762:. 1750:69 1748:. 1744:. 1721:. 1711:55 1709:. 1686:. 1676:. 1666:13 1664:. 1660:. 1637:. 1629:. 1619:. 1609:43 1607:. 1603:. 1591:^ 1482:, 1478:, 1474:, 1470:, 1451:, 1447:, 1443:, 1422:, 1418:, 1414:, 1410:, 1391:, 1366:, 1347:, 1343:, 1339:, 1335:, 1311:, 1307:, 1303:, 1299:, 1295:, 1258:, 1254:, 1250:, 1246:, 1143:, 1139:, 1069:) 1049:) 1029:) 989:) 983:) 901:) 867:) 849:) 832:) 800:) 703:. 577:. 438:EC 433:EC 429:EC 6244:: 6003:e 5996:t 5989:v 5803:: 5751:) 5745:( 5620:) 5616:( 5562:/ 5558:/ 5357:) 5351:( 5288:) 5284:( 5267:) 5249:e 5242:t 5235:v 5179:( 5165:e 5158:t 5151:v 5132:) 5128:( 5119:) 5115:( 5106:) 5102:( 5093:) 5089:( 5080:) 5076:( 5067:) 5063:( 5054:) 5050:( 4874:e 4867:t 4860:v 4829:. 4801:. 4777:: 4769:: 4742:. 4720:: 4693:. 4669:: 4661:: 4634:. 4612:: 4585:. 4563:: 4555:: 4549:6 4528:. 4506:: 4479:. 4459:: 4451:: 4428:. 4404:: 4372:. 4350:: 4342:: 4312:. 4292:: 4262:. 4242:: 4234:: 4206:. 4186:: 4156:. 4134:: 4107:. 4085:: 4051:. 4039:: 4016:. 4004:: 3980:. 3958:: 3952:8 3931:. 3919:: 3893:. 3879:: 3853:. 3831:: 3799:. 3777:: 3758:. 3734:: 3726:: 3699:. 3677:: 3650:. 3626:: 3618:: 3591:. 3569:: 3542:. 3520:: 3493:. 3471:: 3444:. 3422:: 3395:. 3359:. 3335:: 3305:. 3283:: 3277:7 3256:. 3234:: 3204:. 3182:: 3144:. 3122:: 3116:8 3092:. 3068:: 3041:. 3019:: 2992:. 2970:: 2943:. 2931:: 2908:. 2896:: 2888:: 2862:. 2838:: 2832:2 2811:. 2791:: 2768:. 2748:: 2740:: 2714:. 2700:: 2673:. 2651:: 2637:" 2620:. 2596:: 2588:: 2561:. 2541:: 2518:. 2494:: 2486:: 2459:. 2439:: 2416:. 2392:: 2384:: 2355:4 2338:. 2314:: 2306:: 2279:. 2267:: 2261:6 2244:. 2224:: 2216:: 2193:. 2173:: 2165:: 2142:. 2122:: 2114:: 2091:. 2051:. 2027:: 2019:: 1992:. 1972:: 1964:: 1941:. 1921:: 1898:. 1874:: 1866:: 1839:. 1815:: 1807:: 1780:. 1756:: 1729:. 1717:: 1694:. 1672:: 1645:. 1615:: 1178:/ 1065:( 1045:( 1025:( 985:( 897:( 863:( 845:( 828:( 796:( 668:1 598:i 414:( 20:)

Index

DNA topoisomerase
EC no.
5.6.2.1
CAS no.
80449-01-0
IntEnz
IntEnz view
BRENDA
BRENDA entry
ExPASy
NiceZyme view
KEGG
KEGG entry
MetaCyc
metabolic pathway
PRIAM
profile
PDB
RCSB PDB
PDBe
PDBsum
PMC
articles
PubMed
articles
NCBI
proteins
EC no.
5.6.2.2
IntEnz

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.