Knowledge

Mapping class group of a surface

Source đź“ť

3777:
The study of pseudo-Anosov diffeomorphisms of a surface is fundamental. They are the most interesting diffeomorphisms, since finite-order mapping classes are isotopic to isometries and thus well understood, and the study of reducible classes indeed essentially reduces to the study of mapping classes
4291:
This action, together with combinatorial and geometric properties of the curve complex, can be used to prove various properties of the mapping class group. In particular, it explains some of the hyperbolic properties of the mapping class group: while as mentioned in the previous section the mapping
4883:
One way to prove this theorem is to deduce it from the properties of the action of the mapping class group on the pants complex: the stabiliser of a vertex is seen to be finitely presented, and the action is cofinite. Since the complex is connected and simply connected it follows that the mapping
5772: 4650:
are contained in a subsurface homeomorphic to a torus then they intersect once, and if the surface is a four-holed sphere they intersect twice). Two distinct markings are joined by an edge if they differ by an "elementary move", and the full complex is obtained by adding all possible
4884:
class group must be finitely generated. There are other ways of getting finite presentations, but in practice the only one to yield explicit relations for all geni is that described in this paragraph with a slightly different complex instead of the curve complex, called the
4664:
The mapping class group is generated by the subset of Dehn twists about all simple closed curves on the surface. The Dehn–Lickorish theorem states that it is sufficient to select a finite number of those to generate the mapping class group. This generalises the fact that
1757:
A surface with punctures is a compact surface with a finite number of points removed ("punctures"). The mapping class group of such a surface is defined as above (note that the mapping classes are allowed to permute the punctures, but not the boundary components).
1751: 104:
The mapping class group appeared in the first half of the twentieth century. Its origins lie in the study of the topology of hyperbolic surfaces, and especially in the study of the intersections of closed curves on these surfaces. The earliest contributors were
2815:
This is an exact sequence relating the mapping class group of surfaces with the same genus and boundary but a different number of punctures. It is a fundamental tool which allows to use recursive arguments in the study of mapping class groups. It was proven by
2806:
is strictly larger than the image of the mapping class group via the morphism defined in the previous paragraph. The image is exactly those outer automorphisms which preserve each conjugacy class in the fundamental group corresponding to a boundary component.
4799: 2974: 6040: 1051: 584: 113:: Dehn proved finite generation of the group, and Nielsen gave a classification of mapping classes and proved that all automorphisms of the fundamental group of a surface can be represented by homeomorphisms (the Dehn–Nielsen–Baer theorem). 3781:
Pseudo-Anosov mapping classes are "generic" in the mapping class group in various ways. For example, a random walk on the mapping class group will end on a pseudo-Anosov element with a probability tending to 1 as the number of steps grows.
4875:
It is possible to prove that all relations between the Dehn twists in a generating set for the mapping class group can be written as combinations of a finite number among them. This means that the mapping class group of a surface is a
5479: 5314: 708: 5659: 372: 933: 6139:
whether the mapping class group is a linear group or not. Besides the symplectic representation on homology explained above there are other interesting finite-dimensional linear representations arising from
5371:
of closed curves induces a symplectic form on the first homology, which is preserved by the action of the mapping class group. The surjectivity is proven by showing that the images of Dehn twists generate
3599: 1186: 4066:
can be endowed. In particular, the TeichmĂĽller metric can be used to establish some large-scale properties of the mapping class group, for example that the maximal quasi-isometrically embedded flats in
4141:
of TeichmĂĽller space, and the Nielsen-Thurston classification of mapping classes can be seen in the dynamical properties of the action on TeichmĂĽller space together with its Thurston boundary. Namely:
1098: 1646: 1559: 2641: 5648: 5550: 5414: 5361: 3044: 1346: 4704: 3543: 1457: 1387: 977: 2525: 4508: 2772: 4554: 1654: 2724: 637: 3992: 2680: 1598: 457: 414: 209: 3654: 3376: 1952: 866: 2577: 1829: 3763:
The main content of the theorem is that a mapping class which is neither of finite order nor reducible must be pseudo-Anosov, which can be defined explicitly by dynamical properties.
6174: 5943: 5838: 5582: 5150: 5057: 4933: 4455: 4383: 4286: 4175: 4097: 4024: 3435: 4648: 2433: 4712: 5505:. It is a finitely generated, torsion-free subgroup and its study is of fundamental importance for its bearing on both the structure of the mapping class group itself (since the 2877: 2025: 3501:
is not null-homotopic this mapping class is nontrivial, and more generally the Dehn twists defined by two non-homotopic curves are distinct elements in the mapping class group.
2242: 1416: 1219: 1127: 765: 5911: 6210: 4200:
Pseudo-Anosov classes fix the two points on the boundary corresponding to their stable and unstable foliation and the action is minimal (has a dense orbit) on the boundary;
5948: 3307: 1851: 982: 4608: 4581: 1511: 1305: 505: 5802: 3403: 3261: 2072: 1878: 5186: 5098: 3953: 2325: 6106: 5864: 4836: 2545: 2475: 2345: 2262: 4132: 3684: 2869: 3897: 3711: 3210: 2372: 2289: 2193: 1259: 4865: 4064: 3845: 1279: 1239: 3618:
There is a classification of the mapping classes on a surface, originally due to Nielsen and rediscovered by Thurston, which can be stated as follows. An element
831: 6127:
Any subgroup which is not reducible (that is it does not preserve a set of isotopy class of disjoint simple closed curves) must contain a pseudo-Anosov element.
5209: 6067: 5503: 5249: 5229: 5021: 5001: 4981: 4961: 4423: 4351: 4327: 4254: 4234: 4195: 3917: 3865: 3813: 3754: 3734: 3499: 3479: 3455: 3327: 3281: 3230: 3183: 3163: 3143: 3123: 3103: 3064: 3000: 2843: 2800: 2166: 2146: 2122: 2045: 1485: 805: 785: 736: 497: 477: 269: 249: 229: 158: 6144:. The images of these representations are contained in arithmetic groups which are not symplectic, and this allows to construct many more finite quotients of 6812:. Mathematical Notes. Vol. 48. translated from the 1979 French original by Djun M. Kim and Dan Margalit. Princeton University Press. pp. xvi+254. 4288:
on the vertices carries over to the full complex. The action is not properly discontinuous (the stabiliser of a simple closed curve is an infinite group).
5422: 5257: 649: 833:. The latter is not orientation-preserving and we see that the mapping class group of the sphere is trivial, and its extended mapping class group is 5767:{\displaystyle \Phi _{n}:\operatorname {Mod} (S)\to \operatorname {Sp} _{2g}(\mathbb {Z} )\to \operatorname {Sp} _{2g}(\mathbb {Z} /n\mathbb {Z} )} 2802:
has a non-empty boundary (except in a finite number of cases). In this case the fundamental group is a free group and the outer automorphism group
2779:
The image of the mapping class group is an index 2 subgroup of the outer automorphism group, which can be characterised by its action on homology.
5650:, and then, for any nontrivial element of the Torelli group, constructing by geometric means subgroups of finite index which does not contain it. 277: 231:. This group has a natural topology, the compact-open topology. It can be defined easily by a distance function: if we are given a metric 877: 3551: 479:
which are isotopic to the identity. It is a normal subgroup of the group of positive homeomorphisms, and the mapping class group of
1132: 6179:
In the other direction there is a lower bound for the dimension of a (putative) faithful representation, which has to be at least
120:
who gave the subject a more geometric flavour and used this work to great effect in his program for the study of three-manifolds.
6592: 5874:
The mapping class group has only finitely many classes of finite groups, as follows from the fact that the finite-index subgroup
5866:(this follows easily from a classical result of Minkowski on linear groups and the fact that the Torelli group is torsion-free). 4145:
Finite-order elements fix a point inside TeichmĂĽller space (more concretely this means that any mapping class of finite order in
1056: 4330: 1603: 1516: 6873: 6817: 2585: 5609: 5511: 5375: 5322: 3005: 1310: 642:
This definition can also be made in the differentiable category: if we replace all instances of "homeomorphism" above with "
4668: 3507: 1421: 1351: 941: 17: 5103:
The first homology of the mapping class group is finite and it follows that the first cohomology group is finite as well.
6798: 6704: 3613: 2480: 1746:{\displaystyle \operatorname {Mod} (S)=\operatorname {Homeo} ^{+}(S,\partial S)/\operatorname {Homeo} _{0}(S,\partial S)} 5584:
boil down to a statement about its Torelli subgroup) and applications to 3-dimensional topology and algebraic geometry.
4467: 4306: 2729: 4513: 2088:
Braid groups can be defined as the mapping class groups of a disc with punctures. More precisely, the braid group on
2690: 603: 6141: 3958: 2646: 1564: 423: 380: 175: 3621: 3332: 7147: 5913:
is torsion-free, as discussed in the previous paragraph. Moreover, this also implies that any finite subgroup of
1886: 4903:
There are other interesting systems of generators for the mapping class group besides Dehn twists. For example,
836: 2550: 1773: 1488: 6147: 6070: 5916: 5811: 5555: 5123: 5030: 4906: 4794:{\displaystyle {\begin{pmatrix}1&1\\0&1\end{pmatrix}},{\begin{pmatrix}1&0\\1&1\end{pmatrix}}} 4428: 4356: 4259: 4148: 4070: 4030: 3997: 3408: 110: 6605:; Farb, Benson (2004). "Every mapping class group is generated by 3 torsion elements and by 6 involutions". 4613: 4385:
extends to an action on this complex. This complex is quasi-isometric to TeichmĂĽller space endowed with the
2969:{\displaystyle 1\to \pi _{1}(S,x)\to \operatorname {Mod} (S\setminus \{x\})\to \operatorname {Mod} (S)\to 1} 6786: 6045:
A bound on the order of finite subgroups can also be obtained through geometric means. The solution to the
2377: 6985:
Masur, Howard A.; Minsky, Yair N. (2000). "Geometry of the complex of curves II: Hierarchical structure".
4812:
The smallest number of Dehn twists that can generate the mapping class group of a closed surface of genus
4397:
The stabilisers of the mapping class group's action on the curve and pants complexes are quite large. The
2682:. The Dehn–Nielsen–Baer theorem states that it is in addition surjective. In particular, it implies that: 7152: 6046: 1960: 7025: 2198: 1392: 1195: 1103: 741: 165: 6753:
Farb, Benson; Lubotzky, Alexander; Minsky, Yair (2001). "Rank-1 phenomena for mapping class groups".
6049:
implies that any such group is realised as the group of isometries of an hyperbolic surface of genus
6035:{\displaystyle \operatorname {Mod} (S)/\ker(\Phi _{3})\cong \operatorname {Sp} _{2g}(\mathbb {Z} /3)} 5877: 4386: 1046:{\displaystyle \Phi :\operatorname {SL} _{2}(\mathbb {Z} )\to \operatorname {Mod} (\mathbb {T} ^{2})} 6883:
Masbaum, Gregor; Reid, Alan W. (2012). "All finite groups are involved in the mapping class group".
6182: 4877: 4806: 2580: 579:{\displaystyle \operatorname {Mod} (S)=\operatorname {Homeo} ^{+}(S)/\operatorname {Homeo} _{0}(S)} 93: 3286: 1834: 6930:
Masur, Howard A.; Minsky, Yair N. (1999). "Geometry of the complex of curves. I. Hyperbolicity".
5598: 5024: 4586: 3955:
a homeomorphism, modulo a suitable equivalence relation. There is an obvious action of the group
4559: 1493: 1284: 81:(indeed, for arbitrary topological spaces) but the 2-dimensional setting is the most studied in 5780: 3381: 3239: 2050: 1856: 124: 5155: 5062: 3926: 3847:
is the space of marked complex (equivalently, conformal or complete hyperbolic) structures on
2294: 6076: 5843: 5252: 4815: 2530: 2438: 2330: 2247: 1767: 55: 4102: 3663: 2848: 7102: 7059: 6969: 6949: 6914: 6774: 6653: 6580: 4458: 3870: 3689: 3188: 2350: 2267: 2171: 1244: 4841: 4040: 3821: 3816: 1264: 1224: 8: 6714:
Eskin, Alex; Masur, Howard; Rafi, Kasra (2017). "Large-scale rank of TeichmĂĽller space".
5653:
An interesting class of finite-index subgroups is given by the kernels of the morphisms:
5368: 4610:, and this "minimally" (this is a technical condition which can be stated as follows: if 810: 74: 6953: 5191: 7063: 7037: 7012: 6994: 6973: 6939: 6918: 6892: 6741: 6723: 6632: 6614: 6052: 5488: 5234: 5214: 5006: 4986: 4966: 4946: 4408: 4336: 4312: 4239: 4219: 4180: 3902: 3850: 3798: 3739: 3719: 3484: 3464: 3440: 3312: 3266: 3215: 3168: 3148: 3128: 3108: 3088: 3049: 2985: 2828: 2785: 2151: 2131: 2107: 2030: 1648:
is the connected component of the identity. The mapping class group is then defined as
1470: 790: 770: 721: 482: 462: 417: 254: 234: 214: 143: 88:
The mapping class group of surfaces are related to various other groups, in particular
63: 39: 710:
induces an isomorphism between the quotients by their respective identity components.
7128: 7111: 6869: 6861: 6852: 6835: 6813: 6794: 6700: 6476: 5117: 4353:(isotopy classes of maximal systems of disjoint simple closed curves). The action of 4138: 4037:). It is compatible with various geometric structures (metric or complex) with which 3772: 7093: 7076: 7026:"A note on the abelianizations of finite-index subgroups of the mapping class group" 7016: 6977: 6922: 6745: 6636: 6559:
Birman, Joan (1969). "Mapping class groups and their relationship to braid groups".
4425:, which are acted upon by, and have trivial stabilisers in, the mapping class group 7123: 7088: 7067: 7047: 7004: 6957: 6902: 6847: 6831: 6762: 6733: 6677: 6628: 6624: 6568: 6117: 5506: 5364: 4892: 4891:
An example of a relation between Dehn twists occurring in this presentation is the
4292:
class group is not a hyperbolic group it has some properties reminiscent of those.
3233: 1513:
then the definition of the mapping class group needs to be more precise. The group
117: 7051: 6766: 3778:
on smaller surfaces which may themselves be either finite order or pseudo-Anosov.
7098: 7055: 6965: 6910: 6770: 6649: 6602: 6576: 5474:{\displaystyle \operatorname {Mod} (S)\to \operatorname {Sp} _{2g}(\mathbb {Z} )} 5309:{\displaystyle \operatorname {Mod} (S)\to \operatorname {GL} _{2g}(\mathbb {Z} )} 3920: 2125: 703:{\displaystyle \operatorname {Diff} ^{+}(S)\subset \operatorname {Homeo} ^{+}(S)} 161: 6425: 1189: 643: 6737: 1462: 7141: 6827: 4213: 936: 591: 169: 127:, where it provides a testing ground for various conjectures and techniques. 51: 6906: 123:
More recently the mapping class group has been by itself a central topic in
6836:"A presentation for the mapping class group of a closed orientable surface" 6572: 6136: 5592:
An example of application of the Torelli subgroup is the following result:
4236:
is a complex whose vertices are isotopy classes of simple closed curves on
2083: 82: 67: 6961: 6868:. Translations of Mathematical Monographs. American Mathematical Society. 6644:
Brock, Jeff (2002). "Pants decompositions and the Weil–Petersson metric".
6597:. Annals of Mathematics Studies. Vol. 82. Princeton University Press. 6329: 5606:
The proof proceeds first by using residual finiteness of the linear group
3545:
the Dehn twists correspond to unipotent matrices. For example, the matrix
2092:
strands is naturally isomorphic to the mapping class group of a disc with
6782: 6588: 6452: 4034: 2817: 89: 6257: 5319:
This map is in fact a surjection with image equal to the integer points
3046:
must be replaced by the finite-index subgroup of mapping classes fixing
1261:(proving in particular that it is injective) and it can be checked that 597:
If we modify the definition to include all homeomorphisms we obtain the
7008: 6682: 6665: 6121: 3080: 713: 59: 6666:"Die Gruppe der Abbildungsklassen: Das arithmetische Feld auf Flächen" 6999: 6944: 6619: 3604:
corresponds to the Dehn twist about a horizontal curve in the torus.
6488: 4654: 4295: 367:{\displaystyle \delta (f,g)=\sup _{x\in S}\left(d(f(x),g(x))\right)} 211:
the group of orientation-preserving, or positive, homeomorphisms of
6661: 6464: 6401: 639:, which contains the mapping class group as a subgroup of index 2. 106: 78: 31: 7042: 6897: 6728: 6353: 6317: 6293: 6269: 2547:, but only up to conjugation. Thus we get a well-defined map from 2477:
to be the element of the fundamental group associated to the loop
928:{\displaystyle \mathbb {T} ^{2}=\mathbb {R} ^{2}/\mathbb {Z} ^{2}} 116:
The Dehn–Nielsen theory was reinterpreted in the mid-seventies by
6524: 5587: 2803: 1600:
which restrict to the identity on the boundary, and the subgroup
6699:. translated and introduced by John Stillwell. Springer-Verlag. 6536: 6365: 2643:. This map is a morphism and its kernel is exactly the subgroup 58:) deformation. It is of fundamental importance for the study of 7112:"Mapping class group of a surface is generated by two elements" 6808:
Fathi, Albert; Laudenbach, François; Poénaru, Valentin (2012).
6228:
We describe here only "clean, complete" (in the terminology of
4029:
This action has many interesting properties; for example it is
3594:{\displaystyle {\begin{pmatrix}1&1\\0&1\end{pmatrix}}} 1561:
of homeomorphisms relative to the boundary is the subgroup of
7077:"On the geometry and dynamics of diffeomorphisms of surfaces" 6793:. Princeton Mathematical Series. Princeton University press. 4461:
complex which is quasi-isometric to the mapping class group.
4177:
can be realised as an isometry for some hyperbolic metric on
1181:{\displaystyle x+\mathbb {Z} ^{2}\mapsto Ax+\mathbb {Z} ^{2}} 872: 135: 6245: 6120:: that is, any subgroup of it either contains a non-abelian 5552:
is comparatively very well understood, a lot of facts about
787:
is isotopic to either the identity or to the restriction to
6512: 6500: 6413: 3716:
reducible: there exists a set of disjoint closed curves on
1463:
Mapping class group of surfaces with boundary and punctures
1093:{\displaystyle A\in \operatorname {SL} _{2}(\mathbb {Z} )} 6341: 4805:
In particular, the mapping class group of a surface is a
6305: 6124:
subgroup or it is virtually solvable (in fact abelian).
5106: 4938: 4457:. It is (in opposition to the curve or pants complex) a 3504:
In the mapping class group of the torus identified with
2077: 1641:{\displaystyle \operatorname {Homeo} _{0}(S,\partial S)} 1554:{\displaystyle \operatorname {Homeo} ^{+}(S,\partial S)} 6389: 4203:
Reducible classes do not act minimally on the boundary.
2636:{\displaystyle \operatorname {Out} (\pi _{1}(S,x_{0}))} 1389:. In the same way, the extended mapping class group of 7074: 7023: 6807: 6458: 6440: 6359: 6335: 6263: 5643:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 5545:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 5409:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 5356:{\displaystyle \operatorname {Sp} _{2g}(\mathbb {Z} )} 4760: 4721: 3607: 3560: 3069: 3039:{\displaystyle \operatorname {Mod} (S\setminus \{x\})} 1341:{\displaystyle \operatorname {Mod} (\mathbb {T} ^{2})} 6185: 6150: 6079: 6055: 5951: 5919: 5880: 5846: 5814: 5783: 5662: 5612: 5558: 5514: 5491: 5425: 5378: 5325: 5260: 5237: 5217: 5194: 5158: 5126: 5065: 5033: 5009: 4989: 4969: 4949: 4909: 4844: 4818: 4715: 4699:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 4671: 4616: 4589: 4562: 4516: 4470: 4431: 4411: 4359: 4339: 4315: 4262: 4242: 4222: 4183: 4151: 4105: 4073: 4043: 4000: 3961: 3929: 3905: 3873: 3853: 3824: 3801: 3785: 3742: 3722: 3692: 3666: 3624: 3554: 3538:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 3510: 3487: 3467: 3443: 3411: 3384: 3335: 3315: 3289: 3269: 3242: 3218: 3191: 3171: 3151: 3131: 3111: 3091: 3052: 3008: 2988: 2880: 2851: 2831: 2788: 2732: 2693: 2649: 2588: 2553: 2533: 2483: 2441: 2380: 2353: 2333: 2297: 2270: 2250: 2201: 2174: 2154: 2134: 2110: 2053: 2033: 1963: 1889: 1859: 1837: 1776: 1657: 1606: 1567: 1519: 1496: 1473: 1452:{\displaystyle \operatorname {GL} _{2}(\mathbb {Z} )} 1424: 1395: 1382:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 1354: 1313: 1287: 1267: 1247: 1227: 1198: 1135: 1106: 1059: 985: 972:{\displaystyle \operatorname {SL} _{2}(\mathbb {Z} )} 944: 880: 839: 813: 793: 773: 744: 724: 652: 606: 508: 485: 465: 459:. By definition it is equal to the homeomorphisms of 426: 383: 280: 257: 237: 217: 178: 146: 4935:
can be generated by two elements or by involutions.
3457:
made above, and the resulting element is called the
3236:
orientation. This is used to define a homeomorphism
1761: 714:
The mapping class groups of the sphere and the torus
377:
is a distance inducing the compact-open topology on
2520:{\displaystyle {\bar {\gamma }}*f(\alpha )*\gamma } 271:inducing its topology then the function defined by 62:via their embedded surfaces and is also studied in 6204: 6168: 6100: 6061: 6034: 5937: 5905: 5858: 5832: 5796: 5766: 5642: 5576: 5544: 5497: 5473: 5408: 5355: 5308: 5243: 5223: 5203: 5180: 5152:acts by automorphisms on the first homology group 5144: 5092: 5051: 5015: 4995: 4975: 4955: 4927: 4859: 4830: 4793: 4698: 4642: 4602: 4575: 4548: 4503:{\displaystyle \alpha _{1},\ldots ,\alpha _{\xi }} 4502: 4449: 4417: 4377: 4345: 4321: 4280: 4248: 4228: 4189: 4169: 4126: 4091: 4058: 4018: 3986: 3947: 3911: 3891: 3859: 3839: 3807: 3748: 3728: 3705: 3678: 3648: 3593: 3537: 3493: 3473: 3449: 3429: 3397: 3370: 3321: 3301: 3275: 3255: 3224: 3204: 3177: 3157: 3137: 3117: 3097: 3058: 3038: 2994: 2968: 2863: 2837: 2794: 2766: 2718: 2674: 2635: 2571: 2539: 2519: 2469: 2427: 2366: 2339: 2319: 2283: 2256: 2236: 2187: 2160: 2140: 2116: 2066: 2039: 2019: 1957:which is the identity on both boundary components 1946: 1872: 1845: 1823: 1745: 1640: 1592: 1553: 1505: 1479: 1451: 1410: 1381: 1340: 1299: 1273: 1253: 1233: 1213: 1180: 1121: 1092: 1045: 971: 927: 860: 825: 799: 779: 759: 730: 702: 646:" we obtain the same group, that is the inclusion 631: 578: 491: 471: 451: 408: 366: 263: 243: 223: 203: 152: 6377: 6281: 4655:Generators and relations for mapping class groups 4464:A marking is determined by a pants decomposition 4296:Other complexes with a mapping class group action 2782:The conclusion of the theorem does not hold when 2767:{\displaystyle \operatorname {Out} (\pi _{1}(S))} 7139: 7030:Proceedings of the American Mathematical Society 6073:then implies that the maximal order is equal to 4549:{\displaystyle \beta _{1},\ldots ,\beta _{\xi }} 3766: 2099: 303: 6826: 6419: 3125:and one chooses a closed tubular neighbourhood 54:of the surface viewed up to continuous (in the 6713: 6561:Communications on Pure and Applied Mathematics 6347: 5588:Residual finiteness and finite-index subgroups 4898: 4207: 3994:on such pairs, which descends to an action of 3790: 2726:is isomorphic to the outer automorphism group 2719:{\displaystyle \operatorname {Mod} ^{\pm }(S)} 632:{\displaystyle \operatorname {Mod} ^{\pm }(S)} 7081:Bulletin of the American Mathematical Society 6929: 6752: 6542: 6371: 6111: 4659: 3987:{\displaystyle \operatorname {Homeo} ^{+}(S)} 3002:itself has punctures the mapping class group 2675:{\displaystyle \operatorname {Homeo} _{0}(S)} 2527:. This automorphism depends on the choice of 1593:{\displaystyle \operatorname {Homeo} ^{+}(S)} 1188:. The action of diffeomorphisms on the first 452:{\displaystyle \operatorname {Homeo} _{0}(S)} 409:{\displaystyle \operatorname {Homeo} ^{+}(S)} 204:{\displaystyle \operatorname {Homeo} ^{+}(S)} 6882: 6781: 6530: 6494: 6482: 6470: 6407: 6323: 6299: 6275: 3649:{\displaystyle g\in \operatorname {Mod} (S)} 3371:{\displaystyle f^{-1}\circ \tau _{0}\circ f} 3030: 3024: 2936: 2930: 2820:in 1969. The exact statement is as follows. 2810: 2014: 1992: 1986: 1964: 1818: 1790: 6984: 6395: 6229: 1947:{\displaystyle \tau _{0}(z)=e^{2i\pi |z|}z} 6660: 6601: 6446: 6251: 861:{\displaystyle \mathbb {Z} /2\mathbb {Z} } 136:Mapping class group of orientable surfaces 130: 7127: 7092: 7041: 6998: 6943: 6896: 6851: 6727: 6681: 6646:Complex Manifolds and Hyperbolic Geometry 6618: 6130: 6017: 5757: 5744: 5714: 5633: 5535: 5464: 5399: 5346: 5299: 4689: 4256:. The action of the mapping class groups 3528: 2572:{\displaystyle \operatorname {Homeo} (S)} 1839: 1824:{\displaystyle A_{0}=\{1\leq |z|\leq 2\}} 1442: 1398: 1372: 1325: 1201: 1168: 1144: 1109: 1083: 1030: 1009: 962: 915: 898: 883: 854: 841: 747: 7109: 6431: 4870: 6866:Subgroups of TeichmĂĽller Modular Groups 6594:Braids, links, and mapping class groups 6169:{\displaystyle \operatorname {Mod} (S)} 5938:{\displaystyle \operatorname {Mod} (S)} 5833:{\displaystyle \operatorname {Mod} (S)} 5577:{\displaystyle \operatorname {Mod} (S)} 5188:. This is a free abelian group of rank 5145:{\displaystyle \operatorname {Mod} (S)} 5120:is functorial, the mapping class group 5111: 5052:{\displaystyle \operatorname {Mod} (S)} 4928:{\displaystyle \operatorname {Mod} (S)} 4450:{\displaystyle \operatorname {Mod} (S)} 4378:{\displaystyle \operatorname {Mod} (S)} 4281:{\displaystyle \operatorname {Mod} (S)} 4170:{\displaystyle \operatorname {Mod} (S)} 4092:{\displaystyle \operatorname {Mod} (S)} 4019:{\displaystyle \operatorname {Mod} (S)} 3430:{\displaystyle \operatorname {Mod} (S)} 14: 7140: 6860: 6587: 6558: 6518: 6506: 6311: 6287: 4867:; this was proven later by Humphries. 4643:{\displaystyle \alpha _{i},\beta _{i}} 4510:and a collection of transverse curves 3105:is an oriented simple closed curve on 1487:is a compact surface with a non-empty 30:In mathematics, and more precisely in 6643: 6383: 6116:The mapping class groups satisfy the 5840:. It is a torsion-free group for all 5107:Subgroups of the mapping class groups 4939:Cohomology of the mapping class group 2428:{\displaystyle \in \pi _{1}(S,x_{0})} 2078:Braid groups and mapping class groups 979:. It is easy to construct a morphism 6694: 6688: 6360:Fathi, Laudenbach & PoĂ©naru 2012 6336:Fathi, Laudenbach & PoĂ©naru 2012 5367:. This comes from the fact that the 4329:is a complex whose vertices are the 3736:which is preserved by the action of 6987:Geometric & Functional Analysis 6697:Papers on group theory and topology 5869: 4392: 3660:of finite order (i.e. there exists 3608:The Nielsen–Thurston classification 3070:Elements of the mapping class group 2168:then we can define an automorphism 2020:{\displaystyle \{|z|=1\},\{|z|=2\}} 418:connected component of the identity 24: 5982: 5945:is a subgroup of the finite group 5891: 5785: 5664: 3786:Actions of the mapping class group 2047:is then generated by the class of 1853:. One can define a diffeomorphism 1734: 1698: 1629: 1542: 1497: 1294: 1288: 1268: 1248: 1228: 986: 25: 7164: 6648:. American Mathematical Society. 3867:. These are represented by pairs 3437:does not depend on the choice of 3293: 3021: 2927: 2687:The extended mapping class group 2237:{\displaystyle \pi _{1}(S,x_{0})} 1762:Mapping class group of an annulus 1307:are inverse isomorphisms between 935:is naturally identified with the 6791:A primer on mapping class groups 6485:, Theorem 6.15 and Theorem 6.12. 6142:topological quantum field theory 4401:is a complex whose vertices are 4300: 1411:{\displaystyle \mathbb {T} ^{2}} 1214:{\displaystyle \mathbb {T} ^{2}} 1122:{\displaystyle \mathbb {T} ^{2}} 760:{\displaystyle \mathbb {R} ^{3}} 7094:10.1090/s0273-0979-1988-15685-6 6222: 5906:{\displaystyle \ker(\Phi _{3})} 3815:(usually without boundary) the 3614:Nielsen–Thurston classification 871:The mapping class group of the 868:, the cyclic group of order 2. 6629:10.1016/j.jalgebra.2004.02.019 6205:{\displaystyle 2{\sqrt {g-1}}} 6163: 6157: 6095: 6083: 6029: 6013: 5991: 5978: 5964: 5958: 5932: 5926: 5900: 5887: 5827: 5821: 5761: 5740: 5721: 5718: 5710: 5691: 5688: 5682: 5637: 5629: 5571: 5565: 5539: 5531: 5468: 5460: 5441: 5438: 5432: 5403: 5395: 5350: 5342: 5303: 5295: 5276: 5273: 5267: 5175: 5169: 5139: 5133: 5046: 5040: 4922: 4916: 4693: 4685: 4651:higher-dimensional simplices. 4583:intersects at most one of the 4444: 4438: 4372: 4366: 4275: 4269: 4164: 4158: 4086: 4080: 4053: 4047: 4013: 4007: 3981: 3975: 3939: 3886: 3874: 3834: 3828: 3643: 3637: 3532: 3524: 3424: 3418: 3145:then there is a homeomorphism 3074: 3033: 3015: 2960: 2957: 2951: 2942: 2939: 2921: 2912: 2909: 2897: 2884: 2761: 2758: 2752: 2739: 2713: 2707: 2669: 2663: 2630: 2627: 2608: 2595: 2566: 2560: 2508: 2502: 2490: 2464: 2461: 2455: 2452: 2422: 2403: 2387: 2381: 2314: 2301: 2231: 2212: 2004: 1996: 1976: 1968: 1935: 1927: 1906: 1900: 1808: 1800: 1770:is homeomorphic to the subset 1740: 1725: 1704: 1689: 1670: 1664: 1635: 1620: 1587: 1581: 1548: 1533: 1446: 1438: 1376: 1368: 1335: 1320: 1154: 1087: 1079: 1040: 1025: 1016: 1013: 1005: 966: 958: 697: 691: 672: 666: 626: 620: 573: 567: 546: 540: 521: 515: 446: 440: 403: 397: 356: 353: 347: 338: 332: 326: 296: 284: 198: 192: 13: 1: 7075:Thurston, William P. (1988). 7052:10.1090/s0002-9939-09-10124-7 6767:10.1215/s0012-7094-01-10636-4 4706:is generated by the matrices 3767:Pseudo-Anosov diffeomorphisms 2871:. There is an exact sequence 2100:The Dehn–Nielsen–Baer theorem 2027:. The mapping class group of 807:of the symmetry in the plane 420:for this topology is denoted 77:can be defined for arbitrary 7129:10.1016/0040-9383(95)00037-2 6853:10.1016/0040-9383(80)90009-9 6348:Eskin, Masur & Rafi 2017 6239: 3302:{\displaystyle S\setminus A} 1846:{\displaystyle \mathbb {C} } 1100:induces a diffeomorphism of 767:. Then any homeomorphism of 599:extended mapping class group 7: 6810:Thurston's work on surfaces 6459:Proc. Amer. Math. Soc. 2010 6420:Hatcher & Thurston 1980 6264:Bull. Amer. Math. Soc. 1988 6047:Nielsen realisation problem 5597:The mapping class group is 5419:The kernel of the morphism 5251:. This action thus gives a 5023:punctures then the virtual 4899:Other systems of generators 4603:{\displaystyle \alpha _{i}} 4556:such that every one of the 4208:Action on the curve complex 3791:Action on TeichmĂĽller space 3405:in the mapping class group 3309:it is the identity, and on 10: 7169: 6551: 6112:General facts on subgroups 4660:The Dehn–Lickorish theorem 4576:{\displaystyle \beta _{i}} 4137:The action extends to the 3795:Given a punctured surface 3770: 3611: 3078: 2081: 1880:by the following formula: 1506:{\displaystyle \partial S} 1300:{\displaystyle \Pi ,\Phi } 99: 6755:Duke Mathematical Journal 6738:10.1215/00127094-0000006X 6716:Duke Mathematical Journal 6230:Masur & Minsky (2000) 5797:{\displaystyle \Phi _{n}} 3398:{\displaystyle \tau _{c}} 3256:{\displaystyle \tau _{c}} 3185:to the canonical annulus 2845:be a compact surface and 2811:The Birman exact sequence 2195:of the fundamental group 2067:{\displaystyle \tau _{0}} 1873:{\displaystyle \tau _{0}} 94:outer automorphism groups 48:TeichmĂĽller modular group 6932:Inventiones Mathematicae 6495:Farb & Margalit 2012 6483:Farb & Margalit 2012 6471:Farb & Margalit 2012 6408:Farb & Margalit 2012 6324:Farb & Margalit 2012 6300:Farb & Margalit 2012 6276:Farb & Margalit 2012 6215: 5181:{\displaystyle H_{1}(S)} 5093:{\displaystyle 4g-4+b+k} 5003:boundary components and 4878:finitely presented group 4807:finitely generated group 3948:{\displaystyle f:S\to X} 2581:outer automorphism group 2374:representing an element 2320:{\displaystyle f(x_{0})} 6907:10.2140/gt.2012.16.1393 6885:Geometry & Topology 6396:Masur & Minsky 2000 6101:{\displaystyle 84(g-1)} 5859:{\displaystyle n\geq 3} 5025:cohomological dimension 4831:{\displaystyle g\geq 2} 3212:defined above, sending 2540:{\displaystyle \gamma } 2470:{\displaystyle f_{*}()} 2340:{\displaystyle \alpha } 2257:{\displaystyle \gamma } 2244:as follows: fix a path 131:Definition and examples 42:, sometimes called the 7148:Geometric group theory 6573:10.1002/cpa.3160220206 6206: 6170: 6131:Linear representations 6102: 6063: 6036: 5939: 5907: 5860: 5834: 5798: 5768: 5644: 5578: 5546: 5499: 5475: 5410: 5357: 5310: 5245: 5225: 5205: 5182: 5146: 5094: 5053: 5017: 4997: 4977: 4963:is a surface of genus 4957: 4929: 4861: 4832: 4795: 4700: 4644: 4604: 4577: 4550: 4504: 4451: 4419: 4379: 4347: 4323: 4282: 4250: 4230: 4191: 4171: 4128: 4127:{\displaystyle 3g-3+k} 4093: 4060: 4031:properly discontinuous 4026:on TeichmĂĽller space. 4020: 3988: 3949: 3913: 3893: 3861: 3841: 3809: 3750: 3730: 3707: 3680: 3679:{\displaystyle n>0} 3650: 3595: 3539: 3495: 3475: 3451: 3431: 3399: 3372: 3323: 3303: 3277: 3257: 3226: 3206: 3179: 3159: 3139: 3119: 3099: 3060: 3040: 2996: 2970: 2865: 2864:{\displaystyle x\in S} 2839: 2796: 2768: 2720: 2676: 2637: 2573: 2541: 2521: 2471: 2429: 2368: 2341: 2321: 2285: 2258: 2238: 2189: 2162: 2148:is a homeomorphism of 2142: 2118: 2068: 2041: 2021: 1948: 1874: 1847: 1825: 1747: 1642: 1594: 1555: 1507: 1481: 1453: 1412: 1383: 1342: 1301: 1281:is injective, so that 1275: 1255: 1235: 1215: 1182: 1123: 1094: 1047: 973: 929: 862: 827: 801: 781: 761: 738:is the unit sphere in 732: 704: 633: 580: 493: 473: 453: 410: 368: 265: 245: 225: 205: 154: 125:geometric group theory 27:Concept in mathematics 7024:Putman, Andy (2010). 6962:10.1007/s002220050343 6533:, pp. 1393–1411. 6207: 6171: 6103: 6064: 6037: 5940: 5908: 5861: 5835: 5799: 5769: 5645: 5579: 5547: 5500: 5476: 5411: 5358: 5311: 5253:linear representation 5246: 5226: 5206: 5183: 5147: 5095: 5054: 5018: 4998: 4978: 4958: 4930: 4871:Finite presentability 4862: 4833: 4796: 4701: 4645: 4605: 4578: 4551: 4505: 4452: 4420: 4387:Weil–Petersson metric 4380: 4348: 4324: 4309:of a compact surface 4283: 4251: 4231: 4192: 4172: 4129: 4094: 4061: 4021: 3989: 3950: 3914: 3894: 3892:{\displaystyle (X,f)} 3862: 3842: 3810: 3751: 3731: 3708: 3706:{\displaystyle g^{n}} 3681: 3651: 3596: 3540: 3496: 3476: 3452: 3432: 3400: 3373: 3324: 3304: 3278: 3258: 3232:to a circle with the 3227: 3207: 3205:{\displaystyle A_{0}} 3180: 3160: 3140: 3120: 3100: 3061: 3041: 2997: 2971: 2866: 2840: 2797: 2769: 2721: 2677: 2638: 2574: 2542: 2522: 2472: 2430: 2369: 2367:{\displaystyle x_{0}} 2342: 2322: 2286: 2284:{\displaystyle x_{0}} 2259: 2239: 2190: 2188:{\displaystyle f_{*}} 2163: 2143: 2119: 2069: 2042: 2022: 1949: 1875: 1848: 1826: 1748: 1643: 1595: 1556: 1508: 1482: 1454: 1413: 1384: 1343: 1302: 1276: 1256: 1254:{\displaystyle \Phi } 1236: 1221:gives a left-inverse 1216: 1183: 1124: 1095: 1048: 974: 930: 863: 828: 802: 782: 762: 733: 705: 634: 581: 494: 474: 454: 411: 369: 266: 246: 226: 206: 155: 70:problems for curves. 56:compact-open topology 7110:Wajnryb, B. (1996). 6183: 6148: 6077: 6053: 5949: 5917: 5878: 5844: 5812: 5804:is usually called a 5781: 5660: 5610: 5556: 5512: 5489: 5423: 5376: 5323: 5258: 5235: 5215: 5192: 5156: 5124: 5112:The Torelli subgroup 5063: 5031: 5007: 4987: 4967: 4947: 4907: 4860:{\displaystyle 2g+1} 4842: 4816: 4713: 4669: 4614: 4587: 4560: 4514: 4468: 4429: 4409: 4357: 4337: 4331:pants decompositions 4313: 4260: 4240: 4220: 4181: 4149: 4103: 4071: 4059:{\displaystyle T(S)} 4041: 3998: 3959: 3927: 3903: 3871: 3851: 3840:{\displaystyle T(S)} 3822: 3799: 3740: 3720: 3690: 3664: 3622: 3552: 3508: 3485: 3465: 3441: 3409: 3382: 3333: 3313: 3287: 3267: 3240: 3216: 3189: 3169: 3149: 3129: 3109: 3089: 3050: 3006: 2986: 2878: 2849: 2829: 2786: 2730: 2691: 2647: 2586: 2551: 2531: 2481: 2439: 2378: 2351: 2331: 2295: 2268: 2248: 2199: 2172: 2152: 2132: 2108: 2051: 2031: 1961: 1887: 1857: 1835: 1774: 1655: 1604: 1565: 1517: 1494: 1471: 1422: 1393: 1352: 1311: 1285: 1274:{\displaystyle \Pi } 1265: 1245: 1234:{\displaystyle \Pi } 1225: 1196: 1133: 1104: 1057: 983: 942: 878: 837: 811: 791: 771: 742: 722: 650: 604: 506: 483: 463: 424: 381: 278: 255: 235: 215: 176: 144: 18:Dehn-Nielsen theorem 6954:1999InMat.138..103M 6545:, pp. 581–597. 6461:, pp. 753–758. 6437:, pp. 377–383. 6374:, pp. 103–149. 6314:, pp. 213–238. 6266:, pp. 417–431. 6254:, pp. 135–206. 5806:congruence subgroup 5369:intersection number 5231:is closed of genus 826:{\displaystyle z=0} 75:mapping class group 36:mapping class group 7153:Geometric topology 7009:10.1007/pl00001643 6695:Dehn, Max (1987). 6683:10.1007/bf02547712 6543:Duke Math. J. 2001 6372:Invent. Math. 1999 6202: 6166: 6098: 6059: 6032: 5935: 5903: 5856: 5830: 5794: 5764: 5640: 5574: 5542: 5495: 5471: 5406: 5353: 5306: 5241: 5221: 5204:{\displaystyle 2g} 5201: 5178: 5142: 5090: 5049: 5013: 4993: 4973: 4953: 4925: 4886:cut system complex 4857: 4828: 4791: 4785: 4746: 4696: 4640: 4600: 4573: 4546: 4500: 4447: 4415: 4375: 4343: 4319: 4278: 4246: 4226: 4187: 4167: 4124: 4089: 4056: 4016: 3984: 3945: 3909: 3889: 3857: 3837: 3805: 3746: 3726: 3703: 3676: 3646: 3591: 3585: 3535: 3491: 3471: 3447: 3427: 3395: 3368: 3319: 3299: 3273: 3253: 3222: 3202: 3175: 3155: 3135: 3115: 3095: 3056: 3036: 2992: 2982:In the case where 2966: 2861: 2835: 2792: 2764: 2716: 2672: 2633: 2569: 2537: 2517: 2467: 2425: 2364: 2337: 2317: 2281: 2254: 2234: 2185: 2158: 2138: 2114: 2064: 2037: 2017: 1944: 1870: 1843: 1821: 1743: 1638: 1590: 1551: 1503: 1477: 1467:In the case where 1449: 1408: 1379: 1338: 1297: 1271: 1251: 1231: 1211: 1178: 1119: 1090: 1043: 969: 925: 858: 823: 797: 777: 757: 728: 700: 629: 576: 489: 469: 449: 406: 364: 317: 261: 241: 221: 201: 150: 64:algebraic geometry 50:, is the group of 6875:978-1-4704-4526-3 6832:Thurston, William 6819:978-0-691-14735-2 6531:Geom. Topol. 2012 6200: 6062:{\displaystyle g} 5599:residually finite 5498:{\displaystyle S} 5244:{\displaystyle g} 5224:{\displaystyle S} 5118:singular homology 5016:{\displaystyle k} 4996:{\displaystyle b} 4976:{\displaystyle g} 4956:{\displaystyle S} 4418:{\displaystyle S} 4346:{\displaystyle S} 4322:{\displaystyle S} 4249:{\displaystyle S} 4229:{\displaystyle S} 4190:{\displaystyle S} 4139:Thurston boundary 4099:are of dimension 3912:{\displaystyle X} 3860:{\displaystyle S} 3817:TeichmĂĽller space 3808:{\displaystyle S} 3773:Pseudo-Anosov map 3759:or pseudo-Anosov. 3749:{\displaystyle g} 3729:{\displaystyle S} 3713:is the identity), 3494:{\displaystyle c} 3474:{\displaystyle c} 3450:{\displaystyle f} 3322:{\displaystyle A} 3276:{\displaystyle S} 3225:{\displaystyle c} 3178:{\displaystyle A} 3158:{\displaystyle f} 3138:{\displaystyle A} 3118:{\displaystyle S} 3098:{\displaystyle c} 3059:{\displaystyle x} 2995:{\displaystyle S} 2838:{\displaystyle S} 2795:{\displaystyle S} 2493: 2161:{\displaystyle S} 2141:{\displaystyle f} 2117:{\displaystyle S} 2040:{\displaystyle A} 1480:{\displaystyle S} 800:{\displaystyle S} 780:{\displaystyle S} 731:{\displaystyle S} 492:{\displaystyle S} 472:{\displaystyle S} 302: 264:{\displaystyle S} 244:{\displaystyle d} 224:{\displaystyle S} 153:{\displaystyle S} 16:(Redirected from 7160: 7133: 7131: 7106: 7096: 7071: 7045: 7020: 7002: 6981: 6947: 6926: 6900: 6891:(3): 1393–1411. 6879: 6857: 6855: 6823: 6804: 6778: 6749: 6731: 6710: 6687:, translated in 6686: 6685: 6670:Acta Mathematica 6657: 6640: 6622: 6603:Brendle, Tara E. 6598: 6584: 6546: 6540: 6534: 6528: 6522: 6516: 6510: 6504: 6498: 6492: 6486: 6480: 6474: 6468: 6462: 6456: 6450: 6444: 6438: 6429: 6423: 6417: 6411: 6405: 6399: 6393: 6387: 6381: 6375: 6369: 6363: 6357: 6351: 6345: 6339: 6333: 6327: 6321: 6315: 6309: 6303: 6297: 6291: 6285: 6279: 6273: 6267: 6261: 6255: 6249: 6233: 6226: 6211: 6209: 6208: 6203: 6201: 6190: 6175: 6173: 6172: 6167: 6118:Tits alternative 6107: 6105: 6104: 6099: 6068: 6066: 6065: 6060: 6041: 6039: 6038: 6033: 6025: 6020: 6009: 6008: 5990: 5989: 5971: 5944: 5942: 5941: 5936: 5912: 5910: 5909: 5904: 5899: 5898: 5870:Finite subgroups 5865: 5863: 5862: 5857: 5839: 5837: 5836: 5831: 5803: 5801: 5800: 5795: 5793: 5792: 5773: 5771: 5770: 5765: 5760: 5752: 5747: 5736: 5735: 5717: 5706: 5705: 5672: 5671: 5649: 5647: 5646: 5641: 5636: 5625: 5624: 5583: 5581: 5580: 5575: 5551: 5549: 5548: 5543: 5538: 5527: 5526: 5507:arithmetic group 5504: 5502: 5501: 5496: 5480: 5478: 5477: 5472: 5467: 5456: 5455: 5415: 5413: 5412: 5407: 5402: 5391: 5390: 5365:symplectic group 5362: 5360: 5359: 5354: 5349: 5338: 5337: 5315: 5313: 5312: 5307: 5302: 5291: 5290: 5250: 5248: 5247: 5242: 5230: 5228: 5227: 5222: 5210: 5208: 5207: 5202: 5187: 5185: 5184: 5179: 5168: 5167: 5151: 5149: 5148: 5143: 5099: 5097: 5096: 5091: 5058: 5056: 5055: 5050: 5022: 5020: 5019: 5014: 5002: 5000: 4999: 4994: 4982: 4980: 4979: 4974: 4962: 4960: 4959: 4954: 4934: 4932: 4931: 4926: 4893:lantern relation 4866: 4864: 4863: 4858: 4837: 4835: 4834: 4829: 4800: 4798: 4797: 4792: 4790: 4789: 4751: 4750: 4705: 4703: 4702: 4697: 4692: 4681: 4680: 4649: 4647: 4646: 4641: 4639: 4638: 4626: 4625: 4609: 4607: 4606: 4601: 4599: 4598: 4582: 4580: 4579: 4574: 4572: 4571: 4555: 4553: 4552: 4547: 4545: 4544: 4526: 4525: 4509: 4507: 4506: 4501: 4499: 4498: 4480: 4479: 4456: 4454: 4453: 4448: 4424: 4422: 4421: 4416: 4399:markings complex 4393:Markings complex 4384: 4382: 4381: 4376: 4352: 4350: 4349: 4344: 4328: 4326: 4325: 4320: 4287: 4285: 4284: 4279: 4255: 4253: 4252: 4247: 4235: 4233: 4232: 4227: 4196: 4194: 4193: 4188: 4176: 4174: 4173: 4168: 4133: 4131: 4130: 4125: 4098: 4096: 4095: 4090: 4065: 4063: 4062: 4057: 4025: 4023: 4022: 4017: 3993: 3991: 3990: 3985: 3971: 3970: 3954: 3952: 3951: 3946: 3918: 3916: 3915: 3910: 3898: 3896: 3895: 3890: 3866: 3864: 3863: 3858: 3846: 3844: 3843: 3838: 3814: 3812: 3811: 3806: 3755: 3753: 3752: 3747: 3735: 3733: 3732: 3727: 3712: 3710: 3709: 3704: 3702: 3701: 3685: 3683: 3682: 3677: 3655: 3653: 3652: 3647: 3600: 3598: 3597: 3592: 3590: 3589: 3544: 3542: 3541: 3536: 3531: 3520: 3519: 3500: 3498: 3497: 3492: 3480: 3478: 3477: 3472: 3456: 3454: 3453: 3448: 3436: 3434: 3433: 3428: 3404: 3402: 3401: 3396: 3394: 3393: 3377: 3375: 3374: 3369: 3361: 3360: 3348: 3347: 3328: 3326: 3325: 3320: 3308: 3306: 3305: 3300: 3282: 3280: 3279: 3274: 3262: 3260: 3259: 3254: 3252: 3251: 3234:counterclockwise 3231: 3229: 3228: 3223: 3211: 3209: 3208: 3203: 3201: 3200: 3184: 3182: 3181: 3176: 3164: 3162: 3161: 3156: 3144: 3142: 3141: 3136: 3124: 3122: 3121: 3116: 3104: 3102: 3101: 3096: 3065: 3063: 3062: 3057: 3045: 3043: 3042: 3037: 3001: 2999: 2998: 2993: 2975: 2973: 2972: 2967: 2896: 2895: 2870: 2868: 2867: 2862: 2844: 2842: 2841: 2836: 2801: 2799: 2798: 2793: 2773: 2771: 2770: 2765: 2751: 2750: 2725: 2723: 2722: 2717: 2703: 2702: 2681: 2679: 2678: 2673: 2659: 2658: 2642: 2640: 2639: 2634: 2626: 2625: 2607: 2606: 2578: 2576: 2575: 2570: 2546: 2544: 2543: 2538: 2526: 2524: 2523: 2518: 2495: 2494: 2486: 2476: 2474: 2473: 2468: 2451: 2450: 2434: 2432: 2431: 2426: 2421: 2420: 2402: 2401: 2373: 2371: 2370: 2365: 2363: 2362: 2346: 2344: 2343: 2338: 2326: 2324: 2323: 2318: 2313: 2312: 2290: 2288: 2287: 2282: 2280: 2279: 2263: 2261: 2260: 2255: 2243: 2241: 2240: 2235: 2230: 2229: 2211: 2210: 2194: 2192: 2191: 2186: 2184: 2183: 2167: 2165: 2164: 2159: 2147: 2145: 2144: 2139: 2123: 2121: 2120: 2115: 2073: 2071: 2070: 2065: 2063: 2062: 2046: 2044: 2043: 2038: 2026: 2024: 2023: 2018: 2007: 1999: 1979: 1971: 1953: 1951: 1950: 1945: 1940: 1939: 1938: 1930: 1899: 1898: 1879: 1877: 1876: 1871: 1869: 1868: 1852: 1850: 1849: 1844: 1842: 1830: 1828: 1827: 1822: 1811: 1803: 1786: 1785: 1752: 1750: 1749: 1744: 1721: 1720: 1711: 1685: 1684: 1647: 1645: 1644: 1639: 1616: 1615: 1599: 1597: 1596: 1591: 1577: 1576: 1560: 1558: 1557: 1552: 1529: 1528: 1512: 1510: 1509: 1504: 1486: 1484: 1483: 1478: 1458: 1456: 1455: 1450: 1445: 1434: 1433: 1417: 1415: 1414: 1409: 1407: 1406: 1401: 1388: 1386: 1385: 1380: 1375: 1364: 1363: 1347: 1345: 1344: 1339: 1334: 1333: 1328: 1306: 1304: 1303: 1298: 1280: 1278: 1277: 1272: 1260: 1258: 1257: 1252: 1241:to the morphism 1240: 1238: 1237: 1232: 1220: 1218: 1217: 1212: 1210: 1209: 1204: 1187: 1185: 1184: 1179: 1177: 1176: 1171: 1153: 1152: 1147: 1128: 1126: 1125: 1120: 1118: 1117: 1112: 1099: 1097: 1096: 1091: 1086: 1075: 1074: 1052: 1050: 1049: 1044: 1039: 1038: 1033: 1012: 1001: 1000: 978: 976: 975: 970: 965: 954: 953: 934: 932: 931: 926: 924: 923: 918: 912: 907: 906: 901: 892: 891: 886: 867: 865: 864: 859: 857: 849: 844: 832: 830: 829: 824: 806: 804: 803: 798: 786: 784: 783: 778: 766: 764: 763: 758: 756: 755: 750: 737: 735: 734: 729: 709: 707: 706: 701: 687: 686: 662: 661: 638: 636: 635: 630: 616: 615: 585: 583: 582: 577: 563: 562: 553: 536: 535: 498: 496: 495: 490: 478: 476: 475: 470: 458: 456: 455: 450: 436: 435: 415: 413: 412: 407: 393: 392: 373: 371: 370: 365: 363: 359: 316: 270: 268: 267: 262: 250: 248: 247: 242: 230: 228: 227: 222: 210: 208: 207: 202: 188: 187: 159: 157: 156: 151: 21: 7168: 7167: 7163: 7162: 7161: 7159: 7158: 7157: 7138: 7137: 7136: 6876: 6862:Ivanov, Nikolai 6820: 6801: 6800:978-069114794-9 6707: 6706:978-038796416-4 6589:Birman, Joan S. 6554: 6549: 6541: 6537: 6529: 6525: 6517: 6513: 6505: 6501: 6497:, Theorem 6.11. 6493: 6489: 6481: 6477: 6469: 6465: 6457: 6453: 6447:J. Algebra 2004 6445: 6441: 6430: 6426: 6418: 6414: 6406: 6402: 6394: 6390: 6382: 6378: 6370: 6366: 6358: 6354: 6346: 6342: 6334: 6330: 6322: 6318: 6310: 6306: 6298: 6294: 6286: 6282: 6274: 6270: 6262: 6258: 6252:Acta Math. 1938 6250: 6246: 6242: 6237: 6236: 6227: 6223: 6218: 6189: 6184: 6181: 6180: 6149: 6146: 6145: 6133: 6114: 6078: 6075: 6074: 6071:Hurwitz's bound 6054: 6051: 6050: 6021: 6016: 6001: 5997: 5985: 5981: 5967: 5950: 5947: 5946: 5918: 5915: 5914: 5894: 5890: 5879: 5876: 5875: 5872: 5845: 5842: 5841: 5813: 5810: 5809: 5788: 5784: 5782: 5779: 5778: 5756: 5748: 5743: 5728: 5724: 5713: 5698: 5694: 5667: 5663: 5661: 5658: 5657: 5632: 5617: 5613: 5611: 5608: 5607: 5590: 5557: 5554: 5553: 5534: 5519: 5515: 5513: 5510: 5509: 5490: 5487: 5486: 5463: 5448: 5444: 5424: 5421: 5420: 5398: 5383: 5379: 5377: 5374: 5373: 5345: 5330: 5326: 5324: 5321: 5320: 5298: 5283: 5279: 5259: 5256: 5255: 5236: 5233: 5232: 5216: 5213: 5212: 5193: 5190: 5189: 5163: 5159: 5157: 5154: 5153: 5125: 5122: 5121: 5114: 5109: 5064: 5061: 5060: 5032: 5029: 5028: 5008: 5005: 5004: 4988: 4985: 4984: 4968: 4965: 4964: 4948: 4945: 4944: 4941: 4908: 4905: 4904: 4901: 4873: 4843: 4840: 4839: 4817: 4814: 4813: 4784: 4783: 4778: 4772: 4771: 4766: 4756: 4755: 4745: 4744: 4739: 4733: 4732: 4727: 4717: 4716: 4714: 4711: 4710: 4688: 4676: 4672: 4670: 4667: 4666: 4662: 4657: 4634: 4630: 4621: 4617: 4615: 4612: 4611: 4594: 4590: 4588: 4585: 4584: 4567: 4563: 4561: 4558: 4557: 4540: 4536: 4521: 4517: 4515: 4512: 4511: 4494: 4490: 4475: 4471: 4469: 4466: 4465: 4430: 4427: 4426: 4410: 4407: 4406: 4395: 4358: 4355: 4354: 4338: 4335: 4334: 4314: 4311: 4310: 4303: 4298: 4261: 4258: 4257: 4241: 4238: 4237: 4221: 4218: 4217: 4210: 4182: 4179: 4178: 4150: 4147: 4146: 4104: 4101: 4100: 4072: 4069: 4068: 4042: 4039: 4038: 3999: 3996: 3995: 3966: 3962: 3960: 3957: 3956: 3928: 3925: 3924: 3921:Riemann surface 3904: 3901: 3900: 3872: 3869: 3868: 3852: 3849: 3848: 3823: 3820: 3819: 3800: 3797: 3796: 3793: 3788: 3775: 3769: 3741: 3738: 3737: 3721: 3718: 3717: 3697: 3693: 3691: 3688: 3687: 3665: 3662: 3661: 3623: 3620: 3619: 3616: 3610: 3584: 3583: 3578: 3572: 3571: 3566: 3556: 3555: 3553: 3550: 3549: 3527: 3515: 3511: 3509: 3506: 3505: 3486: 3483: 3482: 3466: 3463: 3462: 3442: 3439: 3438: 3410: 3407: 3406: 3389: 3385: 3383: 3380: 3379: 3378:. The class of 3356: 3352: 3340: 3336: 3334: 3331: 3330: 3329:it is equal to 3314: 3311: 3310: 3288: 3285: 3284: 3283:as follows: on 3268: 3265: 3264: 3247: 3243: 3241: 3238: 3237: 3217: 3214: 3213: 3196: 3192: 3190: 3187: 3186: 3170: 3167: 3166: 3150: 3147: 3146: 3130: 3127: 3126: 3110: 3107: 3106: 3090: 3087: 3086: 3083: 3077: 3072: 3051: 3048: 3047: 3007: 3004: 3003: 2987: 2984: 2983: 2891: 2887: 2879: 2876: 2875: 2850: 2847: 2846: 2830: 2827: 2826: 2813: 2787: 2784: 2783: 2746: 2742: 2731: 2728: 2727: 2698: 2694: 2692: 2689: 2688: 2654: 2650: 2648: 2645: 2644: 2621: 2617: 2602: 2598: 2587: 2584: 2583: 2552: 2549: 2548: 2532: 2529: 2528: 2485: 2484: 2482: 2479: 2478: 2446: 2442: 2440: 2437: 2436: 2416: 2412: 2397: 2393: 2379: 2376: 2375: 2358: 2354: 2352: 2349: 2348: 2332: 2329: 2328: 2327:and for a loop 2308: 2304: 2296: 2293: 2292: 2275: 2271: 2269: 2266: 2265: 2249: 2246: 2245: 2225: 2221: 2206: 2202: 2200: 2197: 2196: 2179: 2175: 2173: 2170: 2169: 2153: 2150: 2149: 2133: 2130: 2129: 2109: 2106: 2105: 2102: 2086: 2080: 2058: 2054: 2052: 2049: 2048: 2032: 2029: 2028: 2003: 1995: 1975: 1967: 1962: 1959: 1958: 1934: 1926: 1916: 1912: 1894: 1890: 1888: 1885: 1884: 1864: 1860: 1858: 1855: 1854: 1838: 1836: 1833: 1832: 1807: 1799: 1781: 1777: 1775: 1772: 1771: 1764: 1716: 1712: 1707: 1680: 1676: 1656: 1653: 1652: 1611: 1607: 1605: 1602: 1601: 1572: 1568: 1566: 1563: 1562: 1524: 1520: 1518: 1515: 1514: 1495: 1492: 1491: 1472: 1469: 1468: 1465: 1441: 1429: 1425: 1423: 1420: 1419: 1402: 1397: 1396: 1394: 1391: 1390: 1371: 1359: 1355: 1353: 1350: 1349: 1329: 1324: 1323: 1312: 1309: 1308: 1286: 1283: 1282: 1266: 1263: 1262: 1246: 1243: 1242: 1226: 1223: 1222: 1205: 1200: 1199: 1197: 1194: 1193: 1172: 1167: 1166: 1148: 1143: 1142: 1134: 1131: 1130: 1113: 1108: 1107: 1105: 1102: 1101: 1082: 1070: 1066: 1058: 1055: 1054: 1034: 1029: 1028: 1008: 996: 992: 984: 981: 980: 961: 949: 945: 943: 940: 939: 919: 914: 913: 908: 902: 897: 896: 887: 882: 881: 879: 876: 875: 853: 845: 840: 838: 835: 834: 812: 809: 808: 792: 789: 788: 772: 769: 768: 751: 746: 745: 743: 740: 739: 723: 720: 719: 716: 682: 678: 657: 653: 651: 648: 647: 611: 607: 605: 602: 601: 558: 554: 549: 531: 527: 507: 504: 503: 484: 481: 480: 464: 461: 460: 431: 427: 425: 422: 421: 388: 384: 382: 379: 378: 322: 318: 306: 279: 276: 275: 256: 253: 252: 236: 233: 232: 216: 213: 212: 183: 179: 177: 174: 173: 145: 142: 141: 138: 133: 102: 66:in relation to 28: 23: 22: 15: 12: 11: 5: 7166: 7156: 7155: 7150: 7135: 7134: 7122:(2): 377–383. 7107: 7087:(2): 417–431. 7072: 7036:(2): 753–758. 7021: 6993:(4): 902–974. 6982: 6938:(1): 103–149. 6927: 6880: 6874: 6858: 6846:(3): 221–237. 6828:Hatcher, Allen 6824: 6818: 6805: 6799: 6779: 6761:(3): 581–597. 6750: 6711: 6705: 6692: 6658: 6641: 6599: 6585: 6567:(2): 213–238. 6555: 6553: 6550: 6548: 6547: 6535: 6523: 6511: 6499: 6487: 6475: 6473:, Theorem 6.4. 6463: 6451: 6439: 6424: 6412: 6410:, Theorem 4.1. 6400: 6388: 6376: 6364: 6352: 6340: 6328: 6326:, Theorem 4.6. 6316: 6304: 6302:, Theorem 8.1. 6292: 6280: 6278:, Theorem 2.5. 6268: 6256: 6243: 6241: 6238: 6235: 6234: 6220: 6219: 6217: 6214: 6199: 6196: 6193: 6188: 6165: 6162: 6159: 6156: 6153: 6132: 6129: 6113: 6110: 6097: 6094: 6091: 6088: 6085: 6082: 6058: 6031: 6028: 6024: 6019: 6015: 6012: 6007: 6004: 6000: 5996: 5993: 5988: 5984: 5980: 5977: 5974: 5970: 5966: 5963: 5960: 5957: 5954: 5934: 5931: 5928: 5925: 5922: 5902: 5897: 5893: 5889: 5886: 5883: 5871: 5868: 5855: 5852: 5849: 5829: 5826: 5823: 5820: 5817: 5791: 5787: 5777:The kernel of 5775: 5774: 5763: 5759: 5755: 5751: 5746: 5742: 5739: 5734: 5731: 5727: 5723: 5720: 5716: 5712: 5709: 5704: 5701: 5697: 5693: 5690: 5687: 5684: 5681: 5678: 5675: 5670: 5666: 5639: 5635: 5631: 5628: 5623: 5620: 5616: 5604: 5603: 5589: 5586: 5573: 5570: 5567: 5564: 5561: 5541: 5537: 5533: 5530: 5525: 5522: 5518: 5494: 5481:is called the 5470: 5466: 5462: 5459: 5454: 5451: 5447: 5443: 5440: 5437: 5434: 5431: 5428: 5405: 5401: 5397: 5394: 5389: 5386: 5382: 5352: 5348: 5344: 5341: 5336: 5333: 5329: 5305: 5301: 5297: 5294: 5289: 5286: 5282: 5278: 5275: 5272: 5269: 5266: 5263: 5240: 5220: 5200: 5197: 5177: 5174: 5171: 5166: 5162: 5141: 5138: 5135: 5132: 5129: 5113: 5110: 5108: 5105: 5089: 5086: 5083: 5080: 5077: 5074: 5071: 5068: 5048: 5045: 5042: 5039: 5036: 5012: 4992: 4972: 4952: 4940: 4937: 4924: 4921: 4918: 4915: 4912: 4900: 4897: 4872: 4869: 4856: 4853: 4850: 4847: 4827: 4824: 4821: 4803: 4802: 4788: 4782: 4779: 4777: 4774: 4773: 4770: 4767: 4765: 4762: 4761: 4759: 4754: 4749: 4743: 4740: 4738: 4735: 4734: 4731: 4728: 4726: 4723: 4722: 4720: 4695: 4691: 4687: 4684: 4679: 4675: 4661: 4658: 4656: 4653: 4637: 4633: 4629: 4624: 4620: 4597: 4593: 4570: 4566: 4543: 4539: 4535: 4532: 4529: 4524: 4520: 4497: 4493: 4489: 4486: 4483: 4478: 4474: 4459:locally finite 4446: 4443: 4440: 4437: 4434: 4414: 4394: 4391: 4374: 4371: 4368: 4365: 4362: 4342: 4318: 4302: 4299: 4297: 4294: 4277: 4274: 4271: 4268: 4265: 4245: 4225: 4209: 4206: 4205: 4204: 4201: 4198: 4186: 4166: 4163: 4160: 4157: 4154: 4123: 4120: 4117: 4114: 4111: 4108: 4088: 4085: 4082: 4079: 4076: 4055: 4052: 4049: 4046: 4015: 4012: 4009: 4006: 4003: 3983: 3980: 3977: 3974: 3969: 3965: 3944: 3941: 3938: 3935: 3932: 3908: 3888: 3885: 3882: 3879: 3876: 3856: 3836: 3833: 3830: 3827: 3804: 3792: 3789: 3787: 3784: 3771:Main article: 3768: 3765: 3761: 3760: 3757: 3745: 3725: 3714: 3700: 3696: 3675: 3672: 3669: 3645: 3642: 3639: 3636: 3633: 3630: 3627: 3612:Main article: 3609: 3606: 3602: 3601: 3588: 3582: 3579: 3577: 3574: 3573: 3570: 3567: 3565: 3562: 3561: 3559: 3534: 3530: 3526: 3523: 3518: 3514: 3490: 3470: 3446: 3426: 3423: 3420: 3417: 3414: 3392: 3388: 3367: 3364: 3359: 3355: 3351: 3346: 3343: 3339: 3318: 3298: 3295: 3292: 3272: 3250: 3246: 3221: 3199: 3195: 3174: 3154: 3134: 3114: 3094: 3079:Main article: 3076: 3073: 3071: 3068: 3055: 3035: 3032: 3029: 3026: 3023: 3020: 3017: 3014: 3011: 2991: 2980: 2979: 2978: 2977: 2965: 2962: 2959: 2956: 2953: 2950: 2947: 2944: 2941: 2938: 2935: 2932: 2929: 2926: 2923: 2920: 2917: 2914: 2911: 2908: 2905: 2902: 2899: 2894: 2890: 2886: 2883: 2860: 2857: 2854: 2834: 2812: 2809: 2791: 2777: 2776: 2763: 2760: 2757: 2754: 2749: 2745: 2741: 2738: 2735: 2715: 2712: 2709: 2706: 2701: 2697: 2671: 2668: 2665: 2662: 2657: 2653: 2632: 2629: 2624: 2620: 2616: 2613: 2610: 2605: 2601: 2597: 2594: 2591: 2568: 2565: 2562: 2559: 2556: 2536: 2516: 2513: 2510: 2507: 2504: 2501: 2498: 2492: 2489: 2466: 2463: 2460: 2457: 2454: 2449: 2445: 2424: 2419: 2415: 2411: 2408: 2405: 2400: 2396: 2392: 2389: 2386: 2383: 2361: 2357: 2336: 2316: 2311: 2307: 2303: 2300: 2278: 2274: 2253: 2233: 2228: 2224: 2220: 2217: 2214: 2209: 2205: 2182: 2178: 2157: 2137: 2113: 2101: 2098: 2082:Main article: 2079: 2076: 2061: 2057: 2036: 2016: 2013: 2010: 2006: 2002: 1998: 1994: 1991: 1988: 1985: 1982: 1978: 1974: 1970: 1966: 1955: 1954: 1943: 1937: 1933: 1929: 1925: 1922: 1919: 1915: 1911: 1908: 1905: 1902: 1897: 1893: 1867: 1863: 1841: 1820: 1817: 1814: 1810: 1806: 1802: 1798: 1795: 1792: 1789: 1784: 1780: 1763: 1760: 1755: 1754: 1742: 1739: 1736: 1733: 1730: 1727: 1724: 1719: 1715: 1710: 1706: 1703: 1700: 1697: 1694: 1691: 1688: 1683: 1679: 1675: 1672: 1669: 1666: 1663: 1660: 1637: 1634: 1631: 1628: 1625: 1622: 1619: 1614: 1610: 1589: 1586: 1583: 1580: 1575: 1571: 1550: 1547: 1544: 1541: 1538: 1535: 1532: 1527: 1523: 1502: 1499: 1476: 1464: 1461: 1448: 1444: 1440: 1437: 1432: 1428: 1405: 1400: 1378: 1374: 1370: 1367: 1362: 1358: 1337: 1332: 1327: 1322: 1319: 1316: 1296: 1293: 1290: 1270: 1250: 1230: 1208: 1203: 1190:homology group 1175: 1170: 1165: 1162: 1159: 1156: 1151: 1146: 1141: 1138: 1116: 1111: 1089: 1085: 1081: 1078: 1073: 1069: 1065: 1062: 1042: 1037: 1032: 1027: 1024: 1021: 1018: 1015: 1011: 1007: 1004: 999: 995: 991: 988: 968: 964: 960: 957: 952: 948: 922: 917: 911: 905: 900: 895: 890: 885: 856: 852: 848: 843: 822: 819: 816: 796: 776: 754: 749: 727: 715: 712: 699: 696: 693: 690: 685: 681: 677: 674: 671: 668: 665: 660: 656: 644:diffeomorphism 628: 625: 622: 619: 614: 610: 588: 587: 575: 572: 569: 566: 561: 557: 552: 548: 545: 542: 539: 534: 530: 526: 523: 520: 517: 514: 511: 488: 468: 448: 445: 442: 439: 434: 430: 405: 402: 399: 396: 391: 387: 375: 374: 362: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 325: 321: 315: 312: 309: 305: 301: 298: 295: 292: 289: 286: 283: 260: 240: 220: 200: 197: 194: 191: 186: 182: 149: 137: 134: 132: 129: 101: 98: 52:homeomorphisms 26: 9: 6: 4: 3: 2: 7165: 7154: 7151: 7149: 7146: 7145: 7143: 7130: 7125: 7121: 7117: 7113: 7108: 7104: 7100: 7095: 7090: 7086: 7082: 7078: 7073: 7069: 7065: 7061: 7057: 7053: 7049: 7044: 7039: 7035: 7031: 7027: 7022: 7018: 7014: 7010: 7006: 7001: 6996: 6992: 6988: 6983: 6979: 6975: 6971: 6967: 6963: 6959: 6955: 6951: 6946: 6941: 6937: 6933: 6928: 6924: 6920: 6916: 6912: 6908: 6904: 6899: 6894: 6890: 6886: 6881: 6877: 6871: 6867: 6863: 6859: 6854: 6849: 6845: 6841: 6837: 6833: 6829: 6825: 6821: 6815: 6811: 6806: 6802: 6796: 6792: 6788: 6787:Margalit, Dan 6784: 6780: 6776: 6772: 6768: 6764: 6760: 6756: 6751: 6747: 6743: 6739: 6735: 6730: 6725: 6721: 6717: 6712: 6708: 6702: 6698: 6693: 6690: 6684: 6679: 6675: 6672:(in German). 6671: 6667: 6663: 6659: 6655: 6651: 6647: 6642: 6638: 6634: 6630: 6626: 6621: 6616: 6612: 6608: 6604: 6600: 6596: 6595: 6590: 6586: 6582: 6578: 6574: 6570: 6566: 6562: 6557: 6556: 6544: 6539: 6532: 6527: 6520: 6515: 6508: 6503: 6496: 6491: 6484: 6479: 6472: 6467: 6460: 6455: 6448: 6443: 6436: 6434: 6428: 6421: 6416: 6409: 6404: 6397: 6392: 6385: 6380: 6373: 6368: 6361: 6356: 6349: 6344: 6337: 6332: 6325: 6320: 6313: 6308: 6301: 6296: 6289: 6284: 6277: 6272: 6265: 6260: 6253: 6248: 6244: 6231: 6225: 6221: 6213: 6197: 6194: 6191: 6186: 6177: 6160: 6154: 6151: 6143: 6138: 6137:open question 6128: 6125: 6123: 6119: 6109: 6092: 6089: 6086: 6080: 6072: 6056: 6048: 6043: 6026: 6022: 6010: 6005: 6002: 5998: 5994: 5986: 5975: 5972: 5968: 5961: 5955: 5952: 5929: 5923: 5920: 5895: 5884: 5881: 5867: 5853: 5850: 5847: 5824: 5818: 5815: 5807: 5789: 5753: 5749: 5737: 5732: 5729: 5725: 5707: 5702: 5699: 5695: 5685: 5679: 5676: 5673: 5668: 5656: 5655: 5654: 5651: 5626: 5621: 5618: 5614: 5602: 5600: 5595: 5594: 5593: 5585: 5568: 5562: 5559: 5528: 5523: 5520: 5516: 5508: 5492: 5484: 5483:Torelli group 5457: 5452: 5449: 5445: 5435: 5429: 5426: 5417: 5392: 5387: 5384: 5380: 5370: 5366: 5339: 5334: 5331: 5327: 5317: 5292: 5287: 5284: 5280: 5270: 5264: 5261: 5254: 5238: 5218: 5198: 5195: 5172: 5164: 5160: 5136: 5130: 5127: 5119: 5104: 5101: 5087: 5084: 5081: 5078: 5075: 5072: 5069: 5066: 5043: 5037: 5034: 5026: 5010: 4990: 4970: 4950: 4936: 4919: 4913: 4910: 4896: 4894: 4889: 4887: 4881: 4879: 4868: 4854: 4851: 4848: 4845: 4825: 4822: 4819: 4810: 4808: 4786: 4780: 4775: 4768: 4763: 4757: 4752: 4747: 4741: 4736: 4729: 4724: 4718: 4709: 4708: 4707: 4682: 4677: 4673: 4652: 4635: 4631: 4627: 4622: 4618: 4595: 4591: 4568: 4564: 4541: 4537: 4533: 4530: 4527: 4522: 4518: 4495: 4491: 4487: 4484: 4481: 4476: 4472: 4462: 4460: 4441: 4435: 4432: 4412: 4404: 4400: 4390: 4388: 4369: 4363: 4360: 4340: 4332: 4316: 4308: 4307:pants complex 4301:Pants complex 4293: 4289: 4272: 4266: 4263: 4243: 4223: 4216:of a surface 4215: 4214:curve complex 4202: 4199: 4184: 4161: 4155: 4152: 4144: 4143: 4142: 4140: 4135: 4121: 4118: 4115: 4112: 4109: 4106: 4083: 4077: 4074: 4050: 4044: 4036: 4032: 4027: 4010: 4004: 4001: 3978: 3972: 3967: 3963: 3942: 3936: 3933: 3930: 3922: 3906: 3883: 3880: 3877: 3854: 3831: 3825: 3818: 3802: 3783: 3779: 3774: 3764: 3758: 3743: 3723: 3715: 3698: 3694: 3673: 3670: 3667: 3659: 3658: 3657: 3640: 3634: 3631: 3628: 3625: 3615: 3605: 3586: 3580: 3575: 3568: 3563: 3557: 3548: 3547: 3546: 3521: 3516: 3512: 3502: 3488: 3468: 3460: 3444: 3421: 3415: 3412: 3390: 3386: 3365: 3362: 3357: 3353: 3349: 3344: 3341: 3337: 3316: 3296: 3290: 3270: 3248: 3244: 3235: 3219: 3197: 3193: 3172: 3152: 3132: 3112: 3092: 3082: 3067: 3053: 3027: 3018: 3012: 3009: 2989: 2963: 2954: 2948: 2945: 2933: 2924: 2918: 2915: 2906: 2903: 2900: 2892: 2888: 2881: 2874: 2873: 2872: 2858: 2855: 2852: 2832: 2823: 2822: 2821: 2819: 2808: 2805: 2789: 2780: 2775: 2755: 2747: 2743: 2736: 2733: 2710: 2704: 2699: 2695: 2685: 2684: 2683: 2666: 2660: 2655: 2651: 2622: 2618: 2614: 2611: 2603: 2599: 2592: 2589: 2582: 2563: 2557: 2554: 2534: 2514: 2511: 2505: 2499: 2496: 2487: 2458: 2447: 2443: 2417: 2413: 2409: 2406: 2398: 2394: 2390: 2384: 2359: 2355: 2334: 2309: 2305: 2298: 2276: 2272: 2251: 2226: 2222: 2218: 2215: 2207: 2203: 2180: 2176: 2155: 2135: 2127: 2111: 2097: 2095: 2091: 2085: 2075: 2059: 2055: 2034: 2011: 2008: 2000: 1989: 1983: 1980: 1972: 1941: 1931: 1923: 1920: 1917: 1913: 1909: 1903: 1895: 1891: 1883: 1882: 1881: 1865: 1861: 1815: 1812: 1804: 1796: 1793: 1787: 1782: 1778: 1769: 1759: 1737: 1731: 1728: 1722: 1717: 1713: 1708: 1701: 1695: 1692: 1686: 1681: 1677: 1673: 1667: 1661: 1658: 1651: 1650: 1649: 1632: 1626: 1623: 1617: 1612: 1608: 1584: 1578: 1573: 1569: 1545: 1539: 1536: 1530: 1525: 1521: 1500: 1490: 1474: 1460: 1435: 1430: 1426: 1403: 1365: 1360: 1356: 1330: 1317: 1314: 1291: 1206: 1191: 1173: 1163: 1160: 1157: 1149: 1139: 1136: 1114: 1076: 1071: 1067: 1063: 1060: 1035: 1022: 1019: 1002: 997: 993: 989: 955: 950: 946: 938: 937:modular group 920: 909: 903: 893: 888: 874: 869: 850: 846: 820: 817: 814: 794: 774: 752: 725: 718:Suppose that 711: 694: 688: 683: 679: 675: 669: 663: 658: 654: 645: 640: 623: 617: 612: 608: 600: 595: 593: 570: 564: 559: 555: 550: 543: 537: 532: 528: 524: 518: 512: 509: 502: 501: 500: 499:is the group 486: 466: 443: 437: 432: 428: 419: 400: 394: 389: 385: 360: 350: 344: 341: 335: 329: 323: 319: 313: 310: 307: 299: 293: 290: 287: 281: 274: 273: 272: 258: 238: 218: 195: 189: 184: 180: 171: 167: 163: 147: 128: 126: 121: 119: 114: 112: 111:Jakob Nielsen 108: 97: 95: 91: 86: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 45: 44:modular group 41: 37: 33: 19: 7119: 7115: 7084: 7080: 7033: 7029: 7000:math/9807150 6990: 6986: 6945:math/9804098 6935: 6931: 6888: 6884: 6865: 6843: 6839: 6809: 6790: 6783:Farb, Benson 6758: 6754: 6719: 6715: 6696: 6673: 6669: 6645: 6620:math/0307039 6610: 6606: 6593: 6564: 6560: 6538: 6526: 6521:, Theorem 1. 6514: 6509:, Theorem 4. 6502: 6490: 6478: 6466: 6454: 6442: 6432: 6427: 6415: 6403: 6391: 6379: 6367: 6355: 6343: 6338:, Chapter 9. 6331: 6319: 6307: 6295: 6283: 6271: 6259: 6247: 6224: 6178: 6134: 6126: 6115: 6044: 5873: 5805: 5776: 5652: 5605: 5596: 5591: 5482: 5418: 5318: 5115: 5102: 5059:is equal to 4942: 4902: 4890: 4885: 4882: 4874: 4811: 4804: 4663: 4463: 4402: 4398: 4396: 4304: 4290: 4211: 4136: 4033:(though not 4028: 3794: 3780: 3776: 3762: 3617: 3603: 3503: 3458: 3084: 2981: 2824: 2814: 2781: 2778: 2686: 2103: 2093: 2089: 2087: 2084:Braid groups 1956: 1765: 1756: 1466: 870: 717: 641: 598: 596: 589: 376: 172:surface and 139: 122: 115: 103: 90:braid groups 87: 83:group theory 72: 47: 43: 35: 29: 6676:: 135–206. 6519:Ivanov 1992 6507:Ivanov 1992 6312:Birman 1969 6288:Birman 1974 6232:) markings. 3656:is either: 3075:Dehn twists 2818:Joan Birman 2096:punctures. 60:3-manifolds 7142:Categories 6607:J. Algebra 6384:Brock 2002 3686:such that 3459:Dehn twist 3081:Dehn twist 590:This is a 170:orientable 7043:0812.0017 6898:1106.4261 6729:1307.3733 6689:Dehn 1987 6662:Dehn, Max 6240:Citations 6195:− 6155:⁡ 6135:It is an 6090:− 6011:⁡ 5995:≅ 5983:Φ 5976:⁡ 5956:⁡ 5924:⁡ 5892:Φ 5885:⁡ 5851:≥ 5819:⁡ 5786:Φ 5738:⁡ 5722:→ 5708:⁡ 5692:→ 5680:⁡ 5665:Φ 5627:⁡ 5563:⁡ 5529:⁡ 5458:⁡ 5442:→ 5430:⁡ 5393:⁡ 5340:⁡ 5293:⁡ 5277:→ 5265:⁡ 5131:⁡ 5073:− 5038:⁡ 4914:⁡ 4823:≥ 4683:⁡ 4632:β 4619:α 4592:α 4565:β 4542:ξ 4538:β 4531:… 4519:β 4496:ξ 4492:α 4485:… 4473:α 4436:⁡ 4364:⁡ 4267:⁡ 4156:⁡ 4113:− 4078:⁡ 4005:⁡ 3973:⁡ 3940:→ 3635:⁡ 3629:∈ 3522:⁡ 3416:⁡ 3387:τ 3363:∘ 3354:τ 3350:∘ 3342:− 3294:∖ 3245:τ 3022:∖ 3013:⁡ 2961:→ 2949:⁡ 2943:→ 2928:∖ 2919:⁡ 2913:→ 2889:π 2885:→ 2856:∈ 2744:π 2737:⁡ 2705:⁡ 2700:± 2661:⁡ 2600:π 2593:⁡ 2558:⁡ 2535:γ 2515:γ 2512:∗ 2506:α 2497:∗ 2491:¯ 2488:γ 2459:α 2448:∗ 2395:π 2391:∈ 2385:α 2347:based at 2335:α 2252:γ 2204:π 2181:∗ 2056:τ 1924:π 1892:τ 1862:τ 1813:≤ 1797:≤ 1735:∂ 1723:⁡ 1699:∂ 1687:⁡ 1662:⁡ 1630:∂ 1618:⁡ 1579:⁡ 1543:∂ 1531:⁡ 1498:∂ 1436:⁡ 1366:⁡ 1318:⁡ 1295:Φ 1289:Π 1269:Π 1249:Φ 1229:Π 1155:↦ 1077:⁡ 1064:∈ 1023:⁡ 1017:→ 1003:⁡ 987:Φ 956:⁡ 689:⁡ 676:⊂ 664:⁡ 618:⁡ 613:± 592:countable 565:⁡ 538:⁡ 513:⁡ 438:⁡ 395:⁡ 311:∈ 282:δ 190:⁡ 162:connected 79:manifolds 7116:Topology 7017:14834205 6978:16199015 6923:17330187 6864:(1992). 6840:Topology 6834:(1980). 6789:(2012). 6746:15393033 6664:(1938). 6637:14784932 6591:(1974). 6433:Topology 4403:markings 2264:between 1489:boundary 1053:: every 118:Thurston 107:Max Dehn 32:topology 7103:0956596 7068:2047111 7060:2557192 6970:1714338 6950:Bibcode 6915:2967055 6775:1813237 6654:1940162 6581:0243519 6552:Sources 5363:of the 2804:Out(Fn) 2579:to the 2435:define 1768:annulus 594:group. 100:History 40:surface 7101:  7066:  7058:  7015:  6976:  6968:  6921:  6913:  6872:  6816:  6797:  6773:  6744:  6703:  6652:  6635:  6579:  3899:where 3461:about 2126:closed 416:. The 166:closed 68:moduli 34:, the 7064:S2CID 7038:arXiv 7013:S2CID 6995:arXiv 6974:S2CID 6940:arXiv 6919:S2CID 6893:arXiv 6742:S2CID 6724:arXiv 6722:(8). 6633:S2CID 6615:arXiv 6216:Notes 4983:with 3964:Homeo 3919:is a 3481:. If 3165:from 2652:Homeo 2555:Homeo 1714:Homeo 1678:Homeo 1609:Homeo 1570:Homeo 1522:Homeo 873:torus 680:Homeo 556:Homeo 529:Homeo 429:Homeo 386:Homeo 181:Homeo 160:be a 38:of a 6870:ISBN 6814:ISBN 6795:ISBN 6701:ISBN 6435:1996 6122:free 4305:The 4212:The 4035:free 3923:and 3671:> 2825:Let 2291:and 2128:and 1766:Any 1348:and 1129:via 655:Diff 140:Let 109:and 92:and 73:The 7124:doi 7089:doi 7048:doi 7034:138 7005:doi 6958:doi 6936:138 6903:doi 6848:doi 6763:doi 6759:106 6734:doi 6720:166 6678:doi 6625:doi 6611:278 6569:doi 6152:Mod 5973:ker 5953:Mod 5921:Mod 5882:ker 5816:Mod 5808:of 5677:Mod 5560:Mod 5485:of 5427:Mod 5262:Mod 5211:if 5128:Mod 5116:As 5035:Mod 5027:of 4943:If 4911:Mod 4838:is 4433:Mod 4405:of 4361:Mod 4333:of 4264:Mod 4153:Mod 4075:Mod 4002:Mod 3632:Mod 3413:Mod 3263:of 3085:If 3010:Mod 2946:Mod 2916:Mod 2734:Out 2696:Mod 2590:Out 2124:is 2104:If 1831:of 1659:Mod 1418:is 1315:Mod 1192:of 1020:Mod 609:Mod 510:Mod 304:sup 251:on 46:or 7144:: 7120:35 7118:. 7114:. 7099:MR 7097:. 7085:19 7083:. 7079:. 7062:. 7056:MR 7054:. 7046:. 7032:. 7028:. 7011:. 7003:. 6991:10 6989:. 6972:. 6966:MR 6964:. 6956:. 6948:. 6934:. 6917:. 6911:MR 6909:. 6901:. 6889:16 6887:. 6844:19 6842:. 6838:. 6830:; 6785:; 6771:MR 6769:. 6757:. 6740:. 6732:. 6718:. 6674:69 6668:. 6650:MR 6631:. 6623:. 6613:. 6609:. 6577:MR 6575:. 6565:22 6563:. 6212:. 6176:. 6108:. 6081:84 6069:. 6042:. 5999:Sp 5726:Sp 5696:Sp 5615:Sp 5601:. 5517:Sp 5446:Sp 5416:. 5381:Sp 5328:Sp 5316:. 5281:GL 5100:. 4895:. 4888:. 4880:. 4809:. 4674:SL 4389:. 4197:); 4134:. 3513:SL 3066:. 2774:. 2074:. 1459:. 1427:GL 1357:SL 1068:SL 994:SL 947:SL 168:, 164:, 96:. 85:. 7132:. 7126:: 7105:. 7091:: 7070:. 7050:: 7040:: 7019:. 7007:: 6997:: 6980:. 6960:: 6952:: 6942:: 6925:. 6905:: 6895:: 6878:. 6856:. 6850:: 6822:. 6803:. 6777:. 6765:: 6748:. 6736:: 6726:: 6709:. 6691:. 6680:: 6656:. 6639:. 6627:: 6617:: 6583:. 6571:: 6449:. 6422:. 6398:. 6386:. 6362:. 6350:. 6290:. 6198:1 6192:g 6187:2 6164:) 6161:S 6158:( 6096:) 6093:1 6087:g 6084:( 6057:g 6030:) 6027:3 6023:/ 6018:Z 6014:( 6006:g 6003:2 5992:) 5987:3 5979:( 5969:/ 5965:) 5962:S 5959:( 5933:) 5930:S 5927:( 5901:) 5896:3 5888:( 5854:3 5848:n 5828:) 5825:S 5822:( 5790:n 5762:) 5758:Z 5754:n 5750:/ 5745:Z 5741:( 5733:g 5730:2 5719:) 5715:Z 5711:( 5703:g 5700:2 5689:) 5686:S 5683:( 5674:: 5669:n 5638:) 5634:Z 5630:( 5622:g 5619:2 5572:) 5569:S 5566:( 5540:) 5536:Z 5532:( 5524:g 5521:2 5493:S 5469:) 5465:Z 5461:( 5453:g 5450:2 5439:) 5436:S 5433:( 5404:) 5400:Z 5396:( 5388:g 5385:2 5351:) 5347:Z 5343:( 5335:g 5332:2 5304:) 5300:Z 5296:( 5288:g 5285:2 5274:) 5271:S 5268:( 5239:g 5219:S 5199:g 5196:2 5176:) 5173:S 5170:( 5165:1 5161:H 5140:) 5137:S 5134:( 5088:k 5085:+ 5082:b 5079:+ 5076:4 5070:g 5067:4 5047:) 5044:S 5041:( 5011:k 4991:b 4971:g 4951:S 4923:) 4920:S 4917:( 4855:1 4852:+ 4849:g 4846:2 4826:2 4820:g 4801:. 4787:) 4781:1 4776:1 4769:0 4764:1 4758:( 4753:, 4748:) 4742:1 4737:0 4730:1 4725:1 4719:( 4694:) 4690:Z 4686:( 4678:2 4636:i 4628:, 4623:i 4596:i 4569:i 4534:, 4528:, 4523:1 4488:, 4482:, 4477:1 4445:) 4442:S 4439:( 4413:S 4373:) 4370:S 4367:( 4341:S 4317:S 4276:) 4273:S 4270:( 4244:S 4224:S 4185:S 4165:) 4162:S 4159:( 4122:k 4119:+ 4116:3 4110:g 4107:3 4087:) 4084:S 4081:( 4054:) 4051:S 4048:( 4045:T 4014:) 4011:S 4008:( 3982:) 3979:S 3976:( 3968:+ 3943:X 3937:S 3934:: 3931:f 3907:X 3887:) 3884:f 3881:, 3878:X 3875:( 3855:S 3835:) 3832:S 3829:( 3826:T 3803:S 3756:; 3744:g 3724:S 3699:n 3695:g 3674:0 3668:n 3644:) 3641:S 3638:( 3626:g 3587:) 3581:1 3576:0 3569:1 3564:1 3558:( 3533:) 3529:Z 3525:( 3517:2 3489:c 3469:c 3445:f 3425:) 3422:S 3419:( 3391:c 3366:f 3358:0 3345:1 3338:f 3317:A 3297:A 3291:S 3271:S 3249:c 3220:c 3198:0 3194:A 3173:A 3153:f 3133:A 3113:S 3093:c 3054:x 3034:) 3031:} 3028:x 3025:{ 3019:S 3016:( 2990:S 2976:. 2964:1 2958:) 2955:S 2952:( 2940:) 2937:} 2934:x 2931:{ 2925:S 2922:( 2910:) 2907:x 2904:, 2901:S 2898:( 2893:1 2882:1 2859:S 2853:x 2833:S 2790:S 2762:) 2759:) 2756:S 2753:( 2748:1 2740:( 2714:) 2711:S 2708:( 2670:) 2667:S 2664:( 2656:0 2631:) 2628:) 2623:0 2619:x 2615:, 2612:S 2609:( 2604:1 2596:( 2567:) 2564:S 2561:( 2509:) 2503:( 2500:f 2465:) 2462:] 2456:[ 2453:( 2444:f 2423:) 2418:0 2414:x 2410:, 2407:S 2404:( 2399:1 2388:] 2382:[ 2360:0 2356:x 2315:) 2310:0 2306:x 2302:( 2299:f 2277:0 2273:x 2232:) 2227:0 2223:x 2219:, 2216:S 2213:( 2208:1 2177:f 2156:S 2136:f 2112:S 2094:n 2090:n 2060:0 2035:A 2015:} 2012:2 2009:= 2005:| 2001:z 1997:| 1993:{ 1990:, 1987:} 1984:1 1981:= 1977:| 1973:z 1969:| 1965:{ 1942:z 1936:| 1932:z 1928:| 1921:i 1918:2 1914:e 1910:= 1907:) 1904:z 1901:( 1896:0 1866:0 1840:C 1819:} 1816:2 1809:| 1805:z 1801:| 1794:1 1791:{ 1788:= 1783:0 1779:A 1753:. 1741:) 1738:S 1732:, 1729:S 1726:( 1718:0 1709:/ 1705:) 1702:S 1696:, 1693:S 1690:( 1682:+ 1674:= 1671:) 1668:S 1665:( 1636:) 1633:S 1627:, 1624:S 1621:( 1613:0 1588:) 1585:S 1582:( 1574:+ 1549:) 1546:S 1540:, 1537:S 1534:( 1526:+ 1501:S 1475:S 1447:) 1443:Z 1439:( 1431:2 1404:2 1399:T 1377:) 1373:Z 1369:( 1361:2 1336:) 1331:2 1326:T 1321:( 1292:, 1207:2 1202:T 1174:2 1169:Z 1164:+ 1161:x 1158:A 1150:2 1145:Z 1140:+ 1137:x 1115:2 1110:T 1088:) 1084:Z 1080:( 1072:2 1061:A 1041:) 1036:2 1031:T 1026:( 1014:) 1010:Z 1006:( 998:2 990:: 967:) 963:Z 959:( 951:2 921:2 916:Z 910:/ 904:2 899:R 894:= 889:2 884:T 855:Z 851:2 847:/ 842:Z 821:0 818:= 815:z 795:S 775:S 753:3 748:R 726:S 698:) 695:S 692:( 684:+ 673:) 670:S 667:( 659:+ 627:) 624:S 621:( 586:. 574:) 571:S 568:( 560:0 551:/ 547:) 544:S 541:( 533:+ 525:= 522:) 519:S 516:( 487:S 467:S 447:) 444:S 441:( 433:0 404:) 401:S 398:( 390:+ 361:) 357:) 354:) 351:x 348:( 345:g 342:, 339:) 336:x 333:( 330:f 327:( 324:d 320:( 314:S 308:x 300:= 297:) 294:g 291:, 288:f 285:( 259:S 239:d 219:S 199:) 196:S 193:( 185:+ 148:S 20:)

Index

Dehn-Nielsen theorem
topology
surface
homeomorphisms
compact-open topology
3-manifolds
algebraic geometry
moduli
mapping class group
manifolds
group theory
braid groups
outer automorphism groups
Max Dehn
Jakob Nielsen
Thurston
geometric group theory
connected
closed
orientable
connected component of the identity
countable
diffeomorphism
torus
modular group
homology group
boundary
annulus
Braid groups
closed

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑