Knowledge

Electric displacement field

Source 📝

158: 1159: 45: 476:, each of which is neutral. In the example of an insulating dielectric between metal capacitor plates, the only free charges are on the metal plates and dielectric contains only dipoles. If the dielectric is replaced by a doped semiconductor or an ionised gas, etc, then electrons move relative to the ions, and if the system is finite they both contribute to 779:, and in nonhomogeneous media it is a function of position inside the medium. It may also depend upon the electric field (nonlinear materials) and have a time dependent response. Explicit time dependence can arise if the materials are physically moving or changing in time (e.g. reflections off a moving interface give rise to 1614:
and either the voltage difference between the plates will be smaller by this factor, or the charge must be higher. The partial cancellation of fields in the dielectric allows a larger amount of free charge to dwell on the two plates of the capacitor per unit of potential drop than would be possible
1724: 1045: 1574: 219:. If an electric field is applied to an insulator, then (for instance) the negative charges can move slightly towards the positive side of the field, and the positive charges in the other direction. This leads to an induced dipole which is described as a 1106:
who reformulated the complicated Maxwell's equations to the modern form. It wasn't until 1884 that Heaviside, concurrently with Willard Gibbs and Heinrich Hertz, grouped the equations together into a distinct set. This group of four equations was
1463: 722: 884: 406: 300: 1236: 553: 1633: 1139:
end on free charges, and there are the same number of uniformly distributed charges of opposite sign on both plates, then the flux lines must all simply traverse the capacitor from one side to the other. In
632: 1404: 1468: 1124: 1361: 1309: 932: 918:. In fact, all physical materials have some material dispersion because they cannot respond instantaneously to applied fields, but for many problems (those concerned with a narrow enough 1135:
where the space between the plates is empty or contains a neutral, insulating medium. In both cases, the free charges are only on the metal capacitor plates. Since the flux lines
1081: 661: 1188: 1612: 1363:
is the free surface charge density on the positive plate. If the space between the capacitor plates is filled with a linear homogeneous isotropic dielectric with permittivity
501: 470: 435: 327: 1111:
as the Hertz–Heaviside equations and the Maxwell–Hertz equations, and is sometimes still known as the Maxwell–Heaviside equations; hence, it was probably Heaviside who lent
561:, the electric analogue to a bar magnet. There is no free charge in such a material, but the inherent polarization gives rise to an electric field, demonstrating that the 826: 351: 904: 1409: 652: 254: 213: 190: 1127:
A parallel plate capacitor. Using an imaginary box, it is possible to use Gauss's law to explain the relationship between electric displacement and free charge.
565:
field is not determined entirely by the free charge. The electric field is determined by using the above relation along with other boundary conditions on the
516: 437:
is the number of free charges per unit volume. These charges are the ones that have made the volume non-neutral, and they are sometimes referred to as the
1734: 1108: 223:. There can be slightly different movements of the negative electrons and positive nuclei in molecules, or different displacements of the atoms in an 591: 66: 1807: 1193: 787:
medium, as there can be a time delay between the imposition of the electric field and the resulting polarization of the material. In this case,
127: 1246:
is perpendicular to the field, so the integral over this section is zero, as is the integral on the face that is outside the capacitor where
914:, which place limitations upon the form of the frequency dependence. The phenomenon of a frequency-dependent permittivity is an example of 1253: 1366: 231:
and always have a polarization; in others spatially varying strains can break the inversion symmetry and lead to polarization, the
1626:
parallel plate capacitor is much smaller than its lateral dimensions we can approximate it using the infinite case and obtain its
1250:
is zero. The only surface that contributes to the integral is therefore the surface of the box inside the capacitor, and hence
17: 1719:{\displaystyle C={\frac {Q_{\text{free}}}{V}}\approx {\frac {Q_{\text{free}}}{|\mathbf {E} |d}}={\frac {A}{d}}\varepsilon ,} 1040:{\displaystyle (\mathbf {D_{1}} -\mathbf {D_{2}} )\cdot {\hat {\mathbf {n} }}=D_{1,\perp }-D_{2,\perp }=\sigma _{\text{f}}} 1318: 1569:{\displaystyle V=|\mathbf {E} |d={\frac {|\mathbf {D} |d}{\varepsilon }}={\frac {|Q_{\text{free}}|d}{\varepsilon A}}} 337:
is the (macroscopic) density of the permanent and induced electric dipole moments in the material, called the
919: 557:
The effect of this equation can be seen in the case of an object with a "frozen in" polarization like a bar
235:. Other stimuli such as magnetic fields can lead to polarization in some materials, this being called the 1057: 911: 1165: 1099:, specific capacity of electric induction, in a form different from the modern and familiar notations. 1590: 479: 448: 413: 305: 1744: 655: 70: 1754: 1458:{\displaystyle \mathbf {D} =\varepsilon _{0}\mathbf {E} +\mathbf {P} =\varepsilon \mathbf {E} } 236: 111: 889: 820: 761: 1739: 717:{\displaystyle \mathbf {D} =\varepsilon _{0}(1+\chi )\mathbf {E} =\varepsilon \mathbf {E} } 637: 566: 338: 220: 119: 60: 33: 8: 1091:
The earliest known use of the term is from the year 1864, in James Clerk Maxwell's paper
915: 816: 330: 151: 195: 172: 1152:, by integrating over a small rectangular box straddling one plate of the capacitor: 812: 577: 1103: 808: 796: 232: 228: 166: 143: 139: 879:{\displaystyle \mathbf {D} (\omega )=\varepsilon (\omega )\mathbf {E} (\omega ),} 401:{\displaystyle \nabla \cdot \mathbf {D} =\rho -\rho _{\text{b}}=\rho _{\text{f}}} 115: 54: 1749: 1149: 1123: 784: 345: 224: 157: 123: 1801: 780: 295:{\displaystyle \mathbf {D} \equiv \varepsilon _{0}\mathbf {E} +\mathbf {P} ,} 1144:
units, the charge density on the plates is proportional to the value of the
744: 569:
to yield the bound charges, which will, in turn, yield the electric field.
438: 107: 1231:{\displaystyle \mathbf {D} \cdot \mathrm {d} \mathbf {A} =Q_{\text{free}}} 138:
to an electric field, and how shapes can change due to electric fields in
1627: 792: 772: 584:
dielectric with instantaneous response to changes in the electric field,
131: 135: 1132: 907: 581: 548:{\displaystyle \nabla \times \mathbf {D} =\nabla \times \mathbf {P} } 558: 1735:
History of Maxwell's equations § The term Maxwell's equations
91: 513:
has a curl of zero in electrostatic situations, it follows that
776: 627:{\displaystyle \mathbf {P} =\varepsilon _{0}\chi \mathbf {E} ,} 573: 473: 216: 1399:{\displaystyle \varepsilon =\varepsilon _{0}\varepsilon _{r}} 1118: 1083:
points in the direction from medium 2 to medium 1.
29:
Vector field related to displacement current and flux density
147: 227:. Materials which do not have an inversion center display 906:
is the frequency of the applied field. The constraint of
441:. This equation says, in effect, that the flux lines of 1141: 472:
is the density of all those charges that are part of a
1406:, then there is a polarization induced in the medium, 1169: 783:). A different form of time dependence can arise in a 1636: 1593: 1471: 1412: 1369: 1321: 1256: 1196: 1168: 1148:
field between the plates. This follows directly from
1060: 935: 892: 829: 664: 640: 594: 519: 509:
is not determined exclusively by the free charge. As
482: 451: 416: 354: 308: 257: 198: 175: 161:
Illustration of polarization due to a negative charge
1465:
and so the voltage difference between the plates is
807:. Such a convolution takes on a simpler form in the 445:
must begin and end on the free charges. In contrast
1315:is the surface area of the top face of the box and 1718: 1606: 1568: 1457: 1398: 1356:{\displaystyle Q_{\text{free}}/A=\rho _{\text{f}}} 1355: 1304:{\displaystyle |\mathbf {D} |A=|Q_{\text{free}}|,} 1303: 1230: 1182: 1075: 1039: 898: 878: 716: 646: 626: 547: 495: 464: 429: 400: 321: 294: 207: 184: 1067: 1799: 1789:A Dynamical Theory of the Electromagnetic Field 1093:A Dynamical Theory of the Electromagnetic Field 1054:is the free charge density and the unit normal 333:(also called permittivity of free space), and 130:. It plays a major role in topics such as the 1773: 819:, one obtains the following relation for a 1119:Example: Displacement field in a capacitor 215:are the same. This means that there is no 134:of a material, as well as the response of 767:In linear, homogeneous, isotropic media, 1791:PART V. — THEORY OF CONDENSERS, page 494 1767: 1615:if the plates were separated by vacuum. 1122: 588:depends linearly on the electric field, 156: 32:For broader coverage of this topic, see 14: 1808:Electric and magnetic fields in matter 1800: 634:where the constant of proportionality 1583:Introducing the dielectric increases 1115:the present significance it now has. 1131:Consider an infinite parallel plate 38: 1076:{\displaystyle \mathbf {\hat {n}} } 24: 1206: 815:the relationship and applying the 771:is a constant. However, in linear 534: 520: 355: 169:then the charge at, for instance, 25: 1819: 1183:{\displaystyle \scriptstyle _{A}} 344:The displacement field satisfies 247:The electric displacement field " 1682: 1607:{\displaystyle \varepsilon _{r}} 1508: 1484: 1451: 1440: 1432: 1414: 1263: 1211: 1198: 1157: 1064: 976: 960: 956: 945: 941: 860: 831: 710: 699: 666: 617: 596: 541: 527: 496:{\displaystyle \rho _{\text{f}}} 465:{\displaystyle \rho _{\text{b}}} 430:{\displaystyle \rho _{\text{f}}} 362: 322:{\displaystyle \varepsilon _{0}} 285: 277: 259: 165:In any material, if there is an 43: 1776:Introduction to Electrodynamics 1782: 1687: 1677: 1548: 1533: 1513: 1503: 1489: 1479: 1294: 1279: 1268: 1258: 1095:. Maxwell introduced the term 980: 966: 936: 922:) the frequency-dependence of 870: 864: 856: 850: 841: 835: 695: 683: 13: 1: 1760: 242: 7: 1728: 150:and charge transfer due to 146:as well as the creation of 96:electric displacement field 57:the scope of other articles 10: 1824: 1242:On the sides of the box, d 1086: 126:, combining the two in an 31: 1622:between the plates of a 912:Kramers–Kronig relations 1745:Electric susceptibility 899:{\displaystyle \omega } 803:and the electric field 656:electric susceptibility 1755:Electric dipole moment 1720: 1608: 1570: 1459: 1400: 1357: 1305: 1232: 1184: 1128: 1077: 1041: 900: 880: 718: 658:of the material. Thus 648: 628: 549: 497: 466: 431: 402: 323: 296: 237:magnetoelectric effect 209: 186: 162: 114:. It accounts for the 1721: 1609: 1580:is their separation. 1571: 1460: 1401: 1358: 1306: 1233: 1185: 1126: 1078: 1042: 901: 881: 821:linear time-invariant 762:relative permittivity 719: 649: 647:{\displaystyle \chi } 629: 550: 498: 467: 432: 403: 324: 297: 210: 187: 160: 69:and help introduce a 18:Electric displacement 1778:(3rd 1999 ed.). 1740:Polarization density 1634: 1591: 1469: 1410: 1367: 1319: 1254: 1194: 1166: 1058: 933: 890: 827: 813:Fourier transforming 662: 638: 592: 567:polarization density 517: 480: 449: 414: 352: 339:polarization density 306: 255: 233:flexoelectric effect 196: 173: 61:Displacement current 34:Displacement current 916:material dispersion 817:convolution theorem 331:vacuum permittivity 112:Maxwell's equations 1716: 1604: 1566: 1455: 1396: 1353: 1301: 1228: 1180: 1179: 1129: 1073: 1037: 926:can be neglected. 896: 876: 714: 644: 624: 545: 493: 462: 427: 410:In this equation, 398: 319: 292: 208:{\displaystyle -x} 205: 185:{\displaystyle +x} 182: 163: 104:electric induction 67:discuss this issue 1774:David Griffiths. 1708: 1695: 1672: 1658: 1652: 1564: 1544: 1524: 1350: 1329: 1290: 1225: 1070: 1034: 983: 764:of the material. 490: 459: 424: 395: 382: 348:in a dielectric: 88: 87: 16:(Redirected from 1815: 1792: 1786: 1780: 1779: 1771: 1725: 1723: 1722: 1717: 1709: 1701: 1696: 1694: 1690: 1685: 1680: 1674: 1673: 1670: 1664: 1659: 1654: 1653: 1650: 1644: 1618:If the distance 1613: 1611: 1610: 1605: 1603: 1602: 1575: 1573: 1572: 1567: 1565: 1563: 1555: 1551: 1546: 1545: 1542: 1536: 1530: 1525: 1520: 1516: 1511: 1506: 1500: 1492: 1487: 1482: 1464: 1462: 1461: 1456: 1454: 1443: 1435: 1430: 1429: 1417: 1405: 1403: 1402: 1397: 1395: 1394: 1385: 1384: 1362: 1360: 1359: 1354: 1352: 1351: 1348: 1336: 1331: 1330: 1327: 1310: 1308: 1307: 1302: 1297: 1292: 1291: 1288: 1282: 1271: 1266: 1261: 1238: 1237: 1235: 1234: 1229: 1227: 1226: 1223: 1214: 1209: 1201: 1190: 1189: 1187: 1186: 1181: 1178: 1177: 1161: 1160: 1104:Oliver Heaviside 1082: 1080: 1079: 1074: 1072: 1071: 1063: 1046: 1044: 1043: 1038: 1036: 1035: 1032: 1023: 1022: 1004: 1003: 985: 984: 979: 974: 965: 964: 963: 950: 949: 948: 905: 903: 902: 897: 885: 883: 882: 877: 863: 834: 809:frequency domain 797:impulse response 759: 742: 723: 721: 720: 715: 713: 702: 682: 681: 669: 653: 651: 650: 645: 633: 631: 630: 625: 620: 612: 611: 599: 554: 552: 551: 546: 544: 530: 502: 500: 499: 494: 492: 491: 488: 471: 469: 468: 463: 461: 460: 457: 436: 434: 433: 428: 426: 425: 422: 407: 405: 404: 399: 397: 396: 393: 384: 383: 380: 365: 328: 326: 325: 320: 318: 317: 301: 299: 298: 293: 288: 280: 275: 274: 262: 229:piezoelectricity 214: 212: 211: 206: 191: 189: 188: 183: 167:inversion center 144:flexoelectricity 140:piezoelectricity 110:that appears in 83: 80: 74: 47: 46: 39: 21: 1823: 1822: 1818: 1817: 1816: 1814: 1813: 1812: 1798: 1797: 1796: 1795: 1787: 1783: 1772: 1768: 1763: 1731: 1700: 1686: 1681: 1676: 1675: 1669: 1665: 1663: 1649: 1645: 1643: 1635: 1632: 1631: 1598: 1594: 1592: 1589: 1588: 1556: 1547: 1541: 1537: 1532: 1531: 1529: 1512: 1507: 1502: 1501: 1499: 1488: 1483: 1478: 1470: 1467: 1466: 1450: 1439: 1431: 1425: 1421: 1413: 1411: 1408: 1407: 1390: 1386: 1380: 1376: 1368: 1365: 1364: 1347: 1343: 1332: 1326: 1322: 1320: 1317: 1316: 1293: 1287: 1283: 1278: 1267: 1262: 1257: 1255: 1252: 1251: 1222: 1218: 1210: 1205: 1197: 1195: 1192: 1191: 1173: 1170: 1167: 1164: 1163: 1162: 1158: 1156: 1121: 1109:known variously 1089: 1062: 1061: 1059: 1056: 1055: 1053: 1031: 1027: 1012: 1008: 993: 989: 975: 973: 972: 959: 955: 954: 944: 940: 939: 934: 931: 930: 929:At a boundary, 891: 888: 887: 859: 830: 828: 825: 824: 799:susceptibility 754: 748: 741: 735: 725: 709: 698: 677: 673: 665: 663: 660: 659: 639: 636: 635: 616: 607: 603: 595: 593: 590: 589: 540: 526: 518: 515: 514: 487: 483: 481: 478: 477: 456: 452: 450: 447: 446: 421: 417: 415: 412: 411: 392: 388: 379: 375: 361: 353: 350: 349: 313: 309: 307: 304: 303: 284: 276: 270: 266: 258: 256: 253: 252: 251:" is defined as 245: 197: 194: 193: 174: 171: 170: 128:auxiliary field 122:and that of an 116:electromagnetic 84: 78: 75: 73:to the article. 64: 59:, specifically 48: 44: 37: 30: 23: 22: 15: 12: 11: 5: 1821: 1811: 1810: 1794: 1793: 1781: 1765: 1764: 1762: 1759: 1758: 1757: 1752: 1750:Magnetic field 1747: 1742: 1737: 1730: 1727: 1715: 1712: 1707: 1704: 1699: 1693: 1689: 1684: 1679: 1668: 1662: 1657: 1648: 1642: 1639: 1601: 1597: 1562: 1559: 1554: 1550: 1540: 1535: 1528: 1523: 1519: 1515: 1510: 1505: 1498: 1495: 1491: 1486: 1481: 1477: 1474: 1453: 1449: 1446: 1442: 1438: 1434: 1428: 1424: 1420: 1416: 1393: 1389: 1383: 1379: 1375: 1372: 1346: 1342: 1339: 1335: 1325: 1300: 1296: 1286: 1281: 1277: 1274: 1270: 1265: 1260: 1240: 1239: 1221: 1217: 1213: 1208: 1204: 1200: 1176: 1172: 1120: 1117: 1088: 1085: 1069: 1066: 1051: 1030: 1026: 1021: 1018: 1015: 1011: 1007: 1002: 999: 996: 992: 988: 982: 978: 971: 968: 962: 958: 953: 947: 943: 938: 895: 875: 872: 869: 866: 862: 858: 855: 852: 849: 846: 843: 840: 837: 833: 785:time-invariant 781:Doppler shifts 775:media it is a 752: 739: 733: 712: 708: 705: 701: 697: 694: 691: 688: 685: 680: 676: 672: 668: 654:is called the 643: 623: 619: 615: 610: 606: 602: 598: 543: 539: 536: 533: 529: 525: 522: 503:at the edges. 486: 455: 420: 391: 387: 378: 374: 371: 368: 364: 360: 357: 316: 312: 291: 287: 283: 279: 273: 269: 265: 261: 244: 241: 225:ionic compound 204: 201: 181: 178: 124:electric field 86: 85: 51: 49: 42: 28: 9: 6: 4: 3: 2: 1820: 1809: 1806: 1805: 1803: 1790: 1785: 1777: 1770: 1766: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1732: 1726: 1713: 1710: 1705: 1702: 1697: 1691: 1666: 1660: 1655: 1646: 1640: 1637: 1629: 1625: 1621: 1616: 1599: 1595: 1586: 1581: 1579: 1560: 1557: 1552: 1538: 1526: 1521: 1517: 1496: 1493: 1475: 1472: 1447: 1444: 1436: 1426: 1422: 1418: 1391: 1387: 1381: 1377: 1373: 1370: 1344: 1340: 1337: 1333: 1323: 1314: 1298: 1284: 1275: 1272: 1249: 1245: 1219: 1215: 1202: 1174: 1171: 1155: 1154: 1153: 1151: 1147: 1143: 1138: 1134: 1125: 1116: 1114: 1110: 1105: 1100: 1098: 1094: 1084: 1050: 1028: 1024: 1019: 1016: 1013: 1009: 1005: 1000: 997: 994: 990: 986: 969: 951: 927: 925: 921: 917: 913: 910:leads to the 909: 893: 873: 867: 853: 847: 844: 838: 822: 818: 814: 810: 806: 802: 798: 794: 790: 786: 782: 778: 774: 770: 765: 763: 758: 751: 746: 738: 732: 728: 706: 703: 692: 689: 686: 678: 674: 670: 657: 641: 621: 613: 608: 604: 600: 587: 583: 579: 575: 570: 568: 564: 560: 555: 537: 531: 523: 512: 508: 504: 484: 475: 453: 444: 440: 418: 408: 389: 385: 376: 372: 369: 366: 358: 347: 342: 340: 336: 332: 314: 310: 289: 281: 271: 267: 263: 250: 240: 238: 234: 230: 226: 222: 218: 202: 199: 179: 176: 168: 159: 155: 153: 149: 145: 141: 137: 133: 129: 125: 121: 117: 113: 109: 105: 101: 97: 93: 82: 72: 71:summary style 68: 62: 58: 56: 52:This article 50: 41: 40: 35: 27: 19: 1788: 1784: 1775: 1769: 1623: 1619: 1617: 1587:by a factor 1584: 1582: 1577: 1312: 1247: 1243: 1241: 1145: 1136: 1130: 1112: 1101: 1096: 1092: 1090: 1048: 928: 923: 804: 800: 788: 768: 766: 756: 749: 745:permittivity 736: 730: 726: 585: 571: 562: 556: 510: 506: 505: 442: 439:space charge 409: 343: 334: 248: 246: 221:polarization 164: 120:polarization 108:vector field 103: 99: 98:(denoted by 95: 89: 76: 53: 26: 1628:capacitance 1150:Gauss's law 793:convolution 773:anisotropic 578:homogeneous 346:Gauss's law 136:dielectrics 132:capacitance 118:effects of 1761:References 243:Definition 55:duplicates 1711:ε 1661:≈ 1596:ε 1558:ε 1522:ε 1448:ε 1423:ε 1388:ε 1378:ε 1371:ε 1345:ρ 1203:⋅ 1133:capacitor 1068:^ 1029:σ 1020:⊥ 1006:− 1001:⊥ 981:^ 970:⋅ 952:− 920:bandwidth 908:causality 894:ω 868:ω 854:ω 848:ε 839:ω 707:ε 693:χ 675:ε 642:χ 614:χ 605:ε 582:isotropic 538:× 535:∇ 524:× 521:∇ 485:ρ 454:ρ 419:ρ 390:ρ 377:ρ 373:− 370:ρ 359:⋅ 356:∇ 311:ε 268:ε 264:≡ 200:− 154:strains. 79:July 2023 1802:Category 1729:See also 1047:, where 823:medium: 559:electret 148:voltages 1102:It was 1087:History 795:of the 743:is the 329:is the 152:elastic 92:physics 65:Please 1624:finite 1576:where 1311:where 886:where 777:tensor 755:= 1 + 747:, and 724:where 574:linear 474:dipole 302:where 217:dipole 94:, the 811:: by 791:is a 572:In a 106:is a 102:) or 1671:free 1651:free 1543:free 1328:free 1289:free 1224:free 760:the 192:and 1630:as 142:or 90:In 1804:: 1142:SI 729:= 580:, 576:, 341:. 239:. 1714:, 1706:d 1703:A 1698:= 1692:d 1688:| 1683:E 1678:| 1667:Q 1656:V 1647:Q 1641:= 1638:C 1620:d 1600:r 1585:ε 1578:d 1561:A 1553:d 1549:| 1539:Q 1534:| 1527:= 1518:d 1514:| 1509:D 1504:| 1497:= 1494:d 1490:| 1485:E 1480:| 1476:= 1473:V 1452:E 1445:= 1441:P 1437:+ 1433:E 1427:0 1419:= 1415:D 1392:r 1382:0 1374:= 1349:f 1341:= 1338:A 1334:/ 1324:Q 1313:A 1299:, 1295:| 1285:Q 1280:| 1276:= 1273:A 1269:| 1264:D 1259:| 1248:D 1244:A 1220:Q 1216:= 1212:A 1207:d 1199:D 1175:A 1146:D 1137:D 1113:D 1097:D 1065:n 1052:f 1049:σ 1033:f 1025:= 1017:, 1014:2 1010:D 998:, 995:1 991:D 987:= 977:n 967:) 961:2 957:D 946:1 942:D 937:( 924:ε 874:, 871:) 865:( 861:E 857:) 851:( 845:= 842:) 836:( 832:D 805:E 801:χ 789:P 769:ε 757:χ 753:r 750:ε 740:r 737:ε 734:0 731:ε 727:ε 711:E 704:= 700:E 696:) 690:+ 687:1 684:( 679:0 671:= 667:D 622:, 618:E 609:0 601:= 597:P 586:P 563:D 542:P 532:= 528:D 511:E 507:D 489:f 458:b 443:D 423:f 394:f 386:= 381:b 367:= 363:D 335:P 315:0 290:, 286:P 282:+ 278:E 272:0 260:D 249:D 203:x 180:x 177:+ 100:D 81:) 77:( 63:. 36:. 20:)

Index

Electric displacement
Displacement current
duplicates
Displacement current
discuss this issue
summary style
physics
vector field
Maxwell's equations
electromagnetic
polarization
electric field
auxiliary field
capacitance
dielectrics
piezoelectricity
flexoelectricity
voltages
elastic

inversion center
dipole
polarization
ionic compound
piezoelectricity
flexoelectric effect
magnetoelectric effect
vacuum permittivity
polarization density
Gauss's law

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.