Knowledge

Diels–Alder reaction

Source 📝

804:
lowering the energy of the dienophile's LUMO and consequently, enhancing the normal electron demand orbital interaction. The Lewis acid binds via a donor-acceptor interaction to the dienophile and via that mechanism polarizes occupied orbital density away from the reactive C=C double bond of the dienophile towards the Lewis acid. This reduced occupied orbital density on C=C double bond of the dienophile will, in turn, engage in a less repulsive closed-shell-closed-shell orbital interaction with the incoming diene, reducing the destabilizing steric Pauli repulsion and hence lowers the Diels–Alder reaction barrier. In addition, the Lewis acid catalyst also increases the asynchronicity of the Diels–Alder reaction, making the occupied π-orbital located on the C=C double bond of the dienophile asymmetric. As a result, this enhanced asynchronicity leads to an extra reduction of the destabilizing steric Pauli repulsion as well as a diminishing pressure on the reactants to deform, in other words, it reduced the destabilizing activation strain (also known as distortion energy). This working catalytic mechanism is known as
77: 982: 549: 216: 1008: 279: 812:
indeed Lewis acid catalysts strengthen the normal electron demand orbital interaction by lowering the LUMO of the dienophile, but, they simultaneously weaken the inverse electron demand orbital interaction by also lowering the energy of the dienophile's HOMO. These two counteracting phenomena effectively cancel each other, resulting in nearly unchanged orbital interactions when compared to the corresponding uncatalyzed Diels–Alder reactions and making this not the active mechanism behind Lewis acid-catalyzed Diels–Alder reactions.
1113: 943: 884: 1073: 1047: 421: 918: 299:
coefficients gives the "ortho" product as seen in case 1 in the figure below. A diene substituted at C2 as in case 2 below has the largest HOMO coefficient at C1, giving rise to the "para" product. Similar analyses for the corresponding inverse-demand scenarios gives rise to the analogous products as seen in cases 3 and 4. Examining the canonical mesomeric forms above, it is easy to verify that these results are in accord with expectations based on consideration of electron density and polarization.
303: 516: 1103: 629: 428: 1183: 1165: 1146: 676:
undergoes Diels–Alder reaction with a diene introducing such a functionality onto the product molecule. A series of reactions then follow to transform the functionality into a desirable group. The end product cannot be made in a single DA step because equivalent dienophile is either unreactive or inaccessible. An example of such approach is the use of
800:, can catalyze Diels–Alder reactions by binding to the dienophile. Traditionally, the enhanced Diels-Alder reactivity is ascribed to the ability of the Lewis acid to lower the LUMO of the activated dienophile, which results in a smaller normal electron demand HOMO-LUMO orbital energy gap and hence more stabilizing orbital interactions. 185:/suprafacial interaction of a 4π electron system (the diene structure) with a 2π electron system (the dienophile structure), an interaction that leads to a transition state without an additional orbital symmetry-imposed energetic barrier and allows the Diels–Alder reaction to take place with relative ease. 168:° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reaction becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels–Alder adducts, generally with some special structural features; this reverse reaction is known as the 811:
The original rationale behind Lewis acid-catalyzed Diels–Alder reactions is incorrect, because besides lowering the energy of the dienophile's LUMO, the Lewis acid also lowers the energy of the HOMO of the dienophile and hence increases the inverse electron demand LUMO-HOMO orbital energy gap. Thus,
624:
systems by elimination of the 1-methoxy substituent after deprotection of the enol silyl ether. Other synthetically useful derivatives of Danishefsky's diene include 1,3-alkoxy-1-trimethylsiloxy-1,3-butadienes (Brassard dienes) and 1-dialkylamino-3-trimethylsiloxy-1,3-butadienes (Rawal dienes). The
310:
In general, with respect to the energetically most well-matched HOMO-LUMO pair, maximizing the interaction energy by forming bonds between centers with the largest frontier orbital coefficients allows the prediction of the main regioisomer that will result from a given diene-dienophile combination.
223:
The "prevailing opinion" is that most Diels–Alder reactions proceed through a concerted mechanism; the issue, however, has been thoroughly contested. Despite the fact that the vast majority of Diels–Alder reactions exhibit stereospecific, syn addition of the two components, a diradical intermediate
211:
orbital and electron-donating substituents on the dienophile raise the energy of its filled π orbital sufficiently that the interaction between these two orbitals becomes the most energetically significant stabilizing orbital interaction. Regardless of which situation pertains, the HOMO and LUMO of
199:
as the highest occupied molecular orbital (HOMO) with the electron-deficient dienophile's π* as the lowest unoccupied molecular orbital (LUMO). However, the HOMO–LUMO energy gap is close enough that the roles can be reversed by switching electronic effects of the substituents on the two components.
298:
positions of disubstituted arenes. For example, in a normal-demand scenario, a diene bearing an electron-donating group (EDG) at C1 has its largest HOMO coefficient at C4, while the dienophile with an electron withdrawing group (EWG) at C1 has the largest LUMO coefficient at C2. Pairing these two
192:(FMO) makes plain why this is so. (The same conclusion can be drawn from an orbital correlation diagram or a Dewar-Zimmerman analysis.) For the more common "normal" electron demand Diels–Alder reaction, the more important of the two HOMO/LUMO interactions is that between the electron-rich diene's 180:
The reaction is an example of a concerted pericyclic reaction. It is believed to occur via a single, cyclic transition state, with no intermediates generated during the course of the reaction. As such, the Diels–Alder reaction is governed by orbital symmetry considerations: it is classified as a
458:
situation based on the relative orientation of the two separate components when they react with each other. In the context of the Diels–Alder reaction, the transition state in which the most significant substituent (an electron-withdrawing and/or conjugating group) on the dienophile is oriented
274:
Frontier molecular orbital theory has also been used to explain the regioselectivity patterns observed in Diels–Alder reactions of substituted systems. Calculation of the energy and orbital coefficients of the components' frontier orbitals provides a picture that is in good accord with the more
803:
Recent studies, however, have shown that this rationale behind Lewis acid-catalyzed Diels–Alder reactions is incorrect. It is found that Lewis acids accelerate the Diels–Alder reaction by reducing the destabilizing steric Pauli repulsion between the interacting diene and dienophile and not by
696:=C=O), which would produce same product in one DA step. The problem is that ketene itself cannot be used in Diels–Alder reactions because it reacts with dienes in unwanted manner (by cycloaddition), and therefore "masked functionality" approach has to be used. Other such functionalities are 675:
In a normal demand Diels–Alder reaction, the dienophile has an electron-withdrawing group in conjugation with the alkene; in an inverse-demand scenario, the dienophile is conjugated with an electron-donating group. Dienophiles can be chosen to contain a "masked functionality". The dienophile
139:
in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the
539:
attractions may play a part as well, and solvent can sometimes make a substantial difference in selectivity. The secondary orbital overlap explanation was first proposed by Woodward and Hoffmann. In this explanation, the orbitals associated with the group in conjugation with the dienophile
348:: HOMO raising and LUMO lowering (Ph, vinyl)) are considered, resulting in a total of 18 possible combinations. The maximization of orbital interaction correctly predicts the product in all cases for which experimental data is available. For instance, in uncommon combinations involving 1160:
of the thiophenyl group to give the sulfoxide as below proceeded enantiospecifically due to the predefined stereochemistry of the propargylic alcohol. In this way, the single allene isomer formed could direct the Diels–Alder reaction to occur on only one face of the generated 'diene'.
3385:
Diels, O.; Alder, K. (1929). "Synthesen in der hydroaromatischen Reihe, III. Mitteilung: Synthese von Terpenen, Camphern, hydroaromatischen und heterocyclischen Systemen. Mitbearbeitet von den Herren Wolfgang Lübbert, Erich Naujoks, Franz Querberitz, Karl Röhl, Harro Segeberg".
224:
has been postulated (and supported with computational evidence) on the grounds that the observed stereospecificity does not rule out a two-step addition involving an intermediate that collapses to product faster than it can rotate to allow for inversion of stereochemistry.
352:
groups on both diene and dienophile, a 1,3-substitution pattern may be favored, an outcome not accounted for by a simplistic resonance structure argument. However, cases where the resonance argument and the matching of largest orbital coefficients disagree are rare.
4039:
Danishefsky, S.; Hirama, M.; Fritsch, N.; Clardy, J. (1979). "Synthesis of disodium prephenate and disodium epiprephenate. Stereochemistry of prephenic acid and an observation on the base-catalyzed rearrangement of prephenic acid to p-hydroxyphenyllactic acid".
3451:
Diels, O.; Alder, K. (1929). "Synthesen in der hydroaromatischen Reihe, VI. Mitteilung, Kurt Alder und Gerhard Stein: Über partiell hydrierte Naphtho- und Anthrachinone mit Wasserstoff in γ- bzw. δ-Stellung. (Mitbearbeitet von Paul Pries und Hans Winckler)".
1179:-quinodimethane, which reacted intermolecularly to give the tetracycline skeleton. The dienophile's free hydroxyl group is integral to the success of the reaction, as hydroxyl-protected variants did not react under several different reaction conditions. 1494:
Gajewski, J. J.; Peterson, K. B.; Kagel, J. R. (1987). "Transition-state structure variation in the Diels–Alder reaction from secondary deuterium kinetic isotope effects: The reaction of a nearly symmetrical diene and dienophile is nearly synchronous".
544:
transition state. Although the original explanation only invoked the orbital on the atom α to the dienophile double bond, Salem and Houk have subsequently proposed that orbitals on the α and β carbons both participate when molecular geometry allows.
606:-butyl-buta-1,3-diene, for example, is 27 times more reactive than simple butadiene. Conversely, a diene having bulky substituents at both C2 and C3 is less reactive because the steric interactions between the substituents destabilize the s- 3901:
Diels, O.; Schrum, H. (1937). "Synthesen in der hydroaromatischen Reihe,XXVII. "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 12. Über den Abbau der "gelben Substanz"︁ zu einem Isomeren des Norlupinans (1-Methyl-octahydro-indolizin)".
3707:
Diels, O.; Alder, K. (1933). "Synthesen in der hydroaromatischen Reihe, XVIII "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 6. Dien-Synthesen des Pyridins. Zur Kenntnis des Chinolizins, Indolizins, Norlupinans und Pseudolupinins".
3429:
Diels, O.; Alder, K. (1929). "Synthesen in der hydroaromatischen Reihe, V. Über Δ4-Tetrahydro-o-phthalsäure (Stellungnahme zu der Mitteilung von E. H. Farmer und F. L. Warren: Eigenschaften konjugierter Doppelbindungen (VII)".
3794:
Diels, O.; Friedrichsen, W. (1934). "Synthesen in der hydroaromatischen Reihe, XXII. Über die Anthracen–C4O3-Addukte, ihre Eignung zu Dien-Synthesen und ein neues Prinzip zur Synthese von Phtalsäuren und Dihydro-phtalsäuren".
3729:
Diels, O.; Alder, K. (1934). "Synthesen in der hydroaromatischen Reihe, XIX. "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 7. Zur Kenntnis der Primärprodukte bei den Dien-Synthesen des Pyridins, Chinolins und Chinaldins".
1557:
Goldstein, E.; Beno, B.; Houk, K. N. (1996). "Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels−Alder Reaction of Butadiene and Ethylene".
212:
the components are in phase and a bonding interaction results as can be seen in the diagram below. Since the reactants are in their ground state, the reaction is initiated thermally and does not require activation by light.
3621:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, XIV. Mitteilung. ("Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 2. Dien-Synthesen der Pyrrole mit Acetylen-dicarbonsäure und mit ihren Estern.)".
160:. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of Δ 3685:
Diels, O.; Alder, K. (1932). "Synthesen in der hydroaromatischen Reihe, XVII. Mitteilung. ("Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 5. Dien-Synthesen des Pyridins, Chinolins, Chinaldins und Isochinolins.)".
3879:
Diels, O.; Harms, J. (1935). "Synthesen in der hydroaromatischen Reihe, XXVI. "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 11. Über die aus Isochinolin und Acetylen-dicarbonsäureester entstehenden Addukte".
3772:
Diels, O.; Meyer, R. (1934). "Synthesen in der hydroaromatischen Reihe, XXI. "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 8. Über den Verlauf der Dien-Synthese des Pyridins in methylalkoholischer Lösung".
4538:
English Translation of Diels and Alder's seminal 1928 German article that won them the Nobel prize. English title: 'Syntheses of the hydroaromatic series'; German title "Synthesen in der hydroaromatischen
3407:
Diels, O.; Alder, K. (1929). "Synthesen in der hydroaromatischen Reihe, IV. Mitteilung: Über die Anlagerung von Maleinsäure-anhydrid an arylierte Diene, Triene und Fulvene (Mitbearbeitet von Paul Pries)".
3557:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, XI. Mitteilung. ("Dien-Synthesen"︁ des Cyclopentadiens, Cyclo-hexadiens und Butadiens mit Acetylen-dicarbonsäure und ihren Estern".
625:
increased reactivity of these and similar dienes is a result of synergistic contributions from donor groups at C1 and C3, raising the HOMO significantly above that of a comparable monosubstituted diene.
247:
as solvent. Several explanations for this effect have been proposed, such as an increase in effective concentration due to hydrophobic packing or hydrogen-bond stabilization of the transition state.
3664:
Diels, O.; Alder, K. (1932). "Synthesen in der hydroaromatischen Reihe, XVI. Mitteilung. ("Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 4. Dien-Synthesen der Pyrrole, Imidazole und Pyrazole.)".
4121:
Nicolaou, K. C.; Yang, Z.; Liu, J. J.; Ueno, H.; Nantermet, P. G.; Guy, R. K.; Claiborne, C. F.; Renaud, J.; Couladouros, E. A.; Paulvannan, K.; Sorensen, E. J. (1994). "Total synthesis of taxol".
684:=CClCN). When reacted with a diene, this dienophile will introduce α-chloronitrile functionality onto the product molecule. This is a "masked functionality" which can be then hydrolyzed to form a 4094:
Martin, S. F.; Rueger, H.; Williamson, S. A.; Grzejszczak, S. (1987). "General strategies for the synthesis of indole alkaloids. Total synthesis of (±)-reserpine and (±)-α-yohimbine".
5502: 3099:
Johnson, J. S.; Evans, D. A. (2000). "Chiral bis(oxazoline) copper(II) complexes: Versatile catalysts for enantioselective cycloaddition, Aldol, Michael, and carbonyl Ene reactions".
302: 454:
Diels–Alder reactions in which adjacent stereocenters are generated at the two ends of the newly formed single bonds imply two different possible stereochemical outcomes. This is a
3002:
Corey, E. J.; Loh, T. P. (1991). "First application of attractive intramolecular interactions to the design of chiral catalysts for highly enantioselective Diels–Alder reactions".
527:
The most widely accepted explanation for the origin of this effect is a favorable interaction between the π systems of the dienophile and the diene, an interaction described as a
3923:
Diels, O.; Pistor, H. (1937). "Synthesen in der hydroaromatischen Reihe, XXVIII. "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 13. α-Picolin und Acetylen-dicarbonsäureeste".
3600:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, XIII. Mitteilung. ("Dien-Synthesen"︁ sauerstoffhaltiger Heteroringe. 3. Dien-Synthesen der Cumaline.)".
4253:
Gibbs, R. A.; Okamura, W. H. (1988). "A short enantioselective synthesis of (+)-sterpurene: Complete intramolecular transfer of central to axial to central chiral elements".
3579:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, XII. Mitteilung. ("Dien-Synthesen"︁ sauerstoffhaltiger Heteroringe. 2. Dien-Synthesen des Furans.)".
3816:
Diels, O.; Möller, F. (1935). "Synthesen in der hydroaromatischen Reihe, XXIII. "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 9. Stilbazol und Acetylen-dicarbonester".
3643:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, XV. Mitteilung. ("Dien-Synthesen"︁ stickstoffhaltiger Heteroringe. 3. Dien-Synthesen der Indole.)".
583:
component of the Diels–Alder reaction can be either open-chain or cyclic, and it can host many different types of substituents. It must, however, be able to exist in the s-
3134:
Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. (2000). "New Strategies for Organic Catalysis: The First Highly Enantioselective Organocatalytic Diels−Alder Reaction".
515: 3064:
Ryu, D. H.; Corey, E. J. (2003). "Triflimide activation of a chiral oxazaborolidine leads to a more general catalytic system for enantioselective Diels-Alder addition".
1922:
Wannere, Chaitanya S.; Paul, Ankan; Herges, Rainer; Houk, K. N.; Schaefer, Henry F.; Schleyer, Paul Von Ragué (2007). "The existence of secondary orbital interactions".
1000:. The Diels–Alder reaction establishes the relative stereochemistry of three contiguous stereocenters on the prostaglandin cyclopentane core. Activation by Lewis acidic 7717: 677: 1065:. Epoxidation from the less hindered α-face, followed by epoxide opening at the less hindered C18 afforded the desired stereochemistry at these positions, while the 1585:
Breslow, R.; Guo, T. (1988). "Diels-Alder reactions in nonaqueous polar solvents. Kinetic effects of chaotropic and antichaotropic agents and of β-cyclodextrin".
875:
intermediate which can then be trapped to form an aromatic product. This reaction allows the formation of heavily functionalized aromatic rings in a single step.
2698:
Hansen, Thomas; Vermeeren, Pascal; Yoshisada, Ryoji; Filippov, Dmitri V.; van der Marel, Gijsbert A.; Codée, Jeroen D. C.; Hamlin, Trevor A. (19 February 2021).
1142:
gave the second ring of the alkaloid core. The diene in this instance is notable as an example of a 1-amino-3-siloxybutadiene, otherwise known as a Rawal diene.
1099:. The stereospecificity of the Diels–Alder reaction in this instance allowed for the definition of four stereocenters that were carried on to the final product. 140:
introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving
3473:
Diels, O.; Alder, K. (1930). "Synthesen in der hydroaromatischen Reihe, VII. Mitteilung. (Mitbearbeitet von den Harren Ernst Petersen und Franz Querberitz.)".
1669:
Blokzijl, Wilfried; Engberts, Jan B. F. N. (1992). "Initial-State and Transition-State Effects on Diels–Alder Reactions in Water and Mixed Aqueous Solvents".
3858:
Diels, O.; Reese, J. (1935). "Synthesen in der hydroaromatischen Reihe, XXV Über die Addukte aus Acetylen-dicarbonsäureester und Hydrazo-Verbindungen (2)".
1696:
Ashby, E. C.; Chao, L.-C.; Neumann, H. M. (1973). "Organometallic reaction mechanisms. XII. Mechanism of methylmagnesium bromide addition to benzonitrile".
981: 649: 278: 962:
from 1928 to 1937. The first 19 articles were authored by Diels and Alder, while the later articles were authored by Diels and various other coauthors.
820:
Many methods have been developed for influencing the stereoselectivity of the Diels–Alder reaction, such as the use of chiral auxiliaries, catalysis by
2584: 1821:
Kobuke, Y.; Sugimoto, T.; Furukawa, J.; Fueno, T. (1972). "Role of attractive interactions in endo–exo stereoselectivities of Diels–Alder reactions".
6833: 6778: 1427:
Dewar, M. J.; Olivella, S.; Stewart, J. J. (1986). "Mechanism of the Diels-Alder reaction: Reactions of butadiene with ethylene and cyanoethylenes".
2975:
Evans, D. A.; Chapman, K. T.; Bisaha, J. (1988). "Asymmetric Diels–Alder cycloaddition reactions with chiral α,β-unsaturated N-acyloxazolidinones".
613:
Dienes with bulky terminal substituents (C1 and C4) decrease the rate of reaction, presumably by impeding the approach of the diene and dienophile.
7546: 4315:
Dauben, W. G.; Kessel, C. R.; Takemura, K. H. (1980). "Simple, efficient total synthesis of cantharidin via a high-pressure Diels–Alder reaction".
3751:
Diels, O.; Reese, J. (1934). "Synthesen in der hydroaromatischen Reihe, XX. Über die Anlagerung von Acetylen-dicarbonsäureester an Hydrazobenzol".
201: 480:
In cases where the dienophile has a single electron-withdrawing / conjugating substituent, or two electron-withdrawing / conjugating substituents
6888: 2747:
Tiekink, Eveline H.; Vermeeren, Pascal; Bickelhaupt, F. Matthias; Hamlin, Trevor A. (7 October 2021). "How Lewis Acids Catalyze Ene Reactions".
258:
and stereochemical relationship of substituents of the two components compared to each other are controlled by electronic effects. However, for
7038: 5672: 3029:
Corey, E. J.; Shibata, T.; Lee, T. W. (2002). "Asymmetric Diels-Alder reactions catalyzed by a triflic acid activated chiral oxazaborolidine".
1908: 958: 2015:
Craig, D.; Shipman, J. J.; Fowler, R. B. (1961). "The Rate of Reaction of Maleic Anhydride with 1,3-Dienes as Related to Diene Conformation".
7866: 7767: 1522:
Houk, K. N.; Lin, Y. T.; Brown, F. K. (1986). "Evidence for the concerted mechanism of the Diels–Alder reaction of butadiene with ethylene".
63: 7541: 5367: 3536:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, X. Mitteilung: "Dien-Synthesen"︁ mit Pyrrol und seinen Homologen".
3494:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, VIII. Mitteilung: Dien-Synthesen des Anthracens. Anthracen-Forme".
1775:
Bérubé, G.; DesLongchamps, P. (1987). "Stéréosélection acyclique-1,5: Synthèse de la chaîne latérale optiquement active de la vitamine E".
259: 4226:
Kozmin, S. A.; Rawal, V. H. (1998). "A General Strategy to Aspidosperma Alkaloids: Efficient, Stereocontrolled Synthesis of Tabersonine".
2939:
White, James D.; Shaw, Subrata (2011). "cis-2,5-Diaminobicyclooctane, a New Scaffold for Asymmetric Catalysis via Salen−Metal Complexes".
587:
conformation, since this is the only conformer that can participate in the reaction. Though butadienes are typically more stable in the s-
6643: 4564: 2890:
Vermeeren, Pascal; Tiezza, Marco Dalla; Dongen, Michelle; Fernández, Israel; Bickelhaupt, F. Matthias; Hamlin, Trevor A. (21 July 2021).
2477:
Vermeeren, Pascal; Tiezza, Marco Dalla; Dongen, Michelle; Fernández, Israel; Bickelhaupt, F. Matthias; Hamlin, Trevor A. (21 July 2021).
1848:
Williamson, K. L.; Hsu, Y.-F. L. (1970). "Stereochemistry of the Diels–Alder reaction. II. Lewis acid catalysis of syn-anti isomerism".
7213: 6413: 5157: 4067:
Wender, P. A.; Schaus, J. M.; White, A. W. (1980). "General methodology for cis-hydroisoquinoline synthesis: Synthesis of reserpine".
4004:
Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. (1969). "Stereo-controlled synthesis of prostaglandins F-2a and E-2 (dl)".
3343:
Diels, O.; Alder, K. (1928). "Synthesen in der hydroaromatischen Reihe, I. Mitteilung: Anlagerungen von "Di-en"-kohlenwasserstoffen".
7378: 7308: 7288: 6783: 5950: 5412: 3515:
Diels, O.; Alder, K. (1931). "Synthesen in der hydroaromatischen Reihe, IX. Mitteilung: Synthese des Camphenilons und des Santens".
492:. As originally stated by Alder, the transition state that is preferred is the one with a "maximum accumulation of double bonds." 5831: 5387: 1322: 2069:
Savard, J.; Brassard, P. (1979). "Regiospecific syntheses of quinones using vinylketene acetals derived from unsaturated esters".
4600: 7133: 7611: 7561: 5965: 3837:
Diels, O.; Kech, H. (1935). "Synthesen in der hydroaromatischen Reihe, XXIV "Dien-Synthesen"︁ stickstoffhaltiger Heteroringe".
1152:(+)-Sterpurene can be prepared by asymmetric D-A reaction that featured a remarkable intramolecular Diels–Alder reaction of an 628: 215: 7068: 659:, being less aromatic (and therefore more reactive for Diels–Alder syntheses) in its central ring can form a 9,10 adduct with 7707: 7516: 7173: 7153: 7113: 5920: 4863: 2188: 1383: 1309:
Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. (2002). "The Diels-Alder Reaction in Total Synthesis".
7702: 7632: 7531: 7188: 7043: 6673: 6518: 6128: 5755: 5532: 1344:
Atilla Tasdelen, Mehmet (2011). "Diels–Alder "click" reactions: recent applications in polymer and material science".
860: 4172:
Narasaka, K.; Shimada, S.; Osoda, K.; Iwasawa, N. (1991). "Phenylboronic Acid as a Template in the Diels-Alder Reaction".
7782: 7566: 6878: 6368: 6043: 1175:
was prepared with a Diels–Alder reaction. Thermally initiated, conrotatory opening of the benzocyclobutene generated the
227:
There is a notable rate enhancement when certain Diels–Alder reactions are carried out in polar organic solvents such as
6588: 488:
transition state is typically preferred, despite often being more sterically congested. This preference is known as the
7777: 7491: 7353: 7143: 7108: 4520: 4491: 4458: 4441:
Heintzelman, G. R.; Meigh, I. R.; Mahajan, Y. R.; Weinreb, S. W. (2005). "Diels-Alder Reactions of Imino Dienophiles".
4425: 4392: 4359: 3325: 1732: 1290: 1257: 7667: 7606: 7138: 7053: 7023: 7003: 6868: 6863: 6238: 6163: 5806: 5760: 5627: 4888: 2311: 2286: 1884: 952: 189: 2843:"Bifunctional Hydrogen Bond Donor-Catalyzed Diels–Alder Reactions: Origin of Stereoselectivity and Rate Enhancement" 2430:"Bifunctional Hydrogen Bond Donor-Catalyzed Diels–Alder Reactions: Origin of Stereoselectivity and Rate Enhancement" 286:
In general, the regioselectivity found for both normal and inverse electron-demand Diels–Alder reaction follows the
7772: 7732: 7682: 7358: 7158: 6908: 6838: 5327: 4898: 3977:
Woodward, R. B.; Sondheimer, F.; Taub, D.; Heusler, K.; McLamore, W. M. (1952). "The Total Synthesis of Steroids".
1642:
Breslow, R.; Rizzo, C. J. (1991). "Chaotropic salt effects in a hydrophobically accelerated Diels–Alder reaction".
851:
catalysis, and many other methodologies exist for effecting diastereo- and enantioselective Diels–Alder reactions.
833: 250:
The geometry of the diene and dienophile components each propagate into stereochemical details of the product. For
6973: 5866: 5587: 7871: 7526: 7368: 7238: 7233: 7048: 6523: 6433: 6023: 5955: 5846: 5422: 5177: 5102: 4557: 2096:
Kozmin, S. A.; Rawal, V. H. (1997). "Preparation and Diels−Alder Reactivity of 1-Amino-3-siloxy-1,3-butadienes".
7283: 7812: 7697: 7596: 7536: 7183: 6978: 6938: 6913: 6823: 6283: 5317: 5247: 4883: 4813: 1215: 1080: 169: 6403: 7802: 7388: 7278: 6898: 6623: 6408: 6353: 6198: 6158: 5990: 5745: 5462: 5312: 1157: 48: 7762: 7323: 6768: 7797: 7712: 7687: 7662: 7647: 7571: 7486: 7383: 7343: 7208: 7163: 6928: 6473: 6458: 6323: 6113: 5781: 5537: 5217: 5192: 5162: 4753: 3364:
Diels, O.; Alder, K. (1929). "Synthesen in der hydroaromatischen Reihe, II. Mitteilung: Über Cantharidin".
1220: 1001: 754: 742: 7747: 7692: 7637: 7348: 7268: 7168: 6883: 6848: 6693: 6583: 6298: 6293: 6118: 6078: 5975: 5786: 5750: 5602: 5592: 5447: 5307: 5167: 5117: 5112: 5087: 5047: 4993: 4758: 4748: 4723: 124: 7876: 7722: 7423: 7228: 6663: 6548: 6228: 6203: 6143: 6000: 5735: 5442: 5222: 5187: 5092: 4783: 4718: 4550: 2611: 540:
double-bond overlap with the interior orbitals of the diene, a situation that is possible only for the
484:
to each other, the outcome can often be predicted. In these "normal demand" Diels–Alder scenarios, the
56: 7013: 5277: 290:, so named, because the cyclohexene product bears substituents in positions that are analogous to the 7822: 7727: 7581: 7461: 7433: 7403: 7318: 7248: 7203: 7178: 7098: 6998: 6958: 6653: 6273: 6263: 6188: 5712: 5572: 5567: 5547: 5232: 5029: 5008: 4968: 4893: 1748:
Kirmse, W.; Mönch, D. (1991). "Umlagerungen von 1,4,4- und 2,2,5-Trimethylbicyclooct-6-yl-Kationen".
766: 4713: 3952: 7886: 7881: 7787: 7677: 7657: 7363: 7273: 7243: 7118: 7073: 6903: 6813: 6743: 6628: 6618: 6448: 6005: 5945: 5910: 5717: 5697: 5657: 5432: 5302: 5227: 4978: 4818: 4808: 4738: 2841:
Vermeeren, Pascal; Hamlin, Trevor A.; Bickelhaupt, F. Matthias; Fernández, Israel (17 March 2021).
2428:
Vermeeren, Pascal; Hamlin, Trevor A.; Bickelhaupt, F. Matthias; Fernández, Israel (17 March 2021).
2171:
Roush, W. R. (1991). "Intramolecular Diels–Alder Reactions". In Trost, B. M.; Flemming, I. (eds.).
136: 7253: 2649:
Vermeeren, Pascal; Brinkhuis, Francine; Hamlin, Trevor A.; Bickelhaupt, F. Matthias (April 2020).
2330:
Vermeeren, Pascal; Hamlin, Trevor A.; Fernández, Israel; Bickelhaupt, F. Matthias (6 April 2020).
7891: 7861: 7757: 7616: 7466: 7408: 7333: 7313: 7033: 6983: 6843: 6808: 6748: 6678: 6233: 5980: 5960: 5692: 5612: 5507: 5467: 5437: 5372: 5257: 5242: 5152: 5142: 4803: 4728: 4683: 3212:"Hexadehydro-Diels–Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes" 1794:
Houk, K. N.; Luskus, L. J. (1971). "Influence of steric interactions on endo stereoselectivity".
1210: 1135: 1069:-fusion was achieved with hydrogenation, again proceeding primarily from the less hindered face. 5018: 306:
Regioselectivity in normal (1 and 2) and inverse (3 and 4) electron demand Diels-Alder reactions
7496: 7218: 6968: 6948: 6923: 6873: 6788: 6763: 6718: 6688: 6668: 6638: 6603: 6558: 6533: 6508: 6393: 6318: 6098: 5791: 5727: 5527: 5252: 5172: 4858: 4833: 4610: 4605: 1205: 617: 616:
An especially reactive diene is 1-methoxy-3-trimethylsiloxy-buta-1,3-diene, otherwise known as
594:
A bulky substituent at the C2 or C3 position can increase reaction rate by destabilizing the s-
365:. Stereochemical information of the diene and the dienophile are retained in the product, as a 244: 76: 523:
rule applies when there the electron-withdrawing groups on the dienophile are all on one side.
377:, resp.) relationship on the double bond of the dienophile give rise to substituents that are 7832: 7418: 7373: 7088: 7058: 7028: 6963: 6943: 6858: 6853: 6818: 6773: 6758: 6753: 6733: 6723: 6658: 6648: 6578: 6528: 6048: 5851: 5427: 5382: 5212: 5202: 4948: 4873: 4668: 4630: 4375:
Butz, L. W.; Rytina, A. W. (1949). "The Diels–Alder Reaction Quinones and Other Cyclenones".
4199:
Smith, A. B.; Sestelo, J. P.; Dormer, P. G. (1995). "Total Synthesis of (−)-Furaquinocin C".
2205: 1376: 1057:-fused D and E rings was formed by a Diels–Alder reaction. Intramolecular Diels–Alder of the 993: 922: 255: 153: 4878: 1007: 7601: 7551: 7501: 7481: 7471: 7328: 7303: 7018: 7008: 6893: 6708: 6703: 6633: 6418: 6218: 6178: 6108: 6073: 6028: 5995: 5861: 5836: 5816: 5637: 5597: 5557: 5522: 5452: 5207: 5077: 5052: 4590: 4130: 3956: 2539: 467:
transition state, it is oriented away from it. (There is a more general usage of the terms
2794:"Origin of rate enhancement and asynchronicity in iminium catalyzed Diels–Alder reactions" 2792:
Vermeeren, Pascal; Hamlin, Trevor A.; Fernández, Israel; Bickelhaupt, F. Matthias (2020).
2381:"Origin of rate enhancement and asynchronicity in iminium catalyzed Diels–Alder reactions" 2379:
Vermeeren, Pascal; Hamlin, Trevor A.; Fernández, Israel; Bickelhaupt, F. Matthias (2020).
459:
towards the diene π system and slips under it as the reaction takes place is known as the
8: 7807: 7792: 7438: 7413: 7398: 7393: 7123: 7078: 7063: 6953: 6933: 6828: 6713: 6698: 6543: 6488: 6478: 6443: 6208: 6083: 6058: 5970: 5826: 5811: 5796: 5617: 5562: 5332: 5182: 5127: 4998: 4913: 4773: 4698: 2892:"Lewis Acid-Catalyzed Diels-Alder Reactions: Reactivity Trends across the Periodic Table" 2479:"Lewis Acid-Catalyzed Diels-Alder Reactions: Reactivity Trends across the Periodic Table" 1615:
Rideout, D. C.; Breslow, R. (1980). "Hydrophobic acceleration of Diels-Alder reactions".
1015: 837: 556: 536: 112: 7817: 6468: 5652: 4843: 4134: 2543: 749:
can be used, either as the dienophile or at various sites in the diene, to form various
7556: 7506: 7476: 7338: 7128: 6918: 6803: 6738: 6728: 6493: 6423: 6388: 6383: 6363: 6358: 6303: 6213: 6063: 5925: 5915: 5821: 5607: 5552: 5482: 5402: 5297: 5197: 5132: 5057: 4903: 4768: 4703: 4688: 4342:
Holmes, H. L. (1948). "The Diels–Alder Reaction Ethylenic and Acetylenic Dienophiles".
4154: 3290: 3236: 3211: 3187: 3162: 2916: 2891: 2867: 2842: 2818: 2793: 2774: 2724: 2699: 2675: 2650: 2631: 2560: 2527: 2503: 2478: 2454: 2429: 2405: 2380: 2356: 2331: 2180: 2153: 1955: 1902: 1273:
Holmes, H. L. (1948). "The Diels-Alder Reaction Ethylenic and Acetylenic Dienophiles".
1088: 797: 548: 468: 275:
straightforward analysis of the substituents' resonance effects, as illustrated below.
116: 2082: 7293: 6613: 6498: 6463: 6428: 6373: 6328: 6243: 6223: 6173: 6168: 6138: 6123: 6033: 5940: 5876: 5841: 5667: 5542: 5417: 5342: 5322: 5237: 5072: 5067: 5013: 4923: 4828: 4788: 4743: 4625: 4620: 4585: 4516: 4487: 4454: 4421: 4388: 4355: 4297: 4280:
Charest, M. G.; Siegel, D. R.; Myers, A. G. (2005). "Synthesis of (-)-tetracycline".
4146: 4021: 3321: 3282: 3241: 3192: 3116: 3081: 3046: 2957: 2921: 2872: 2823: 2778: 2729: 2680: 2635: 2623: 2615: 2565: 2508: 2459: 2410: 2361: 2307: 2282: 2259: 2184: 2157: 1947: 1939: 1890: 1880: 1728: 1539: 1444: 1379: 1326: 1286: 1253: 1087:
shown below suffered from poor yield and regioselectivity; however, when directed by
1061:
below with subsequent extrusion of carbon dioxide via a retro afforded the bicyclic
950:
The work by Diels and Alder is described in a series of 28 articles published in the
829: 821: 793: 789: 228: 93: 85: 6288: 3294: 1959: 7827: 7672: 7642: 7586: 7511: 7443: 7198: 7148: 6993: 6798: 6573: 6568: 6513: 6503: 6278: 6088: 6068: 6038: 5935: 5871: 5856: 5687: 5642: 5632: 5622: 5517: 5497: 5492: 5477: 5472: 5352: 5347: 5287: 5272: 5262: 5107: 5097: 4963: 4953: 4853: 4848: 4823: 4763: 4615: 4574: 4479: 4446: 4413: 4380: 4347: 4324: 4289: 4262: 4235: 4208: 4181: 4158: 4138: 4103: 4076: 4049: 4013: 3986: 3932: 3911: 3889: 3867: 3846: 3825: 3804: 3782: 3760: 3739: 3717: 3695: 3673: 3652: 3631: 3609: 3588: 3567: 3545: 3524: 3503: 3482: 3461: 3439: 3417: 3395: 3373: 3352: 3313: 3272: 3231: 3223: 3182: 3174: 3143: 3108: 3073: 3038: 3011: 2984: 2949: 2911: 2903: 2862: 2854: 2813: 2805: 2764: 2756: 2719: 2711: 2670: 2662: 2607: 2599: 2555: 2547: 2498: 2490: 2449: 2441: 2400: 2392: 2351: 2343: 2251: 2220: 2176: 2145: 2105: 2078: 2051: 2042:
Danishefsky, S.; Kitahara, T. (1974). "Useful diene for the Diels–Alder reaction".
2024: 1997: 1931: 1857: 1830: 1803: 1757: 1705: 1678: 1651: 1624: 1594: 1567: 1531: 1504: 1436: 1353: 1318: 1278: 1245: 1196:
Synthetic applications of the Diels–Alder reaction have been reviewed extensively.
1096: 997: 930: 660: 497: 263: 4943: 7737: 7428: 7263: 7258: 6553: 6538: 6483: 6438: 6398: 6348: 6313: 6308: 6253: 6248: 6183: 6133: 6053: 5881: 5765: 5740: 5702: 5677: 5662: 5647: 5582: 5457: 5407: 5397: 5377: 5337: 5147: 5137: 5122: 4918: 4838: 4708: 4678: 4663: 4658: 2941: 2603: 1139: 926: 899: 825: 701: 532: 455: 236: 232: 4483: 4450: 4417: 4384: 4351: 3227: 2583:
Hamlin, Trevor A.; Bickelhaupt, F. Matthias; Fernández, Israel (20 April 2021).
2136:
Ranganathan, S.; Ranganathan, D.; Mehrotra, A. K. (1977). "Ketene Equivalents".
1282: 1249: 942: 883: 420: 7742: 7652: 7591: 6683: 6593: 6563: 6338: 6193: 5930: 5707: 5577: 5392: 5362: 5062: 4958: 4733: 4595: 1112: 734: 641: 385:, resp.) on those same carbons with respect to the cyclohexene ring. Likewise, 362: 251: 204:, electron-withdrawing substituents on the diene lower the energy of its empty 145: 4542: 970:
The Diels–Alder reaction was one step in an early preparation of the steroids
917: 7855: 7752: 7453: 7298: 7193: 6988: 6378: 6343: 6333: 6268: 6258: 6148: 5985: 5801: 5512: 5487: 5357: 5003: 4988: 4973: 4868: 4798: 4778: 4693: 3936: 3915: 3893: 3871: 3850: 3829: 3808: 3786: 3764: 3743: 3721: 3699: 3677: 3656: 3635: 3613: 3592: 3571: 3549: 3528: 3507: 3486: 3465: 3443: 3421: 3399: 3377: 3356: 3317: 3261:"Recent advances of Diels–Alderases involved in natural product biosynthesis" 2619: 2263: 2224: 2001: 1943: 1894: 1761: 1109:
A Diels–Alder reaction is a key step in the synthesis of (-)-furaquinocin C.
1072: 1046: 1022: 990: 785: 636:
Unstable (and thus highly reactive) dienes can be synthetically useful, e.g.
621: 620:. It has particular synthetic utility as means of furnishing α,β–unsaturated 120: 32: 2715: 6793: 6153: 5905: 5682: 5282: 5082: 4933: 4928: 4793: 4648: 4301: 3286: 3245: 3196: 3120: 3085: 3050: 2961: 2925: 2907: 2876: 2858: 2827: 2760: 2733: 2684: 2666: 2627: 2569: 2512: 2494: 2463: 2445: 2414: 2365: 2347: 1951: 1543: 1448: 1330: 1172: 1102: 770: 738: 501: 4536: 4408:
Kloetzel, M. C. (1948). "The Diels–Alder Reaction with Maleic Anhydride".
4150: 4025: 1323:
10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z
1240:
Kloetzel, M. C. (1948). "The Diels–Alder Reaction with Maleic Anhydride".
5292: 4938: 4908: 4673: 4185: 3308:
Behr, Arno (2000). "Organometallic Compounds and Homogeneous Catalysis".
3161:
Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P. (2012).
2149: 1308: 1190: 1119: 1037: 975: 848: 733:
are also known and are collectively called hetero-Diels–Alder reactions.
713: 697: 648:, require forcing conditions and/or highly reactive dienophiles, such as 645: 591:
conformation, for most cases energy difference is small (~2–5 kcal/mol).
182: 108: 4328: 4266: 4212: 4107: 4080: 4053: 4017: 3990: 3178: 3015: 2988: 2255: 2055: 2028: 1861: 1834: 1807: 1709: 1682: 1655: 1628: 1598: 1535: 1508: 1440: 1091:
the desired adduct could be obtained in 61% yield after cleavage of the
1083:. The intermolecular reaction of the hydroxy-pyrone and α,β–unsaturated 369:
addition with respect to each component. For example, substituents in a
7576: 7103: 6453: 3277: 3260: 2809: 2769: 2551: 2526:
Vermeeren, Pascal; Hamlin, Trevor A.; Bickelhaupt, F. Matthias (2021).
2396: 1357: 1019: 911: 903: 898:
The retro-Diels–Alder reaction is used in the industrial production of
891: 887:
Asymmetric Diels-Alder reaction is one step in the biosynthesis of the
781: 730: 656: 141: 132: 128: 4293: 4239: 3147: 3112: 3077: 3042: 2953: 2325: 2323: 2239: 2109: 1935: 1571: 4142: 1182: 1164: 1033: 971: 705: 664: 555:
Often, as with highly substituted dienes, very bulky dienophiles, or
509: 427: 1145: 4983: 4653: 2840: 2791: 2648: 2427: 2378: 2329: 2320: 1092: 1058: 1026: 762: 709: 505: 439: 240: 135:
in 1928. For the discovery of this reaction, they were awarded the
2206:"Iminium Ion-Based Diels–Alder Reactions: N-Benzyl-2-Azanorborene" 4643: 4093: 2746: 1126:
relative stereochemistry of the alkaloid core. Conversion of the
985:
Diels-Alder in the total synthesis of cortisone by R. B. Woodward
910:. The Diels–Alder reaction is also employed in the production of 907: 872: 844: 758: 719: 2697: 978:. The reaction involved the addition of butadiene to a quinone. 311:
In a more sophisticated treatment, three types of substituents (
262:
reactions, the conformational stability of the structure of the
4474:
Ciganek, E. (1984). "The Intramolecular Diels-Alder Reaction".
1153: 1131: 1062: 888: 864: 746: 689: 685: 644:
can be generated in situ. In contrast, stable dienes, such as
100: 4440: 4038: 2889: 2476: 2240:"Frontier molecular orbital theory of cycloaddition reactions" 2135: 496:
selectivity is typically higher for rigid dienophiles such as
119:. More specifically, it is classified as a thermally allowed 3976: 2700:"How Lewis Acids Catalyze Ring-Openings of Cyclohexene Oxide" 1084: 989:
Diels–Alder reactions were used in the original synthesis of
868: 580: 560: 149: 96: 2651:"How Alkali Cations Catalyze Aromatic Diels-Alder Reactions" 871:
are used instead of alkenes and dienes, forming an unstable
282:
Resonance structures of normal-demand dienes and dienophiles
4513:
Advanced Organic Chemistry: Part B: Reactions and Synthesis
4171: 4003: 2126:
p. 318-323. Editura Academiei Republicii Socialiste România
1820: 737:, for example, can successfully react with dienes to yield 2582: 2525: 2129: 1193:
in 1980 by Diels–Alder reaction, utilizing high pressure.
356: 1983: 1981: 808:, which is operative in a variety of organic reactions. 361:
Diels–Alder reactions, as concerted cycloadditions, are
1988:
Backer, H. J. (1939). "Le 2,3-Ditertiobutylbutadiène".
1079:
A pyranone was similarly used as the dienophile in the
688:. α-Chloroacrylonitrile dienophile is an equivalent of 632:
General form of Danishefsky, Brassard, and Rawal dienes
598:
conformation and forcing the diene into the reactive s-
181:
cycloaddition, indicating that it proceeds through the
3160: 3133: 1978: 878: 712:
functionalities (both are acetylene equivalents), and
202:
inverse (reverse) electron-demand Diels–Alder reaction
1921: 1493: 405:
substituents at these carbons of the product whereas
243:
for example is 700 times faster in water relative to
7718:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
4314: 1426: 1122:
was prepared by a Diels–Alder reaction to establish
1014:
A Diels–Alder reaction was used in the synthesis of
700:
substituents (yielding exocyclic double bonds after
450:
product ratio for this and various other dienophiles
4165: 4120: 2585:"The Pauli Repulsion-Lowering Concept in Catalysis" 2528:"Origin of asynchronicity in Diels–Alder reactions" 2041: 1774: 946:
The reaction discovered by Diels and Alder in 1928.
4279: 4198: 2974: 2014: 965: 563:as diene), steric effects can override the normal 6779:Divinylcyclopropane-cycloheptadiene rearrangement 4066: 3793: 2306:(2nd ed.). Oxford: Oxford University Press. 2279:Molecular orbitals and organic chemical reactions 1875:Woodward, R. B.; Hoffmann, R. (22 October 2013). 1556: 7853: 4511:Carey, Francis A.; Sundberg, Richard J. (2007). 2332:"How Lewis Acids Catalyze Diels–Alder Reactions" 1874: 1695: 1668: 761:compounds (R-N=O) can react with dienes to form 438:transition states for cyclopentadiene adding to 111:derivative. It is the prototypical example of a 4572: 3028: 1741: 1725:Frontier Orbital and Organic Chemical Reactions 1343: 7039:Thermal rearrangement of aromatic hydrocarbons 5673:Thermal rearrangement of aromatic hydrocarbons 3454:Berichte der Deutschen Chemischen Gesellschaft 3432:Berichte der Deutschen Chemischen Gesellschaft 3410:Berichte der Deutschen Chemischen Gesellschaft 3366:Berichte der Deutschen Chemischen Gesellschaft 3310:Ullmann's Encyclopedia of Industrial Chemistry 2068: 1614: 959:Berichte der deutschen chemischen Gesellschaft 720:Variants on the classical Diels–Alder reaction 7768:Lectka enantioselective beta-lactam synthesis 5028: 4558: 1847: 1689: 1610: 1608: 1304: 1302: 729:Diels–Alder reactions involving at least one 7547:Inverse electron-demand Diels–Alder reaction 5368:Heterogeneous metal catalyzed cross-coupling 4252: 3258: 3098: 2203: 1641: 1521: 1422: 1420: 1370: 902:. Cyclopentadiene is a precursor to various 547: 514: 419: 6889:Lobry de Bruyn–Van Ekenstein transformation 4225: 3922: 3900: 3815: 3210:Fluegel, Lucas L.; Hoye, Thomas R. (2021). 3209: 2612:1871.1/a0090b38-9ab8-4c32-9d9a-b3d5de4e5ed3 2095: 1747: 769:can be utilized as a dienophile to prepare 4565: 4551: 4374: 3878: 3857: 3771: 3750: 3728: 3706: 3684: 3663: 3642: 3620: 3599: 3578: 3556: 3535: 3514: 3493: 3472: 3450: 3428: 3406: 3384: 3363: 3342: 1990:Recueil des Travaux Chimiques des Pays-Bas 1907:: CS1 maint: location missing publisher ( 1793: 1605: 1584: 1299: 854: 7379:Petrenko-Kritschenko piperidone synthesis 6834:Fritsch–Buttenberg–Wiechell rearrangement 3836: 3276: 3259:Minami, Atsushi; Oikawa, Hideaki (2016). 3235: 3186: 2938: 2915: 2866: 2817: 2768: 2723: 2674: 2559: 2502: 2453: 2404: 2355: 1777:Bulletin de la Société Chimique de France 1417: 1373:Modern Organic Synthesis: An Introduction 815: 7542:Intramolecular Diels–Alder cycloaddition 4407: 4317:Journal of the American Chemical Society 4282:Journal of the American Chemical Society 4255:Journal of the American Chemical Society 4228:Journal of the American Chemical Society 4201:Journal of the American Chemical Society 4096:Journal of the American Chemical Society 4069:Journal of the American Chemical Society 4042:Journal of the American Chemical Society 4006:Journal of the American Chemical Society 3979:Journal of the American Chemical Society 3154: 3136:Journal of the American Chemical Society 3066:Journal of the American Chemical Society 3063: 3031:Journal of the American Chemical Society 3004:Journal of the American Chemical Society 3001: 2977:Journal of the American Chemical Society 2281:. Chichester, West Sussex, U.K.: Wiley. 2044:Journal of the American Chemical Society 2017:Journal of the American Chemical Society 1850:Journal of the American Chemical Society 1823:Journal of the American Chemical Society 1796:Journal of the American Chemical Society 1698:Journal of the American Chemical Society 1671:Journal of the American Chemical Society 1644:Journal of the American Chemical Society 1617:Journal of the American Chemical Society 1587:Journal of the American Chemical Society 1560:Journal of the American Chemical Society 1524:Journal of the American Chemical Society 1497:Journal of the American Chemical Society 1429:Journal of the American Chemical Society 1239: 941: 916: 882: 776: 426: 260:intramolecular Diels–Alder cycloaddition 219:FMO analysis of the Diels–Alder reaction 75: 4473: 2336:Angewandte Chemie International Edition 2301: 2276: 1722: 1477: 1475: 1462: 1460: 1458: 1407: 1405: 1403: 1401: 1399: 1397: 1395: 1311:Angewandte Chemie International Edition 1171:The tetracyclic core of the antibiotic 1053:In another synthesis of reserpine, the 1036:uses a Diels–Alder reaction to set the 357:Stereospecificity and stereoselectivity 7854: 7562:Metal-centered cycloaddition reactions 7214:Debus–Radziszewski imidazole synthesis 5158:Bodroux–Chichibabin aldehyde synthesis 4341: 3163:"The hexadehydro-Diels–Alder reaction" 2197: 1987: 1272: 512:, selectivity is not very pronounced. 463:transition state. In the alternative 80:Diels–Alder reaction, simplest example 7708:Diazoalkane 1,3-dipolar cycloaddition 7612:Vinylcyclopropane (5+2) cycloaddition 7517:Diazoalkane 1,3-dipolar cycloaddition 7289:Hurd–Mori 1,2,3-thiadiazole synthesis 6784:Dowd–Beckwith ring-expansion reaction 5951:Hurd–Mori 1,2,3-thiadiazole synthesis 5027: 4864:LFER solvent coefficients (data page) 4546: 3252: 2749:European Journal of Organic Chemistry 2204:Grieco, P. A.; Larsen, S. D. (1990). 2170: 1371:Zweifel, G. S.; Nantz, M. H. (2007). 1134:by Wittig olefination and subsequent 724: 667:, a weak dienophile, at 250 °C. 337:: HOMO and LUMO raising (Me, OMe, NMe 235:, and even in water. The reaction of 7867:Carbon-carbon bond forming reactions 6519:Sharpless asymmetric dihydroxylation 5756:Methoxymethylenetriphenylphosphorane 4515:(5th ed.). New York: Springer. 3307: 2932: 2238:Houk, Kendall N. (1 November 1975). 2237: 1877:The conservation of orbital symmetry 1472: 1455: 1392: 753:-heterocyclic compounds through the 254:reactions especially, the preferred 6644:Allen–Millar–Trippett rearrangement 3953:"The Nobel Prize in Chemistry 1950" 2532:Physical Chemistry Chemical Physics 879:Applications and natural occurrence 269: 104: 13: 7783:Nitrone-olefin (3+2) cycloaddition 7778:Niementowski quinazoline synthesis 7567:Nitrone-olefin (3+2) cycloaddition 7492:Azide-alkyne Huisgen cycloaddition 7354:Niementowski quinazoline synthesis 7109:Azide-alkyne Huisgen cycloaddition 6414:Meerwein–Ponndorf–Verley reduction 5966:Leimgruber–Batcho indole synthesis 4445:. Vol. 65. pp. 141–599. 2181:10.1016/B978-0-08-052349-1.00131-1 1924:Journal of Computational Chemistry 1181: 1163: 1144: 1111: 1101: 1071: 1045: 1018:, a biosynthetic precursor of the 1006: 980: 627: 301: 277: 266:can be an overwhelming influence. 214: 188:A consideration of the reactants' 152:, which furnish the corresponding 14: 7903: 7607:Trimethylenemethane cycloaddition 7309:Johnson–Corey–Chaykovsky reaction 7174:Cadogan–Sundberg indole synthesis 7154:Bohlmann–Rahtz pyridine synthesis 7114:Baeyer–Emmerling indole synthesis 5921:Cadogan–Sundberg indole synthesis 5413:Johnson–Corey–Chaykovsky reaction 4530: 4379:. Vol. 5. pp. 136–192. 3925:Justus Liebigs Annalen der Chemie 3904:Justus Liebigs Annalen der Chemie 3882:Justus Liebigs Annalen der Chemie 3860:Justus Liebigs Annalen der Chemie 3839:Justus Liebigs Annalen der Chemie 3818:Justus Liebigs Annalen der Chemie 3797:Justus Liebigs Annalen der Chemie 3775:Justus Liebigs Annalen der Chemie 3753:Justus Liebigs Annalen der Chemie 3732:Justus Liebigs Annalen der Chemie 3710:Justus Liebigs Annalen der Chemie 3688:Justus Liebigs Annalen der Chemie 3666:Justus Liebigs Annalen der Chemie 3645:Justus Liebigs Annalen der Chemie 3624:Justus Liebigs Annalen der Chemie 3602:Justus Liebigs Annalen der Chemie 3581:Justus Liebigs Annalen der Chemie 3560:Justus Liebigs Annalen der Chemie 3538:Justus Liebigs Annalen der Chemie 3517:Justus Liebigs Annalen der Chemie 3496:Justus Liebigs Annalen der Chemie 3475:Justus Liebigs Annalen der Chemie 3388:Justus Liebigs Annalen der Chemie 3345:Justus Liebigs Annalen der Chemie 2175:. Vol. 5. pp. 513–550. 953:Justus Liebigs Annalen der Chemie 670: 477:in stereochemical nomenclature.) 92:is a chemical reaction between a 7703:Cook–Heilbron thiazole synthesis 7532:Hexadehydro Diels–Alder reaction 7359:Niementowski quinoline synthesis 7189:Cook–Heilbron thiazole synthesis 7134:Bischler–Möhlau indole synthesis 7044:Tiffeneau–Demjanov rearrangement 6674:Baker–Venkataraman rearrangement 5832:Horner–Wadsworth–Emmons reaction 5503:Mizoroki-Heck vs. Reductive Heck 5388:Horner–Wadsworth–Emmons reaction 4899:Neighbouring group participation 4478:. Vol. 32. pp. 1–374. 4346:. Vol. 4. pp. 60–173. 2704:The Journal of Organic Chemistry 1277:. Vol. 4. pp. 60–173. 1043:framework of the D and E rings. 921:Typical route for production of 861:hexadehydro Diels–Alder reaction 826:small organic molecule catalysts 7239:Fiesselmann thiophene synthesis 7069:Westphalen–Lettré rearrangement 7049:Vinylcyclopropane rearrangement 6879:Kornblum–DeLaMare rearrangement 6524:Epoxidation of allylic alcohols 6434:Noyori asymmetric hydrogenation 6369:Kornblum–DeLaMare rearrangement 6044:Gallagher–Hollander degradation 4504: 4467: 4434: 4401: 4368: 4335: 4308: 4273: 4246: 4219: 4192: 4114: 4087: 4060: 4032: 3997: 3970: 3945: 3334: 3301: 3203: 3127: 3092: 3057: 3022: 2995: 2968: 2883: 2834: 2785: 2740: 2691: 2642: 2576: 2519: 2470: 2421: 2372: 2295: 2270: 2231: 2173:Comprehensive Organic Synthesis 2164: 2116: 2089: 2062: 2035: 2008: 1966: 1915: 1868: 1841: 1814: 1787: 1768: 1716: 1662: 1635: 1578: 1550: 1515: 1487: 1130:-aldehyde to its corresponding 966:Applications in total synthesis 741:rings, a reaction known as the 156:; this variant is known as the 7698:Chichibabin pyridine synthesis 7184:Chichibabin pyridine synthesis 7144:Blum–Ittah aziridine synthesis 6979:Ring expansion and contraction 5248:Cross dehydrogenative coupling 4412:. Vol. 4. pp. 1–59. 1364: 1337: 1266: 1244:. Vol. 4. pp. 1–59. 1233: 1: 7668:Bischler–Napieralski reaction 7626:Heterocycle forming reactions 7279:Hemetsberger indole synthesis 7139:Bischler–Napieralski reaction 7054:Wagner–Meerwein rearrangement 7024:Sommelet–Hauser rearrangement 7004:Seyferth–Gilbert homologation 6869:Ireland–Claisen rearrangement 6864:Hofmann–Martius rearrangement 6624:2,3-sigmatropic rearrangement 6239:Corey–Winter olefin synthesis 6164:Barton–McCombie deoxygenation 5807:Corey–Winter olefin synthesis 5761:Seyferth–Gilbert homologation 5628:Seyferth–Gilbert homologation 3101:Accounts of Chemical Research 2896:Chemistry: A European Journal 2847:Chemistry: A European Journal 2592:Accounts of Chemical Research 2483:Chemistry: A European Journal 2434:Chemistry: A European Journal 2244:Accounts of Chemical Research 2083:10.1016/S0040-4039(01)86747-2 1226: 7773:Lehmstedt–Tanasescu reaction 7733:Gabriel–Colman rearrangement 7688:Bucherer carbazole synthesis 7683:Borsche–Drechsel cyclization 7663:Bernthsen acridine synthesis 7648:Bamberger triazine synthesis 7633:Algar–Flynn–Oyamada reaction 7344:Nazarov cyclization reaction 7209:De Kimpe aziridine synthesis 7164:Bucherer carbazole synthesis 7159:Borsche–Drechsel cyclization 6929:Nazarov cyclization reaction 6909:Meyer–Schuster rearrangement 6839:Gabriel–Colman rearrangement 6589:Wolffenstein–Böters reaction 6474:Reduction of nitro compounds 6324:Grundmann aldehyde synthesis 6129:Algar–Flynn–Oyamada reaction 5538:Olefin conversion technology 5533:Nozaki–Hiyama–Kishi reaction 5328:Gabriel–Colman rearrangement 5218:Claisen-Schmidt condensation 5163:Bouveault aldehyde synthesis 2604:10.1021/acs.accounts.1c00016 2098:Journal of Organic Chemistry 1189:Takemura et al. synthesized 663:at 80 °C and even with 574: 567:selectivity in favor of the 318:: HOMO and LUMO lowering (CF 175: 127:. It was first described by 7: 7748:Hantzsch pyridine synthesis 7527:Enone–alkene cycloadditions 7349:Nenitzescu indole synthesis 7269:Hantzsch pyridine synthesis 7234:Ferrario–Ackermann reaction 6884:Kowalski ester homologation 6849:Halogen dance rearrangement 6694:Benzilic acid rearrangement 6119:Akabori amino-acid reaction 6079:Von Braun amide degradation 6024:Barbier–Wieland degradation 5976:Nenitzescu indole synthesis 5956:Kharasch–Sosnovsky reaction 5847:Julia–Kocienski olefination 5751:Kowalski ester homologation 5448:Kowalski ester homologation 5423:Julia–Kocienski olefination 5178:Cadiot–Chodkiewicz coupling 5103:Aza-Baylis–Hillman reaction 5048:Acetoacetic ester synthesis 4759:Dynamic binding (chemistry) 4749:Conrotatory and disrotatory 4724:Charge remote fragmentation 4484:10.1002/0471264180.or032.01 4451:10.1002/0471264180.or065.02 4418:10.1002/0471264180.or004.01 4385:10.1002/0471264180.or005.03 4352:10.1002/0471264180.or004.02 3228:10.1021/acs.chemrev.0c00825 2655:Chemistry: An Asian Journal 1283:10.1002/0471264180.or004.02 1250:10.1002/0471264180.or004.01 1199: 413:-disubstituted dienes give 401:-disubstituted dienes give 190:frontier molecular orbitals 158:hetero-Diels–Alder reaction 10: 7908: 7813:Robinson–Gabriel synthesis 7763:Kröhnke pyridine synthesis 7597:Retro-Diels–Alder reaction 7537:Imine Diels–Alder reaction 7324:Kröhnke pyridine synthesis 6939:Newman–Kwart rearrangement 6914:Mislow–Evans rearrangement 6824:Fischer–Hepp rearrangement 6769:Di-π-methane rearrangement 6549:Stephen aldehyde synthesis 6284:Eschweiler–Clarke reaction 6001:Williamson ether synthesis 5318:Fujiwara–Moritani reaction 5223:Combes quinoline synthesis 5188:Carbonyl olefin metathesis 4889:More O'Ferrall–Jencks plot 4814:Grunwald–Winstein equation 4784:Electron-withdrawing group 4719:Catalytic resonance theory 4510: 3265:The Journal of Antibiotics 2302:Clayden, Jonathan (2012). 1972: 1481: 1466: 1411: 1377:W. H. Freeman and Co. 1216:Imine Diels–Alder reaction 1158:-sigmatropic rearrangement 937: 170:retro-Diels–Alder reaction 7823:Urech hydantoin synthesis 7803:Pomeranz–Fritsch reaction 7728:Fischer oxazole synthesis 7625: 7462:1,3-Dipolar cycloaddition 7452: 7434:Urech hydantoin synthesis 7404:Reissert indole synthesis 7389:Pomeranz–Fritsch reaction 7319:Knorr quinoline synthesis 7249:Fischer oxazole synthesis 7179:Camps quinoline synthesis 7099:1,3-Dipolar cycloaddition 7087: 6999:Semipinacol rearrangement 6974:Ramberg–Bäcklund reaction 6959:Piancatelli rearrangement 6899:McFadyen–Stevens reaction 6654:Alpha-ketol rearrangement 6602: 6409:McFadyen–Stevens reaction 6354:Kiliani–Fischer synthesis 6274:Elbs persulfate oxidation 6199:Bouveault–Blanc reduction 6159:Baeyer–Villiger oxidation 6097: 6014: 5991:Schotten–Baumann reaction 5894: 5867:Ramberg–Bäcklund reaction 5774: 5746:Kiliani–Fischer synthesis 5726: 5588:Ramberg–Bäcklund reaction 5573:Pinacol coupling reaction 5568:Piancatelli rearrangement 5463:Liebeskind–Srogl coupling 5313:Fujimoto–Belleau reaction 5036: 5030:List of organic reactions 4894:Negative hyperconjugation 4639: 4581: 1727:. Chichester, UK: Wiley. 767:Chlorosulfonyl isocyanate 70: 44:Organic Chemistry Portal 38: 23: 7798:Pictet–Spengler reaction 7713:Einhorn–Brunner reaction 7678:Boger pyridine synthesis 7572:Oxo-Diels–Alder reaction 7487:Aza-Diels–Alder reaction 7384:Pictet–Spengler reaction 7284:Hofmann–Löffler reaction 7274:Hegedus indole synthesis 7244:Fischer indole synthesis 7119:Bartoli indole synthesis 7074:Willgerodt rearrangement 6904:McLafferty rearrangement 6814:Ferrier carbocyclization 6629:2,3-Wittig rearrangement 6619:1,2-Wittig rearrangement 6459:Parikh–Doering oxidation 6449:Oxygen rebound mechanism 6114:Adkins–Peterson reaction 6006:Yamaguchi esterification 5946:Hegedus indole synthesis 5911:Bartoli indole synthesis 5782:Bamford–Stevens reaction 5698:Weinreb ketone synthesis 5658:Stork enamine alkylation 5433:Knoevenagel condensation 5303:Ferrier carbocyclization 5193:Castro–Stephens coupling 4819:Hammett acidity function 4809:Free-energy relationship 4754:Curtin–Hammett principle 4739:Conformational isomerism 3937:10.1002/jlac.19375300107 3916:10.1002/jlac.19375300106 3894:10.1002/jlac.19365250107 3872:10.1002/jlac.19355190113 3851:10.1002/jlac.19355190112 3830:10.1002/jlac.19355160104 3809:10.1002/jlac.19345130109 3787:10.1002/jlac.19345130108 3765:10.1002/jlac.19345110114 3744:10.1002/jlac.19345100106 3722:10.1002/jlac.19335050109 3700:10.1002/jlac.19324980103 3678:10.1002/jlac.19324980102 3657:10.1002/jlac.19314900113 3636:10.1002/jlac.19314900112 3614:10.1002/jlac.19314900111 3593:10.1002/jlac.19314900110 3572:10.1002/jlac.19314900109 3550:10.1002/jlac.19314860112 3529:10.1002/jlac.19314860111 3508:10.1002/jlac.19314860110 3487:10.1002/jlac.19304780109 3466:10.1002/cber.19290620872 3444:10.1002/cber.19290620830 3422:10.1002/cber.19290620829 3400:10.1002/jlac.19294700106 3378:10.1002/cber.19290620318 3357:10.1002/jlac.19284600106 3318:10.1002/14356007.a18_215 2225:10.15227/orgsyn.068.0206 2122:Margareta Avram (1983). 2002:10.1002/recl.19390580712 1762:10.1002/cber.19911240136 1221:Aza-Diels–Alder reaction 1081:total synthesis of taxol 1002:cupric tetrafluoroborate 806:Pauli-lowering catalysis 755:aza-Diels–Alder reaction 743:oxo-Diels–Alder reaction 529:secondary orbital effect 137:Nobel Prize in Chemistry 125:Woodward–Hoffmann symbol 107:, to form a substituted 7758:Knorr pyrrole synthesis 7693:Bucherer–Bergs reaction 7638:Allan–Robinson reaction 7617:Wagner-Jauregg reaction 7409:Ring-closing metathesis 7334:Larock indole synthesis 7314:Knorr pyrrole synthesis 7169:Bucherer–Bergs reaction 7034:Stieglitz rearrangement 7014:Skattebøl rearrangement 6984:Ring-closing metathesis 6844:Group transfer reaction 6809:Favorskii rearrangement 6749:Cornforth rearrangement 6679:Bamberger rearrangement 6584:Wolff–Kishner reduction 6404:Markó–Lam deoxygenation 6299:Fleming–Tamao oxidation 6294:Fischer–Tropsch process 5981:Oxymercuration reaction 5961:Knorr pyrrole synthesis 5787:Barton–Kellogg reaction 5693:Wagner-Jauregg reaction 5613:Ring-closing metathesis 5603:Reimer–Tiemann reaction 5593:Rauhut–Currier reaction 5508:Nef isocyanide reaction 5468:Malonic ester synthesis 5438:Knorr pyrrole synthesis 5373:High dilution principle 5308:Friedel–Crafts reaction 5243:Cross-coupling reaction 5168:Bucherer–Bergs reaction 5153:Blanc chloromethylation 5143:Blaise ketone synthesis 5118:Baylis–Hillman reaction 5113:Barton–Kellogg reaction 5088:Allan–Robinson reaction 4994:Woodward–Hoffmann rules 4729:Charge-transfer complex 2716:10.1021/acs.joc.0c02955 1211:Wagner-Jauregg reaction 1136:ring-closing metathesis 855:Hexadehydro Diels–Alder 7872:Ring forming reactions 7723:Feist–Benary synthesis 7497:Bradsher cycloaddition 7467:4+4 Photocycloaddition 7424:Simmons–Smith reaction 7369:Paternò–Büchi reaction 7229:Feist–Benary synthesis 7219:Dieckmann condensation 6969:Pummerer rearrangement 6949:Oxy-Cope rearrangement 6924:Myers allene synthesis 6874:Jacobsen rearrangement 6789:Electrocyclic reaction 6764:Demjanov rearrangement 6719:Buchner ring expansion 6689:Beckmann rearrangement 6669:Aza-Cope rearrangement 6664:Arndt–Eistert reaction 6639:Alkyne zipper reaction 6559:Transfer hydrogenation 6534:Sharpless oxyamination 6509:Selenoxide elimination 6394:Lombardo methylenation 6319:Griesbaum coozonolysis 6229:Corey–Itsuno reduction 6204:Boyland–Sims oxidation 6144:Angeli–Rimini reaction 5792:Boord olefin synthesis 5736:Arndt–Eistert reaction 5728:Homologation reactions 5528:Nitro-Mannich reaction 5443:Kolbe–Schmitt reaction 5253:Cross-coupling partner 5173:Buchner ring expansion 5093:Arndt–Eistert reaction 4859:Kinetic isotope effect 4606:Rearrangement reaction 2908:10.1002/chem.202100522 2859:10.1002/chem.202004496 2761:10.1002/ejoc.202101107 2667:10.1002/asia.202000009 2495:10.1002/chem.202100522 2446:10.1002/chem.202004496 2348:10.1002/anie.201914582 1414:, Part B., pp. 474–526 1206:Bradsher cycloaddition 1186: 1168: 1149: 1116: 1106: 1076: 1050: 1011: 986: 947: 934: 895: 816:Asymmetric Diels–Alder 716:(ketene equivalents). 633: 552: 524: 504:; for others, such as 451: 424: 307: 283: 245:2,2,4-trimethylpentane 220: 103:, commonly termed the 81: 7582:Pauson–Khand reaction 7419:Sharpless epoxidation 7374:Pechmann condensation 7254:Friedländer synthesis 7204:Davis–Beirut reaction 7059:Wallach rearrangement 7029:Stevens rearrangement 6964:Pinacol rearrangement 6944:Overman rearrangement 6859:Hofmann rearrangement 6854:Hayashi rearrangement 6819:Ferrier rearrangement 6774:Dimroth rearrangement 6759:Curtius rearrangement 6754:Criegee rearrangement 6734:Claisen rearrangement 6724:Carroll rearrangement 6659:Amadori rearrangement 6649:Allylic rearrangement 6529:Sharpless epoxidation 6264:Dess–Martin oxidation 6189:Bohn–Schmidt reaction 6049:Hofmann rearrangement 5852:Kauffmann olefination 5775:Olefination reactions 5713:Wurtz–Fittig reaction 5548:Palladium–NHC complex 5428:Kauffmann olefination 5383:Homologation reaction 5233:Corey–House synthesis 5213:Claisen rearrangement 5009:Yukawa–Tsuno equation 4969:Swain–Lupton equation 4949:Spherical aromaticity 4884:Möbius–Hückel concept 4669:Aromatic ring current 4631:Substitution reaction 2277:Fleming, Ian (2009). 1469:, Part A., pp. 836–50 1185: 1167: 1148: 1115: 1105: 1075: 1049: 1010: 984: 945: 923:ethylidene norbornene 920: 886: 830:Evans' oxazolidinones 777:Lewis acid activation 678:α-chloroacrylonitrile 631: 551: 518: 430: 423: 305: 281: 218: 79: 24:Diels–Alder reaction 7788:Paal–Knorr synthesis 7658:Barton–Zard reaction 7602:Staudinger synthesis 7552:Ketene cycloaddition 7522:Diels–Alder reaction 7502:Cheletropic reaction 7482:Alkyne trimerisation 7364:Paal–Knorr synthesis 7329:Kulinkovich reaction 7304:Jacobsen epoxidation 7224:Diels–Alder reaction 7019:Smiles rearrangement 7009:Sigmatropic reaction 6894:Lossen rearrangement 6744:Corey–Fuchs reaction 6709:Boekelheide reaction 6704:Bergmann degradation 6634:Achmatowicz reaction 6419:Methionine sulfoxide 6219:Clemmensen reduction 6179:Bergmann degradation 6109:Acyloin condensation 6074:Strecker degradation 6029:Bergmann degradation 5996:Ullmann condensation 5862:Peterson olefination 5837:Hydrazone iodination 5817:Elimination reaction 5718:Zincke–Suhl reaction 5638:Sonogashira coupling 5598:Reformatsky reaction 5558:Peterson olefination 5523:Nierenstein reaction 5453:Kulinkovich reaction 5268:Diels–Alder reaction 5228:Corey–Fuchs reaction 5208:Claisen condensation 5078:Alkyne trimerisation 5053:Acyloin condensation 5019:Σ-bishomoaromaticity 4979:Thorpe–Ingold effect 4591:Elimination reaction 4186:10.1055/s-1991-28413 3957:The Nobel Foundation 2150:10.1055/s-1977-24362 1723:Fleming, I. (1990). 557:reversible reactions 90:Diels–Alder reaction 49:diels-alder-reaction 7808:Prilezhaev reaction 7793:Pellizzari reaction 7472:(4+3) cycloaddition 7439:Van Leusen reaction 7414:Robinson annulation 7399:Pschorr cyclization 7394:Prilezhaev reaction 7124:Bergman cyclization 7079:Wolff rearrangement 7064:Weerman degradation 6954:Pericyclic reaction 6934:Neber rearrangement 6829:Fries rearrangement 6714:Brook rearrangement 6699:Bergman cyclization 6544:Staudinger reaction 6489:Rosenmund reduction 6479:Reductive amination 6444:Oppenauer oxidation 6234:Corey–Kim oxidation 6209:Cannizzaro reaction 6084:Weerman degradation 6059:Isosaccharinic acid 5971:Mukaiyama hydration 5827:Hofmann elimination 5812:Dehydrohalogenation 5797:Chugaev elimination 5618:Robinson annulation 5563:Pfitzinger reaction 5333:Gattermann reaction 5278:Wulff–Dötz reaction 5258:Dakin–West reaction 5183:Carbonyl allylation 5128:Bergman cyclization 4914:Kennedy J. P. Orton 4834:Hammond's postulate 4804:Flippin–Lodge angle 4774:Electromeric effect 4699:Beta-silicon effect 4684:Baker–Nathan effect 4329:10.1021/ja00542a060 4267:10.1021/ja00220a069 4234:(51): 13523–13524. 4213:10.1021/ja00148a023 4207:(43): 10755–10756. 4135:1994Natur.367..630N 4108:10.1021/ja00254a036 4081:10.1021/ja00539a038 4054:10.1021/ja00517a039 4018:10.1021/ja01048a062 3991:10.1021/ja01137a001 3179:10.1038/nature11518 3016:10.1021/ja00023a066 2989:10.1021/ja00212a037 2902:(41): 10610–10620. 2544:2021PCCP...2320095V 2538:(36): 20095–20106. 2489:(41): 10610–10620. 2256:10.1021/ar50095a001 2071:Tetrahedron Letters 2056:10.1021/ja00832a031 2029:10.1021/ja01474a023 1862:10.1021/ja00728a022 1835:10.1021/ja00765a066 1808:10.1021/ja00747a052 1710:10.1021/ja00796a022 1683:10.1021/ja00039a074 1656:10.1021/ja00011a052 1629:10.1021/ja00546a048 1599:10.1021/ja00225a003 1536:10.1021/ja00263a059 1509:10.1021/ja00252a052 1441:10.1021/ja00279a018 1016:disodium prephenate 906:, which are common 618:Danishefsky's diene 559:(as in the case of 117:concerted mechanism 113:pericyclic reaction 7557:McCormack reaction 7507:Conia-ene reaction 7339:Madelung synthesis 7129:Biginelli reaction 6919:Mumm rearrangement 6804:Favorskii reaction 6739:Cope rearrangement 6729:Chan rearrangement 6494:Rubottom oxidation 6424:Miyaura borylation 6389:Lipid peroxidation 6384:Lindgren oxidation 6364:Kornblum oxidation 6359:Kolbe electrolysis 6304:Fukuyama reduction 6214:Carbonyl reduction 6064:Marker degradation 5926:Diazonium compound 5916:Boudouard reaction 5895:Carbon-heteroatom 5822:Grieco elimination 5608:Rieche formylation 5553:Passerini reaction 5483:Meerwein arylation 5403:Hydroxymethylation 5298:Favorskii reaction 5198:Chan rearrangement 5133:Biginelli reaction 5058:Aldol condensation 4904:2-Norbornyl cation 4879:Möbius aromaticity 4874:Markovnikov's rule 4769:Effective molarity 4714:Bürgi–Dunitz angle 4704:Bicycloaromaticity 3278:10.1038/ja.2016.67 2810:10.1039/D0SC02901G 2552:10.1039/D1CP02456F 2397:10.1039/D0SC02901G 1750:Chemische Berichte 1358:10.1039/C1PY00041A 1187: 1169: 1150: 1117: 1107: 1089:phenylboronic acid 1077: 1051: 1012: 987: 948: 935: 896: 822:chiral Lewis acids 798:aluminium chloride 725:Hetero-Diels–Alder 634: 553: 525: 452: 425: 308: 284: 221: 99:and a substituted 82: 7877:German inventions 7849: 7848: 7845: 7844: 7841: 7840: 7833:Wohl–Aue reaction 7477:6+4 Cycloaddition 7294:Iodolactonization 6614:1,2-rearrangement 6579:Wohl–Aue reaction 6499:Sabatier reaction 6464:Pinnick oxidation 6429:Mozingo reduction 6374:Leuckart reaction 6329:Haloform reaction 6244:Criegee oxidation 6224:Collins oxidation 6174:Benkeser reaction 6169:Bechamp reduction 6139:Andrussow process 6124:Alcohol oxidation 6034:Edman degradation 5941:Haloform reaction 5890: 5889: 5877:Takai olefination 5842:Julia olefination 5668:Takai olefination 5543:Olefin metathesis 5418:Julia olefination 5343:Grignard reaction 5323:Fukuyama coupling 5238:Coupling reaction 5203:Chan–Lam coupling 5073:Alkyne metathesis 5068:Alkane metathesis 4924:Phosphaethynolate 4829:George S. Hammond 4789:Electronic effect 4744:Conjugated system 4626:Stereospecificity 4621:Stereoselectivity 4586:Addition reaction 4575:organic reactions 4476:Organic Reactions 4443:Organic Reactions 4410:Organic Reactions 4377:Organic Reactions 4344:Organic Reactions 4323:(22): 6893–6894. 4294:10.1021/ja052151d 4261:(12): 4062–4063. 4240:10.1021/ja983198k 4180:(12): 1171–1172. 4102:(20): 6124–6134. 4075:(19): 6157–6159. 4048:(23): 7013–7018. 3985:(17): 4223–4251. 3173:(7419): 208–212. 3148:10.1021/ja000092s 3142:(17): 4243–4244. 3113:10.1021/ar960062n 3078:10.1021/ja035393r 3072:(21): 6388–6390. 3043:10.1021/ja025848x 3037:(15): 3808–3809. 3010:(23): 8966–8967. 2954:10.1021/ol2007378 2853:(16): 5180–5190. 2804:(31): 8105–8112. 2755:(37): 5275–5283. 2440:(16): 5180–5190. 2391:(31): 8105–8112. 2342:(15): 6201–6206. 2304:Organic chemistry 2213:Organic Syntheses 2190:978-0-08-052349-1 2110:10.1021/jo970438q 2104:(16): 5252–5253. 2077:(51): 4911–4914. 2050:(25): 7807–7808. 2023:(13): 2885–2891. 1936:10.1002/jcc.20532 1856:(25): 7385–7389. 1829:(10): 3633–3635. 1802:(18): 4606–4607. 1704:(15): 4896–4904. 1677:(13): 5440–5442. 1650:(11): 4340–4341. 1623:(26): 7816–7817. 1593:(17): 5613–5617. 1572:10.1021/ja9601494 1566:(25): 6036–6043. 1503:(18): 5545–5546. 1484:, Part A., p. 839 1435:(19): 5771–5779. 1385:978-0-7167-7266-8 1352:(10): 2133–2145. 1346:Polymer Chemistry 1317:(10): 1668–1698. 1275:Organic Reactions 1242:Organic Reactions 794:tin tetrachloride 790:boron trifluoride 229:dimethylformamide 86:organic chemistry 74: 73: 16:Chemical reaction 7899: 7828:Wenker synthesis 7818:Stollé synthesis 7673:Bobbitt reaction 7643:Auwers synthesis 7587:Povarov reaction 7512:Cyclopropanation 7450: 7449: 7444:Wenker synthesis 7199:Darzens reaction 7149:Bobbitt reaction 6994:Schmidt reaction 6799:Enyne metathesis 6574:Whiting reaction 6569:Wharton reaction 6514:Shapiro reaction 6504:Sarett oxidation 6469:Prévost reaction 6279:Emde degradation 6089:Wohl degradation 6069:Ruff degradation 6039:Emde degradation 5936:Grignard reagent 5872:Shapiro reaction 5857:McMurry reaction 5724: 5723: 5688:Ullmann reaction 5653:Stollé synthesis 5643:Stetter reaction 5633:Shapiro reaction 5623:Sakurai reaction 5518:Negishi coupling 5498:Minisci reaction 5493:Michael reaction 5478:McMurry reaction 5473:Mannich reaction 5353:Hammick reaction 5348:Grignard reagent 5288:Enyne metathesis 5273:Doebner reaction 5263:Darzens reaction 5108:Barbier reaction 5098:Auwers synthesis 5025: 5024: 4999:Woodward's rules 4964:Superaromaticity 4954:Spiroaromaticity 4854:Inductive effect 4849:Hyperconjugation 4824:Hammett equation 4764:Edwards equation 4616:Regioselectivity 4567: 4560: 4553: 4544: 4543: 4526: 4498: 4497: 4471: 4465: 4464: 4438: 4432: 4431: 4405: 4399: 4398: 4372: 4366: 4365: 4339: 4333: 4332: 4312: 4306: 4305: 4277: 4271: 4270: 4250: 4244: 4243: 4223: 4217: 4216: 4196: 4190: 4189: 4169: 4163: 4162: 4143:10.1038/367630a0 4118: 4112: 4111: 4091: 4085: 4084: 4064: 4058: 4057: 4036: 4030: 4029: 4001: 3995: 3994: 3974: 3968: 3967: 3965: 3963: 3949: 3943: 3940: 3919: 3897: 3875: 3854: 3833: 3812: 3790: 3768: 3747: 3725: 3703: 3681: 3660: 3639: 3617: 3596: 3575: 3553: 3532: 3511: 3490: 3469: 3460:(8): 2337–2372. 3447: 3438:(8): 2087–2090. 3425: 3416:(8): 2081–2087. 3403: 3381: 3360: 3338: 3332: 3331: 3305: 3299: 3298: 3280: 3256: 3250: 3249: 3239: 3222:(4): 2413–2444. 3207: 3201: 3200: 3190: 3158: 3152: 3151: 3131: 3125: 3124: 3096: 3090: 3089: 3061: 3055: 3054: 3026: 3020: 3019: 2999: 2993: 2992: 2983:(4): 1238–1256. 2972: 2966: 2965: 2936: 2930: 2929: 2919: 2887: 2881: 2880: 2870: 2838: 2832: 2831: 2821: 2798:Chemical Science 2789: 2783: 2782: 2772: 2744: 2738: 2737: 2727: 2710:(4): 3565–3573. 2695: 2689: 2688: 2678: 2661:(7): 1167–1174. 2646: 2640: 2639: 2598:(8): 1972–1981. 2589: 2580: 2574: 2573: 2563: 2523: 2517: 2516: 2506: 2474: 2468: 2467: 2457: 2425: 2419: 2418: 2408: 2385:Chemical Science 2376: 2370: 2369: 2359: 2327: 2318: 2317: 2299: 2293: 2292: 2274: 2268: 2267: 2235: 2229: 2228: 2210: 2201: 2195: 2194: 2168: 2162: 2161: 2133: 2127: 2120: 2114: 2113: 2093: 2087: 2086: 2066: 2060: 2059: 2039: 2033: 2032: 2012: 2006: 2005: 1985: 1976: 1975:, Part A, p. 149 1970: 1964: 1963: 1919: 1913: 1912: 1906: 1898: 1872: 1866: 1865: 1845: 1839: 1838: 1818: 1812: 1811: 1791: 1785: 1784: 1772: 1766: 1765: 1745: 1739: 1738: 1720: 1714: 1713: 1693: 1687: 1686: 1666: 1660: 1659: 1639: 1633: 1632: 1612: 1603: 1602: 1582: 1576: 1575: 1554: 1548: 1547: 1519: 1513: 1512: 1491: 1485: 1479: 1470: 1464: 1453: 1452: 1424: 1415: 1409: 1390: 1389: 1368: 1362: 1361: 1341: 1335: 1334: 1306: 1297: 1296: 1270: 1264: 1263: 1237: 1173:(-)-tetracycline 1140:Schrock catalyst 1097:neopentyl glycol 931:vinyl norbornene 834:oxazaborolidines 661:maleic anhydride 653:-phenylmaleimide 602:conformation. 2- 498:maleic anhydride 270:Regioselectivity 264:transition state 66: 51: 21: 20: 7907: 7906: 7902: 7901: 7900: 7898: 7897: 7896: 7887:1928 in Germany 7882:1928 in science 7852: 7851: 7850: 7837: 7738:Gewald reaction 7621: 7448: 7429:Skraup reaction 7264:Graham reaction 7259:Gewald reaction 7090: 7083: 6605: 6598: 6554:Swern oxidation 6539:Stahl oxidation 6484:Riley oxidation 6439:Omega oxidation 6399:Luche reduction 6349:Jones oxidation 6314:Glycol cleavage 6309:Ganem oxidation 6254:Davis oxidation 6249:Dakin oxidation 6184:Birch reduction 6134:Amide reduction 6100: 6093: 6054:Hooker reaction 6016: 6010: 5898: 5896: 5886: 5882:Wittig reaction 5770: 5766:Wittig reaction 5741:Hooker reaction 5722: 5703:Wittig reaction 5678:Thorpe reaction 5663:Suzuki reaction 5648:Stille reaction 5583:Quelet reaction 5458:Kumada coupling 5408:Ivanov reaction 5398:Hydrovinylation 5378:Hiyama coupling 5338:Glaser coupling 5148:Blaise reaction 5138:Bingel reaction 5123:Benary reaction 5040: 5038: 5032: 5023: 4919:Passive binding 4839:Homoaromaticity 4689:Baldwin's rules 4664:Antiaromaticity 4659:Anomeric effect 4635: 4577: 4571: 4533: 4523: 4507: 4502: 4501: 4494: 4472: 4468: 4461: 4439: 4435: 4428: 4406: 4402: 4395: 4373: 4369: 4362: 4340: 4336: 4313: 4309: 4278: 4274: 4251: 4247: 4224: 4220: 4197: 4193: 4170: 4166: 4129:(6464): 630–4. 4119: 4115: 4092: 4088: 4065: 4061: 4037: 4033: 4002: 3998: 3975: 3971: 3961: 3959: 3951: 3950: 3946: 3339: 3335: 3328: 3306: 3302: 3257: 3253: 3208: 3204: 3159: 3155: 3132: 3128: 3097: 3093: 3062: 3058: 3027: 3023: 3000: 2996: 2973: 2969: 2937: 2933: 2888: 2884: 2839: 2835: 2790: 2786: 2745: 2741: 2696: 2692: 2647: 2643: 2587: 2581: 2577: 2524: 2520: 2475: 2471: 2426: 2422: 2377: 2373: 2328: 2321: 2314: 2300: 2296: 2289: 2275: 2271: 2250:(11): 361–369. 2236: 2232: 2208: 2202: 2198: 2191: 2169: 2165: 2134: 2130: 2124:Chimie organica 2121: 2117: 2094: 2090: 2067: 2063: 2040: 2036: 2013: 2009: 1986: 1979: 1971: 1967: 1920: 1916: 1900: 1899: 1887: 1873: 1869: 1846: 1842: 1819: 1815: 1792: 1788: 1773: 1769: 1746: 1742: 1735: 1721: 1717: 1694: 1690: 1667: 1663: 1640: 1636: 1613: 1606: 1583: 1579: 1555: 1551: 1520: 1516: 1492: 1488: 1480: 1473: 1465: 1456: 1425: 1418: 1410: 1393: 1386: 1369: 1365: 1342: 1338: 1307: 1300: 1293: 1271: 1267: 1260: 1238: 1234: 1229: 1202: 1032:A synthesis of 968: 940: 927:cyclopentadiene 900:cyclopentadiene 881: 857: 818: 779: 735:Carbonyl groups 727: 722: 702:Wittig reaction 695: 683: 673: 642:quinodimethanes 577: 490:Alder endo rule 456:stereoselective 359: 340: 329: 325: 321: 288:ortho-para rule 272: 237:cyclopentadiene 233:ethylene glycol 210: 198: 178: 62: 47: 17: 12: 11: 5: 7905: 7895: 7894: 7892:Name reactions 7889: 7884: 7879: 7874: 7869: 7864: 7862:Cycloadditions 7847: 7846: 7843: 7842: 7839: 7838: 7836: 7835: 7830: 7825: 7820: 7815: 7810: 7805: 7800: 7795: 7790: 7785: 7780: 7775: 7770: 7765: 7760: 7755: 7750: 7745: 7743:Hantzsch ester 7740: 7735: 7730: 7725: 7720: 7715: 7710: 7705: 7700: 7695: 7690: 7685: 7680: 7675: 7670: 7665: 7660: 7655: 7653:Banert cascade 7650: 7645: 7640: 7635: 7629: 7627: 7623: 7622: 7620: 7619: 7614: 7609: 7604: 7599: 7594: 7592:Prato reaction 7589: 7584: 7579: 7574: 7569: 7564: 7559: 7554: 7549: 7544: 7539: 7534: 7529: 7524: 7519: 7514: 7509: 7504: 7499: 7494: 7489: 7484: 7479: 7474: 7469: 7464: 7458: 7456: 7447: 7446: 7441: 7436: 7431: 7426: 7421: 7416: 7411: 7406: 7401: 7396: 7391: 7386: 7381: 7376: 7371: 7366: 7361: 7356: 7351: 7346: 7341: 7336: 7331: 7326: 7321: 7316: 7311: 7306: 7301: 7296: 7291: 7286: 7281: 7276: 7271: 7266: 7261: 7256: 7251: 7246: 7241: 7236: 7231: 7226: 7221: 7216: 7211: 7206: 7201: 7196: 7191: 7186: 7181: 7176: 7171: 7166: 7161: 7156: 7151: 7146: 7141: 7136: 7131: 7126: 7121: 7116: 7111: 7106: 7101: 7095: 7093: 7085: 7084: 7082: 7081: 7076: 7071: 7066: 7061: 7056: 7051: 7046: 7041: 7036: 7031: 7026: 7021: 7016: 7011: 7006: 7001: 6996: 6991: 6986: 6981: 6976: 6971: 6966: 6961: 6956: 6951: 6946: 6941: 6936: 6931: 6926: 6921: 6916: 6911: 6906: 6901: 6896: 6891: 6886: 6881: 6876: 6871: 6866: 6861: 6856: 6851: 6846: 6841: 6836: 6831: 6826: 6821: 6816: 6811: 6806: 6801: 6796: 6791: 6786: 6781: 6776: 6771: 6766: 6761: 6756: 6751: 6746: 6741: 6736: 6731: 6726: 6721: 6716: 6711: 6706: 6701: 6696: 6691: 6686: 6684:Banert cascade 6681: 6676: 6671: 6666: 6661: 6656: 6651: 6646: 6641: 6636: 6631: 6626: 6621: 6616: 6610: 6608: 6604:Rearrangement 6600: 6599: 6597: 6596: 6594:Zinin reaction 6591: 6586: 6581: 6576: 6571: 6566: 6564:Wacker process 6561: 6556: 6551: 6546: 6541: 6536: 6531: 6526: 6521: 6516: 6511: 6506: 6501: 6496: 6491: 6486: 6481: 6476: 6471: 6466: 6461: 6456: 6451: 6446: 6441: 6436: 6431: 6426: 6421: 6416: 6411: 6406: 6401: 6396: 6391: 6386: 6381: 6376: 6371: 6366: 6361: 6356: 6351: 6346: 6341: 6339:Hydrogenolysis 6336: 6331: 6326: 6321: 6316: 6311: 6306: 6301: 6296: 6291: 6289:Étard reaction 6286: 6281: 6276: 6271: 6266: 6261: 6256: 6251: 6246: 6241: 6236: 6231: 6226: 6221: 6216: 6211: 6206: 6201: 6196: 6194:Bosch reaction 6191: 6186: 6181: 6176: 6171: 6166: 6161: 6156: 6151: 6146: 6141: 6136: 6131: 6126: 6121: 6116: 6111: 6105: 6103: 6099:Organic redox 6095: 6094: 6092: 6091: 6086: 6081: 6076: 6071: 6066: 6061: 6056: 6051: 6046: 6041: 6036: 6031: 6026: 6020: 6018: 6012: 6011: 6009: 6008: 6003: 5998: 5993: 5988: 5983: 5978: 5973: 5968: 5963: 5958: 5953: 5948: 5943: 5938: 5933: 5931:Esterification 5928: 5923: 5918: 5913: 5908: 5902: 5900: 5892: 5891: 5888: 5887: 5885: 5884: 5879: 5874: 5869: 5864: 5859: 5854: 5849: 5844: 5839: 5834: 5829: 5824: 5819: 5814: 5809: 5804: 5799: 5794: 5789: 5784: 5778: 5776: 5772: 5771: 5769: 5768: 5763: 5758: 5753: 5748: 5743: 5738: 5732: 5730: 5721: 5720: 5715: 5710: 5708:Wurtz reaction 5705: 5700: 5695: 5690: 5685: 5680: 5675: 5670: 5665: 5660: 5655: 5650: 5645: 5640: 5635: 5630: 5625: 5620: 5615: 5610: 5605: 5600: 5595: 5590: 5585: 5580: 5578:Prins reaction 5575: 5570: 5565: 5560: 5555: 5550: 5545: 5540: 5535: 5530: 5525: 5520: 5515: 5510: 5505: 5500: 5495: 5490: 5485: 5480: 5475: 5470: 5465: 5460: 5455: 5450: 5445: 5440: 5435: 5430: 5425: 5420: 5415: 5410: 5405: 5400: 5395: 5393:Hydrocyanation 5390: 5385: 5380: 5375: 5370: 5365: 5363:Henry reaction 5360: 5355: 5350: 5345: 5340: 5335: 5330: 5325: 5320: 5315: 5310: 5305: 5300: 5295: 5290: 5285: 5280: 5275: 5270: 5265: 5260: 5255: 5250: 5245: 5240: 5235: 5230: 5225: 5220: 5215: 5210: 5205: 5200: 5195: 5190: 5185: 5180: 5175: 5170: 5165: 5160: 5155: 5150: 5145: 5140: 5135: 5130: 5125: 5120: 5115: 5110: 5105: 5100: 5095: 5090: 5085: 5080: 5075: 5070: 5065: 5063:Aldol reaction 5060: 5055: 5050: 5044: 5042: 5037:Carbon-carbon 5034: 5033: 5022: 5021: 5016: 5014:Zaitsev's rule 5011: 5006: 5001: 4996: 4991: 4986: 4981: 4976: 4971: 4966: 4961: 4959:Steric effects 4956: 4951: 4946: 4941: 4936: 4931: 4926: 4921: 4916: 4911: 4906: 4901: 4896: 4891: 4886: 4881: 4876: 4871: 4866: 4861: 4856: 4851: 4846: 4841: 4836: 4831: 4826: 4821: 4816: 4811: 4806: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4711: 4706: 4701: 4696: 4691: 4686: 4681: 4676: 4671: 4666: 4661: 4656: 4651: 4646: 4640: 4637: 4636: 4634: 4633: 4628: 4623: 4618: 4613: 4611:Redox reaction 4608: 4603: 4598: 4596:Polymerization 4593: 4588: 4582: 4579: 4578: 4570: 4569: 4562: 4555: 4547: 4541: 4540: 4532: 4531:External links 4529: 4528: 4527: 4522:978-0387683546 4521: 4506: 4503: 4500: 4499: 4493:978-0471264187 4492: 4466: 4460:978-0471264187 4459: 4433: 4427:978-0471264187 4426: 4400: 4394:978-0471264187 4393: 4367: 4361:978-0471264187 4360: 4334: 4307: 4288:(23): 8292–3. 4272: 4245: 4218: 4191: 4164: 4113: 4086: 4059: 4031: 4012:(20): 5675–7. 3996: 3969: 3944: 3942: 3941: 3920: 3898: 3876: 3855: 3834: 3813: 3791: 3769: 3748: 3726: 3704: 3682: 3661: 3640: 3618: 3597: 3576: 3554: 3533: 3512: 3491: 3470: 3448: 3426: 3404: 3382: 3372:(3): 554–562. 3361: 3333: 3327:978-3527306732 3326: 3300: 3271:(7): 500–506. 3251: 3202: 3153: 3126: 3107:(6): 325–335. 3091: 3056: 3021: 2994: 2967: 2948:(9): 2488–91. 2931: 2882: 2833: 2784: 2739: 2690: 2641: 2575: 2518: 2469: 2420: 2371: 2319: 2312: 2294: 2287: 2269: 2230: 2196: 2189: 2163: 2144:(5): 289–296. 2128: 2115: 2088: 2061: 2034: 2007: 1996:(7): 643–661. 1977: 1965: 1930:(1): 344–361. 1914: 1885: 1867: 1840: 1813: 1786: 1767: 1756:(1): 237–240. 1740: 1734:978-0471018193 1733: 1715: 1688: 1661: 1634: 1604: 1577: 1549: 1530:(3): 554–556. 1514: 1486: 1471: 1454: 1416: 1391: 1384: 1363: 1336: 1298: 1292:978-0471264187 1291: 1265: 1259:978-0471264187 1258: 1231: 1230: 1228: 1225: 1224: 1223: 1218: 1213: 1208: 1201: 1198: 1004:was required. 991:prostaglandins 967: 964: 939: 936: 880: 877: 856: 853: 817: 814: 778: 775: 726: 723: 721: 718: 693: 692:dienophile (CH 681: 672: 671:The dienophile 669: 610:conformation. 576: 573: 417:substituents: 363:stereospecific 358: 355: 338: 327: 323: 319: 271: 268: 252:intermolecular 208: 196: 177: 174: 72: 71: 68: 67: 60: 53: 52: 45: 41: 40: 36: 35: 30: 29:Reaction type 26: 25: 15: 9: 6: 4: 3: 2: 7904: 7893: 7890: 7888: 7885: 7883: 7880: 7878: 7875: 7873: 7870: 7868: 7865: 7863: 7860: 7859: 7857: 7834: 7831: 7829: 7826: 7824: 7821: 7819: 7816: 7814: 7811: 7809: 7806: 7804: 7801: 7799: 7796: 7794: 7791: 7789: 7786: 7784: 7781: 7779: 7776: 7774: 7771: 7769: 7766: 7764: 7761: 7759: 7756: 7754: 7753:Herz reaction 7751: 7749: 7746: 7744: 7741: 7739: 7736: 7734: 7731: 7729: 7726: 7724: 7721: 7719: 7716: 7714: 7711: 7709: 7706: 7704: 7701: 7699: 7696: 7694: 7691: 7689: 7686: 7684: 7681: 7679: 7676: 7674: 7671: 7669: 7666: 7664: 7661: 7659: 7656: 7654: 7651: 7649: 7646: 7644: 7641: 7639: 7636: 7634: 7631: 7630: 7628: 7624: 7618: 7615: 7613: 7610: 7608: 7605: 7603: 7600: 7598: 7595: 7593: 7590: 7588: 7585: 7583: 7580: 7578: 7575: 7573: 7570: 7568: 7565: 7563: 7560: 7558: 7555: 7553: 7550: 7548: 7545: 7543: 7540: 7538: 7535: 7533: 7530: 7528: 7525: 7523: 7520: 7518: 7515: 7513: 7510: 7508: 7505: 7503: 7500: 7498: 7495: 7493: 7490: 7488: 7485: 7483: 7480: 7478: 7475: 7473: 7470: 7468: 7465: 7463: 7460: 7459: 7457: 7455: 7454:Cycloaddition 7451: 7445: 7442: 7440: 7437: 7435: 7432: 7430: 7427: 7425: 7422: 7420: 7417: 7415: 7412: 7410: 7407: 7405: 7402: 7400: 7397: 7395: 7392: 7390: 7387: 7385: 7382: 7380: 7377: 7375: 7372: 7370: 7367: 7365: 7362: 7360: 7357: 7355: 7352: 7350: 7347: 7345: 7342: 7340: 7337: 7335: 7332: 7330: 7327: 7325: 7322: 7320: 7317: 7315: 7312: 7310: 7307: 7305: 7302: 7300: 7299:Isay reaction 7297: 7295: 7292: 7290: 7287: 7285: 7282: 7280: 7277: 7275: 7272: 7270: 7267: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7245: 7242: 7240: 7237: 7235: 7232: 7230: 7227: 7225: 7222: 7220: 7217: 7215: 7212: 7210: 7207: 7205: 7202: 7200: 7197: 7195: 7194:Cycloaddition 7192: 7190: 7187: 7185: 7182: 7180: 7177: 7175: 7172: 7170: 7167: 7165: 7162: 7160: 7157: 7155: 7152: 7150: 7147: 7145: 7142: 7140: 7137: 7135: 7132: 7130: 7127: 7125: 7122: 7120: 7117: 7115: 7112: 7110: 7107: 7105: 7102: 7100: 7097: 7096: 7094: 7092: 7089:Ring forming 7086: 7080: 7077: 7075: 7072: 7070: 7067: 7065: 7062: 7060: 7057: 7055: 7052: 7050: 7047: 7045: 7042: 7040: 7037: 7035: 7032: 7030: 7027: 7025: 7022: 7020: 7017: 7015: 7012: 7010: 7007: 7005: 7002: 7000: 6997: 6995: 6992: 6990: 6989:Rupe reaction 6987: 6985: 6982: 6980: 6977: 6975: 6972: 6970: 6967: 6965: 6962: 6960: 6957: 6955: 6952: 6950: 6947: 6945: 6942: 6940: 6937: 6935: 6932: 6930: 6927: 6925: 6922: 6920: 6917: 6915: 6912: 6910: 6907: 6905: 6902: 6900: 6897: 6895: 6892: 6890: 6887: 6885: 6882: 6880: 6877: 6875: 6872: 6870: 6867: 6865: 6862: 6860: 6857: 6855: 6852: 6850: 6847: 6845: 6842: 6840: 6837: 6835: 6832: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6802: 6800: 6797: 6795: 6792: 6790: 6787: 6785: 6782: 6780: 6777: 6775: 6772: 6770: 6767: 6765: 6762: 6760: 6757: 6755: 6752: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6722: 6720: 6717: 6715: 6712: 6710: 6707: 6705: 6702: 6700: 6697: 6695: 6692: 6690: 6687: 6685: 6682: 6680: 6677: 6675: 6672: 6670: 6667: 6665: 6662: 6660: 6657: 6655: 6652: 6650: 6647: 6645: 6642: 6640: 6637: 6635: 6632: 6630: 6627: 6625: 6622: 6620: 6617: 6615: 6612: 6611: 6609: 6607: 6601: 6595: 6592: 6590: 6587: 6585: 6582: 6580: 6577: 6575: 6572: 6570: 6567: 6565: 6562: 6560: 6557: 6555: 6552: 6550: 6547: 6545: 6542: 6540: 6537: 6535: 6532: 6530: 6527: 6525: 6522: 6520: 6517: 6515: 6512: 6510: 6507: 6505: 6502: 6500: 6497: 6495: 6492: 6490: 6487: 6485: 6482: 6480: 6477: 6475: 6472: 6470: 6467: 6465: 6462: 6460: 6457: 6455: 6452: 6450: 6447: 6445: 6442: 6440: 6437: 6435: 6432: 6430: 6427: 6425: 6422: 6420: 6417: 6415: 6412: 6410: 6407: 6405: 6402: 6400: 6397: 6395: 6392: 6390: 6387: 6385: 6382: 6380: 6379:Ley oxidation 6377: 6375: 6372: 6370: 6367: 6365: 6362: 6360: 6357: 6355: 6352: 6350: 6347: 6345: 6344:Hydroxylation 6342: 6340: 6337: 6335: 6334:Hydrogenation 6332: 6330: 6327: 6325: 6322: 6320: 6317: 6315: 6312: 6310: 6307: 6305: 6302: 6300: 6297: 6295: 6292: 6290: 6287: 6285: 6282: 6280: 6277: 6275: 6272: 6270: 6269:DNA oxidation 6267: 6265: 6262: 6260: 6259:Deoxygenation 6257: 6255: 6252: 6250: 6247: 6245: 6242: 6240: 6237: 6235: 6232: 6230: 6227: 6225: 6222: 6220: 6217: 6215: 6212: 6210: 6207: 6205: 6202: 6200: 6197: 6195: 6192: 6190: 6187: 6185: 6182: 6180: 6177: 6175: 6172: 6170: 6167: 6165: 6162: 6160: 6157: 6155: 6152: 6150: 6149:Aromatization 6147: 6145: 6142: 6140: 6137: 6135: 6132: 6130: 6127: 6125: 6122: 6120: 6117: 6115: 6112: 6110: 6107: 6106: 6104: 6102: 6096: 6090: 6087: 6085: 6082: 6080: 6077: 6075: 6072: 6070: 6067: 6065: 6062: 6060: 6057: 6055: 6052: 6050: 6047: 6045: 6042: 6040: 6037: 6035: 6032: 6030: 6027: 6025: 6022: 6021: 6019: 6013: 6007: 6004: 6002: 5999: 5997: 5994: 5992: 5989: 5987: 5986:Reed reaction 5984: 5982: 5979: 5977: 5974: 5972: 5969: 5967: 5964: 5962: 5959: 5957: 5954: 5952: 5949: 5947: 5944: 5942: 5939: 5937: 5934: 5932: 5929: 5927: 5924: 5922: 5919: 5917: 5914: 5912: 5909: 5907: 5904: 5903: 5901: 5897:bond forming 5893: 5883: 5880: 5878: 5875: 5873: 5870: 5868: 5865: 5863: 5860: 5858: 5855: 5853: 5850: 5848: 5845: 5843: 5840: 5838: 5835: 5833: 5830: 5828: 5825: 5823: 5820: 5818: 5815: 5813: 5810: 5808: 5805: 5803: 5802:Cope reaction 5800: 5798: 5795: 5793: 5790: 5788: 5785: 5783: 5780: 5779: 5777: 5773: 5767: 5764: 5762: 5759: 5757: 5754: 5752: 5749: 5747: 5744: 5742: 5739: 5737: 5734: 5733: 5731: 5729: 5725: 5719: 5716: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5694: 5691: 5689: 5686: 5684: 5681: 5679: 5676: 5674: 5671: 5669: 5666: 5664: 5661: 5659: 5656: 5654: 5651: 5649: 5646: 5644: 5641: 5639: 5636: 5634: 5631: 5629: 5626: 5624: 5621: 5619: 5616: 5614: 5611: 5609: 5606: 5604: 5601: 5599: 5596: 5594: 5591: 5589: 5586: 5584: 5581: 5579: 5576: 5574: 5571: 5569: 5566: 5564: 5561: 5559: 5556: 5554: 5551: 5549: 5546: 5544: 5541: 5539: 5536: 5534: 5531: 5529: 5526: 5524: 5521: 5519: 5516: 5514: 5513:Nef synthesis 5511: 5509: 5506: 5504: 5501: 5499: 5496: 5494: 5491: 5489: 5488:Methylenation 5486: 5484: 5481: 5479: 5476: 5474: 5471: 5469: 5466: 5464: 5461: 5459: 5456: 5454: 5451: 5449: 5446: 5444: 5441: 5439: 5436: 5434: 5431: 5429: 5426: 5424: 5421: 5419: 5416: 5414: 5411: 5409: 5406: 5404: 5401: 5399: 5396: 5394: 5391: 5389: 5386: 5384: 5381: 5379: 5376: 5374: 5371: 5369: 5366: 5364: 5361: 5359: 5358:Heck reaction 5356: 5354: 5351: 5349: 5346: 5344: 5341: 5339: 5336: 5334: 5331: 5329: 5326: 5324: 5321: 5319: 5316: 5314: 5311: 5309: 5306: 5304: 5301: 5299: 5296: 5294: 5291: 5289: 5286: 5284: 5281: 5279: 5276: 5274: 5271: 5269: 5266: 5264: 5261: 5259: 5256: 5254: 5251: 5249: 5246: 5244: 5241: 5239: 5236: 5234: 5231: 5229: 5226: 5224: 5221: 5219: 5216: 5214: 5211: 5209: 5206: 5204: 5201: 5199: 5196: 5194: 5191: 5189: 5186: 5184: 5181: 5179: 5176: 5174: 5171: 5169: 5166: 5164: 5161: 5159: 5156: 5154: 5151: 5149: 5146: 5144: 5141: 5139: 5136: 5134: 5131: 5129: 5126: 5124: 5121: 5119: 5116: 5114: 5111: 5109: 5106: 5104: 5101: 5099: 5096: 5094: 5091: 5089: 5086: 5084: 5081: 5079: 5076: 5074: 5071: 5069: 5066: 5064: 5061: 5059: 5056: 5054: 5051: 5049: 5046: 5045: 5043: 5039:bond forming 5035: 5031: 5026: 5020: 5017: 5015: 5012: 5010: 5007: 5005: 5004:Y-aromaticity 5002: 5000: 4997: 4995: 4992: 4990: 4989:Walsh diagram 4987: 4985: 4982: 4980: 4977: 4975: 4974:Taft equation 4972: 4970: 4967: 4965: 4962: 4960: 4957: 4955: 4952: 4950: 4947: 4945: 4944:Σ-aromaticity 4942: 4940: 4937: 4935: 4932: 4930: 4927: 4925: 4922: 4920: 4917: 4915: 4912: 4910: 4907: 4905: 4902: 4900: 4897: 4895: 4892: 4890: 4887: 4885: 4882: 4880: 4877: 4875: 4872: 4870: 4869:Marcus theory 4867: 4865: 4862: 4860: 4857: 4855: 4852: 4850: 4847: 4845: 4844:Hückel's rule 4842: 4840: 4837: 4835: 4832: 4830: 4827: 4825: 4822: 4820: 4817: 4815: 4812: 4810: 4807: 4805: 4802: 4800: 4799:Evelyn effect 4797: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4779:Electron-rich 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4710: 4707: 4705: 4702: 4700: 4697: 4695: 4694:Bema Hapothle 4692: 4690: 4687: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4641: 4638: 4632: 4629: 4627: 4624: 4622: 4619: 4617: 4614: 4612: 4609: 4607: 4604: 4602: 4599: 4597: 4594: 4592: 4589: 4587: 4584: 4583: 4580: 4576: 4568: 4563: 4561: 4556: 4554: 4549: 4548: 4545: 4537: 4535: 4534: 4524: 4518: 4514: 4509: 4508: 4495: 4489: 4485: 4481: 4477: 4470: 4462: 4456: 4452: 4448: 4444: 4437: 4429: 4423: 4419: 4415: 4411: 4404: 4396: 4390: 4386: 4382: 4378: 4371: 4363: 4357: 4353: 4349: 4345: 4338: 4330: 4326: 4322: 4318: 4311: 4303: 4299: 4295: 4291: 4287: 4283: 4276: 4268: 4264: 4260: 4256: 4249: 4241: 4237: 4233: 4229: 4222: 4214: 4210: 4206: 4202: 4195: 4187: 4183: 4179: 4175: 4168: 4160: 4156: 4152: 4148: 4144: 4140: 4136: 4132: 4128: 4124: 4117: 4109: 4105: 4101: 4097: 4090: 4082: 4078: 4074: 4070: 4063: 4055: 4051: 4047: 4043: 4035: 4027: 4023: 4019: 4015: 4011: 4007: 4000: 3992: 3988: 3984: 3980: 3973: 3958: 3954: 3948: 3938: 3934: 3930: 3926: 3921: 3917: 3913: 3909: 3905: 3899: 3895: 3891: 3887: 3883: 3877: 3873: 3869: 3865: 3861: 3856: 3852: 3848: 3844: 3840: 3835: 3831: 3827: 3823: 3819: 3814: 3810: 3806: 3802: 3798: 3792: 3788: 3784: 3780: 3776: 3770: 3766: 3762: 3758: 3754: 3749: 3745: 3741: 3737: 3733: 3727: 3723: 3719: 3715: 3711: 3705: 3701: 3697: 3693: 3689: 3683: 3679: 3675: 3671: 3667: 3662: 3658: 3654: 3650: 3646: 3641: 3637: 3633: 3629: 3625: 3619: 3615: 3611: 3607: 3603: 3598: 3594: 3590: 3586: 3582: 3577: 3573: 3569: 3565: 3561: 3555: 3551: 3547: 3543: 3539: 3534: 3530: 3526: 3522: 3518: 3513: 3509: 3505: 3501: 3497: 3492: 3488: 3484: 3480: 3476: 3471: 3467: 3463: 3459: 3455: 3449: 3445: 3441: 3437: 3433: 3427: 3423: 3419: 3415: 3411: 3405: 3401: 3397: 3393: 3389: 3383: 3379: 3375: 3371: 3367: 3362: 3358: 3354: 3350: 3346: 3341: 3340: 3337: 3329: 3323: 3319: 3315: 3311: 3304: 3296: 3292: 3288: 3284: 3279: 3274: 3270: 3266: 3262: 3255: 3247: 3243: 3238: 3233: 3229: 3225: 3221: 3217: 3213: 3206: 3198: 3194: 3189: 3184: 3180: 3176: 3172: 3168: 3164: 3157: 3149: 3145: 3141: 3137: 3130: 3122: 3118: 3114: 3110: 3106: 3102: 3095: 3087: 3083: 3079: 3075: 3071: 3067: 3060: 3052: 3048: 3044: 3040: 3036: 3032: 3025: 3017: 3013: 3009: 3005: 2998: 2990: 2986: 2982: 2978: 2971: 2963: 2959: 2955: 2951: 2947: 2944: 2943: 2935: 2927: 2923: 2918: 2913: 2909: 2905: 2901: 2897: 2893: 2886: 2878: 2874: 2869: 2864: 2860: 2856: 2852: 2848: 2844: 2837: 2829: 2825: 2820: 2815: 2811: 2807: 2803: 2799: 2795: 2788: 2780: 2776: 2771: 2766: 2762: 2758: 2754: 2750: 2743: 2735: 2731: 2726: 2721: 2717: 2713: 2709: 2705: 2701: 2694: 2686: 2682: 2677: 2672: 2668: 2664: 2660: 2656: 2652: 2645: 2637: 2633: 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2586: 2579: 2571: 2567: 2562: 2557: 2553: 2549: 2545: 2541: 2537: 2533: 2529: 2522: 2514: 2510: 2505: 2500: 2496: 2492: 2488: 2484: 2480: 2473: 2465: 2461: 2456: 2451: 2447: 2443: 2439: 2435: 2431: 2424: 2416: 2412: 2407: 2402: 2398: 2394: 2390: 2386: 2382: 2375: 2367: 2363: 2358: 2353: 2349: 2345: 2341: 2337: 2333: 2326: 2324: 2315: 2313:9780199270293 2309: 2305: 2298: 2290: 2288:9780470746592 2284: 2280: 2273: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2234: 2226: 2222: 2218: 2214: 2207: 2200: 2192: 2186: 2182: 2178: 2174: 2167: 2159: 2155: 2151: 2147: 2143: 2139: 2132: 2125: 2119: 2111: 2107: 2103: 2099: 2092: 2084: 2080: 2076: 2072: 2065: 2057: 2053: 2049: 2045: 2038: 2030: 2026: 2022: 2018: 2011: 2003: 1999: 1995: 1991: 1984: 1982: 1974: 1969: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1925: 1918: 1910: 1904: 1896: 1892: 1888: 1886:9781483282046 1882: 1878: 1871: 1863: 1859: 1855: 1851: 1844: 1836: 1832: 1828: 1824: 1817: 1809: 1805: 1801: 1797: 1790: 1782: 1778: 1771: 1763: 1759: 1755: 1751: 1744: 1736: 1730: 1726: 1719: 1711: 1707: 1703: 1699: 1692: 1684: 1680: 1676: 1672: 1665: 1657: 1653: 1649: 1645: 1638: 1630: 1626: 1622: 1618: 1611: 1609: 1600: 1596: 1592: 1588: 1581: 1573: 1569: 1565: 1561: 1553: 1545: 1541: 1537: 1533: 1529: 1525: 1518: 1510: 1506: 1502: 1498: 1490: 1483: 1478: 1476: 1468: 1463: 1461: 1459: 1450: 1446: 1442: 1438: 1434: 1430: 1423: 1421: 1413: 1408: 1406: 1404: 1402: 1400: 1398: 1396: 1387: 1381: 1378: 1374: 1367: 1359: 1355: 1351: 1347: 1340: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1303: 1294: 1288: 1284: 1280: 1276: 1269: 1261: 1255: 1251: 1247: 1243: 1236: 1232: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1203: 1197: 1194: 1192: 1184: 1180: 1178: 1174: 1166: 1162: 1159: 1155: 1147: 1143: 1141: 1137: 1133: 1129: 1125: 1121: 1114: 1110: 1104: 1100: 1098: 1094: 1090: 1086: 1082: 1074: 1070: 1068: 1064: 1060: 1056: 1048: 1044: 1042: 1040: 1035: 1030: 1028: 1024: 1023:phenylalanine 1021: 1017: 1009: 1005: 1003: 999: 995: 992: 983: 979: 977: 973: 963: 961: 960: 955: 954: 944: 932: 928: 924: 919: 915: 913: 909: 905: 901: 893: 890: 885: 876: 874: 870: 866: 862: 852: 850: 846: 842: 840: 835: 831: 827: 823: 813: 809: 807: 801: 799: 795: 791: 787: 786:zinc chloride 783: 774: 772: 768: 764: 760: 756: 752: 748: 744: 740: 736: 732: 717: 715: 711: 707: 703: 699: 691: 687: 679: 668: 666: 662: 658: 654: 652: 647: 643: 639: 630: 626: 623: 622:cyclohexenone 619: 614: 611: 609: 605: 601: 597: 592: 590: 586: 582: 572: 570: 566: 562: 558: 550: 546: 543: 538: 537:van der Waals 534: 530: 522: 517: 513: 511: 507: 503: 499: 495: 491: 487: 483: 478: 476: 475: 471: 466: 462: 457: 449: 445: 441: 437: 433: 429: 422: 418: 416: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 354: 351: 347: 344: 336: 333: 317: 314: 304: 300: 297: 293: 289: 280: 276: 267: 265: 261: 257: 253: 248: 246: 242: 238: 234: 230: 225: 217: 213: 207: 203: 195: 191: 186: 184: 173: 171: 167: 163: 159: 155: 151: 147: 143: 138: 134: 130: 126: 122: 121:cycloaddition 118: 114: 110: 106: 102: 98: 95: 91: 87: 78: 69: 65: 61: 58: 55: 54: 50: 46: 43: 42: 37: 34: 33:Cycloaddition 31: 28: 27: 22: 19: 7521: 7223: 6794:Ene reaction 6154:Autoxidation 6015:Degradation 5906:Azo coupling 5683:Ugi reaction 5283:Ene reaction 5267: 5083:Alkynylation 4934:Polyfluorene 4929:Polar effect 4794:Electrophile 4709:Bredt's rule 4679:Baird's rule 4649:Alpha effect 4512: 4505:Bibliography 4475: 4469: 4442: 4436: 4409: 4403: 4376: 4370: 4343: 4337: 4320: 4316: 4310: 4285: 4281: 4275: 4258: 4254: 4248: 4231: 4227: 4221: 4204: 4200: 4194: 4177: 4173: 4167: 4126: 4122: 4116: 4099: 4095: 4089: 4072: 4068: 4062: 4045: 4041: 4034: 4009: 4005: 3999: 3982: 3978: 3972: 3960:. Retrieved 3947: 3928: 3924: 3907: 3903: 3885: 3881: 3863: 3859: 3842: 3838: 3821: 3817: 3800: 3796: 3778: 3774: 3756: 3752: 3735: 3731: 3713: 3709: 3691: 3687: 3669: 3665: 3648: 3644: 3627: 3623: 3605: 3601: 3584: 3580: 3563: 3559: 3541: 3537: 3520: 3516: 3499: 3495: 3478: 3474: 3457: 3453: 3435: 3431: 3413: 3409: 3391: 3387: 3369: 3365: 3348: 3344: 3336: 3309: 3303: 3268: 3264: 3254: 3219: 3215: 3205: 3170: 3166: 3156: 3139: 3135: 3129: 3104: 3100: 3094: 3069: 3065: 3059: 3034: 3030: 3024: 3007: 3003: 2997: 2980: 2976: 2970: 2945: 2940: 2934: 2899: 2895: 2885: 2850: 2846: 2836: 2801: 2797: 2787: 2752: 2748: 2742: 2707: 2703: 2693: 2658: 2654: 2644: 2595: 2591: 2578: 2535: 2531: 2521: 2486: 2482: 2472: 2437: 2433: 2423: 2388: 2384: 2374: 2339: 2335: 2303: 2297: 2278: 2272: 2247: 2243: 2233: 2216: 2212: 2199: 2172: 2166: 2141: 2137: 2131: 2123: 2118: 2101: 2097: 2091: 2074: 2070: 2064: 2047: 2043: 2037: 2020: 2016: 2010: 1993: 1989: 1968: 1927: 1923: 1917: 1879:. Weinheim. 1876: 1870: 1853: 1849: 1843: 1826: 1822: 1816: 1799: 1795: 1789: 1780: 1776: 1770: 1753: 1749: 1743: 1724: 1718: 1701: 1697: 1691: 1674: 1670: 1664: 1647: 1643: 1637: 1620: 1616: 1590: 1586: 1580: 1563: 1559: 1552: 1527: 1523: 1517: 1500: 1496: 1489: 1432: 1428: 1372: 1366: 1349: 1345: 1339: 1314: 1310: 1274: 1268: 1241: 1235: 1195: 1188: 1176: 1170: 1151: 1127: 1123: 1118: 1108: 1078: 1066: 1054: 1052: 1038: 1031: 1013: 988: 969: 957: 951: 949: 897: 858: 838: 819: 810: 805: 802: 780: 771:Vince lactam 750: 739:dihydropyran 728: 714:nitro groups 674: 650: 637: 635: 615: 612: 607: 603: 599: 595: 593: 588: 584: 578: 568: 564: 554: 541: 528: 526: 520: 502:benzoquinone 493: 489: 485: 481: 479: 473: 469: 464: 460: 453: 447: 443: 435: 431: 414: 410: 406: 402: 398: 394: 390: 386: 382: 378: 374: 370: 366: 360: 349: 345: 342: 334: 331: 326:, CN, C(O)CH 315: 312: 309: 295: 291: 287: 285: 273: 249: 226: 222: 205: 193: 187: 179: 165: 161: 157: 154:heterocycles 89: 83: 64:RXNO:0000006 59:ontology ID 39:Identifiers 18: 5293:Ethenolysis 4939:Ring strain 4909:Nucleophile 4734:Clar's rule 4674:Aromaticity 3962:19 February 3866:: 147–157. 3845:: 140–146. 3803:: 145–155. 3781:: 129–145. 3759:: 168–182. 3716:: 103–150. 3651:: 277–294. 3630:: 267–276. 3608:: 257–266. 3587:: 243–257. 3566:: 236–242. 3544:: 211–225. 3523:: 202–210. 3502:: 191–202. 3481:: 137–154. 2770:2066/241097 1191:cantharidin 1120:Tabersonine 1020:amino acids 976:cholesterol 904:norbornenes 849:imidazoline 782:Lewis acids 704:), various 698:phosphonium 646:naphthalene 346:conjugating 316:withdrawing 183:suprafacial 142:heteroatoms 109:cyclohexene 7856:Categories 7577:Ozonolysis 7104:Annulation 6454:Ozonolysis 4573:Topics in 3738:: 87–128. 3394:: 62–103. 3351:: 98–122. 2942:Org. Lett. 1783:: 103–115. 1227:References 912:vitamin B6 892:lovastatin 841:-oxazoline 784:, such as 731:heteroatom 657:Anthracene 510:crotonates 256:positional 144:, such as 133:Kurt Alder 129:Otto Diels 105:dienophile 94:conjugated 7091:reactions 6606:reactions 6101:reactions 6017:reactions 5899:reactions 5041:reactions 4174:Synthesis 3931:: 87–98. 3910:: 68–86. 3888:: 73–94. 3824:: 45–61. 3694:: 16–49. 3216:Chem. Rev 2779:239089361 2636:232337915 2620:0001-4842 2264:0001-4842 2158:260335918 2138:Synthesis 1944:1096-987X 1903:cite book 1895:915343522 1034:reserpine 972:cortisone 706:sulfoxide 665:acetylene 575:The diene 531:, though 506:acrylates 176:Mechanism 146:carbonyls 4984:Vinylogy 4654:Annulene 4601:Reagents 4302:15941256 3672:: 1–15. 3295:30482282 3287:27301662 3246:33492939 3197:23060191 3121:10891050 3086:12785777 3051:11942799 2962:21462988 2926:33780068 2877:33169912 2828:34094173 2734:33538169 2685:32012430 2628:33759502 2570:34499069 2513:33780068 2464:33169912 2415:34094173 2366:31944503 1960:26096085 1952:17109435 1544:22175504 1449:22175326 1331:19750686 1200:See also 1093:boronate 1059:pyranone 1041:-decalin 1027:tyrosine 929:through 908:monomers 845:chelates 843:–copper 763:oxazines 710:sulfonyl 571:isomer. 440:acrolein 335:donating 241:butenone 4644:A value 4539:Reihe". 4159:4371975 4151:7906395 4131:Bibcode 4026:5808505 3237:8008985 3188:3538845 2917:8360170 2868:8049058 2819:8163289 2725:7901664 2676:7187256 2561:8457343 2540:Bibcode 2504:8360170 2455:8049058 2406:8163289 2357:7187354 2219:: 206. 1138:with a 938:History 873:benzyne 865:alkynes 859:In the 759:Nitroso 533:dipolar 164:° and Δ 115:with a 4519:  4490:  4457:  4424:  4391:  4358:  4300:  4157:  4149:  4123:Nature 4024:  3324:  3293:  3285:  3244:  3234:  3195:  3185:  3167:Nature 3119:  3084:  3049:  2960:  2924:  2914:  2875:  2865:  2826:  2816:  2777:  2732:  2722:  2683:  2673:  2634:  2626:  2618:  2568:  2558:  2511:  2501:  2462:  2452:  2413:  2403:  2364:  2354:  2310:  2285:  2262:  2187:  2156:  1958:  1950:  1942:  1893:  1883:  1731:  1542:  1447:  1382:  1329:  1289:  1256:  1156:. The 1154:allene 1132:alkene 1063:lactam 889:statin 869:diynes 824:, and 747:imines 745:, and 690:ketene 686:ketone 393:- and 200:In an 150:imines 101:alkene 88:, the 4155:S2CID 3291:S2CID 2775:S2CID 2632:S2CID 2588:(PDF) 2209:(PDF) 2154:S2CID 1973:Carey 1956:S2CID 1482:Carey 1467:Carey 1412:Carey 1095:with 1085:ester 925:from 796:, or 596:trans 589:trans 581:diene 561:furan 415:trans 411:trans 399:trans 395:trans 383:trans 375:trans 292:ortho 123:with 97:diene 4517:ISBN 4488:ISBN 4455:ISBN 4422:ISBN 4389:ISBN 4356:ISBN 4298:PMID 4178:1991 4147:PMID 4022:PMID 3964:2016 3322:ISBN 3283:PMID 3242:PMID 3193:PMID 3117:PMID 3082:PMID 3047:PMID 2958:PMID 2922:PMID 2873:PMID 2824:PMID 2753:2021 2730:PMID 2681:PMID 2624:PMID 2616:ISSN 2566:PMID 2509:PMID 2460:PMID 2411:PMID 2362:PMID 2308:ISBN 2283:ISBN 2260:ISSN 2185:ISBN 2142:1977 1948:PMID 1940:ISSN 1909:link 1891:OCLC 1881:ISBN 1729:ISBN 1540:PMID 1445:PMID 1380:ISBN 1327:PMID 1287:ISBN 1254:ISBN 1025:and 996:and 974:and 956:and 867:and 708:and 604:tert 579:The 565:endo 542:endo 535:and 521:endo 519:The 508:and 500:and 494:Endo 486:endo 472:and 470:endo 461:endo 444:endo 434:and 432:Endo 322:, NO 296:para 294:and 239:and 231:and 148:and 131:and 4480:doi 4447:doi 4414:doi 4381:doi 4348:doi 4325:doi 4321:102 4290:doi 4286:127 4263:doi 4259:110 4236:doi 4232:120 4209:doi 4205:117 4182:doi 4139:doi 4127:367 4104:doi 4100:109 4077:doi 4073:102 4050:doi 4046:101 4014:doi 3987:doi 3933:doi 3929:530 3912:doi 3908:530 3890:doi 3886:525 3868:doi 3864:519 3847:doi 3843:519 3826:doi 3822:516 3805:doi 3801:513 3783:doi 3779:513 3761:doi 3757:511 3740:doi 3736:510 3718:doi 3714:505 3696:doi 3692:498 3674:doi 3670:498 3653:doi 3649:490 3632:doi 3628:490 3610:doi 3606:490 3589:doi 3585:490 3568:doi 3564:490 3546:doi 3542:486 3525:doi 3521:486 3504:doi 3500:486 3483:doi 3479:478 3462:doi 3440:doi 3418:doi 3396:doi 3392:470 3374:doi 3353:doi 3349:460 3314:doi 3273:doi 3232:PMC 3224:doi 3220:121 3183:PMC 3175:doi 3171:490 3144:doi 3140:122 3109:doi 3074:doi 3070:125 3039:doi 3035:124 3012:doi 3008:113 2985:doi 2981:110 2950:doi 2912:PMC 2904:doi 2863:PMC 2855:doi 2814:PMC 2806:doi 2765:hdl 2757:doi 2720:PMC 2712:doi 2671:PMC 2663:doi 2608:hdl 2600:doi 2556:PMC 2548:doi 2499:PMC 2491:doi 2450:PMC 2442:doi 2401:PMC 2393:doi 2352:PMC 2344:doi 2252:doi 2221:doi 2177:doi 2146:doi 2106:doi 2079:doi 2052:doi 2025:doi 1998:doi 1932:doi 1858:doi 1831:doi 1804:doi 1758:doi 1754:124 1706:doi 1679:doi 1675:114 1652:doi 1648:113 1625:doi 1621:102 1595:doi 1591:110 1568:doi 1564:118 1532:doi 1528:108 1505:doi 1501:109 1437:doi 1433:108 1354:doi 1319:doi 1279:doi 1246:doi 1128:cis 1124:cis 1067:cis 1055:cis 1039:cis 994:F2α 839:bis 680:(CH 608:cis 600:cis 585:cis 569:exo 482:cis 474:exo 465:exo 448:exo 436:exo 407:cis 403:cis 391:cis 387:cis 379:cis 371:cis 367:syn 341:), 330:), 84:In 57:RSC 7858:: 4486:. 4453:. 4420:. 4387:. 4354:. 4319:. 4296:. 4284:. 4257:. 4230:. 4203:. 4176:. 4153:. 4145:. 4137:. 4125:. 4098:. 4071:. 4044:. 4020:. 4010:91 4008:. 3983:74 3981:. 3955:. 3927:. 3906:. 3884:. 3862:. 3841:. 3820:. 3799:. 3777:. 3755:. 3734:. 3712:. 3690:. 3668:. 3647:. 3626:. 3604:. 3583:. 3562:. 3540:. 3519:. 3498:. 3477:. 3458:62 3456:. 3436:62 3434:. 3414:62 3412:. 3390:. 3370:62 3368:. 3347:. 3320:. 3312:. 3289:. 3281:. 3269:69 3267:. 3263:. 3240:. 3230:. 3218:. 3214:. 3191:. 3181:. 3169:. 3165:. 3138:. 3115:. 3105:33 3103:. 3080:. 3068:. 3045:. 3033:. 3006:. 2979:. 2956:. 2946:13 2920:. 2910:. 2900:27 2898:. 2894:. 2871:. 2861:. 2851:27 2849:. 2845:. 2822:. 2812:. 2802:11 2800:. 2796:. 2773:. 2763:. 2751:. 2728:. 2718:. 2708:86 2706:. 2702:. 2679:. 2669:. 2659:15 2657:. 2653:. 2630:. 2622:. 2614:. 2606:. 2596:54 2594:. 2590:. 2564:. 2554:. 2546:. 2536:23 2534:. 2530:. 2507:. 2497:. 2487:27 2485:. 2481:. 2458:. 2448:. 2438:27 2436:. 2432:. 2409:. 2399:. 2389:11 2387:. 2383:. 2360:. 2350:. 2340:59 2338:. 2334:. 2322:^ 2258:. 2246:. 2242:. 2217:68 2215:. 2211:. 2183:. 2152:. 2140:. 2102:62 2100:. 2075:20 2073:. 2048:96 2046:. 2021:83 2019:. 1994:58 1992:. 1980:^ 1954:. 1946:. 1938:. 1928:28 1926:. 1905:}} 1901:{{ 1889:. 1854:92 1852:. 1827:94 1825:. 1800:93 1798:. 1779:. 1752:. 1702:95 1700:. 1673:. 1646:. 1619:. 1607:^ 1589:. 1562:. 1538:. 1526:. 1499:. 1474:^ 1457:^ 1443:. 1431:. 1419:^ 1394:^ 1375:. 1348:. 1325:. 1315:41 1313:. 1301:^ 1285:. 1252:. 1029:. 998:E2 914:. 863:, 847:, 836:, 832:, 828:. 792:, 788:, 773:. 765:. 757:. 655:. 442:; 172:. 4566:e 4559:t 4552:v 4525:. 4496:. 4482:: 4463:. 4449:: 4430:. 4416:: 4397:. 4383:: 4364:. 4350:: 4331:. 4327:: 4304:. 4292:: 4269:. 4265:: 4242:. 4238:: 4215:. 4211:: 4188:. 4184:: 4161:. 4141:: 4133:: 4110:. 4106:: 4083:. 4079:: 4056:. 4052:: 4028:. 4016:: 3993:. 3989:: 3966:. 3939:. 3935:: 3918:. 3914:: 3896:. 3892:: 3874:. 3870:: 3853:. 3849:: 3832:. 3828:: 3811:. 3807:: 3789:. 3785:: 3767:. 3763:: 3746:. 3742:: 3724:. 3720:: 3702:. 3698:: 3680:. 3676:: 3659:. 3655:: 3638:. 3634:: 3616:. 3612:: 3595:. 3591:: 3574:. 3570:: 3552:. 3548:: 3531:. 3527:: 3510:. 3506:: 3489:. 3485:: 3468:. 3464:: 3446:. 3442:: 3424:. 3420:: 3402:. 3398:: 3380:. 3376:: 3359:. 3355:: 3330:. 3316:: 3297:. 3275:: 3248:. 3226:: 3199:. 3177:: 3150:. 3146:: 3123:. 3111:: 3088:. 3076:: 3053:. 3041:: 3018:. 3014:: 2991:. 2987:: 2964:. 2952:: 2928:. 2906:: 2879:. 2857:: 2830:. 2808:: 2781:. 2767:: 2759:: 2736:. 2714:: 2687:. 2665:: 2638:. 2610:: 2602:: 2572:. 2550:: 2542:: 2515:. 2493:: 2466:. 2444:: 2417:. 2395:: 2368:. 2346:: 2316:. 2291:. 2266:. 2254:: 2248:8 2227:. 2223:: 2193:. 2179:: 2160:. 2148:: 2112:. 2108:: 2085:. 2081:: 2058:. 2054:: 2031:. 2027:: 2004:. 2000:: 1962:. 1934:: 1911:) 1897:. 1864:. 1860:: 1837:. 1833:: 1810:. 1806:: 1781:1 1764:. 1760:: 1737:. 1712:. 1708:: 1685:. 1681:: 1658:. 1654:: 1631:. 1627:: 1601:. 1597:: 1574:. 1570:: 1546:. 1534:: 1511:. 1507:: 1451:. 1439:: 1388:. 1360:. 1356:: 1350:2 1333:. 1321:: 1295:. 1281:: 1262:. 1248:: 1177:o 933:. 894:. 751:N 694:2 682:2 651:N 640:- 638:o 446:/ 409:, 397:, 389:, 381:( 373:( 350:X 343:C 339:2 332:X 328:3 324:2 320:3 313:Z 209:3 206:ψ 197:2 194:ψ 166:S 162:H

Index

Cycloaddition
diels-alder-reaction
RSC
RXNO:0000006

organic chemistry
conjugated
diene
alkene
dienophile
cyclohexene
pericyclic reaction
concerted mechanism
cycloaddition
Woodward–Hoffmann symbol
Otto Diels
Kurt Alder
Nobel Prize in Chemistry
heteroatoms
carbonyls
imines
heterocycles
retro-Diels–Alder reaction
suprafacial
frontier molecular orbitals
inverse (reverse) electron-demand Diels–Alder reaction
FMO analysis of the Diels–Alder reaction
dimethylformamide
ethylene glycol
cyclopentadiene

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.