Knowledge

Diophantine quintuple

Source 📝

360:
As Euler proved, every Diophantine pair can be extended to a Diophantine quadruple. The same is true for every Diophantine triple. In both of these types of extension, as for Fermat's quadruple, it is possible to add a fifth rational number rather than an integer.
457: 130: 341: 218: 305: 375: 173: 496: 535: 357:
showed that at most a finite number of diophantine quintuples exist. In 2016 it was shown that no such quintuples exist by He, Togbé and Ziegler.
459:
More recently, Philip Gibbs found sets of six positive rationals with the property. It is not known whether any larger rational diophantine
44: 463:-tuples exist or even if there is an upper bound, but it is known that no infinite set of rationals with the property exists. 307:
It was proved in 1969 by Baker and Davenport that a fifth positive integer cannot be added to this set. However,
314: 677: 182: 452:{\displaystyle \left\{{\tfrac {1}{16}},{\tfrac {33}{16}},{\tfrac {17}{4}},{\tfrac {105}{16}}\right\}.} 263: 510: 135: 564: 505: 607:
Gibbs, Philip (1999). "A Generalised Stern-Brocot Tree from Regular Diophantine Quadruples".
229: 593: 8: 580: 608: 540: 16:
Set of positive integers such that the product of any two plus one is a perfect square
32: 637: 628:
Herrmann, E.; Pethoe, A.; Zimmer, H. G. (1999). "On Fermat's quadruple equations".
515: 257: 658: 589: 568: 233: 225: 572: 349:) diophantine quintuples was one of the oldest outstanding unsolved problems in 491: 354: 308: 39: 671: 350: 176: 20: 533:
He, B.; Togbé, A.; Ziegler, V. (2016). "There is no Diophantine Quintuple".
560: 613: 519: 641: 494:(January 2006). "There are only finitely many Diophantine quintuples". 369: 545: 346: 311:
was able to extend this set by adding the rational number
125:{\displaystyle \{a_{1},a_{2},a_{3},a_{4},\ldots ,a_{m}\}} 430: 415: 400: 385: 319: 378: 317: 266: 185: 138: 47: 627: 559: 451: 335: 299: 212: 167: 124: 536:Transactions of the American Mathematical Society 372:himself found the rational diophantine quadruple 669: 573:"On Euler's solution of a problem of Diophantus" 497:Journal für die reine und angewandte Mathematik 532: 256:The first diophantine quadruple was found by 291: 267: 119: 48: 336:{\displaystyle {\tfrac {777480}{8288641}}.} 612: 544: 509: 486: 484: 482: 480: 478: 476: 490: 247: 670: 659:Andrej Dujella's pages on diophantine 473: 606: 600: 364: 228:with the similar property that the 213:{\displaystyle 1\leq i<j\leq m.} 13: 621: 526: 14: 689: 652: 553: 345:The question of existence of ( 300:{\displaystyle \{1,3,8,120\}.} 232:of any two is one less than a 1: 466: 168:{\displaystyle a_{i}a_{j}+1} 7: 10: 694: 630:Math. Sem. Univ. Hamburg 453: 337: 301: 214: 169: 126: 678:Diophantine equations 520:10.1515/crll.2004.003 454: 338: 302: 238:rational diophantine 215: 170: 127: 376: 315: 264: 183: 136: 45: 581:Fibonacci Quarterly 642:10.1007/bf02940880 565:Hoggatt, V. E. Jr. 449: 439: 424: 409: 394: 333: 328: 297: 210: 165: 122: 614:math.NT/9903035v1 438: 423: 408: 393: 365:The rational case 327: 40:positive integers 685: 646: 645: 625: 619: 618: 616: 604: 598: 597: 577: 557: 551: 550: 548: 530: 524: 523: 513: 504:(566): 183–214. 488: 458: 456: 455: 450: 445: 441: 440: 431: 425: 416: 410: 401: 395: 386: 342: 340: 339: 334: 329: 320: 306: 304: 303: 298: 241: 226:rational numbers 223: 219: 217: 216: 211: 174: 172: 171: 166: 158: 157: 148: 147: 131: 129: 128: 123: 118: 117: 99: 98: 86: 85: 73: 72: 60: 59: 38: 28: 693: 692: 688: 687: 686: 684: 683: 682: 668: 667: 655: 650: 649: 626: 622: 605: 601: 575: 558: 554: 531: 527: 492:Dujella, Andrej 489: 474: 469: 429: 414: 399: 384: 383: 379: 377: 374: 373: 367: 318: 316: 313: 312: 265: 262: 261: 254: 239: 234:rational square 221: 184: 181: 180: 153: 149: 143: 139: 137: 134: 133: 113: 109: 94: 90: 81: 77: 68: 64: 55: 51: 46: 43: 42: 36: 26: 17: 12: 11: 5: 691: 681: 680: 666: 665: 654: 653:External links 651: 648: 647: 620: 599: 588:(4): 333–339. 552: 525: 511:10.1.1.58.8571 471: 470: 468: 465: 448: 444: 437: 434: 428: 422: 419: 413: 407: 404: 398: 392: 389: 382: 366: 363: 355:Andrej Dujella 332: 326: 323: 296: 293: 290: 287: 284: 281: 278: 275: 272: 269: 253: 246: 236:is known as a 209: 206: 203: 200: 197: 194: 191: 188: 177:perfect square 164: 161: 156: 152: 146: 142: 121: 116: 112: 108: 105: 102: 97: 93: 89: 84: 80: 76: 71: 67: 63: 58: 54: 50: 15: 9: 6: 4: 3: 2: 690: 679: 676: 675: 673: 664: 662: 657: 656: 643: 639: 635: 631: 624: 615: 610: 603: 595: 591: 587: 583: 582: 574: 570: 569:Straus, E. G. 566: 562: 561:Arkin, Joseph 556: 547: 542: 538: 537: 529: 521: 517: 512: 507: 503: 499: 498: 493: 487: 485: 483: 481: 479: 477: 472: 464: 462: 446: 442: 435: 432: 426: 420: 417: 411: 405: 402: 396: 390: 387: 380: 371: 362: 358: 356: 352: 351:number theory 348: 343: 330: 324: 321: 310: 294: 288: 285: 282: 279: 276: 273: 270: 259: 251: 245: 243: 235: 231: 227: 207: 204: 201: 198: 195: 192: 189: 186: 178: 162: 159: 154: 150: 144: 140: 114: 110: 106: 103: 100: 95: 91: 87: 82: 78: 74: 69: 65: 61: 56: 52: 41: 34: 30: 22: 21:number theory 660: 633: 629: 623: 602: 585: 579: 555: 534: 528: 501: 495: 460: 368: 359: 344: 255: 249: 248:Diophantine 237: 25:diophantine 24: 18: 636:: 283–291. 546:1610.04020 467:References 370:Diophantus 353:. In 2004 132:such that 506:CiteSeerX 224:positive 220:A set of 202:≤ 190:≤ 104:… 672:Category 571:(1979). 179:for any 663:-tuples 594:0550175 347:integer 325:8288641 252:-tuples 230:product 592:  508:  322:777480 258:Fermat 242:-tuple 29:-tuple 609:arXiv 576:(PDF) 541:arXiv 309:Euler 175:is a 31:is a 502:2004 196:< 23:, a 638:doi 516:doi 433:105 289:120 35:of 33:set 19:In 674:: 634:69 632:. 590:MR 586:17 584:. 578:. 567:; 563:; 539:. 514:. 500:. 475:^ 436:16 418:17 406:16 403:33 391:16 260:: 244:. 661:m 644:. 640:: 617:. 611:: 596:. 549:. 543:: 522:. 518:: 461:m 447:. 443:} 427:, 421:4 412:, 397:, 388:1 381:{ 331:. 295:. 292:} 286:, 283:8 280:, 277:3 274:, 271:1 268:{ 250:m 240:m 222:m 208:. 205:m 199:j 193:i 187:1 163:1 160:+ 155:j 151:a 145:i 141:a 120:} 115:m 111:a 107:, 101:, 96:4 92:a 88:, 83:3 79:a 75:, 70:2 66:a 62:, 57:1 53:a 49:{ 37:m 27:m

Index

number theory
set
positive integers
perfect square
rational numbers
product
rational square
Fermat
Euler
integer
number theory
Andrej Dujella
Diophantus






Dujella, Andrej
Journal für die reine und angewandte Mathematik
CiteSeerX
10.1.1.58.8571
doi
10.1515/crll.2004.003
Transactions of the American Mathematical Society
arXiv
1610.04020
Arkin, Joseph
Hoggatt, V. E. Jr.

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.