Knowledge

Electric field gradient

Source 📝

168:
generated. The first derivatives of the field, or the second derivatives of the potential, is the electric field gradient. The nine components of the EFG are thus defined as the second partial derivatives of the electrostatic potential, evaluated at the position of a nucleus:
596: 253: 370: 513: 265:
are combined as a symmetric 3 × 3 matrix. Under the assumption that the charge distribution generating the electrostatic potential is external to the nucleus, the matrix is
664: 696: 521: 175: 287: 821: 281:) = 0, holds. Relaxing this assumption, a more general form of the EFG tensor which retains the symmetry and traceless character is 113:
is the distance from a nucleus. This sensitivity has been used to study effects on charge distribution resulting from substitution,
701:
Electric field gradient as well as the asymmetry parameter can be evaluated numerically for large electric systems as shown in.
444: 423:. Given the traceless character, only two of the principal components are independent. Typically these are described by 75: 87: 601: 79: 816: 669: 67: 137:
to calculate EFGs and provide a deeper understanding of specific EFGs in crystals from measurements.
130: 125:
can be investigated with above methods using the EFG's sensitivity to local changes, like defects or
83: 811: 806: 154: 71: 270: 777: 741: 134: 8: 59: 51: 28: 781: 745: 731: 102: 98: 94:
and therefore generate an inhomogeneous electric field at the position of the nucleus.
765: 55: 24: 719: 785: 126: 114: 122: 62:
greater than one-half) to generate an effect which can be measured using several
591:{\displaystyle \vert V_{zz}\vert \geq \vert V_{yy}\vert \geq \vert V_{xx}\vert } 420: 165: 91: 90:(PAC). The EFG is non-zero only if the charges surrounding the nucleus violate 44: 40: 20: 789: 768:; Reiner J. Vianden (1979). "The electric field gradient in noncubic metals". 248:{\displaystyle V_{ij}={\frac {\partial ^{2}V}{\partial x_{i}\partial x_{j}}}.} 800: 63: 365:{\displaystyle \varphi _{ij}=V_{ij}-{\frac {1}{3}}\delta _{ij}\nabla ^{2}V,} 720:"Algorithm to compute the electric field gradient tensor in ionic crystals" 395: 266: 48: 736: 118: 101:
in the immediate vicinity of a nucleus. This is because the EFG
54:
and the other nuclei. The EFG couples with the nuclear electric
718:
Hernandez-Gomez, J J; Marquina, V; Gomez, R W (25 July 2013).
717: 164:). The derivative of this potential is the negative of the 764: 16:
Rate of change of the electric field at an atomic nucleus
508:{\displaystyle \eta ={\frac {V_{xx}-V_{yy}}{V_{zz}}}.} 398:. The principal tensor components are usually denoted 672: 604: 524: 447: 290: 178: 145:
A given charge distribution of electrons and nuclei,
690: 658: 590: 507: 364: 247: 798: 129:. In crystals the EFG is in the order of 10V/m. 585: 569: 563: 547: 541: 525: 133:has become an important tool for methods of 735: 822:Electric and magnetic fields in matter 799: 659:{\displaystyle V_{zz}+V_{yy}+V_{xx}=0} 117:, and charge transfer. Especially in 39:) measures the rate of change of the 383:) is evaluated at a given nucleus. 13: 347: 226: 213: 199: 58:of quadrupolar nuclei (those with 14: 833: 691:{\displaystyle 0\leq \eta \leq 1} 258:For each nucleus, the components 97:EFGs are highly sensitive to the 76:electron paramagnetic resonance 711: 1: 704: 140: 88:perturbed angular correlation 80:nuclear quadrupole resonance 7: 10: 838: 68:nuclear magnetic resonance 790:10.1103/RevModPhys.51.161 770:Reviews of Modern Physics 394:) is symmetric it can be 131:Density functional theory 269:, for in that situation 419:in order of decreasing 155:electrostatic potential 33:electric field gradient 692: 660: 592: 509: 366: 249: 84:Mössbauer spectroscopy 72:microwave spectroscopy 693: 661: 593: 510: 367: 250: 670: 602: 522: 445: 288: 176: 135:nuclear spectroscopy 782:1979RvMP...51..161K 746:2011arXiv1107.0059H 432:asymmetry parameter 60:spin quantum number 52:charge distribution 29:solid-state physics 688: 656: 588: 505: 362: 271:Laplace's equation 245: 99:electronic density 817:Quantum chemistry 766:Kaufmann, Elton N 500: 331: 240: 115:weak interactions 66:methods, such as 56:quadrupole moment 47:generated by the 829: 793: 757: 756: 754: 752: 739: 715: 697: 695: 694: 689: 665: 663: 662: 657: 649: 648: 633: 632: 617: 616: 597: 595: 594: 589: 584: 583: 562: 561: 540: 539: 514: 512: 511: 506: 501: 499: 498: 486: 485: 484: 469: 468: 455: 371: 369: 368: 363: 355: 354: 345: 344: 332: 324: 319: 318: 303: 302: 254: 252: 251: 246: 241: 239: 238: 237: 225: 224: 211: 207: 206: 196: 191: 190: 153:), generates an 837: 836: 832: 831: 830: 828: 827: 826: 797: 796: 761: 760: 750: 748: 716: 712: 707: 671: 668: 667: 641: 637: 625: 621: 609: 605: 603: 600: 599: 576: 572: 554: 550: 532: 528: 523: 520: 519: 491: 487: 477: 473: 461: 457: 456: 454: 446: 443: 442: 428: 417: 410: 403: 350: 346: 337: 333: 323: 311: 307: 295: 291: 289: 286: 285: 263: 233: 229: 220: 216: 212: 202: 198: 197: 195: 183: 179: 177: 174: 173: 143: 123:local structure 17: 12: 11: 5: 835: 825: 824: 819: 814: 812:Atomic physics 809: 807:Electrostatics 795: 794: 776:(1): 161–214. 759: 758: 709: 708: 706: 703: 687: 684: 681: 678: 675: 655: 652: 647: 644: 640: 636: 631: 628: 624: 620: 615: 612: 608: 587: 582: 579: 575: 571: 568: 565: 560: 557: 553: 549: 546: 543: 538: 535: 531: 527: 516: 515: 504: 497: 494: 490: 483: 480: 476: 472: 467: 464: 460: 453: 450: 426: 415: 408: 401: 373: 372: 361: 358: 353: 349: 343: 340: 336: 330: 327: 322: 317: 314: 310: 306: 301: 298: 294: 261: 256: 255: 244: 236: 232: 228: 223: 219: 215: 210: 205: 201: 194: 189: 186: 182: 166:electric field 142: 139: 92:cubic symmetry 45:atomic nucleus 41:electric field 15: 9: 6: 4: 3: 2: 834: 823: 820: 818: 815: 813: 810: 808: 805: 804: 802: 791: 787: 783: 779: 775: 771: 767: 763: 762: 747: 743: 738: 733: 729: 725: 724:Rev. Mex. FĂ­s 721: 714: 710: 702: 699: 685: 682: 679: 676: 673: 653: 650: 645: 642: 638: 634: 629: 626: 622: 618: 613: 610: 606: 580: 577: 573: 566: 558: 555: 551: 544: 536: 533: 529: 502: 495: 492: 488: 481: 478: 474: 470: 465: 462: 458: 451: 448: 441: 440: 439: 438:, defined as 437: 433: 429: 422: 418: 411: 404: 397: 393: 389: 384: 382: 378: 359: 356: 351: 341: 338: 334: 328: 325: 320: 315: 312: 308: 304: 299: 296: 292: 284: 283: 282: 280: 276: 272: 268: 264: 242: 234: 230: 221: 217: 208: 203: 192: 187: 184: 180: 172: 171: 170: 167: 163: 159: 156: 152: 148: 138: 136: 132: 128: 127:phase changes 124: 120: 116: 112: 108: 104: 100: 95: 93: 89: 85: 81: 77: 73: 69: 65: 64:spectroscopic 61: 57: 53: 50: 46: 42: 38: 34: 30: 26: 22: 773: 769: 749:. Retrieved 730:(1): 13–18. 727: 723: 713: 700: 517: 435: 431: 424: 413: 406: 399: 396:diagonalized 391: 387: 385: 380: 376: 374: 278: 274: 259: 257: 161: 157: 150: 146: 144: 110: 106: 96: 78:(EPR, ESR), 36: 32: 18: 801:Categories 705:References 141:Definition 105:scales as 49:electronic 737:1107.0059 683:≤ 680:η 677:≤ 567:≥ 545:≥ 471:− 449:η 348:∇ 335:δ 321:− 293:φ 267:traceless 227:∂ 214:∂ 200:∂ 25:molecular 751:23 April 430:and the 119:crystals 109:, where 103:operator 778:Bibcode 742:Bibcode 666:, thus 421:modulus 375:where ∇ 82:(NQR), 70:(NMR), 121:, the 43:at an 31:, the 27:, and 21:atomic 732:arXiv 518:with 390:(and 753:2016 598:and 412:and 786:doi 386:As 273:, ∇ 86:or 37:EFG 19:In 803:: 784:. 774:51 772:. 740:. 728:58 726:. 722:. 698:. 434:, 427:zz 416:xx 409:yy 405:, 402:zz 262:ij 74:, 23:, 792:. 788:: 780:: 755:. 744:: 734:: 686:1 674:0 654:0 651:= 646:x 643:x 639:V 635:+ 630:y 627:y 623:V 619:+ 614:z 611:z 607:V 586:| 581:x 578:x 574:V 570:| 564:| 559:y 556:y 552:V 548:| 542:| 537:z 534:z 530:V 526:| 503:. 496:z 493:z 489:V 482:y 479:y 475:V 466:x 463:x 459:V 452:= 436:η 425:V 414:V 407:V 400:V 392:φ 388:V 381:r 379:( 377:V 360:, 357:V 352:2 342:j 339:i 329:3 326:1 316:j 313:i 309:V 305:= 300:j 297:i 279:r 277:( 275:V 260:V 243:. 235:j 231:x 222:i 218:x 209:V 204:2 193:= 188:j 185:i 181:V 162:r 160:( 158:V 151:r 149:( 147:ρ 111:r 107:r 35:(

Index

atomic
molecular
solid-state physics
electric field
atomic nucleus
electronic
charge distribution
quadrupole moment
spin quantum number
spectroscopic
nuclear magnetic resonance
microwave spectroscopy
electron paramagnetic resonance
nuclear quadrupole resonance
Mössbauer spectroscopy
perturbed angular correlation
cubic symmetry
electronic density
operator
weak interactions
crystals
local structure
phase changes
Density functional theory
nuclear spectroscopy
electrostatic potential
electric field
traceless
Laplace's equation
diagonalized

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑