Knowledge

Donaldson's theorem

Source đź“ť

702: 919: 2052: 1424: 321: 971:. For each such point, in the limit one obtains a unique singular ASD connection, which becomes a well-defined smooth ASD connection at that point using Uhlenbeck's removable singularity theorem. 1606: 1553: 830: 1725: 646: 172: 1650: 510: 134: 1885: 1780: 1035: 2097: 1280: 1198: 1084: 858: 996: 799: 775: 696: 1932: 709:
This moduli space is non-compact and generically smooth, with singularities occurring only at the points corresponding to reducible connections, of which there are exactly
850: 614: 572: 366: 743: 466: 406: 1905: 969: 1156: 1853: 1679: 672: 2075: 1925: 1824: 1800: 1745: 1487: 1467: 1447: 1238: 1218: 1124: 1104: 1055: 943: 530: 430: 213: 193: 1287: 1750:
It is thus possible to compactify the moduli space as follows: First, cut off each cone at a reducible singularity and glue in a copy of
2266:
Donaldson, S. K. (1983). An application of gauge theory to four-dimensional topology. Journal of Differential Geometry, 18(2), 279-315.
2275:
Taubes, C. H. (1982). Self-dual Yang–Mills connections on non-self-dual 4-manifolds. Journal of Differential Geometry, 17(1), 139-170.
225: 137: 2296:
Uhlenbeck, K. K. (1982). Removable singularities in Yang–Mills fields. Communications in Mathematical Physics, 83(1), 11-29.
1558: 2284:
Uhlenbeck, K. K. (1982). Connections with L p bounds on curvature. Communications in Mathematical Physics, 83(1), 31-42.
2089: 1492: 2359: 925:
The work of Taubes and Uhlenbeck essentially concerns constructing sequences of ASD connections on the four-manifold
2312: 804: 216: 2411: 1684: 39: 1681:. An elementary argument that applies to any negative definite quadratic form over the integers tells us that 2416: 2395: 2123: 619: 145: 1611: 471: 532:
is simply-connected with definite intersection form, possibly after changing orientation, one always has
914:{\displaystyle {\mathcal {M}}_{\varepsilon }{\xrightarrow {\quad \cong \quad }}X\times (0,\varepsilon )} 108: 1858: 1753: 1008: 777:
is non-compact, its structure at infinity can be readily described. Namely, there is an open subset of
28: 2047:{\displaystyle {\text{rank}}(Q)=b_{2}(X)=\sigma (X)=\sigma (\bigsqcup n(Q)\mathbb {CP} ^{2})\leq n(Q)} 1243: 1161: 1060: 977: 780: 756: 677: 2421: 2145: 2108: 1003: 835: 36: 577: 535: 329: 712: 435: 375: 2119: 1890: 999: 59: 24: 948: 2335: 2150: 2104: 1129: 2343: 1829: 1655: 62:. If the intersection form is positive (negative) definite, it can be diagonalized to the 8: 651: 2310:
Donaldson, S. K. (1983), "An application of gauge theory to four-dimensional topology",
2103:
1) Any indefinite non-diagonalizable intersection form gives rise to a four-dimensional
1555:, we get that reducible connections modulo gauge are in a 1-1 correspondence with pairs 2242: 2135: 2060: 1910: 1809: 1785: 1730: 1472: 1452: 1432: 1223: 1203: 1158:. Then, reducible connections modulo gauge are in a 1-1 correspondence with splittings 1109: 1089: 1040: 928: 515: 415: 198: 178: 2355: 2246: 2234: 2193: 75: 2339: 2321: 2224: 2183: 2140: 2085: 141: 71: 701: 2369: 2331: 998:
corresponding to reducible connections could also be described: they looked like
750: 746: 87: 63: 51: 2405: 2326: 2238: 2229: 2197: 2188: 2093: 47: 43: 16:
On when a definite intersection form of a smooth 4-manifold is diagonalizable
2212: 2171: 2115: 409: 103: 91: 945:
with curvature becoming infinitely concentrated at any given single point
369: 20: 1419:{\displaystyle 1=k=c_{2}(E)=c_{2}(L\oplus L^{-1})=-Q(c_{1}(L),c_{1}(L))} 2213:"The orientation of Yang-Mills moduli spaces and 4-manifold topology" 1803: 55: 1037:. Furthermore, we can count the number of such singular points. Let 881: 2100:
and Donaldson's theorem, several interesting results can be seen:
70:. The original version of the theorem required the manifold to be 705:
Cobordism given by Yang–Mills moduli space in Donaldson's theorem
974:
Donaldson observed that the singular points in the interior of
2092:
is realized as the intersection form of some closed, oriented
316:{\displaystyle \dim {\mathcal {M}}=8k-3(1-b_{1}(X)+b_{+}(X)),} 2172:"An application of gauge theory to four-dimensional topology" 74:, but it was later improved to apply to 4-manifolds with any 1907:
of a four-manifold is a cobordism invariant. Thus, because
2118:, if and only if, their intersection forms have the same 832:, such that for sufficiently small choices of parameter 468:
is the dimension of the positive-definite subspace of
2063: 1935: 1913: 1893: 1861: 1832: 1812: 1788: 1756: 1733: 1687: 1658: 1614: 1561: 1495: 1475: 1455: 1449:
is the intersection form on the second cohomology of
1435: 1290: 1246: 1226: 1206: 1164: 1132: 1112: 1092: 1063: 1043: 1011: 980: 951: 931: 861: 838: 807: 783: 759: 715: 680: 654: 622: 580: 538: 518: 474: 438: 418: 378: 332: 228: 201: 181: 148: 111: 1601:{\displaystyle \pm \alpha \in H^{2}(X;\mathbb {Z} )} 2349: 2069: 2057:from which one concludes the intersection form of 2046: 1919: 1899: 1879: 1847: 1818: 1794: 1774: 1739: 1719: 1673: 1644: 1600: 1547: 1481: 1461: 1441: 1418: 1274: 1232: 1212: 1192: 1150: 1118: 1098: 1078: 1049: 1029: 990: 963: 937: 913: 844: 824: 793: 769: 737: 690: 666: 640: 608: 566: 524: 504: 460: 424: 400: 360: 315: 207: 187: 166: 128: 1548:{\displaystyle c_{1}(L)\in H^{2}(X;\mathbb {Z} )} 2403: 219:, the dimension of the moduli space is given by 2114:2) Two smooth simply-connected 4-manifolds are 2367: 2380: 1802:itself at infinity. The resulting space is a 825:{\displaystyle {\mathcal {M}}_{\varepsilon }} 2350:Donaldson, S. K.; Kronheimer, P. B. (1990), 512:with respect to the intersection form. When 1489:are classified by their first Chern class 2325: 2309: 2228: 2210: 2187: 2169: 2016: 2013: 1887:(of unknown orientations). The signature 1867: 1864: 1762: 1759: 1720:{\displaystyle n(Q)\leq {\text{rank}}(Q)} 1591: 1538: 1066: 1017: 1014: 495: 700: 90:. This was a contribution cited for his 2389: 2404: 2262: 2260: 2258: 2256: 641:{\displaystyle \operatorname {SU} (2)} 167:{\displaystyle \operatorname {SU} (2)} 2292: 2290: 1645:{\displaystyle Q(\alpha ,\alpha )=-1} 505:{\displaystyle H_{2}(X,\mathbb {R} )} 66:(negative identity matrix) over the 2253: 13: 2354:, Oxford Mathematical Monographs, 2287: 2090:unimodular symmetric bilinear form 1126:by the standard representation of 983: 865: 811: 786: 762: 683: 237: 129:{\displaystyle {\mathcal {M}}_{P}} 115: 14: 2433: 2096:. Combining this result with the 1880:{\displaystyle \mathbb {CP} ^{2}} 1775:{\displaystyle \mathbb {CP} ^{2}} 1030:{\displaystyle \mathbb {CP} ^{2}} 2381:Freedman, M.; Quinn, F. (1990), 2313:Journal of Differential Geometry 2217:Journal of Differential Geometry 2176:Journal of Differential Geometry 1275:{\displaystyle E=L\oplus L^{-1}} 1193:{\displaystyle E=L\oplus L^{-1}} 1079:{\displaystyle \mathbb {C} ^{2}} 97: 2211:Donaldson, S. K. (1987-01-01). 2170:Donaldson, S. K. (1983-01-01). 1727:, with equality if and only if 886: 882: 102:Donaldson's proof utilizes the 2352:The Geometry of Four-Manifolds 2278: 2269: 2204: 2163: 2088:had previously shown that any 2041: 2035: 2026: 2008: 2002: 1993: 1984: 1978: 1969: 1963: 1947: 1941: 1842: 1836: 1782:. Secondly, glue in a copy of 1714: 1708: 1697: 1691: 1668: 1662: 1630: 1618: 1595: 1581: 1542: 1528: 1512: 1506: 1413: 1410: 1404: 1388: 1382: 1369: 1357: 1335: 1319: 1313: 1220:is a complex line bundle over 1145: 1139: 991:{\displaystyle {\mathcal {M}}} 908: 896: 794:{\displaystyle {\mathcal {M}}} 770:{\displaystyle {\mathcal {M}}} 732: 726: 691:{\displaystyle {\mathcal {M}}} 635: 629: 597: 591: 555: 549: 499: 485: 455: 449: 395: 389: 355: 349: 307: 304: 298: 282: 276: 257: 161: 155: 1: 2396:American Mathematical Society 2392:The Wild World of 4-Manifolds 2374:Instantons and Four-Manifolds 2303: 2080: 1652:. Let the number of pairs be 674:, one obtains a moduli space 2385:, Princeton University Press 2098:Serre classification theorem 852:, there is a diffeomorphism 845:{\displaystyle \varepsilon } 616:. Thus taking any principal 7: 2129: 217:Atiyah–Singer index theorem 138:anti-self-duality equations 10: 2438: 1469:. Since line bundles over 609:{\displaystyle b_{+}(X)=0} 567:{\displaystyle b_{1}(X)=0} 361:{\displaystyle k=c_{2}(P)} 86:The theorem was proved by 81: 2111:(so cannot be smoothed). 2156: 2109:differentiable structure 1826:and a disjoint union of 1004:complex projective plane 738:{\displaystyle b_{2}(X)} 461:{\displaystyle b_{+}(X)} 401:{\displaystyle b_{1}(X)} 2383:Topology of 4-Manifolds 1900:{\displaystyle \sigma } 195:over the four-manifold 2327:10.4310/jdg/1214437665 2230:10.4310/jdg/1214441485 2189:10.4310/jdg/1214437665 2071: 2048: 1921: 1901: 1881: 1849: 1820: 1796: 1776: 1741: 1721: 1675: 1646: 1602: 1549: 1483: 1463: 1443: 1420: 1276: 1234: 1214: 1194: 1152: 1120: 1100: 1080: 1051: 1031: 992: 965: 964:{\displaystyle x\in X} 939: 915: 846: 826: 795: 771: 739: 706: 692: 668: 642: 610: 568: 526: 506: 462: 426: 402: 362: 317: 209: 189: 168: 130: 2412:Differential topology 2072: 2049: 1922: 1902: 1882: 1850: 1821: 1797: 1777: 1742: 1722: 1676: 1647: 1603: 1550: 1484: 1464: 1444: 1421: 1277: 1235: 1215: 1195: 1153: 1151:{\displaystyle SU(2)} 1121: 1101: 1081: 1052: 1032: 993: 966: 940: 916: 847: 827: 796: 772: 740: 704: 693: 669: 643: 611: 569: 527: 507: 463: 427: 403: 363: 318: 210: 190: 169: 131: 25:differential topology 2417:Theorems in topology 2390:Scorpan, A. (2005), 2146:Yang–Mills equations 2105:topological manifold 2061: 1933: 1911: 1891: 1859: 1848:{\displaystyle n(Q)} 1830: 1810: 1786: 1754: 1731: 1685: 1674:{\displaystyle n(Q)} 1656: 1612: 1559: 1493: 1473: 1453: 1433: 1288: 1244: 1224: 1204: 1162: 1130: 1110: 1090: 1061: 1041: 1009: 978: 949: 929: 859: 836: 805: 781: 757: 713: 698:of dimension five. 678: 652: 620: 578: 536: 516: 472: 436: 416: 376: 330: 226: 199: 179: 146: 136:of solutions to the 109: 2077:is diagonalizable. 1747:is diagonalizable. 887: 667:{\displaystyle k=1} 33:Donaldson's theorem 2136:Unimodular lattice 2067: 2044: 1917: 1897: 1877: 1845: 1816: 1792: 1772: 1737: 1717: 1671: 1642: 1598: 1545: 1479: 1459: 1439: 1416: 1272: 1230: 1210: 1190: 1148: 1116: 1096: 1076: 1047: 1027: 988: 961: 935: 911: 842: 822: 791: 767: 735: 707: 688: 664: 638: 606: 564: 522: 502: 458: 422: 398: 358: 313: 205: 185: 164: 126: 2151:Rokhlin's theorem 2070:{\displaystyle X} 1939: 1920:{\displaystyle X} 1819:{\displaystyle X} 1795:{\displaystyle X} 1740:{\displaystyle Q} 1706: 1482:{\displaystyle X} 1462:{\displaystyle X} 1442:{\displaystyle Q} 1233:{\displaystyle X} 1213:{\displaystyle L} 1119:{\displaystyle P} 1099:{\displaystyle X} 1050:{\displaystyle E} 938:{\displaystyle X} 888: 753:show that whilst 745:many. Results of 525:{\displaystyle X} 425:{\displaystyle X} 208:{\displaystyle X} 188:{\displaystyle P} 76:fundamental group 40:intersection form 23:, and especially 2429: 2398: 2386: 2377: 2364: 2346: 2329: 2297: 2294: 2285: 2282: 2276: 2273: 2267: 2264: 2251: 2250: 2232: 2208: 2202: 2201: 2191: 2167: 2141:Donaldson theory 2086:Michael Freedman 2076: 2074: 2073: 2068: 2053: 2051: 2050: 2045: 2025: 2024: 2019: 1962: 1961: 1940: 1937: 1926: 1924: 1923: 1918: 1906: 1904: 1903: 1898: 1886: 1884: 1883: 1878: 1876: 1875: 1870: 1854: 1852: 1851: 1846: 1825: 1823: 1822: 1817: 1801: 1799: 1798: 1793: 1781: 1779: 1778: 1773: 1771: 1770: 1765: 1746: 1744: 1743: 1738: 1726: 1724: 1723: 1718: 1707: 1704: 1680: 1678: 1677: 1672: 1651: 1649: 1648: 1643: 1607: 1605: 1604: 1599: 1594: 1580: 1579: 1554: 1552: 1551: 1546: 1541: 1527: 1526: 1505: 1504: 1488: 1486: 1485: 1480: 1468: 1466: 1465: 1460: 1448: 1446: 1445: 1440: 1425: 1423: 1422: 1417: 1403: 1402: 1381: 1380: 1356: 1355: 1334: 1333: 1312: 1311: 1282:we may compute: 1281: 1279: 1278: 1273: 1271: 1270: 1239: 1237: 1236: 1231: 1219: 1217: 1216: 1211: 1199: 1197: 1196: 1191: 1189: 1188: 1157: 1155: 1154: 1149: 1125: 1123: 1122: 1117: 1105: 1103: 1102: 1097: 1085: 1083: 1082: 1077: 1075: 1074: 1069: 1056: 1054: 1053: 1048: 1036: 1034: 1033: 1028: 1026: 1025: 1020: 997: 995: 994: 989: 987: 986: 970: 968: 967: 962: 944: 942: 941: 936: 920: 918: 917: 912: 889: 877: 875: 874: 869: 868: 851: 849: 848: 843: 831: 829: 828: 823: 821: 820: 815: 814: 800: 798: 797: 792: 790: 789: 776: 774: 773: 768: 766: 765: 744: 742: 741: 736: 725: 724: 697: 695: 694: 689: 687: 686: 673: 671: 670: 665: 647: 645: 644: 639: 615: 613: 612: 607: 590: 589: 573: 571: 570: 565: 548: 547: 531: 529: 528: 523: 511: 509: 508: 503: 498: 484: 483: 467: 465: 464: 459: 448: 447: 431: 429: 428: 423: 407: 405: 404: 399: 388: 387: 367: 365: 364: 359: 348: 347: 322: 320: 319: 314: 297: 296: 275: 274: 241: 240: 214: 212: 211: 206: 194: 192: 191: 186: 173: 171: 170: 165: 135: 133: 132: 127: 125: 124: 119: 118: 72:simply connected 2437: 2436: 2432: 2431: 2430: 2428: 2427: 2426: 2422:Quadratic forms 2402: 2401: 2362: 2306: 2301: 2300: 2295: 2288: 2283: 2279: 2274: 2270: 2265: 2254: 2209: 2205: 2168: 2164: 2159: 2132: 2083: 2062: 2059: 2058: 2020: 2012: 2011: 1957: 1953: 1936: 1934: 1931: 1930: 1912: 1909: 1908: 1892: 1889: 1888: 1871: 1863: 1862: 1860: 1857: 1856: 1831: 1828: 1827: 1811: 1808: 1807: 1787: 1784: 1783: 1766: 1758: 1757: 1755: 1752: 1751: 1732: 1729: 1728: 1703: 1686: 1683: 1682: 1657: 1654: 1653: 1613: 1610: 1609: 1590: 1575: 1571: 1560: 1557: 1556: 1537: 1522: 1518: 1500: 1496: 1494: 1491: 1490: 1474: 1471: 1470: 1454: 1451: 1450: 1434: 1431: 1430: 1398: 1394: 1376: 1372: 1348: 1344: 1329: 1325: 1307: 1303: 1289: 1286: 1285: 1263: 1259: 1245: 1242: 1241: 1225: 1222: 1221: 1205: 1202: 1201: 1181: 1177: 1163: 1160: 1159: 1131: 1128: 1127: 1111: 1108: 1107: 1091: 1088: 1087: 1070: 1065: 1064: 1062: 1059: 1058: 1042: 1039: 1038: 1021: 1013: 1012: 1010: 1007: 1006: 982: 981: 979: 976: 975: 950: 947: 946: 930: 927: 926: 876: 870: 864: 863: 862: 860: 857: 856: 837: 834: 833: 816: 810: 809: 808: 806: 803: 802: 785: 784: 782: 779: 778: 761: 760: 758: 755: 754: 751:Karen Uhlenbeck 747:Clifford Taubes 720: 716: 714: 711: 710: 682: 681: 679: 676: 675: 653: 650: 649: 621: 618: 617: 585: 581: 579: 576: 575: 543: 539: 537: 534: 533: 517: 514: 513: 494: 479: 475: 473: 470: 469: 443: 439: 437: 434: 433: 417: 414: 413: 383: 379: 377: 374: 373: 343: 339: 331: 328: 327: 292: 288: 270: 266: 236: 235: 227: 224: 223: 200: 197: 196: 180: 177: 176: 147: 144: 143: 120: 114: 113: 112: 110: 107: 106: 100: 88:Simon Donaldson 84: 64:identity matrix 52:smooth manifold 17: 12: 11: 5: 2435: 2425: 2424: 2419: 2414: 2400: 2399: 2387: 2378: 2368:Freed, D. S.; 2365: 2360: 2347: 2320:(2): 279–315, 2305: 2302: 2299: 2298: 2286: 2277: 2268: 2252: 2203: 2161: 2160: 2158: 2155: 2154: 2153: 2148: 2143: 2138: 2131: 2128: 2126:, and parity. 2082: 2079: 2066: 2043: 2040: 2037: 2034: 2031: 2028: 2023: 2018: 2015: 2010: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1980: 1977: 1974: 1971: 1968: 1965: 1960: 1956: 1952: 1949: 1946: 1943: 1916: 1896: 1874: 1869: 1866: 1844: 1841: 1838: 1835: 1815: 1791: 1769: 1764: 1761: 1736: 1716: 1713: 1710: 1702: 1699: 1696: 1693: 1690: 1670: 1667: 1664: 1661: 1641: 1638: 1635: 1632: 1629: 1626: 1623: 1620: 1617: 1597: 1593: 1589: 1586: 1583: 1578: 1574: 1570: 1567: 1564: 1544: 1540: 1536: 1533: 1530: 1525: 1521: 1517: 1514: 1511: 1508: 1503: 1499: 1478: 1458: 1438: 1415: 1412: 1409: 1406: 1401: 1397: 1393: 1390: 1387: 1384: 1379: 1375: 1371: 1368: 1365: 1362: 1359: 1354: 1351: 1347: 1343: 1340: 1337: 1332: 1328: 1324: 1321: 1318: 1315: 1310: 1306: 1302: 1299: 1296: 1293: 1269: 1266: 1262: 1258: 1255: 1252: 1249: 1229: 1209: 1187: 1184: 1180: 1176: 1173: 1170: 1167: 1147: 1144: 1141: 1138: 1135: 1115: 1106:associated to 1095: 1073: 1068: 1046: 1024: 1019: 1016: 985: 960: 957: 954: 934: 923: 922: 910: 907: 904: 901: 898: 895: 892: 885: 880: 873: 867: 841: 819: 813: 788: 764: 734: 731: 728: 723: 719: 685: 663: 660: 657: 637: 634: 631: 628: 625: 605: 602: 599: 596: 593: 588: 584: 563: 560: 557: 554: 551: 546: 542: 521: 501: 497: 493: 490: 487: 482: 478: 457: 454: 451: 446: 442: 421: 397: 394: 391: 386: 382: 357: 354: 351: 346: 342: 338: 335: 324: 323: 312: 309: 306: 303: 300: 295: 291: 287: 284: 281: 278: 273: 269: 265: 262: 259: 256: 253: 250: 247: 244: 239: 234: 231: 204: 184: 163: 160: 157: 154: 151: 123: 117: 99: 96: 83: 80: 69: 60:diagonalizable 35:states that a 15: 9: 6: 4: 3: 2: 2434: 2423: 2420: 2418: 2415: 2413: 2410: 2409: 2407: 2397: 2393: 2388: 2384: 2379: 2375: 2371: 2370:Uhlenbeck, K. 2366: 2363: 2361:0-19-850269-9 2357: 2353: 2348: 2345: 2341: 2337: 2333: 2328: 2323: 2319: 2315: 2314: 2308: 2307: 2293: 2291: 2281: 2272: 2263: 2261: 2259: 2257: 2248: 2244: 2240: 2236: 2231: 2226: 2222: 2218: 2214: 2207: 2199: 2195: 2190: 2185: 2181: 2177: 2173: 2166: 2162: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2134: 2133: 2127: 2125: 2121: 2117: 2112: 2110: 2106: 2101: 2099: 2095: 2094:four-manifold 2091: 2087: 2078: 2064: 2055: 2038: 2032: 2029: 2021: 2005: 1999: 1996: 1990: 1987: 1981: 1975: 1972: 1966: 1958: 1954: 1950: 1944: 1928: 1927:is definite: 1914: 1894: 1872: 1839: 1833: 1813: 1805: 1789: 1767: 1748: 1734: 1711: 1700: 1694: 1688: 1665: 1659: 1639: 1636: 1633: 1627: 1624: 1621: 1615: 1587: 1584: 1576: 1572: 1568: 1565: 1562: 1534: 1531: 1523: 1519: 1515: 1509: 1501: 1497: 1476: 1456: 1436: 1427: 1407: 1399: 1395: 1391: 1385: 1377: 1373: 1366: 1363: 1360: 1352: 1349: 1345: 1341: 1338: 1330: 1326: 1322: 1316: 1308: 1304: 1300: 1297: 1294: 1291: 1283: 1267: 1264: 1260: 1256: 1253: 1250: 1247: 1227: 1207: 1185: 1182: 1178: 1174: 1171: 1168: 1165: 1142: 1136: 1133: 1113: 1093: 1086:-bundle over 1071: 1044: 1022: 1005: 1001: 972: 958: 955: 952: 932: 905: 902: 899: 893: 890: 883: 878: 871: 855: 854: 853: 839: 817: 752: 748: 729: 721: 717: 703: 699: 661: 658: 655: 648:-bundle with 632: 626: 623: 603: 600: 594: 586: 582: 561: 558: 552: 544: 540: 519: 491: 488: 480: 476: 452: 444: 440: 419: 411: 408:is the first 392: 384: 380: 371: 352: 344: 340: 336: 333: 310: 301: 293: 289: 285: 279: 271: 267: 263: 260: 254: 251: 248: 245: 242: 232: 229: 222: 221: 220: 218: 202: 182: 175: 158: 152: 149: 139: 121: 105: 98:Idea of proof 95: 93: 89: 79: 77: 73: 67: 65: 61: 57: 53: 49: 45: 41: 38: 34: 30: 26: 22: 2391: 2382: 2373: 2351: 2317: 2311: 2280: 2271: 2220: 2216: 2206: 2179: 2175: 2165: 2116:homeomorphic 2113: 2102: 2084: 2056: 1929: 1749: 1428: 1284: 973: 924: 708: 410:Betti number 325: 104:moduli space 101: 92:Fields medal 85: 32: 29:gauge theory 18: 1240:. Whenever 370:Chern class 21:mathematics 2406:Categories 2376:, Springer 2344:0507.57010 2304:References 2081:Extensions 1855:copies of 1608:such that 142:principal 2247:120208733 2239:0022-040X 2198:0022-040X 2124:signature 2030:≤ 1997:⨆ 1991:σ 1976:σ 1895:σ 1804:cobordism 1701:≤ 1637:− 1628:α 1622:α 1569:∈ 1566:α 1563:± 1516:∈ 1364:− 1350:− 1342:⊕ 1265:− 1257:⊕ 1183:− 1175:⊕ 1002:over the 956:∈ 906:ε 894:× 884:≅ 872:ε 840:ε 818:ε 627:⁡ 264:− 252:− 233:⁡ 215:. By the 153:⁡ 94:in 1986. 56:dimension 2372:(1984), 2130:See also 2107:with no 1806:between 879:→ 68:integers 48:oriented 37:definite 2336:0710056 1057:be the 174:-bundle 82:History 44:compact 2358:  2342:  2334:  2245:  2237:  2196:  1429:where 1200:where 801:, say 432:, and 326:where 2243:S2CID 2223:(3). 2182:(2). 2157:Notes 1000:cones 368:is a 140:on a 58:4 is 42:of a 2356:ISBN 2235:ISSN 2194:ISSN 2120:rank 1938:rank 1705:rank 749:and 574:and 27:and 2340:Zbl 2322:doi 2225:doi 2184:doi 412:of 230:dim 54:of 19:In 2408:: 2394:, 2338:, 2332:MR 2330:, 2318:18 2316:, 2289:^ 2255:^ 2241:. 2233:. 2221:26 2219:. 2215:. 2192:. 2180:18 2178:. 2174:. 2122:, 2054:, 1426:, 624:SU 372:, 150:SU 78:. 50:, 46:, 31:, 2324:: 2249:. 2227:: 2200:. 2186:: 2065:X 2042:) 2039:Q 2036:( 2033:n 2027:) 2022:2 2017:P 2014:C 2009:) 2006:Q 2003:( 2000:n 1994:( 1988:= 1985:) 1982:X 1979:( 1973:= 1970:) 1967:X 1964:( 1959:2 1955:b 1951:= 1948:) 1945:Q 1942:( 1915:X 1873:2 1868:P 1865:C 1843:) 1840:Q 1837:( 1834:n 1814:X 1790:X 1768:2 1763:P 1760:C 1735:Q 1715:) 1712:Q 1709:( 1698:) 1695:Q 1692:( 1689:n 1669:) 1666:Q 1663:( 1660:n 1640:1 1634:= 1631:) 1625:, 1619:( 1616:Q 1596:) 1592:Z 1588:; 1585:X 1582:( 1577:2 1573:H 1543:) 1539:Z 1535:; 1532:X 1529:( 1524:2 1520:H 1513:) 1510:L 1507:( 1502:1 1498:c 1477:X 1457:X 1437:Q 1414:) 1411:) 1408:L 1405:( 1400:1 1396:c 1392:, 1389:) 1386:L 1383:( 1378:1 1374:c 1370:( 1367:Q 1361:= 1358:) 1353:1 1346:L 1339:L 1336:( 1331:2 1327:c 1323:= 1320:) 1317:E 1314:( 1309:2 1305:c 1301:= 1298:k 1295:= 1292:1 1268:1 1261:L 1254:L 1251:= 1248:E 1228:X 1208:L 1186:1 1179:L 1172:L 1169:= 1166:E 1146:) 1143:2 1140:( 1137:U 1134:S 1114:P 1094:X 1072:2 1067:C 1045:E 1023:2 1018:P 1015:C 984:M 959:X 953:x 933:X 921:. 909:) 903:, 900:0 897:( 891:X 866:M 812:M 787:M 763:M 733:) 730:X 727:( 722:2 718:b 684:M 662:1 659:= 656:k 636:) 633:2 630:( 604:0 601:= 598:) 595:X 592:( 587:+ 583:b 562:0 559:= 556:) 553:X 550:( 545:1 541:b 520:X 500:) 496:R 492:, 489:X 486:( 481:2 477:H 456:) 453:X 450:( 445:+ 441:b 420:X 396:) 393:X 390:( 385:1 381:b 356:) 353:P 350:( 345:2 341:c 337:= 334:k 311:, 308:) 305:) 302:X 299:( 294:+ 290:b 286:+ 283:) 280:X 277:( 272:1 268:b 261:1 258:( 255:3 249:k 246:8 243:= 238:M 203:X 183:P 162:) 159:2 156:( 122:P 116:M

Index

mathematics
differential topology
gauge theory
definite
intersection form
compact
oriented
smooth manifold
dimension
diagonalizable
identity matrix
simply connected
fundamental group
Simon Donaldson
Fields medal
moduli space
anti-self-duality equations
principal SU ( 2 ) {\displaystyle \operatorname {SU} (2)} -bundle
Atiyah–Singer index theorem
Chern class
Betti number

Clifford Taubes
Karen Uhlenbeck
cones
complex projective plane
cobordism
Michael Freedman
unimodular symmetric bilinear form
four-manifold

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑