Knowledge

Dispersive prism

Source 📝

1397: 27: 108: 638: 35: 239: 372: 1441:. Euclid defined the term in Book XI as "a solid figure contained by two opposite, equal and parallel planes, while the rest are parallelograms", however the nine subsequent propositions that used the term included examples of triangular-based prisms (i.e. with sides which were not parallelograms). This inconsistency caused confusion amongst later geometricians. 633:{\displaystyle {\begin{aligned}\theta '_{0}&=\,{\text{arcsin}}{\Big (}{\frac {n_{0}}{n_{1}}}\,\sin \theta _{0}{\Big )}\\\theta _{1}&=\alpha -\theta '_{0}\\\theta '_{1}&=\,{\text{arcsin}}{\Big (}{\frac {n_{1}}{n_{2}}}\,\sin \theta _{1}{\Big )}\\\theta _{2}&=\theta '_{1}-\alpha \end{aligned}}} 1526:
of stars and other astronomical objects. Insertion of a grism in the collimated beam of an astronomical imager transforms that camera into a spectrometer, since the beam still continues in approximately the same direction when passing through it. The deflection of the prism is constrained to exactly
1470:
Newton arrived at his conclusion by passing the red color from one prism through a second prism and found the color unchanged. From this, he concluded that the colors must already be present in the incoming light – thus, the prism did not create colors, but merely separated colors that are already
1328:
As shown above, the dispersive behaviour of each prism depends strongly on the angle of incidence, which is determined by the presence of surrounding prisms. Therefore, the resulting dispersion is not a simple sum of individual contributions (unless all prisms can be approximated as thin ones).
1239: 907: 1379:
The top angle of the prism (the angle of the edge between the input and output faces) can be widened to increase the spectral dispersion. However it is often chosen so that both the incoming and outgoing light rays hit the surface at around the
1542:
back into the prism (and leaving from a different face). The reduction of the light's wavelength inside the prism results in an increase of the resulting spectral resolution by the ratio of the prism's refractive index to that of air.
1546:
With either a grism or immersed grating, the primary source of spectral dispersion is the grating. Any effect due to chromatic dispersion from the prism itself is incidental, as opposed to actual prism-based spectrometers.
1337:
Although the refractive index is dependent on the wavelength in every material, some materials have a much more powerful wavelength dependence (are much more dispersive) than others. Unfortunately, high-dispersion regions
1565:, one of the best-selling albums of all time. Somewhat unrealistically, the iconic graphic shows a divergent ray of white light passing the prism, separating into its spectrum only after leaving the prism's rear facet. 168:. Furthermore, prisms do not suffer from complications arising from overlapping spectral orders, which all gratings have. A usual disadvantage of prisms is lower dispersion than a well-chosen grating can achieve. 1061: 377: 81:
varying with wavelength (dispersion). Generally, longer wavelengths (red) undergo a smaller deviation than shorter wavelengths (blue). The dispersion of white light into colors by a prism led
1308: 994: 1025: 749: 1496:. He also introduced the use of more than one prism to control dispersion. Newton's description of his experiments on prism dispersion was qualitative. A quantitative description of 1471:
there. He also used a lens and a second prism to recompose the spectrum back into white light. This experiment has become a classic example of the methodology introduced during the
171:
Prisms are sometimes used for the internal reflection at the surfaces rather than for dispersion. If light inside the prism hits one of the surfaces at a sufficiently steep angle,
688: 349: 942: 1534:
also consists of a prism with a diffraction grating ruled on one surface. However, in this case the grating is used in reflection, with light hitting the grating from
1053: 962: 741: 721: 324: 297: 270: 1360:
have a much stronger dispersion for visible light and hence are more suitable for use as dispersive prisms, but their absorption sets on already around 390 nm.
1531: 222: 149:. This causes light of different colors to be refracted differently and to leave the prism at different angles, creating an effect similar to a 1451:'s 1666 experiment of bending white light through a prism demonstrated that all the colors already existed in the light, with different color " 1325:
Aligning multiple prisms in series can enhance the dispersion greatly, or vice versa, allow beam manipulation with suppressed dispersion.
1522:
may be ruled onto one face of a prism to form an element called a "grism". Spectrographs are extensively used in astronomy to observe the
1234:{\displaystyle \delta \approx \theta _{0}-\alpha +{\Big (}n\,{\Big }{\Big )}=\theta _{0}-\alpha +n\alpha -\theta _{0}=(n-1)\alpha \ .} 1388:
losses increase greatly and angle of view is reduced. Most frequently, dispersive prisms are equilateral (apex angle of 60 degrees).
119:
as it moves from one medium to another (for example, from air into the glass of the prism). This speed change causes the light to be
1396: 26: 1589: 1484: 111:
A triangular prism, dispersing light; waves shown to illustrate the differing wavelengths of light. (Click to view animation)
1624: 1447:
had seen light separated into the colors of the rainbow by glass or water, though the source of the color was unknown.
1254: 1707: 1657:
Key to the Complete Treatise on Practical Geometry and Mensuration: Containing Full Demonstrations of the Rules ...
1584: 1497: 1320: 902:{\displaystyle \delta =\theta _{0}+\theta _{2}=\theta _{0}+{\text{arcsin}}{\Big (}n\,\sin {\Big }{\Big )}-\alpha } 967: 1680: 999: 77:(colors) of light will be deflected by the prism at different angles. This is a result of the prism material's 1640:
A Royal Road to Geometry: Or, an Easy and Familiar Introduction to the Mathematics. ... By Thomas Malton. ...
1464: 1339: 647: 1723: 1561: 1539: 192: 172: 96: 1748:
and J. A. Piper (1982). "Dispersion theory of multiple-prism beam expanders for pulsed dye lasers".
1789: 1456: 920: 16:"Triangular prism (optics)" redirects here. For optical prisms used outside of spectroscopy, see 1527:
cancel the deflection due to the diffraction grating at the spectrometer's central wavelength.
212: 1638: 329: 1472: 1460: 1418: 1038: 947: 726: 693: 359: 1655: 1455:" fanning out and traveling with different speeds through the prism. It was only later that 1356:
have a relatively small dispersion (and can be used roughly between 330 and 2500 nm), while
1757: 1610: 1574: 1436: 1385: 1349: 302: 275: 248: 8: 1519: 1430: 1381: 161: 145: 78: 62: 55: 1761: 1032: 95:
exist that have more than two optical interfaces; some of them combine refraction with
1769: 1703: 1676: 124: 1444: 107: 1765: 1523: 366:
at each interface. For the prism shown at right, the indicated angles are given by
243: 154: 132: 88: 82: 1365: 1343: 160:
Prisms will generally disperse light over a much larger frequency bandwidth than
644:
All angles are positive in the direction shown in the image. For a prism in air
1409: 363: 201: 136: 51: 17: 1248:, so for a thin prism the deviation angle varies with wavelength according to 1783: 1579: 1501: 206: 1745: 1448: 1361: 355: 165: 128: 127:). The degree of bending of the light's path depends on the angle that the 1627:: book 11, Def 13 and Prop 28, 29, 39; and book 12, Prop 3, 4, 5, 7, 8, 10 153:. This can be used to separate a beam of white light into its constituent 139:). The refractive index of many materials (such as glass) varies with the 85:
to conclude that white light consisted of a mixture of different colors.
1476: 1369: 1357: 197: 242:
A ray trace through a prism with apex angle α. Regions 0, 1, and 2 have
179:
of the light is reflected. This makes a prism a useful substitute for a
1556: 1480: 217: 140: 74: 1475:. The results of the experiment dramatically transformed the field of 34: 1353: 120: 1555:
An artist's rendition of a dispersive prism is seen on the cover of
1332: 358:
angle deviation and dispersion through a prism can be determined by
1373: 131:
beam of light makes with the surface, and on the ratio between the
238: 1698: 1492: 150: 70: 1452: 1028: 180: 43: 1490:
Newton discussed prism dispersion in great detail in his book
1513: 116: 66: 58: 1744: 1615:
7 ed. (Cambridge University, Cambridge, 1999), pp. 190–193.
1467:
to explain how color arises from the spectrum of light.
1435:'something sawed') was first used in Euclid's 1530:
A different sort of spectrometer component called an
1257: 1064: 1041: 1002: 970: 950: 923: 752: 729: 696: 650: 375: 332: 305: 278: 251: 1423: 1302: 1244:The deviation angle depends on wavelength through 1233: 1047: 1019: 988: 956: 936: 901: 735: 715: 682: 632: 343: 318: 291: 264: 143:or color of the light used, a phenomenon known as 123:and to enter the new medium at a different angle ( 30:Photograph of a triangular prism, dispersing light 1660:Longman, Brown, Green, and Longmans. pp. 3–. 1376:wavelengths where normal glasses become opaque. 1333:Choice of optical material for optimum dispersion 1158: 1151: 1144: 1110: 1103: 1092: 888: 881: 874: 840: 822: 805: 581: 533: 456: 408: 228: 1781: 1303:{\displaystyle \delta (\lambda )\approx \alpha } 91:are the most common type of dispersive prism. 1636: 1695: 1670: 1653: 989:{\displaystyle \sin \theta \approx \theta } 912: 362:a sample ray through the element and using 1724:"Colours of two kinds - Physics narrative" 1507: 1500:was not needed until multiple prism laser 1404:Like many basic geometric terms, the word 351:indicate the ray's angle after refraction. 1647: 1630: 1131: 1100: 1020:{\displaystyle {\text{arcsin}}x\approx x} 855: 813: 562: 525: 437: 400: 1485:primary vs secondary quality distinction 1395: 1368:and other optical materials are used at 237: 164:, making them useful for broad-spectrum 106: 33: 25: 1590:Multiple-prism grating laser oscillator 1463:combined Newton's particle theory with 1782: 1342:to regions where the material becomes 61:, that is, to separate light into its 1550: 1400:A triangular prism, dispersing light 683:{\displaystyle n_{0}=n_{2}\simeq 1} 13: 1314: 14: 1801: 1643:author, and sold. pp. 360–. 1585:Multiple-prism dispersion theory 1321:Multiple-prism dispersion theory 1027:if the angles are expressed in 93:Other types of dispersive prism 1738: 1716: 1689: 1664: 1618: 1602: 1504:were introduced in the 1980s. 1294: 1285: 1279: 1273: 1267: 1261: 1219: 1207: 233: 229:Deviation angle and dispersion 1: 1595: 209:with mirror on its rear facet 38:Lamps as seen through a prism 23:Device used to disperse light 1770:10.1016/0030-4018(82)90216-4 1671:James Gleick (8 June 2004). 1540:totally internally reflected 1384:; beyond the Brewster angle 102: 7: 1568: 1424: 1340:tend to be spectrally close 937:{\displaystyle \theta _{0}} 10: 1806: 1511: 1391: 1318: 917:If the angle of incidence 92: 15: 1702:. London: Royal Society. 1562:The Dark Side of the Moon 1498:multiple-prism dispersion 1413: 173:total internal reflection 97:total internal reflection 913:Thin prism approximation 344:{\displaystyle \theta '} 186: 1538:the prism before being 1508:Grisms (grating prisms) 1048:{\displaystyle \delta } 1035:in the deviation angle 957:{\displaystyle \alpha } 736:{\displaystyle \delta } 716:{\displaystyle n=n_{1}} 1726:. Institute of Physics 1637:Thomas Malton (1774). 1401: 1304: 1235: 1055:to be approximated by 1049: 1021: 990: 958: 938: 903: 737: 723:, the deviation angle 717: 684: 634: 352: 345: 320: 293: 266: 112: 39: 31: 1696:Isaac Newton (1704). 1654:James Elliot (1845). 1608:M. Born and E. Wolf, 1473:scientific revolution 1399: 1305: 1236: 1050: 1022: 991: 959: 944:and prism apex angle 939: 904: 738: 718: 685: 635: 346: 321: 319:{\displaystyle n_{2}} 294: 292:{\displaystyle n_{1}} 267: 265:{\displaystyle n_{0}} 244:indices of refraction 241: 110: 37: 29: 1611:Principles of Optics 1575:Optical spectroscopy 1465:Huygens' wave theory 1255: 1062: 1039: 1000: 968: 948: 921: 750: 727: 694: 648: 373: 330: 326:, and primed angles 303: 276: 249: 183:in some situations. 162:diffraction gratings 1762:1982OptCo..43..303D 1520:diffraction grating 619: 517: 500: 392: 200:and other types of 79:index of refraction 1551:In popular culture 1402: 1300: 1231: 1045: 1033:nonlinear equation 1031:. This allows the 1017: 986: 954: 934: 899: 733: 713: 680: 630: 628: 607: 505: 488: 380: 353: 341: 316: 289: 262: 213:Pellin–Broca prism 135:of the two media ( 133:refractive indices 113: 40: 32: 1434: 1422: 1227: 1129: 1006: 853: 836: 801: 560: 529: 435: 404: 125:Huygens principle 89:Triangular prisms 1797: 1774: 1773: 1742: 1736: 1735: 1733: 1731: 1720: 1714: 1713: 1693: 1687: 1686: 1668: 1662: 1661: 1651: 1645: 1644: 1634: 1628: 1622: 1616: 1606: 1532:immersed grating 1429: 1427: 1417: 1415: 1309: 1307: 1306: 1301: 1240: 1238: 1237: 1232: 1225: 1203: 1202: 1175: 1174: 1162: 1161: 1155: 1154: 1148: 1147: 1141: 1140: 1130: 1122: 1114: 1113: 1107: 1106: 1096: 1095: 1080: 1079: 1054: 1052: 1051: 1046: 1026: 1024: 1023: 1018: 1007: 1004: 995: 993: 992: 987: 964:are both small, 963: 961: 960: 955: 943: 941: 940: 935: 933: 932: 908: 906: 905: 900: 892: 891: 885: 884: 878: 877: 871: 870: 854: 846: 844: 843: 837: 834: 826: 825: 809: 808: 802: 799: 794: 793: 781: 780: 768: 767: 742: 740: 739: 734: 722: 720: 719: 714: 712: 711: 689: 687: 686: 681: 673: 672: 660: 659: 639: 637: 636: 631: 629: 615: 599: 598: 585: 584: 578: 577: 561: 559: 558: 549: 548: 539: 537: 536: 530: 527: 513: 496: 474: 473: 460: 459: 453: 452: 436: 434: 433: 424: 423: 414: 412: 411: 405: 402: 388: 350: 348: 347: 342: 340: 325: 323: 322: 317: 315: 314: 298: 296: 295: 290: 288: 287: 271: 269: 268: 263: 261: 260: 193:Triangular prism 83:Sir Isaac Newton 65:components (the 54:that is used to 48:dispersive prism 1805: 1804: 1800: 1799: 1798: 1796: 1795: 1794: 1790:Prisms (optics) 1780: 1779: 1778: 1777: 1743: 1739: 1729: 1727: 1722: 1721: 1717: 1710: 1694: 1690: 1683: 1669: 1665: 1652: 1648: 1635: 1631: 1623: 1619: 1607: 1603: 1598: 1571: 1553: 1516: 1510: 1394: 1366:sodium chloride 1335: 1323: 1317: 1315:Multiple prisms 1256: 1253: 1252: 1198: 1194: 1170: 1166: 1157: 1156: 1150: 1149: 1143: 1142: 1136: 1132: 1121: 1109: 1108: 1102: 1101: 1091: 1090: 1075: 1071: 1063: 1060: 1059: 1040: 1037: 1036: 1003: 1001: 998: 997: 969: 966: 965: 949: 946: 945: 928: 924: 922: 919: 918: 915: 887: 886: 880: 879: 873: 872: 866: 862: 845: 839: 838: 833: 821: 820: 804: 803: 798: 789: 785: 776: 772: 763: 759: 751: 748: 747: 728: 725: 724: 707: 703: 695: 692: 691: 668: 664: 655: 651: 649: 646: 645: 627: 626: 611: 600: 594: 590: 587: 586: 580: 579: 573: 569: 554: 550: 544: 540: 538: 532: 531: 526: 518: 509: 502: 501: 492: 475: 469: 465: 462: 461: 455: 454: 448: 444: 429: 425: 419: 415: 413: 407: 406: 401: 393: 384: 376: 374: 371: 370: 333: 331: 328: 327: 310: 306: 304: 301: 300: 283: 279: 277: 274: 273: 256: 252: 250: 247: 246: 236: 231: 202:compound prisms 189: 105: 24: 21: 12: 11: 5: 1803: 1793: 1792: 1776: 1775: 1756:(5): 303–307. 1737: 1715: 1708: 1688: 1681: 1663: 1646: 1629: 1617: 1600: 1599: 1597: 1594: 1593: 1592: 1587: 1582: 1577: 1570: 1567: 1552: 1549: 1512:Main article: 1509: 1506: 1502:beam expanders 1445:RenĂ© Descartes 1393: 1390: 1382:Brewster angle 1334: 1331: 1319:Main article: 1316: 1313: 1312: 1311: 1299: 1296: 1293: 1290: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1242: 1241: 1230: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1201: 1197: 1193: 1190: 1187: 1184: 1181: 1178: 1173: 1169: 1165: 1160: 1153: 1146: 1139: 1135: 1128: 1125: 1120: 1117: 1112: 1105: 1099: 1094: 1089: 1086: 1083: 1078: 1074: 1070: 1067: 1044: 1016: 1013: 1010: 985: 982: 979: 976: 973: 953: 931: 927: 914: 911: 910: 909: 898: 895: 890: 883: 876: 869: 865: 861: 858: 852: 849: 842: 832: 829: 824: 819: 816: 812: 807: 797: 792: 788: 784: 779: 775: 771: 766: 762: 758: 755: 732: 710: 706: 702: 699: 679: 676: 671: 667: 663: 658: 654: 642: 641: 625: 622: 618: 614: 610: 606: 603: 601: 597: 593: 589: 588: 583: 576: 572: 568: 565: 557: 553: 547: 543: 535: 524: 521: 519: 516: 512: 508: 504: 503: 499: 495: 491: 487: 484: 481: 478: 476: 472: 468: 464: 463: 458: 451: 447: 443: 440: 432: 428: 422: 418: 410: 399: 396: 394: 391: 387: 383: 379: 378: 339: 336: 313: 309: 286: 282: 259: 255: 235: 232: 230: 227: 226: 225: 220: 215: 210: 204: 195: 188: 185: 115:Light changes 104: 101: 22: 18:Prism (optics) 9: 6: 4: 3: 2: 1802: 1791: 1788: 1787: 1785: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1741: 1725: 1719: 1711: 1709:0-486-60205-2 1705: 1701: 1700: 1692: 1684: 1678: 1674: 1667: 1659: 1658: 1650: 1642: 1641: 1633: 1626: 1621: 1614: 1612: 1605: 1601: 1591: 1588: 1586: 1583: 1581: 1580:Monochromator 1578: 1576: 1573: 1572: 1566: 1564: 1563: 1558: 1548: 1544: 1541: 1537: 1533: 1528: 1525: 1521: 1515: 1505: 1503: 1499: 1495: 1494: 1488: 1486: 1482: 1479:, leading to 1478: 1474: 1468: 1466: 1462: 1458: 1454: 1450: 1446: 1442: 1440: 1439: 1432: 1426: 1420: 1411: 1407: 1398: 1389: 1387: 1383: 1377: 1375: 1371: 1367: 1363: 1359: 1358:flint glasses 1355: 1351: 1350:Crown glasses 1347: 1345: 1341: 1330: 1326: 1322: 1297: 1291: 1288: 1282: 1276: 1270: 1264: 1258: 1251: 1250: 1249: 1247: 1228: 1222: 1216: 1213: 1210: 1204: 1199: 1195: 1191: 1188: 1185: 1182: 1179: 1176: 1171: 1167: 1163: 1137: 1133: 1126: 1123: 1118: 1115: 1097: 1087: 1084: 1081: 1076: 1072: 1068: 1065: 1058: 1057: 1056: 1042: 1034: 1030: 1014: 1011: 1008: 983: 980: 977: 974: 971: 951: 929: 925: 896: 893: 867: 863: 859: 856: 850: 847: 830: 827: 817: 814: 810: 795: 790: 786: 782: 777: 773: 769: 764: 760: 756: 753: 746: 745: 744: 730: 708: 704: 700: 697: 677: 674: 669: 665: 661: 656: 652: 623: 620: 616: 612: 608: 604: 602: 595: 591: 574: 570: 566: 563: 555: 551: 545: 541: 522: 520: 514: 510: 506: 497: 493: 489: 485: 482: 479: 477: 470: 466: 449: 445: 441: 438: 430: 426: 420: 416: 397: 395: 389: 385: 381: 369: 368: 367: 365: 361: 357: 337: 334: 311: 307: 284: 280: 257: 253: 245: 240: 224: 221: 219: 216: 214: 211: 208: 207:Littrow prism 205: 203: 199: 196: 194: 191: 190: 184: 182: 178: 174: 169: 167: 163: 158: 156: 152: 148: 147: 142: 138: 134: 130: 126: 122: 118: 109: 100: 98: 94: 90: 86: 84: 80: 76: 73:). Different 72: 68: 64: 60: 57: 53: 52:optical prism 49: 45: 36: 28: 19: 1753: 1749: 1746:F. J. Duarte 1740: 1728:. Retrieved 1718: 1697: 1691: 1673:Isaac Newton 1672: 1666: 1656: 1649: 1639: 1632: 1620: 1609: 1604: 1560: 1554: 1545: 1535: 1529: 1517: 1491: 1489: 1469: 1449:Isaac Newton 1443: 1437: 1405: 1403: 1378: 1362:Fused quartz 1348: 1336: 1327: 1324: 1245: 1243: 916: 743:is given by 643: 354: 176: 170: 166:spectroscopy 159: 157:of colors. 144: 114: 87: 47: 41: 1750:Opt. Commun 1675:. Vintage. 1477:metaphysics 1370:ultraviolet 690:. Defining 364:Snell's law 234:Thick prism 198:Amici prism 175:occurs and 137:Snell's law 75:wavelengths 1682:1400032954 1596:References 1557:Pink Floyd 1481:John Locke 1453:corpuscles 1386:reflection 223:FĂ©ry prism 218:Abbe prism 146:dispersion 141:wavelength 1419:romanized 1298:α 1289:− 1283:λ 1271:≈ 1265:λ 1259:δ 1223:α 1214:− 1196:θ 1192:− 1189:α 1180:α 1177:− 1168:θ 1134:θ 1119:− 1116:α 1085:α 1082:− 1073:θ 1069:≈ 1066:δ 1043:δ 1012:≈ 984:θ 981:≈ 978:θ 975:⁡ 952:α 926:θ 897:α 894:− 864:θ 860:⁡ 831:− 828:α 818:⁡ 787:θ 774:θ 761:θ 754:δ 731:δ 675:≃ 624:α 621:− 609:θ 592:θ 571:θ 567:⁡ 507:θ 490:θ 486:− 483:α 467:θ 446:θ 442:⁡ 382:θ 335:θ 121:refracted 103:Principle 1784:Category 1730:13 April 1625:Elements 1569:See also 1438:Elements 1374:infrared 1352:such as 617:′ 515:′ 498:′ 390:′ 338:′ 155:spectrum 129:incident 63:spectral 56:disperse 1758:Bibcode 1699:Opticks 1524:spectra 1493:Opticks 1461:Fresnel 1433:  1421::  1392:History 1029:radians 360:tracing 151:rainbow 71:rainbow 69:of the 1706:  1679:  1536:inside 1425:prisma 1414:Ï€ÏÎŻÏƒÎŒÎ± 1344:opaque 1226:  1005:arcsin 835:arcsin 800:arcsin 528:arcsin 403:arcsin 299:, and 181:mirror 67:colors 50:is an 44:optics 1514:Grism 1457:Young 1410:Greek 1406:prism 187:Types 117:speed 59:light 1732:2021 1704:ISBN 1677:ISBN 1459:and 1431:lit. 1372:and 996:and 46:, a 1766:doi 1559:'s 1483:'s 1354:BK7 1346:. 972:sin 857:sin 815:sin 564:sin 439:sin 356:Ray 177:all 42:In 1786:: 1764:. 1754:43 1752:. 1518:A 1487:. 1428:, 1416:, 1412:: 1364:, 272:, 99:. 1772:. 1768:: 1760:: 1734:. 1712:. 1685:. 1613:, 1408:( 1310:. 1295:] 1292:1 1286:) 1280:( 1277:n 1274:[ 1268:) 1262:( 1246:n 1229:. 1220:) 1217:1 1211:n 1208:( 1205:= 1200:0 1186:n 1183:+ 1172:0 1164:= 1159:) 1152:] 1145:) 1138:0 1127:n 1124:1 1111:( 1104:[ 1098:n 1093:( 1088:+ 1077:0 1015:x 1009:x 930:0 889:) 882:] 875:) 868:0 851:n 848:1 841:( 823:[ 811:n 806:( 796:+ 791:0 783:= 778:2 770:+ 765:0 757:= 709:1 705:n 701:= 698:n 678:1 670:2 666:n 662:= 657:0 653:n 640:. 613:1 605:= 596:2 582:) 575:1 556:2 552:n 546:1 542:n 534:( 523:= 511:1 494:0 480:= 471:1 457:) 450:0 431:1 427:n 421:0 417:n 409:( 398:= 386:0 312:2 308:n 285:1 281:n 258:0 254:n 20:.

Index

Prism (optics)


optics
optical prism
disperse
light
spectral
colors
rainbow
wavelengths
index of refraction
Sir Isaac Newton
Triangular prisms
Other types of dispersive prism
total internal reflection

speed
refracted
Huygens principle
incident
refractive indices
Snell's law
wavelength
dispersion
rainbow
spectrum
diffraction gratings
spectroscopy
total internal reflection

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑