Knowledge

Descriptive complexity theory

Source đź“ť

127:. Usually the input is either a string (of bits or over an alphabet) and the elements of the logical structure represent positions of the string, or the input is a graph and the elements of the logical structure represent its vertices. The length of the input will be measured by the size of the respective structure. Whatever the structure is, we can assume that there are relations that can be tested, for example " 770:
such that the first-order quantifiers are universal and the quantifier-free part of the formula is in Krom form, which means that the first-order formula is a conjunction of disjunctions, and in each "disjunction" there are at most two variables. Every second-order Krom formula is equivalent to an
881:
Unlike most other characterisations of complexity classes, Fagin's theorem and its generalisation do not presuppose a total ordering on the structures. This is because existential second-order logic is itself sufficiently expressive to refer to the possible total orders on a structure using
61:. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific 203:
th letter of the string is 1." These relations are the predicates for the first-order logic system. We also have constants, which are special elements of the respective structure, for example if we want to check reachability in a graph, we will have to choose two constants
2364: 2209: 1297: 1111:. They are usually written in upper-case and with a natural number as exponent to indicate the order. Higher-order logic is the set of first-order formulae where we add quantification over higher-order variables; hence we will use the terms defined in the 798:
FO is the extension of first-order logic by a least fixed-point operator, which expresses the fixed-point of a monotone expression. This augments first-order logic with the ability to express recursion. The Immerman–Vardi theorem, shown independently by
2010: 859:
Ronald Fagin's 1974 proof that the complexity class NP was characterised exactly by those classes of structures axiomatizable in existential second-order logic was the starting point of descriptive complexity theory.
920:
Second-order logic can be extended by a transitive closure operator in the same way as first-order logic, resulting in SO. The TC operator can now also take second-order variables as argument. SO characterises
1769: 215:
In descriptive complexity theory we often assume that there is a total order over the elements and that we can check equality between elements. This lets us consider elements as numbers: the element
1669: 2228: 2095: 1198: 870:. More precisely, we have the following generalisation of Fagin's theorem: The set of formulae in prenex normal form where existential and universal quantifiers of second order alternate 1354: 1388: 1582: 666: 905:, FO, is the extension of first-order logic with a partial fixed-point operator, which expresses the fixed-point of a formula if there is one and returns 'false' otherwise. 467: 382: 728:
First-order logic gains substantially in expressive power when it is augmented with an operator that computes the transitive closure of a binary relation. The resulting
1499: 1439: 1193: 324: 1039: 686: 283: 160: 2069: 2042: 706: 499: 414: 253: 1142: 197: 1882: 1525: 1109: 1005: 2089: 1856: 1836: 1809: 1789: 1479: 1459: 1408: 1317: 1162: 1079: 1059: 979: 863:
Since the complement of an existential formula is a universal formula, it follows immediately that co-NP is characterized by universal second-order logic.
1899: 509:
If we restrict ourselves to ordered structures with a successor relation and basic arithmetical predicates, then we get the following characterisations:
712:. First-order logic in a signature with arithmetical predicates characterises the restriction of the AC family of circuits to those constructible in 123:
When we use the logic formalism to describe a computational problem, the input is a finite structure, and the elements of that structure are the
817:
states that FO=FO on all structures if and only if FO=FO; hence if and only if P=PSPACE. This result has been extended to other fixpoints.
1674: 57:, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of 3037: 2534: 17: 2359:{\displaystyle {\mathsf {HO}}_{j}^{i}={\color {Blue}{\mathsf {NTIME}}}(\exp _{2}^{i-2}(n^{O(1)})^{\Sigma _{j}^{\mathsf {P}}})} 1587: 744: 925:. Since ordering can be referenced in second-order logic, this characterisation does not presuppose ordered structures. 2730: 2204:{\displaystyle \exists {\mathsf {SO}}={\mathsf {HO}}_{0}^{2}={\mathsf {NTIME}}(n^{O(1)})={\color {Blue}{\mathsf {NP}}}} 1292:{\displaystyle \phi =\exists {\overline {X_{1}^{i}}}\forall {\overline {X_{2}^{i}}}\dots Q{\overline {X_{j}^{i}}}\psi } 2992: 2871: 2582: 2416: 2453:
Fagin, Ron (1974). "Generalized first-order spectra and polynomial-time recognizable sets". In Karp, Richard (ed.).
520:, the languages recognized by polynomial-size circuits of bounded depth, which equals the languages recognized by a 521: 3032: 34: 836:
form, which means that it is a big AND of OR, and in each "OR" every variable except possibly one are negated.
899:, can be characterised by augmenting first-order logic with a more expressive partial fixed-point operator. 810:
As of 2022, it is still open whether there is a natural logic characterising PTIME on unordered structures.
3042: 1838:
th is equivalent to a formula in prenex normal form, where we first write quantification over variable of
1322: 832:
such that the first-order quantifiers are all universal and the quantifier-free part of the formula is in
1359: 814: 1537: 825:
In the presence of a successor function, PTIME can also be characterised by second-order Horn formulae.
645: 2621: 902: 2713: 729: 100: 419: 2674: 2401:. Leibniz International Proceedings in Informatics (LIPIcs). Vol. 138. pp. 31:1–31:15. 829: 783: 767: 337: 3016: 2770: 2708: 642:
hierarchy. Indeed, there is a natural translation from FO's symbols to nodes of circuits, with
108: 104: 1484: 1413: 1167: 288: 846:
Those formulae can be transformed to prenex formulas in existential second-order Horn logic.
77: 2703:
Vardi, Moshe Y. (1982). "The complexity of relational query languages (Extended Abstract)".
1018: 671: 262: 130: 2221: 2047: 2015: 867: 759:
On structures that have a successor function, NL can also be characterised by second-order
691: 472: 387: 226: 1121: 716:. First-order logic in a signature with only the order relation corresponds to the set of 173: 76:
expressible in it. The queries – when restricted to finite structures – correspond to the
8: 1861: 1504: 1088: 984: 124: 38: 567:
Universal second-order logic (excluding existential second-order quantification) yields
2877: 2736: 2510: 2483: 2213: 2074: 1841: 1821: 1794: 1774: 1464: 1444: 1393: 1302: 1147: 1064: 1044: 964: 958: 950: 717: 631: 610: 585: 539: 528: 96: 84: 73: 58: 2913: 2896: 2688: 2669: 2396: 2998: 2988: 2959: 2918: 2881: 2867: 2805: 2800: 2783: 2766: 2726: 2638: 2588: 2578: 2553: 2502: 2412: 954: 596: 550: 513: 2705:
Proceedings of the fourteenth annual ACM symposium on Theory of computing - STOC '82
2514: 2949: 2908: 2859: 2795: 2740: 2718: 2683: 2630: 2543: 2492: 2402: 2005:{\displaystyle {\mathsf {HO}}_{0}^{i}={\mathsf {NTIME}}(\exp _{2}^{i-2}(n^{O(1)}))} 946: 62: 42: 2092: 1112: 934: 733: 713: 639: 606: 578: 574: 561: 543: 334:
is 1. (We can replace addition and multiplication by ternary relations such that
92: 54: 50: 2856:[1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science 2407: 2765:
Journal of the ACM archive, Volume 44, Issue 1 (January 1997), Pages: 30-56,
2762: 2754: 2217: 840: 748: 554: 532: 69: 2954: 2937: 2548: 2529: 1531: 766:
SO-Krom is the set of boolean queries definable with second-order formulae in
3026: 3002: 2963: 2922: 2851: 2809: 2642: 2592: 2557: 2506: 800: 737: 2863: 2758: 760: 88: 2722: 2497: 2478: 981:
th order and non-deterministic algorithms the time of which is bounded by
634:, first-order logic with arbitrary predicates can be shown to be equal to 95:
is precisely the set of languages expressible by sentences of existential
833: 804: 1893: 938: 614: 285:. Thanks to this we also may have the primitive predicate "bit", where 504: 2982: 2852:"Fixpoint extensions of first-order logic and datalog-like languages" 2616: 2572: 2634: 2479:"Fixpoint logics, relational machines, and computational complexity" 828:
SO-Horn is the set of boolean queries definable with SO formulae in
740:
to show that NL is closed under complement (i. e. that NL = co-NL).
2763:
Fixpoint logics, relational machines, and computational complexity
774:
SO-Krom characterises NL on structures with a successor function.
2784:"Capturing complexity classes by fragments of second-order logic" 1764:{\displaystyle \exp _{2}^{i+1}(x)=2^{2^{2^{2^{\dots ^{2^{x}}}}}}} 600: 961:
with higher-order quantifiers. There is a relation between the
115:. Many other classes were later characterized in such a manner. 2477:
Abiteboul, Serge; Vardi, Moshe Y.; Vianu, Victor (1997-01-15).
922: 909: 896: 589: 112: 546:, the problems solvable in nondeterministic logarithmic space. 2225: 1082: 787: 568: 46: 527:
First-order logic augmented with symmetric or deterministic
2948:(2). Essex, UK: Elsevier Science Publishers Ltd.: 197–214. 2542:(2). Essex, UK: Elsevier Science Publishers Ltd.: 197–214. 807:, shows that FO characterises PTIME on ordered structures. 2897:"On static logics, dynamic logics, and complexity classes" 895:
The class of all problems computable in polynomial space,
635: 557:, the problems solvable in deterministic polynomial time. 517: 2617:"Nondeterministic Space is Closed under Complementation" 1664:{\displaystyle \exp _{2}^{i+1}(x)=2^{\exp _{2}^{i}(x)}} 1144:
is the set of formulae with variables of order at most
2381: 2379: 1015:
We define higher-order variables. A variable of order
793: 2231: 2098: 2077: 2050: 2018: 1902: 1864: 1844: 1824: 1797: 1777: 1677: 1590: 1540: 1507: 1487: 1467: 1447: 1416: 1396: 1362: 1325: 1305: 1201: 1170: 1150: 1124: 1091: 1067: 1047: 1021: 987: 967: 866:
SO, unrestricted second-order logic, is equal to the
694: 674: 648: 475: 422: 390: 340: 291: 265: 229: 176: 133: 949:
of structures that can be recognized by formulas of
849: 743:
When restricting the transitive closure operator to
83:
The first main result of descriptive complexity was
2476: 2376: 505:
Overview of characterisations of complexity classes
2935: 2670:"Relational queries computable in polynomial time" 2527: 2358: 2203: 2083: 2063: 2036: 2004: 1876: 1850: 1830: 1803: 1783: 1763: 1663: 1576: 1519: 1493: 1473: 1453: 1433: 1402: 1382: 1348: 1311: 1291: 1187: 1156: 1136: 1103: 1073: 1053: 1033: 999: 973: 700: 680: 660: 493: 461: 408: 376: 318: 277: 247: 191: 154: 2394: 1887: 3024: 2936:Hella, Lauri; Turull-Torres, JosĂ© MarĂ­a (2006). 2528:Hella, Lauri; Turull-Torres, JosĂ© MarĂ­a (2006). 941:of elementary functions can be characterised by 890: 170:" (in case of the structure being a graph), or " 915: 2849: 2091:is a constant. A special case of this is that 1896:of elementary functions. To be more precise, 820: 754: 162:is true if and only if there is an edge from 2938:"Computing queries with higher-order logics" 2707:. New York, NY, USA: ACM. pp. 137–146. 2530:"Computing queries with higher-order logics" 747:, the resulting logic exactly characterises 603:, the problems solvable in exponential time. 592:, the problems solvable in polynomial space. 3017:Neil Immerman's descriptive complexity page 2858:. IEEE Comput. Soc. Press. pp. 71–79. 2395:Grädel, Erich; Schalthöfer, Svenja (2019). 723: 625: 2894: 2953: 2912: 2799: 2712: 2687: 2547: 2496: 2406: 843:on structures with a successor function. 535:, problems solvable in logarithmic space. 2980: 2667: 2614: 953:. Higher-order logic is an extension of 908:Partial fixed-point logic characterises 736:on ordered structures. This was used by 734:non-deterministic logarithmic space (NL) 99:; that is, second-order logic excluding 2570: 928: 771:existential second-order Krom formula. 14: 3025: 2781: 2345: 2273: 2270: 2267: 2264: 2261: 2238: 2235: 2194: 2191: 2154: 2151: 2148: 2145: 2142: 2121: 2118: 2107: 2104: 1942: 1939: 1936: 1933: 1930: 1909: 1906: 1195:is the subset of formulae of the form 878:th level of the polynomial hierarchy. 620: 560:Existential second-order logic yields 2702: 2654: 2652: 2452: 2258: 2188: 1858:th order and then a formula of order 1461:alternations of quantifiers of order 1115:article without defining them again. 2448: 2446: 2444: 2434: 2432: 2430: 2428: 1349:{\displaystyle Q{\overline {X^{i}}}} 2895:Harel, D.; Peleg, D. (1984-01-01). 2747: 1530:Using the standard notation of the 1410:with the same quantification. So HO 1383:{\displaystyle {\overline {X^{i}}}} 794:First-order least fixed-point logic 782:On ordered structures, first-order 24: 2649: 2335: 2099: 1577:{\displaystyle \exp _{2}^{0}(x)=x} 1488: 1233: 1208: 854: 777: 655: 649: 609:, the complexity class defined by 330:th bit of the binary expansion of 80:of traditional complexity theory. 25: 3054: 3010: 2850:Abiteboul, S.; Vianu, V. (1989). 2441: 2425: 1501:, followed by a formula of order 1390:is a tuple of variable of order 850:Non-deterministic polynomial time 661:{\displaystyle \forall ,\exists } 745:deterministic transitive closure 522:concurrent random access machine 3038:Computational complexity theory 2929: 2888: 2843: 2834: 2825: 2816: 2775: 2696: 2661: 2608: 35:computational complexity theory 2599: 2564: 2521: 2470: 2461: 2388: 2353: 2330: 2324: 2318: 2307: 2280: 2181: 2176: 2170: 2159: 2031: 2019: 1999: 1996: 1991: 1985: 1974: 1947: 1888:Relation to complexity classes 1813: 1708: 1702: 1656: 1650: 1621: 1615: 1565: 1559: 456: 438: 371: 353: 313: 301: 242: 230: 186: 180: 149: 137: 118: 13: 1: 2974: 2914:10.1016/S0019-9958(84)80023-6 2689:10.1016/s0019-9958(86)80029-8 1010: 891:Partial fixed point is PSPACE 91:in 1974. It established that 2942:Theoretical Computer Science 2801:10.1016/0304-3975(92)90149-A 2788:Theoretical Computer Science 2782:Grädel, Erich (1992-07-13). 2571:Robert., McNaughton (1971). 2535:Theoretical Computer Science 2398:Choiceless Logarithmic Space 1441:is the set of formulae with 1375: 1341: 1281: 1253: 1228: 916:Transitive closure is PSPACE 885: 714:alternating logarithmic time 588:(commutative or not) yields 462:{\displaystyle times(x,y,z)} 27:Branch of mathematical logic 7: 2408:10.4230/LIPICS.MFCS.2019.31 579:the polynomial hierarchy PH 377:{\displaystyle plus(x,y,z)} 199:is true if and only if the 10: 3059: 1061:and represents any set of 821:Second-order Horn formulae 755:Second-order Krom formulae 595:Second-order logic with a 584:Second-order logic with a 2955:10.1016/j.tcs.2006.01.009 2622:SIAM Journal on Computing 2549:10.1016/j.tcs.2006.01.009 2455:Complexity of Computation 1892:HO is equal to the class 903:Partial fixed-point logic 732:is known to characterise 638:, the first class in the 549:First-order logic with a 538:First-order logic with a 223:if and only if there are 2369: 1494:{\displaystyle \exists } 1434:{\displaystyle _{j}^{i}} 1188:{\displaystyle _{j}^{i}} 1007:levels of exponentials. 882:second-order variables. 730:transitive closure logic 724:Transitive closure logic 626:FO without any operators 319:{\displaystyle bit(x,k)} 101:universal quantification 2981:Immerman, Neil (1999). 2901:Information and Control 2864:10.1109/lics.1989.39160 2675:Information and Control 2668:Immerman, Neil (1986). 2658:Immerman 1999, p. 153–4 2615:Immerman, Neil (1988). 1818:Every formula of order 912:on ordered structures. 874:times characterise the 868:Polynomial hierarchy PH 839:This class is equal to 830:disjunctive normal form 815:Abiteboul–Vianu theorem 784:least fixed-point logic 768:conjunctive normal form 751:on ordered structures. 469:is true if and only if 384:is true if and only if 3033:Descriptive complexity 2984:Descriptive complexity 2360: 2205: 2085: 2065: 2038: 2006: 1878: 1852: 1832: 1805: 1785: 1765: 1665: 1578: 1521: 1495: 1475: 1455: 1435: 1404: 1384: 1350: 1313: 1293: 1189: 1158: 1138: 1105: 1075: 1055: 1035: 1034:{\displaystyle i>1} 1001: 975: 702: 682: 681:{\displaystyle \land } 662: 495: 463: 410: 378: 320: 279: 278:{\displaystyle y<x} 249: 219:represents the number 193: 156: 155:{\displaystyle E(x,y)} 78:computational problems 53:in them. For example, 49:needed to express the 31:Descriptive complexity 18:Descriptive complexity 3019:, including a diagram 2840:Immerman 1999, p. 181 2831:Immerman 1999, p. 121 2822:Immerman 1999, p. 115 2723:10.1145/800070.802186 2574:Counter-free automata 2498:10.1145/256292.256295 2467:Immerman 1999, p. 243 2438:Immerman 1999, p. 242 2361: 2206: 2086: 2066: 2064:{\displaystyle n^{c}} 2039: 2037:{\displaystyle (i-2)} 2012:, meaning a tower of 2007: 1879: 1853: 1833: 1806: 1786: 1766: 1666: 1579: 1522: 1496: 1476: 1456: 1436: 1405: 1385: 1351: 1314: 1294: 1190: 1159: 1139: 1106: 1085:of elements of order 1076: 1056: 1036: 1002: 976: 703: 701:{\displaystyle \lor } 683: 663: 577:logic corresponds to 496: 494:{\displaystyle x*y=z} 464: 411: 409:{\displaystyle x+y=z} 379: 321: 280: 250: 248:{\displaystyle (n-1)} 194: 157: 65:used to define them. 2605:Immerman 1999, p. 22 2385:Immerman 1999, p. 86 2229: 2222:polynomial hierarchy 2096: 2075: 2048: 2016: 1900: 1862: 1842: 1822: 1795: 1775: 1675: 1588: 1538: 1505: 1485: 1465: 1445: 1414: 1394: 1360: 1323: 1319:is a quantifier and 1303: 1199: 1168: 1148: 1137:{\displaystyle ^{i}} 1122: 1089: 1065: 1045: 1019: 985: 965: 929:Elementary functions 692: 672: 646: 473: 420: 388: 338: 326:is true if only the 289: 263: 227: 192:{\displaystyle P(n)} 174: 131: 3043:Finite model theory 2350: 2303: 2253: 2212:, which is exactly 2136: 1970: 1924: 1877:{\displaystyle i-1} 1698: 1646: 1611: 1555: 1520:{\displaystyle i-1} 1430: 1280: 1252: 1227: 1184: 1104:{\displaystyle i-1} 1000:{\displaystyle i-1} 718:star-free languages 621:Sub-polynomial time 125:domain of discourse 68:Specifically, each 41:that characterizes 39:finite model theory 2484:Journal of the ACM 2356: 2334: 2283: 2278: 2232: 2201: 2199: 2115: 2081: 2061: 2034: 2002: 1950: 1903: 1874: 1848: 1828: 1801: 1781: 1761: 1678: 1661: 1632: 1591: 1574: 1541: 1517: 1491: 1471: 1451: 1431: 1417: 1400: 1380: 1346: 1309: 1289: 1266: 1238: 1213: 1185: 1171: 1154: 1134: 1101: 1071: 1051: 1031: 997: 971: 959:second-order logic 951:higher-order logic 698: 678: 658: 632:circuit complexity 611:higher-order logic 586:transitive closure 540:transitive closure 529:transitive closure 516:defines the class 491: 459: 406: 374: 316: 275: 245: 189: 152: 97:second-order logic 72:produces a set of 59:second-order logic 43:complexity classes 2753:Serge Abiteboul, 2457:. pp. 43–73. 2084:{\displaystyle c} 1851:{\displaystyle i} 1831:{\displaystyle i} 1804:{\displaystyle 2} 1784:{\displaystyle i} 1481:, beginning with 1474:{\displaystyle i} 1454:{\displaystyle j} 1403:{\displaystyle i} 1378: 1344: 1312:{\displaystyle Q} 1284: 1256: 1231: 1157:{\displaystyle i} 1074:{\displaystyle k} 1054:{\displaystyle k} 974:{\displaystyle i} 955:first-order logic 749:logarithmic space 597:least fixed point 551:least fixed point 524:in constant time. 514:First-order logic 63:abstract machines 16:(Redirected from 3050: 3006: 2968: 2967: 2957: 2933: 2927: 2926: 2916: 2892: 2886: 2885: 2847: 2841: 2838: 2832: 2829: 2823: 2820: 2814: 2813: 2803: 2779: 2773: 2751: 2745: 2744: 2716: 2700: 2694: 2693: 2691: 2665: 2659: 2656: 2647: 2646: 2612: 2606: 2603: 2597: 2596: 2577:. M.I.T. Press. 2568: 2562: 2561: 2551: 2525: 2519: 2518: 2500: 2474: 2468: 2465: 2459: 2458: 2450: 2439: 2436: 2423: 2422: 2410: 2392: 2386: 2383: 2365: 2363: 2362: 2357: 2352: 2351: 2349: 2348: 2342: 2328: 2327: 2302: 2291: 2279: 2277: 2276: 2252: 2247: 2242: 2241: 2210: 2208: 2207: 2202: 2200: 2198: 2197: 2180: 2179: 2158: 2157: 2135: 2130: 2125: 2124: 2111: 2110: 2090: 2088: 2087: 2082: 2070: 2068: 2067: 2062: 2060: 2059: 2044:2s, ending with 2043: 2041: 2040: 2035: 2011: 2009: 2008: 2003: 1995: 1994: 1969: 1958: 1946: 1945: 1923: 1918: 1913: 1912: 1884:in normal form. 1883: 1881: 1880: 1875: 1857: 1855: 1854: 1849: 1837: 1835: 1834: 1829: 1810: 1808: 1807: 1802: 1790: 1788: 1787: 1782: 1770: 1768: 1767: 1762: 1760: 1759: 1758: 1757: 1756: 1755: 1754: 1753: 1752: 1751: 1750: 1749: 1697: 1686: 1670: 1668: 1667: 1662: 1660: 1659: 1645: 1640: 1610: 1599: 1583: 1581: 1580: 1575: 1554: 1549: 1526: 1524: 1523: 1518: 1500: 1498: 1497: 1492: 1480: 1478: 1477: 1472: 1460: 1458: 1457: 1452: 1440: 1438: 1437: 1432: 1429: 1424: 1409: 1407: 1406: 1401: 1389: 1387: 1386: 1381: 1379: 1374: 1373: 1364: 1355: 1353: 1352: 1347: 1345: 1340: 1339: 1330: 1318: 1316: 1315: 1310: 1298: 1296: 1295: 1290: 1285: 1279: 1274: 1265: 1257: 1251: 1246: 1237: 1232: 1226: 1221: 1212: 1194: 1192: 1191: 1186: 1183: 1178: 1163: 1161: 1160: 1155: 1143: 1141: 1140: 1135: 1133: 1132: 1110: 1108: 1107: 1102: 1080: 1078: 1077: 1072: 1060: 1058: 1057: 1052: 1040: 1038: 1037: 1032: 1006: 1004: 1003: 998: 980: 978: 977: 972: 947:complexity class 711: 707: 705: 704: 699: 687: 685: 684: 679: 667: 665: 664: 659: 542:operator yields 531:operators yield 500: 498: 497: 492: 468: 466: 465: 460: 415: 413: 412: 407: 383: 381: 380: 375: 333: 329: 325: 323: 322: 317: 284: 282: 281: 276: 258: 254: 252: 251: 246: 222: 218: 202: 198: 196: 195: 190: 169: 165: 161: 159: 158: 153: 21: 3058: 3057: 3053: 3052: 3051: 3049: 3048: 3047: 3023: 3022: 3013: 2995: 2977: 2972: 2971: 2934: 2930: 2893: 2889: 2874: 2848: 2844: 2839: 2835: 2830: 2826: 2821: 2817: 2780: 2776: 2752: 2748: 2733: 2714:10.1.1.331.6045 2701: 2697: 2682:(1–3): 86–104. 2666: 2662: 2657: 2650: 2635:10.1137/0217058 2613: 2609: 2604: 2600: 2585: 2569: 2565: 2526: 2522: 2475: 2471: 2466: 2462: 2451: 2442: 2437: 2426: 2419: 2393: 2389: 2384: 2377: 2372: 2344: 2343: 2338: 2333: 2329: 2314: 2310: 2292: 2287: 2260: 2259: 2257: 2248: 2243: 2234: 2233: 2230: 2227: 2226: 2218:oracle machines 2214:Fagin's theorem 2190: 2189: 2187: 2166: 2162: 2141: 2140: 2131: 2126: 2117: 2116: 2103: 2102: 2097: 2094: 2093: 2076: 2073: 2072: 2055: 2051: 2049: 2046: 2045: 2017: 2014: 2013: 1981: 1977: 1959: 1954: 1929: 1928: 1919: 1914: 1905: 1904: 1901: 1898: 1897: 1890: 1863: 1860: 1859: 1843: 1840: 1839: 1823: 1820: 1819: 1816: 1796: 1793: 1792: 1776: 1773: 1772: 1745: 1741: 1740: 1737: 1733: 1729: 1728: 1724: 1723: 1719: 1718: 1714: 1687: 1682: 1676: 1673: 1672: 1641: 1636: 1631: 1627: 1600: 1595: 1589: 1586: 1585: 1550: 1545: 1539: 1536: 1535: 1506: 1503: 1502: 1486: 1483: 1482: 1466: 1463: 1462: 1446: 1443: 1442: 1425: 1420: 1415: 1412: 1411: 1395: 1392: 1391: 1369: 1365: 1363: 1361: 1358: 1357: 1335: 1331: 1329: 1324: 1321: 1320: 1304: 1301: 1300: 1275: 1270: 1264: 1247: 1242: 1236: 1222: 1217: 1211: 1200: 1197: 1196: 1179: 1174: 1169: 1166: 1165: 1149: 1146: 1145: 1128: 1125: 1123: 1120: 1119: 1090: 1087: 1086: 1066: 1063: 1062: 1046: 1043: 1042: 1020: 1017: 1016: 1013: 986: 983: 982: 966: 963: 962: 935:time complexity 931: 918: 893: 888: 857: 855:Fagin's theorem 852: 823: 796: 780: 778:Polynomial time 757: 726: 709: 693: 690: 689: 673: 670: 669: 647: 644: 643: 628: 623: 599:operator gives 553:operator gives 507: 474: 471: 470: 421: 418: 417: 389: 386: 385: 339: 336: 335: 331: 327: 290: 287: 286: 264: 261: 260: 256: 228: 225: 224: 220: 216: 200: 175: 172: 171: 167: 163: 132: 129: 128: 121: 85:Fagin's theorem 45:by the type of 33:is a branch of 28: 23: 22: 15: 12: 11: 5: 3056: 3046: 3045: 3040: 3035: 3021: 3020: 3012: 3011:External links 3009: 3008: 3007: 2993: 2976: 2973: 2970: 2969: 2928: 2887: 2872: 2842: 2833: 2824: 2815: 2774: 2755:Moshe Y. Vardi 2746: 2732:978-0897910705 2731: 2695: 2660: 2648: 2629:(5): 935–938. 2607: 2598: 2583: 2563: 2520: 2469: 2460: 2440: 2424: 2417: 2387: 2374: 2373: 2371: 2368: 2355: 2347: 2341: 2337: 2332: 2326: 2323: 2320: 2317: 2313: 2309: 2306: 2301: 2298: 2295: 2290: 2286: 2282: 2275: 2272: 2269: 2266: 2263: 2256: 2251: 2246: 2240: 2237: 2196: 2193: 2186: 2183: 2178: 2175: 2172: 2169: 2165: 2161: 2156: 2153: 2150: 2147: 2144: 2139: 2134: 2129: 2123: 2120: 2114: 2109: 2106: 2101: 2080: 2058: 2054: 2033: 2030: 2027: 2024: 2021: 2001: 1998: 1993: 1990: 1987: 1984: 1980: 1976: 1973: 1968: 1965: 1962: 1957: 1953: 1949: 1944: 1941: 1938: 1935: 1932: 1927: 1922: 1917: 1911: 1908: 1889: 1886: 1873: 1870: 1867: 1847: 1827: 1815: 1812: 1800: 1780: 1748: 1744: 1739: 1736: 1732: 1727: 1722: 1717: 1713: 1710: 1707: 1704: 1701: 1696: 1693: 1690: 1685: 1681: 1658: 1655: 1652: 1649: 1644: 1639: 1635: 1630: 1626: 1623: 1620: 1617: 1614: 1609: 1606: 1603: 1598: 1594: 1573: 1570: 1567: 1564: 1561: 1558: 1553: 1548: 1544: 1516: 1513: 1510: 1490: 1470: 1450: 1428: 1423: 1419: 1399: 1377: 1372: 1368: 1343: 1338: 1334: 1328: 1308: 1288: 1283: 1278: 1273: 1269: 1263: 1260: 1255: 1250: 1245: 1241: 1235: 1230: 1225: 1220: 1216: 1210: 1207: 1204: 1182: 1177: 1173: 1153: 1131: 1127: 1100: 1097: 1094: 1070: 1050: 1030: 1027: 1024: 1012: 1009: 996: 993: 990: 970: 930: 927: 917: 914: 892: 889: 887: 884: 856: 853: 851: 848: 822: 819: 795: 792: 779: 776: 756: 753: 725: 722: 697: 677: 657: 654: 651: 627: 624: 622: 619: 618: 617: 613:, is equal to 604: 593: 582: 572: 565: 558: 547: 536: 525: 506: 503: 490: 487: 484: 481: 478: 458: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 425: 405: 402: 399: 396: 393: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 315: 312: 309: 306: 303: 300: 297: 294: 274: 271: 268: 244: 241: 238: 235: 232: 188: 185: 182: 179: 151: 148: 145: 142: 139: 136: 120: 117: 70:logical system 26: 9: 6: 4: 3: 2: 3055: 3044: 3041: 3039: 3036: 3034: 3031: 3030: 3028: 3018: 3015: 3014: 3004: 3000: 2996: 2994:0-387-98600-6 2990: 2986: 2985: 2979: 2978: 2965: 2961: 2956: 2951: 2947: 2943: 2939: 2932: 2924: 2920: 2915: 2910: 2907:(1): 86–102. 2906: 2902: 2898: 2891: 2883: 2879: 2875: 2873:0-8186-1954-6 2869: 2865: 2861: 2857: 2853: 2846: 2837: 2828: 2819: 2811: 2807: 2802: 2797: 2793: 2789: 2785: 2778: 2772: 2768: 2764: 2760: 2756: 2750: 2742: 2738: 2734: 2728: 2724: 2720: 2715: 2710: 2706: 2699: 2690: 2685: 2681: 2677: 2676: 2671: 2664: 2655: 2653: 2644: 2640: 2636: 2632: 2628: 2624: 2623: 2618: 2611: 2602: 2594: 2590: 2586: 2584:0-262-13076-9 2580: 2576: 2575: 2567: 2559: 2555: 2550: 2545: 2541: 2537: 2536: 2531: 2524: 2516: 2512: 2508: 2504: 2499: 2494: 2490: 2486: 2485: 2480: 2473: 2464: 2456: 2449: 2447: 2445: 2435: 2433: 2431: 2429: 2420: 2418:9783959771177 2414: 2409: 2404: 2400: 2399: 2391: 2382: 2380: 2375: 2367: 2366: 2339: 2321: 2315: 2311: 2304: 2299: 2296: 2293: 2288: 2284: 2254: 2249: 2244: 2223: 2219: 2215: 2211: 2184: 2173: 2167: 2163: 2137: 2132: 2127: 2112: 2078: 2056: 2052: 2028: 2025: 2022: 1988: 1982: 1978: 1971: 1966: 1963: 1960: 1955: 1951: 1925: 1920: 1915: 1895: 1885: 1871: 1868: 1865: 1845: 1825: 1811: 1798: 1778: 1746: 1742: 1738: 1734: 1730: 1725: 1720: 1715: 1711: 1705: 1699: 1694: 1691: 1688: 1683: 1679: 1653: 1647: 1642: 1637: 1633: 1628: 1624: 1618: 1612: 1607: 1604: 1601: 1596: 1592: 1571: 1568: 1562: 1556: 1551: 1546: 1542: 1533: 1528: 1514: 1511: 1508: 1468: 1448: 1426: 1421: 1418: 1397: 1370: 1366: 1336: 1332: 1326: 1306: 1286: 1276: 1271: 1267: 1261: 1258: 1248: 1243: 1239: 1223: 1218: 1214: 1205: 1202: 1180: 1175: 1172: 1151: 1129: 1126: 1116: 1114: 1098: 1095: 1092: 1084: 1068: 1048: 1041:has an arity 1028: 1025: 1022: 1008: 994: 991: 988: 968: 960: 956: 952: 948: 944: 940: 936: 926: 924: 913: 911: 906: 904: 900: 898: 883: 879: 877: 873: 869: 864: 861: 847: 844: 842: 837: 835: 831: 826: 818: 816: 811: 808: 806: 802: 791: 789: 785: 775: 772: 769: 764: 762: 761:Krom formulae 752: 750: 746: 741: 739: 735: 731: 721: 719: 715: 695: 675: 652: 641: 637: 633: 616: 612: 608: 605: 602: 598: 594: 591: 587: 583: 580: 576: 573: 570: 566: 563: 559: 556: 552: 548: 545: 541: 537: 534: 530: 526: 523: 519: 515: 512: 511: 510: 502: 488: 485: 482: 479: 476: 453: 450: 447: 444: 441: 435: 432: 429: 426: 423: 403: 400: 397: 394: 391: 368: 365: 362: 359: 356: 350: 347: 344: 341: 310: 307: 304: 298: 295: 292: 272: 269: 266: 239: 236: 233: 213: 211: 207: 183: 177: 146: 143: 140: 134: 126: 116: 114: 110: 106: 102: 98: 94: 90: 86: 81: 79: 75: 71: 66: 64: 60: 56: 52: 48: 44: 40: 36: 32: 19: 2987:. Springer. 2983: 2945: 2941: 2931: 2904: 2900: 2890: 2855: 2845: 2836: 2827: 2818: 2794:(1): 35–57. 2791: 2787: 2777: 2759:Victor Vianu 2749: 2704: 2698: 2679: 2673: 2663: 2626: 2620: 2610: 2601: 2573: 2566: 2539: 2533: 2523: 2491:(1): 30–56. 2488: 2482: 2472: 2463: 2454: 2397: 2390: 1891: 1817: 1529: 1117: 1014: 942: 932: 919: 907: 901: 894: 880: 875: 871: 865: 862: 858: 845: 838: 827: 824: 812: 809: 797: 781: 773: 765: 758: 742: 727: 629: 575:Second-order 508: 214: 212:(terminal). 209: 208:(start) and 205: 122: 89:Ronald Fagin 82: 67: 30: 29: 1814:Normal form 1356:means that 119:The setting 87:, shown by 3027:Categories 2975:References 1894:ELEMENTARY 1011:Definition 939:ELEMENTARY 615:ELEMENTARY 3003:901297152 2964:0304-3975 2923:0019-9958 2882:206437693 2810:0304-3975 2771:0004-5411 2709:CiteSeerX 2643:0097-5397 2593:651199926 2558:0304-3975 2507:0004-5411 2336:Σ 2305:⁡ 2297:− 2100:∃ 2026:− 1972:⁡ 1964:− 1869:− 1735:… 1700:⁡ 1648:⁡ 1613:⁡ 1557:⁡ 1532:tetration 1512:− 1489:∃ 1376:¯ 1342:¯ 1287:ψ 1282:¯ 1259:… 1254:¯ 1234:∀ 1229:¯ 1209:∃ 1203:ϕ 1096:− 992:− 886:Beyond NP 786:captures 696:∨ 676:∧ 656:∃ 650:∀ 480:∗ 255:elements 237:− 109:functions 105:relations 51:languages 2515:11338470 2216:. Using 2071:, where 1299:, where 801:Immerman 738:Immerman 708:of size 2741:7869248 2220:in the 601:EXPTIME 113:subsets 74:queries 37:and of 3001:  2991:  2962:  2921:  2880:  2870:  2808:  2769:  2739:  2729:  2711:  2641:  2591:  2581:  2556:  2513:  2505:  2415:  1791:times 1083:tuples 945:, the 937:class 923:PSPACE 910:PSPACE 897:PSPACE 668:being 590:PSPACE 111:, and 2878:S2CID 2737:S2CID 2511:S2CID 2370:Notes 1771:with 805:Vardi 788:PTIME 569:co-NP 259:with 103:over 47:logic 2999:OCLC 2989:ISBN 2960:ISSN 2919:ISSN 2868:ISBN 2806:ISSN 2767:ISSN 2727:ISBN 2639:ISSN 2589:OCLC 2579:ISBN 2554:ISSN 2503:ISSN 2413:ISBN 1584:and 1164:. HO 1026:> 957:and 933:The 834:Horn 813:The 803:and 688:and 416:and 270:< 2950:doi 2946:355 2909:doi 2860:doi 2796:doi 2792:101 2719:doi 2684:doi 2631:doi 2544:doi 2540:355 2493:doi 2403:doi 2285:exp 1952:exp 1680:exp 1634:exp 1593:exp 1543:exp 630:In 501:). 166:to 3029:: 2997:. 2958:. 2944:. 2940:. 2917:. 2905:60 2903:. 2899:. 2876:. 2866:. 2854:. 2804:. 2790:. 2786:. 2761:: 2757:, 2735:. 2725:. 2717:. 2680:68 2678:. 2672:. 2651:^ 2637:. 2627:17 2625:. 2619:. 2587:. 2552:. 2538:. 2532:. 2509:. 2501:. 2489:44 2487:. 2481:. 2443:^ 2427:^ 2411:. 2378:^ 2224:, 1671:. 1534:, 1527:. 1118:HO 1113:FO 943:HO 790:: 763:. 720:. 640:AC 636:AC 607:HO 562:NP 544:NL 518:AC 107:, 93:NP 55:PH 3005:. 2966:. 2952:: 2925:. 2911:: 2884:. 2862:: 2812:. 2798:: 2743:. 2721:: 2692:. 2686:: 2645:. 2633:: 2595:. 2560:. 2546:: 2517:. 2495:: 2421:. 2405:: 2354:) 2346:P 2340:j 2331:) 2325:) 2322:1 2319:( 2316:O 2312:n 2308:( 2300:2 2294:i 2289:2 2281:( 2274:E 2271:M 2268:I 2265:T 2262:N 2255:= 2250:i 2245:j 2239:O 2236:H 2195:P 2192:N 2185:= 2182:) 2177:) 2174:1 2171:( 2168:O 2164:n 2160:( 2155:E 2152:M 2149:I 2146:T 2143:N 2138:= 2133:2 2128:0 2122:O 2119:H 2113:= 2108:O 2105:S 2079:c 2057:c 2053:n 2032:) 2029:2 2023:i 2020:( 2000:) 1997:) 1992:) 1989:1 1986:( 1983:O 1979:n 1975:( 1967:2 1961:i 1956:2 1948:( 1943:E 1940:M 1937:I 1934:T 1931:N 1926:= 1921:i 1916:0 1910:O 1907:H 1872:1 1866:i 1846:i 1826:i 1799:2 1779:i 1747:x 1743:2 1731:2 1726:2 1721:2 1716:2 1712:= 1709:) 1706:x 1703:( 1695:1 1692:+ 1689:i 1684:2 1657:) 1654:x 1651:( 1643:i 1638:2 1629:2 1625:= 1622:) 1619:x 1616:( 1608:1 1605:+ 1602:i 1597:2 1572:x 1569:= 1566:) 1563:x 1560:( 1552:0 1547:2 1515:1 1509:i 1469:i 1449:j 1427:i 1422:j 1398:i 1371:i 1367:X 1337:i 1333:X 1327:Q 1307:Q 1277:i 1272:j 1268:X 1262:Q 1249:i 1244:2 1240:X 1224:i 1219:1 1215:X 1206:= 1181:i 1176:j 1152:i 1130:i 1099:1 1093:i 1081:- 1069:k 1049:k 1029:1 1023:i 995:1 989:i 969:i 876:k 872:k 841:P 710:n 653:, 581:. 571:. 564:. 555:P 533:L 489:z 486:= 483:y 477:x 457:) 454:z 451:, 448:y 445:, 442:x 439:( 436:s 433:e 430:m 427:i 424:t 404:z 401:= 398:y 395:+ 392:x 372:) 369:z 366:, 363:y 360:, 357:x 354:( 351:s 348:u 345:l 342:p 332:x 328:k 314:) 311:k 308:, 305:x 302:( 299:t 296:i 293:b 273:x 267:y 257:y 243:) 240:1 234:n 231:( 221:n 217:x 210:t 206:s 201:n 187:) 184:n 181:( 178:P 168:y 164:x 150:) 147:y 144:, 141:x 138:( 135:E 20:)

Index

Descriptive complexity
computational complexity theory
finite model theory
complexity classes
logic
languages
PH
second-order logic
abstract machines
logical system
queries
computational problems
Fagin's theorem
Ronald Fagin
NP
second-order logic
universal quantification
relations
functions
subsets
domain of discourse
First-order logic
AC
concurrent random access machine
transitive closure
L
transitive closure
NL
least fixed point
P

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑