Knowledge

Electrochemical RAM

Source 📝

1592: 1661: 3520: 2272: 1543:, an ionic reservoir, and metal contacts. The resistance of the channel is modulated by ionic exchange at the interface between the channel and the electrolyte upon application of an electric field. The charge-transfer process allows both for state retention in the absence of applied power, and for programming of multiple distinct levels, both differentiating ECRAM operation from that of a 1809:
and therefore need to have a high average resistance to limit energy dissipation. To perform high-accuracy computation and be resilient to noise, the NVM cell needs a large number of distinct states. The programming time needs only to be fast between levels, not from the highest to the lowest resistance states. During each programming cycle (
1813:), weight updates can be negative or positive, and the up/down traces therefore need symmetry to allow learning algorithms to converge. All NVM technologies do struggle with these targets. ECRAM individual cells can meet such stringent metrics, but also need to demonstrate high-density array yield and stochasticity. 1845:
Using co-planar organic multilevel cells, isolated by conductive bridge memory (CBM) devices, the team demonstrates parallel programming and addressing in up to 3×3 arrays. In particular a 2-layer neural network is mapped to the array by transferring the weights necessary to perform an inference task
1808:
NVM use as synaptic weights in lieu of storage implies significantly different requirements when it comes to target resistance range, number of levels, and programming speed and symmetry. Because the in-memory computation occurs in parallel through the array, many devices are addressed concurrently
2295:
can handle several technologies and has strict rules when it comes to materials being introduced in its expensive toolset to avoid cross-contamination and loss of device yield. In particular, metallic mobile ions, if present in active areas, can induce device drift and affect reliability. There are
1621:
The read operation is decoupled from the write operation thanks to the presence of three electrodes, therefore limiting read disturb. A small bias is applied between the channel electrodes, with the resulting read current being proportional to the channel conductivity, hence sensing the programmed
2234:
Based on hydrogen ions, H-ECRAM devices have proven fast, necessitating small driving forces to induce programming. High diffusion coefficients in various materials can be accompanied by lack of retention within the memory cell, impacting endurance. Most H-ECRAM designs use liquid and/or organic
2320:
but will still need to remain unaffected by temperatures up to ~400 °C used in subsequent steps. Together with high density patterning challenges, these restrictions make organic devices unsuitable for such integration. The ECRAMs based on 2D MXene materials have shown the potential to be
1604:
Stress to the gate, relative to channel electrodes, can be applied in the form of fixed current or bias, driving ions toward - or away from - the electrolyte/channel interface where charge transfer occurs with free carriers. Upon insertion in the channel, the ionic charge is neutralized and the
1700:
are used for classification and learning tasks, relying on a large number of matrix-multiply operations. Therefore, analog compute with NVM technology for such tasks are extremely attractive. ECRAM cells are uniquely positioned for use in analog deep learning accelerators due to their inherent
1651:
exists at the gate contact and will differ device to device depending on the programmed state. To prevent cross-talk between cells sharing a gate line, an access device to isolate each one is added in series with the memory element. Suppressing OCP in the ECRAM design, minimizes the cell
1630:
The programming speed of ECRAM cells is not limited by the bulk diffusion of ions. They indeed only need to cross the interface plane between the electrolyte and the channel to induce a change in conductivity. Nanosecond write pulses can indeed trigger programming. Trade-offs between
2225:
Based on lithium ions, Li-ECRAM devices have demonstrated repeatable and controlled switching by applying known materials from battery technology to the memory design. Consequently, such cells can exhibit an OCP which varies over several volts, depending on the programmed state.
1873:
Using metal-oxide ECRAM cells, selector-free, the team demonstrates parallel programming and addressing in 2×2 arrays. In particular, a logistic regression task is performed in-memory with 1,000 2×1 vectors as training set. 2D curve fit is achieved in a dozen epochs.
1692:'s laws, the resulting vector is then obtained by integrating the current collected at each column. For ECRAM cells, an additional line is added at each row to write the cells during programming cycles, thereby yielding a pseudo-crossbar architecture. In the field of 1853:
Individual cells are shown to have the following properties (not all achieved in the same device configuration); speed = 1 MHz read-write cycles, number of states > 50 (tunable), resistance range = 50-100 nS (tunable), endurance >
1613:. Although in ECRAM, the programming of the memory element is defined not as a change in capacity or opacity, but by a change of channel conductivity associated with atomic species being inserted or removed as a result of the stress signal. 1877:
Individual cells are shown to have the following properties (not all achieved in the same device configuration); speed = 10 ns write pulses, number of states > 1,000 (tunable), resistance range = 0-50 μS (tunable), endurance >
1684:. Hence, when using multi-level cells (MLC) at the nodes of cross-bar arrays, one can perform analog operations on time or voltage encoded data such as vector (row input signal) × matrix (memory array) multiply. Following 1680:, thereby reducing the frequency of data transfer between storage and processing units. This can ultimately improve compute time and energy efficiency over hierarchical system architectures by eliminating the 1605:
atomic species intercalate or bind to the conductive host matrix, in some cases yielding strain and localized phase transformation. Such reversible processes are equivalent to anodic/cathodic reactions in
1547:. The write operation is deterministic and can result in symmetrical potentiation and depression, making ECRAM arrays attractive for acting as artificial synaptic weights in physical implementations of 1664:(Left) Illustration of analog matrix-vector multiply operation in a pseudo-crossbar ecram array. (Right) Illustration of the programming of 50 distinct and reversible states in the ecram synaptic cell. 1555:
and semiconductor foundry compatibility associated with energy materials. Universities, government laboratories, and corporate research teams have contributed to the development of ECRAM for
3003:
Yang, J.-T.; Ge, C.; Du, J.-Y.; Huang, H.-Y.; He, M.; Wang, C.; Lu, H.-B.; Yang, G.-Z.; Jin, K.-J. (2018). "Artificial Synapses Emulated by an Electrolyte-Gated Tungsten-Oxide Transistor".
2296:
several other considerations for the foundries; including safety, cost, volume, etc. Hence, lithium ion-based Li-ECRAM faces unique challenges beyond the presence of OCP.
622: 3257: 2692:
Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.; Agarwal, S.; Li, Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J.; Salleo, A.; Talin, A.A. (2019).
1805:
has published such requirements, a subset of which is listed here. Algorithm and hardware co-design can relax them somewhat but not without other trade-offs.
3063:
Melianas, Armantas; Kang, Min-A; VahidMohammadi, Armin; Quill, Tyler James; Tian, Weiqian; Gogotsi, Yury; Salleo, Alberto; Hamedi, Mahiar Max (March 2022).
2243:
electrolyte that achieved ultrafast modulation characteristics with high energy efficiency. The same year researchers at the Royal Institute of Technology
17: 2283:. This puts constraints on materials used, and the techniques employed to fabricate functional devices. The implications for ECRAM are described here. 2403:
Tang, Jianshi; Bishop, Douglas; Kim, Seyoung; Copel, Matt; Gokmen, Tayfun; Todorov, Teodor; Shin, SangHoon; Lee, Ko-Tao; Solomon, Paul (2018-12-01).
2337:. However, the cost and complexity associated with such scheme negatively affects the value proposition for displacing existing memory technologies. 3130: 1643:
ECRAM arrays are integrated in a pseudo-crossbar layout, the gate access line being common to all devices in a row or column. If a change in
2454: 2333:
where the device array is fabricated independently from the logic controls and then bonded to the FET-containing chip to enable its use as
1583:
built an inorganic, CMOS-compatible protonic technology that achieved near-ideal modulation characteristics using nanosecond fast pulses
3619: 2576:
Onen, Murat; Emond, Nicolas; Wang, Baoming; Zhang, Difei; Ross, Frances M.; Li, Ju; Yildiz, Bilge; del Alamo, Jesús A. (29 July 2022).
3155: 2247:
showed ECRAMS based on hydrogen intercalation into the 2D material MXene, marking the first demonstration of high speed 2D ECRAMs.
617: 637: 3225: 3183: 3374: 2304:
Memory arrays require logic periphery to operate and interface with the rest of the compute system. Such periphery is based on
1511: 3559: 2653: 2549: 2424: 2236: 1580: 1052: 3344: 3463: 3203: 3123: 1839: 3597: 2893:
Yang, C.-S.; Shang, D.-S.; Liu, N.; Fuller, E.J.; Agrawal, S.; Alec Talin, A.; Li, Y.-Q.; Shen, B.-G.; Sun, Y. (2018).
1261: 213: 2263:
technology used in commercial semiconductor offerings. MO-ECRAM do enable negligible OCP and sub-μs write operations.
258: 2244: 1000: 943: 263: 3585: 111: 1793:
Physical implementation of artificial neural networks (ANN) must perform at iso-accuracy when benchmarked against
3265: 1568: 1326: 986: 930: 3327: 3305: 3116: 1890:
Various institutions have demonstrated ECRAM cells with vastly different materials, layouts, and performances.
1702: 1012: 681: 493: 89: 1539:
analog acceleration. An ECRAM cell is a three-terminal device composed of a conductive channel, an insulating
3524: 3490: 1361: 3624: 2679:, proceedings of the international conference in Solid-State Devices and Materials (SSDM), pp. 23-24 (2018) 2280: 1831: 1635:, electronic conductivity, etc., can yield settling transients, limiting the maximum read-write frequency. 1560: 712: 607: 508: 2321:
unaffected by 400 °C heating, but additional development is needed for the integration of ion conductors.
1685: 669: 2859:"Artificial Synapses: Low-Power, Electrochemically Tunable Graphene Synapses for Neuromorphic Computing" 2754:"Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations" 3495: 3431: 1548: 1504: 1301: 1200: 1072: 702: 691: 800: 3478: 3438: 2636:
Tang, J. (2018). "ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing".
2330: 1798: 1794: 1644: 563: 498: 393: 3546: 2279:
For advanced semiconductor memory or compute applications, a technology needs to be compatible with
1647:, the driving force of a battery, occurs upon ionic exchange between channel and gate electrode, an 3250: 2305: 1373: 1356: 845: 131: 3443: 3416: 3245: 3178: 2694:"Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing" 2491: 1693: 1544: 1368: 1185: 908: 313: 148: 126: 106: 59: 3048:, proceedings of the IEEE international Silicon Nanoelectronics Workshop (SNW), pp. 31-32 (2018) 3453: 3448: 3421: 3339: 1681: 1648: 1552: 1241: 458: 328: 268: 1866:
As reported in a 2019 proceeding of the IEEE International Electron Device Meeting (IEDM), by
590: 3629: 3379: 3240: 3139: 2334: 2292: 2240: 1610: 1497: 744: 662: 448: 253: 233: 223: 79: 44: 3572: 3426: 3389: 3369: 3285: 3166: 2956: 2705: 2367: 1697: 1440: 1308: 1087: 1047: 970: 583: 488: 378: 273: 136: 116: 99: 94: 2895:"All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing" 2532:
Kim, S. (2019). "Metal-oxide based, CMOS-compatible ECRAM for Deep Learning Accelerator".
8: 3483: 3458: 3295: 3188: 1835: 1706: 1677: 1673: 1572: 1564: 1528: 1037: 960: 827: 779: 632: 443: 141: 2960: 2709: 2371: 1652:
size/complexity, allowing for selector-free parallel read/programming of device arrays.
3500: 3213: 3198: 3171: 3094: 3028: 2977: 2944: 2922: 2831: 2804: 2780: 2753: 2731: 2659: 2615: 2555: 2430: 1446: 1411: 1057: 483: 468: 413: 408: 398: 373: 298: 2578: 1701:
deterministic and symmetric programming nature when compared to other devices such as
1591: 3322: 3275: 3098: 3086: 3020: 2982: 2926: 2914: 2836: 2785: 2735: 2723: 2649: 2619: 2607: 2599: 2559: 2545: 2420: 2404: 2385: 2313: 2260: 1123: 1118: 1042: 1007: 861: 839: 738: 697: 600: 438: 163: 3032: 2663: 2511: 2434: 1797:
weights in software. This sets the boundary for device properties needed for analog
3468: 3384: 3300: 3280: 3235: 3230: 3076: 3012: 2972: 2964: 2906: 2870: 2826: 2816: 2775: 2765: 2713: 2641: 2591: 2541: 2537: 2412: 2375: 2317: 1810: 1632: 1556: 1532: 1458: 1452: 1378: 1341: 1331: 1296: 1108: 1062: 1030: 805: 788: 473: 433: 193: 178: 74: 64: 2405:"ECRAM as Scalable Synaptic Cell for High-Speed, Low-Power Neuromorphic Computing" 1660: 1351: 1178: 1165: 856: 851: 707: 574: 553: 528: 388: 308: 238: 208: 183: 69: 40: 2455:"Finite element modeling of electrochemical random access memory - iis-projects" 3560:"The path to the "perfect" analog material and system: IBM at IEDM and NeurIPS" 3473: 3193: 2968: 2857:
Sharbati, M.T.; Du, Y.; Torres, J.; Ardolino, N.D.; Yun, M.; Xiong, F. (2018).
1470: 1388: 1231: 888: 750: 686: 558: 543: 523: 518: 463: 428: 383: 333: 323: 318: 303: 198: 188: 121: 2645: 2416: 3613: 3505: 3332: 3090: 2821: 2770: 2603: 2309: 1536: 1476: 1103: 1098: 1067: 822: 732: 548: 538: 533: 513: 348: 338: 218: 203: 2718: 2693: 2595: 3409: 3208: 3081: 3064: 3024: 3016: 2986: 2945:"Protonic solid-state electrochemical synapse for physical neural networks" 2910: 2875: 2858: 2840: 2789: 2727: 2611: 2389: 1802: 1689: 1606: 1423: 1417: 1383: 1251: 1206: 1190: 1082: 878: 873: 833: 795: 478: 453: 353: 288: 243: 228: 3586:"Stanford researchers' artificial synapse is fast, efficient and durable" 3404: 3399: 3220: 1736: 1563:
designed a lithium-based cell inspired by solid-state battery materials,
1540: 1482: 1434: 868: 403: 343: 248: 30:"Electrochemical synapse" redirects here. For synapses in the brain, see 3108: 3364: 2462: 2380: 2355: 1782: 1077: 903: 657: 423: 418: 293: 158: 84: 2918: 2894: 3394: 3065:"High-Speed Ionic Synaptic Memory Based on 2D Titanium Carbide MXene" 2579:"Nanosecond protonic programmable resistors for analog deep learning" 1464: 1429: 1266: 1195: 1093: 964: 955: 652: 595: 363: 283: 1575:
task in an array of metal-oxide ECRAM designed for insertion in the
3315: 3290: 2805:"Algorithm for Training Neural Networks on Resistive Device Arrays" 1847: 1393: 1336: 1271: 1226: 1211: 981: 950: 923: 898: 756: 642: 368: 278: 173: 168: 3558:
Ambrogio, S.; Adusumilli, P.; Eleftheriou, E. (11 December 2019).
2354:
Shi, J.; Ha, S. D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. (2013).
2271: 1291: 1281: 1276: 1236: 1138: 1133: 1113: 918: 893: 883: 674: 31: 1571:
demonstrated in-memory selector-free parallel programming for a
3062: 1286: 1246: 1128: 1017: 815: 358: 3573:"Engineers design a device that operates like a brain synapse" 3557: 3310: 2316:. Memory cells can be inserted between upper metal levels at 1221: 1158: 1153: 1148: 810: 767: 761: 647: 627: 612: 1801:. In the design of their resisistive processing unit (RPU), 2256: 1576: 1216: 503: 153: 2329:
One way to introduce novel memory materials can be to use
1892:
An example set for discrete cells is listed in the table.
1256: 1143: 913: 2856: 3598:"Sandia Powers Breakthroughs in Neuromorphic Computing" 2691: 2638:
2018 IEEE International Electron Devices Meeting (IEDM)
2534:
2019 IEEE International Electron Devices Meeting (IEDM)
2409:
2018 IEEE International Electron Devices Meeting (IEDM)
3547:"Searching for the Perfect Artificial Synapse for AI" 2239:demonstrated a CMOS-compatible technology based on 1816: 2892: 2577: 2575: 2402: 1595:ECRAM synaptic cell layout and operating principle 2324: 1826:As reported in a 2019 publication in Science, by 3611: 2852: 2850: 2353: 1821: 2888: 2886: 2747: 2745: 2687: 2685: 2235:electrolytes. In a 2022 study, researchers at 3124: 3002: 2998: 2996: 2847: 2802: 2482: 2480: 2478: 2312:substrates with a high thermal budget at the 1505: 2942: 2356:"A correlated nickelate synaptic transistor" 1525:Electrochemical Random-Access Memory (ECRAM) 2938: 2936: 2883: 2796: 2751: 2742: 2682: 2631: 2629: 2255:Metal-oxide based ECRAM, are inspired from 3519: 3131: 3117: 2993: 2670: 2527: 2525: 2523: 2521: 2519: 2503: 2501: 2499: 2475: 2299: 1512: 1498: 3138: 3080: 2976: 2874: 2830: 2820: 2779: 2769: 2717: 2379: 3570: 3039: 2933: 2626: 2286: 2270: 1659: 1590: 1567:built an organic proton-based cell, and 3226:Carbon nanotube field-effect transistor 3184:Applications of artificial intelligence 2516: 2496: 1885: 1828:Elliot J. Fuller, Alec A. Talin, et al. 1551:. The technological challenges include 14: 3612: 3583: 3375:Differential technological development 2571: 2569: 1850:operation on the binary input vector. 3544: 3112: 3058: 3056: 3054: 2943:Yao, X.; Klyukin, K.; Lu, W. (2020). 2237:Massachusetts Institute of Technology 1581:Massachusetts Institute of Technology 1569:International Business Machines (IBM) 1053:Vision Electronic Recording Apparatus 3345:Three-dimensional integrated circuit 2635: 1655: 18:Electrochemical random-access memory 3464:Future-oriented technology analysis 3204:Progress in artificial intelligence 2566: 2531: 2281:very large scale integration (VLSI) 1840:University of Massachusetts Amherst 24: 3051: 214:Data validation and reconciliation 25: 3641: 3620:Non-volatile random-access memory 3537: 2512:Nature Electronics, 1, 386 (2018) 264:Distributed file system for cloud 3545:Moore, S.K. (11 December 2018). 3518: 2803:Tayfun, G.; Haensch, H. (2020). 1817:Demos with ECRAM Synaptic Arrays 1549:artificial neural networks (ANN) 112:Areal density (computer storage) 3571:Chandler, D.L. (19 June 2020). 3241:Fourth-generation optical discs 2492:Adv. Mater., 29, 1604310 (2017) 2306:field-effect transistors (FETs) 1868:Seyoung Kim, John Rozen, et al. 1861: 1712: 931:Programmable metallization cell 2752:Tayfun, G.; Yurii, V. (2016). 2542:10.1109/IEDM19573.2019.8993463 2447: 2396: 2347: 2331:heterogeneous integration (HI) 2325:Heterogeneous integration (HI) 1533:multiple levels per cell (MLC) 494:Persistence (computer science) 13: 1: 3491:Technology in science fiction 3069:Advanced Functional Materials 2340: 1882:write ops, size < 1×1 μm. 1703:resistive RAM (ReRAM or RRAM) 1545:field-effect transistor (FET) 1362:Electronic quantum holography 27:Novel type of computer memory 3584:Kubota, T. (25 April 2019). 1858:write ops, size = 50×50 μm. 1832:Sandia National Laboratories 1822:Sandia National Laboratories 1694:artificial intelligence (AI) 1668: 1649:open circuit potential (OCP) 1586: 1561:Sandia National Laboratories 1553:open circuit potential (OCP) 713:Video RAM (dual-ported DRAM) 509:Non-RAID drive architectures 7: 2335:high bandwidth memory (HBM) 2250: 2220: 10: 3646: 3496:Technology readiness level 3432:Technological unemployment 2969:10.1038/s41467-020-16866-6 2229: 1799:deep learning accelerators 1698:deep neural networks (DNN) 1579:. In 2022, researchers at 1302:Holographic Versatile Disc 1201:Compact Disc Digital Audio 1073:Magnetic-tape data storage 692:Content-addressable memory 29: 3514: 3479:Technological singularity 3439:Technological convergence 3357: 3153: 3146: 2809:Frontiers in Neuroscience 2758:Frontiers in Neuroscience 2646:10.1109/IEDM.2018.8614551 2417:10.1109/IEDM.2018.8614551 1707:phase-change memory (PCM) 1674:Non-volatile memory (NVM) 1645:electrochemical potential 1638: 1529:non-volatile memory (NVM) 499:Persistent data structure 394:Digital rights management 3251:Holographic data storage 2822:10.3389/fnins.2020.00103 2771:10.3389/fnins.2016.00333 2314:front end of line (FEOL) 2308:built on the surface of 2275:Processed 200mm si wafer 1834:, in collaboration with 1795:floating point precision 1625: 1599: 1374:DNA digital data storage 1357:Holographic data storage 846:Solid-state hybrid drive 132:Network-attached storage 3444:Technological evolution 3417:Exploratory engineering 3246:3D optical data storage 3179:Artificial intelligence 2719:10.1126/science.aaw5581 2596:10.1126/science.abp8064 2461:. Zürich, Switzerland: 2459:iis-projects.ee.ethz.ch 2318:back end of line (BEOL) 2300:Back end of line (BEOL) 2266: 1616: 1577:back end of line (BEOL) 1369:5D optical data storage 1186:3D optical data storage 909:Universal Flash Storage 314:Replication (computing) 259:Distributed file system 149:Single-instance storage 127:Direct-attached storage 107:Continuous availability 3454:Technology forecasting 3449:Technological paradigm 3422:Proactionary principle 3340:Software-defined radio 3082:10.1002/adfm.202109970 3017:10.1002/adma.201801548 2911:10.1002/adfm.201804170 2876:10.1002/adma.201870273 2508:Y. van de Burgt et al. 2276: 1682:Von Neumann bottleneck 1665: 1611:electrochromic devices 1596: 1242:Nintendo optical discs 459:Storage virtualization 329:Information repository 269:Distributed data store 3380:Disruptive innovation 3140:Emerging technologies 2640:. pp. 13.1.1–4. 2536:. pp. 35.7.1–4. 2411:. pp. 13.1.1–4. 2360:Nature Communications 2293:semiconductor foundry 2287:Semiconductor foundry 2274: 2241:phosphosilicate glass 1676:can be leveraged for 1663: 1622:state of the device. 1594: 745:Mellon optical memory 733:Williams–Kilburn tube 449:Locality of reference 254:Clustered file system 80:Memory access pattern 3427:Technological change 3370:Collingridge dilemma 3167:Ambient intelligence 1886:Cell implementations 1441:Magnetic-core memory 1088:Digital Data Storage 1048:Quadruplex videotape 489:In-memory processing 379:Information transfer 274:Distributed database 137:Storage area network 117:Block (data storage) 3625:Non-volatile memory 3484:Technology scouting 3459:Accelerating change 3189:Machine translation 2961:2020NatCo..11.3134Y 2710:2019Sci...364..570F 2488:E. J. Fuller et al. 2372:2013NatCo...4.2676S 1870:from IBM Research: 1836:Stanford University 1573:logistic regression 1565:Stanford University 1038:Phonograph cylinder 976:Electrochemical RAM 828:Solid-state storage 444:Memory segmentation 142:Block-level storage 3501:Technology roadmap 3214:Speech recognition 3199:Mobile translation 3172:Internet of things 2381:10.1038/ncomms3676 2277: 1907:Write Pulse Length 1666: 1597: 1447:Plated-wire memory 1412:Paper data storage 1058:Magnetic recording 484:In-memory database 469:Memory-mapped file 414:Volume boot record 409:Master boot record 399:Volume (computing) 374:Data communication 299:Data deduplication 3564:IBM Research Blog 3534: 3533: 3353: 3352: 3323:Optical computing 2899:Adv. Funct. Mater 2655:978-1-7281-1987-8 2590:(6605): 539–543. 2551:978-1-7281-4032-2 2426:978-1-7281-1987-8 2261:high-k/metal gate 2218: 2217: 1791: 1790: 1768:up/down asymmetry 1678:in-memory compute 1656:Synaptic function 1522: 1521: 1119:8 mm video format 1043:Phonograph record 862:Flash Core Module 840:Solid-state drive 739:Delay-line memory 698:Computational RAM 601:Scratchpad memory 439:Disk partitioning 164:Unstructured data 90:Secondary storage 16:(Redirected from 3637: 3605: 3593: 3580: 3567: 3554: 3522: 3521: 3469:Horizon scanning 3385:Ephemeralization 3301:Racetrack memory 3236:Extended reality 3231:Cybermethodology 3151: 3150: 3133: 3126: 3119: 3110: 3109: 3103: 3102: 3084: 3060: 3049: 3043: 3037: 3036: 3000: 2991: 2990: 2980: 2940: 2931: 2930: 2890: 2881: 2880: 2878: 2854: 2845: 2844: 2834: 2824: 2800: 2794: 2793: 2783: 2773: 2749: 2740: 2739: 2721: 2689: 2680: 2677:D. Bishop et al. 2674: 2668: 2667: 2633: 2624: 2623: 2581: 2573: 2564: 2563: 2529: 2514: 2505: 2494: 2484: 2473: 2472: 2470: 2469: 2451: 2445: 2444: 2442: 2441: 2400: 2394: 2393: 2383: 2351: 2193: 2188: 2187: 2186: 2175: 2174: 2173: 2156: 2151: 2150: 2149: 2138: 2137: 2136: 2119: 2114: 2113: 2112: 2101: 2100: 2099: 2082: 2074: 2073: 2072: 2055: 2049: 2048: 2047: 2036: 2035: 2034: 2017: 2009: 2008: 2007: 1990: 1984: 1983: 1982: 1974: 1973: 1962: 1961: 1960: 1943: 1937: 1936: 1935: 1924: 1923: 1922: 1895: 1894: 1881: 1857: 1811:back-propagation 1717: 1716: 1633:gate capacitance 1557:analog computing 1514: 1507: 1500: 1459:Thin-film memory 1453:Core rope memory 1379:Universal memory 1342:Millipede memory 1332:Racetrack memory 1297:Ultra HD Blu-ray 1109:Linear Tape-Open 1063:Magnetic storage 1031:Analog recording 474:Software entropy 434:Disk aggregation 194:Data degradation 179:Data compression 75:Memory hierarchy 65:Memory coherence 37: 36: 21: 3645: 3644: 3640: 3639: 3638: 3636: 3635: 3634: 3610: 3609: 3608: 3596: 3540: 3535: 3530: 3510: 3349: 3160: 3157: 3156:Information and 3142: 3137: 3107: 3106: 3075:(12): 2109970. 3061: 3052: 3044: 3040: 3011:(34): 1801548. 3001: 2994: 2941: 2934: 2905:(42): 1804170. 2891: 2884: 2855: 2848: 2801: 2797: 2750: 2743: 2704:(6440): 570–4. 2690: 2683: 2675: 2671: 2656: 2634: 2627: 2574: 2567: 2552: 2530: 2517: 2506: 2497: 2485: 2476: 2467: 2465: 2453: 2452: 2448: 2439: 2437: 2427: 2401: 2397: 2352: 2348: 2343: 2327: 2302: 2289: 2269: 2253: 2232: 2223: 2191: 2185: 2182: 2181: 2180: 2178: 2172: 2170: 2169: 2168: 2166: 2154: 2148: 2145: 2144: 2143: 2141: 2135: 2133: 2132: 2131: 2129: 2117: 2111: 2108: 2107: 2106: 2104: 2098: 2096: 2095: 2094: 2092: 2080: 2071: 2069: 2068: 2067: 2065: 2053: 2046: 2043: 2042: 2041: 2039: 2033: 2031: 2030: 2029: 2027: 2015: 2006: 2004: 2003: 2002: 2000: 1988: 1981: 1978: 1977: 1976: 1972: 1969: 1968: 1967: 1965: 1959: 1957: 1956: 1955: 1953: 1941: 1934: 1931: 1930: 1929: 1927: 1921: 1919: 1918: 1917: 1915: 1891: 1888: 1879: 1864: 1855: 1846:resulting in a 1824: 1819: 1727: 1715: 1671: 1658: 1641: 1628: 1619: 1602: 1589: 1518: 1489: 1488: 1407: 1399: 1398: 1352:Patterned media 1322: 1314: 1313: 1181: 1171: 1170: 1166:Hard disk drive 1033: 1023: 1022: 1003: 992: 991: 946: 936: 935: 857:IBM FlashSystem 852:USB flash drive 791: 774: 773: 728: 720: 719: 708:Dual-ported RAM 586: 569: 568: 529:Cloud computing 389:Copy protection 309:Data redundancy 239:Shared resource 209:Data validation 184:Data corruption 159:Structured data 70:Cache coherence 55: 41:Computer memory 35: 28: 23: 22: 15: 12: 11: 5: 3643: 3633: 3632: 3627: 3622: 3607: 3606: 3594: 3581: 3568: 3555: 3541: 3539: 3538:External links 3536: 3532: 3531: 3529: 3528: 3515: 3512: 3511: 3509: 3508: 3503: 3498: 3493: 3488: 3487: 3486: 3481: 3476: 3471: 3466: 3461: 3451: 3446: 3441: 3436: 3435: 3434: 3424: 3419: 3414: 3413: 3412: 3407: 3402: 3397: 3387: 3382: 3377: 3372: 3367: 3361: 3359: 3355: 3354: 3351: 3350: 3348: 3347: 3342: 3337: 3336: 3335: 3325: 3320: 3319: 3318: 3313: 3308: 3303: 3298: 3293: 3288: 3283: 3278: 3273: 3268: 3260: 3255: 3254: 3253: 3248: 3238: 3233: 3228: 3223: 3218: 3217: 3216: 3211: 3206: 3201: 3196: 3194:Machine vision 3191: 3186: 3176: 3175: 3174: 3163: 3161: 3158:communications 3154: 3148: 3144: 3143: 3136: 3135: 3128: 3121: 3113: 3105: 3104: 3050: 3038: 2992: 2932: 2882: 2846: 2795: 2741: 2681: 2669: 2654: 2625: 2565: 2550: 2515: 2495: 2474: 2446: 2425: 2395: 2345: 2344: 2342: 2339: 2326: 2323: 2301: 2298: 2288: 2285: 2268: 2265: 2259:materials and 2252: 2249: 2231: 2228: 2222: 2219: 2216: 2215: 2213: 2210: 2207: 2204: 2200: 2199: 2197: 2194: 2189: 2183: 2176: 2171: 2163: 2162: 2160: 2157: 2152: 2146: 2139: 2134: 2126: 2125: 2123: 2120: 2115: 2109: 2102: 2097: 2089: 2088: 2086: 2083: 2078: 2075: 2070: 2062: 2061: 2059: 2056: 2050: 2044: 2037: 2032: 2024: 2023: 2021: 2018: 2013: 2010: 2005: 1997: 1996: 1994: 1991: 1985: 1979: 1970: 1963: 1958: 1950: 1949: 1947: 1944: 1938: 1932: 1925: 1920: 1912: 1911: 1908: 1905: 1902: 1899: 1887: 1884: 1863: 1860: 1823: 1820: 1818: 1815: 1789: 1788: 1785: 1780: 1776: 1775: 1772: 1769: 1765: 1764: 1761: 1758: 1754: 1753: 1750: 1747: 1743: 1742: 1739: 1734: 1730: 1729: 1724: 1721: 1714: 1711: 1670: 1667: 1657: 1654: 1640: 1637: 1627: 1624: 1618: 1615: 1601: 1598: 1588: 1585: 1520: 1519: 1517: 1516: 1509: 1502: 1494: 1491: 1490: 1487: 1486: 1480: 1474: 1471:Twistor memory 1468: 1462: 1456: 1450: 1444: 1438: 1432: 1427: 1421: 1415: 1408: 1405: 1404: 1401: 1400: 1397: 1396: 1391: 1389:Quantum memory 1386: 1381: 1376: 1371: 1366: 1365: 1364: 1354: 1349: 1344: 1339: 1334: 1329: 1323: 1321:In development 1320: 1319: 1316: 1315: 1312: 1311: 1306: 1305: 1304: 1299: 1294: 1289: 1284: 1279: 1274: 1269: 1264: 1259: 1254: 1249: 1244: 1239: 1234: 1232:Super Video CD 1229: 1224: 1219: 1214: 1209: 1204: 1198: 1193: 1182: 1177: 1176: 1173: 1172: 1169: 1168: 1163: 1162: 1161: 1156: 1151: 1146: 1141: 1136: 1131: 1126: 1121: 1116: 1111: 1106: 1101: 1096: 1091: 1085: 1080: 1075: 1070: 1065: 1055: 1050: 1045: 1040: 1034: 1029: 1028: 1025: 1024: 1021: 1020: 1015: 1010: 1004: 998: 997: 994: 993: 990: 989: 984: 979: 973: 968: 958: 953: 947: 942: 941: 938: 937: 934: 933: 928: 927: 926: 921: 916: 911: 906: 901: 896: 891: 889:MultiMediaCard 886: 881: 876: 866: 865: 864: 859: 854: 849: 843: 837: 825: 820: 819: 818: 813: 803: 798: 792: 787: 786: 783: 782: 776: 775: 772: 771: 765: 759: 754: 751:Selectron tube 748: 742: 736: 729: 726: 725: 722: 721: 718: 717: 716: 715: 705: 700: 695: 689: 684: 679: 678: 677: 667: 666: 665: 660: 655: 650: 645: 640: 635: 630: 625: 620: 615: 605: 604: 603: 598: 591:Hardware cache 587: 582: 581: 578: 577: 571: 570: 567: 566: 561: 556: 551: 546: 544:Edge computing 541: 536: 531: 526: 524:Grid computing 521: 519:Bank switching 516: 511: 506: 501: 496: 491: 486: 481: 476: 471: 466: 464:Virtual memory 461: 456: 451: 446: 441: 436: 431: 429:Disk mirroring 426: 421: 416: 411: 406: 401: 396: 391: 386: 384:Temporary file 381: 376: 371: 366: 361: 356: 351: 346: 341: 336: 334:Knowledge base 331: 326: 324:Storage record 321: 319:Memory refresh 316: 311: 306: 304:Data structure 301: 296: 291: 286: 281: 276: 271: 266: 261: 256: 251: 246: 241: 236: 231: 226: 221: 216: 211: 206: 201: 199:Data integrity 196: 191: 189:Data cleansing 186: 181: 176: 171: 166: 161: 156: 151: 146: 145: 144: 139: 129: 124: 122:Object storage 119: 114: 109: 104: 103: 102: 92: 87: 82: 77: 72: 67: 62: 56: 53: 52: 49: 48: 26: 9: 6: 4: 3: 2: 3642: 3631: 3628: 3626: 3623: 3621: 3618: 3617: 3615: 3604:. 1 May 2019. 3603: 3599: 3595: 3591: 3590:Stanford News 3587: 3582: 3578: 3574: 3569: 3565: 3561: 3556: 3552: 3551:IEEE Spectrum 3548: 3543: 3542: 3527: 3526: 3517: 3516: 3513: 3507: 3506:Transhumanism 3504: 3502: 3499: 3497: 3494: 3492: 3489: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3465: 3462: 3460: 3457: 3456: 3455: 3452: 3450: 3447: 3445: 3442: 3440: 3437: 3433: 3430: 3429: 3428: 3425: 3423: 3420: 3418: 3415: 3411: 3408: 3406: 3403: 3401: 3398: 3396: 3393: 3392: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3362: 3360: 3356: 3346: 3343: 3341: 3338: 3334: 3333:Chipless RFID 3331: 3330: 3329: 3326: 3324: 3321: 3317: 3314: 3312: 3309: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3277: 3274: 3272: 3269: 3267: 3264: 3263: 3261: 3259: 3256: 3252: 3249: 3247: 3244: 3243: 3242: 3239: 3237: 3234: 3232: 3229: 3227: 3224: 3222: 3219: 3215: 3212: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3190: 3187: 3185: 3182: 3181: 3180: 3177: 3173: 3170: 3169: 3168: 3165: 3164: 3162: 3159: 3152: 3149: 3145: 3141: 3134: 3129: 3127: 3122: 3120: 3115: 3114: 3111: 3100: 3096: 3092: 3088: 3083: 3078: 3074: 3070: 3066: 3059: 3057: 3055: 3047: 3046:J. Lee et al. 3042: 3034: 3030: 3026: 3022: 3018: 3014: 3010: 3006: 2999: 2997: 2988: 2984: 2979: 2974: 2970: 2966: 2962: 2958: 2954: 2950: 2946: 2939: 2937: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2889: 2887: 2877: 2872: 2868: 2864: 2860: 2853: 2851: 2842: 2838: 2833: 2828: 2823: 2818: 2814: 2810: 2806: 2799: 2791: 2787: 2782: 2777: 2772: 2767: 2763: 2759: 2755: 2748: 2746: 2737: 2733: 2729: 2725: 2720: 2715: 2711: 2707: 2703: 2699: 2695: 2688: 2686: 2678: 2673: 2665: 2661: 2657: 2651: 2647: 2643: 2639: 2632: 2630: 2621: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2580: 2572: 2570: 2561: 2557: 2553: 2547: 2543: 2539: 2535: 2528: 2526: 2524: 2522: 2520: 2513: 2509: 2504: 2502: 2500: 2493: 2489: 2483: 2481: 2479: 2464: 2460: 2456: 2450: 2436: 2432: 2428: 2422: 2418: 2414: 2410: 2406: 2399: 2391: 2387: 2382: 2377: 2373: 2369: 2365: 2361: 2357: 2350: 2346: 2338: 2336: 2332: 2322: 2319: 2315: 2311: 2310:silicon wafer 2307: 2297: 2294: 2284: 2282: 2273: 2264: 2262: 2258: 2248: 2246: 2242: 2238: 2227: 2214: 2211: 2208: 2205: 2202: 2201: 2198: 2195: 2190: 2177: 2165: 2164: 2161: 2158: 2155:0.025 mm 2153: 2140: 2128: 2127: 2124: 2121: 2116: 2103: 2091: 2090: 2087: 2084: 2081:0.001 mm 2079: 2076: 2064: 2063: 2060: 2057: 2051: 2038: 2026: 2025: 2022: 2019: 2014: 2011: 1999: 1998: 1995: 1992: 1986: 1964: 1952: 1951: 1948: 1945: 1939: 1926: 1914: 1913: 1909: 1906: 1903: 1900: 1897: 1896: 1893: 1883: 1875: 1871: 1869: 1859: 1851: 1849: 1843: 1841: 1837: 1833: 1829: 1814: 1812: 1806: 1804: 1800: 1796: 1786: 1784: 1781: 1778: 1777: 1773: 1770: 1767: 1766: 1762: 1759: 1756: 1755: 1751: 1748: 1745: 1744: 1740: 1738: 1735: 1732: 1731: 1726:NVM synaptic 1725: 1722: 1719: 1718: 1710: 1708: 1704: 1699: 1695: 1691: 1687: 1683: 1679: 1675: 1662: 1653: 1650: 1646: 1636: 1634: 1623: 1614: 1612: 1608: 1607:battery cells 1593: 1584: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1538: 1537:deep learning 1535:designed for 1534: 1530: 1527:is a type of 1526: 1515: 1510: 1508: 1503: 1501: 1496: 1495: 1493: 1492: 1484: 1481: 1478: 1477:Bubble memory 1475: 1472: 1469: 1466: 1463: 1460: 1457: 1454: 1451: 1448: 1445: 1442: 1439: 1436: 1433: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1409: 1403: 1402: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1363: 1360: 1359: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1338: 1335: 1333: 1330: 1328: 1325: 1324: 1318: 1317: 1310: 1307: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1278: 1275: 1273: 1270: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1248: 1245: 1243: 1240: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1202: 1199: 1197: 1194: 1192: 1189: 1188: 1187: 1184: 1183: 1180: 1175: 1174: 1167: 1164: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1135: 1132: 1130: 1127: 1125: 1122: 1120: 1117: 1115: 1112: 1110: 1107: 1105: 1104:Cassette tape 1102: 1100: 1099:Videocassette 1097: 1095: 1092: 1089: 1086: 1084: 1081: 1079: 1076: 1074: 1071: 1069: 1068:Magnetic tape 1066: 1064: 1061: 1060: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1036: 1035: 1032: 1027: 1026: 1019: 1016: 1014: 1011: 1009: 1006: 1005: 1002: 996: 995: 988: 985: 983: 980: 977: 974: 972: 969: 966: 962: 959: 957: 954: 952: 949: 948: 945: 940: 939: 932: 929: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 875: 872: 871: 870: 867: 863: 860: 858: 855: 853: 850: 847: 844: 841: 838: 835: 832: 831: 829: 826: 824: 823:ROM cartridge 821: 817: 814: 812: 809: 808: 807: 804: 802: 799: 797: 794: 793: 790: 785: 784: 781: 778: 777: 769: 766: 763: 760: 758: 755: 752: 749: 746: 743: 740: 737: 734: 731: 730: 724: 723: 714: 711: 710: 709: 706: 704: 701: 699: 696: 693: 690: 688: 685: 683: 680: 676: 673: 672: 671: 668: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 634: 631: 629: 626: 624: 621: 619: 616: 614: 611: 610: 609: 606: 602: 599: 597: 594: 593: 592: 589: 588: 585: 580: 579: 576: 573: 572: 565: 562: 560: 557: 555: 552: 550: 549:Dew computing 547: 545: 542: 540: 539:Fog computing 537: 535: 534:Cloud storage 532: 530: 527: 525: 522: 520: 517: 515: 514:Memory paging 512: 510: 507: 505: 502: 500: 497: 495: 492: 490: 487: 485: 482: 480: 477: 475: 472: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 445: 442: 440: 437: 435: 432: 430: 427: 425: 422: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 395: 392: 390: 387: 385: 382: 380: 377: 375: 372: 370: 367: 365: 362: 360: 357: 355: 352: 350: 349:File deletion 347: 345: 342: 340: 339:Computer file 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 219:Data recovery 217: 215: 212: 210: 207: 205: 204:Data security 202: 200: 197: 195: 192: 190: 187: 185: 182: 180: 177: 175: 172: 170: 167: 165: 162: 160: 157: 155: 152: 150: 147: 143: 140: 138: 135: 134: 133: 130: 128: 125: 123: 120: 118: 115: 113: 110: 108: 105: 101: 100:floating-gate 98: 97: 96: 93: 91: 88: 86: 83: 81: 78: 76: 73: 71: 68: 66: 63: 61: 58: 57: 51: 50: 46: 42: 39: 38: 33: 19: 3630:Types of RAM 3601: 3589: 3576: 3563: 3550: 3523: 3410:Robot ethics 3270: 3209:Semantic Web 3072: 3068: 3045: 3041: 3008: 3004: 2952: 2948: 2902: 2898: 2866: 2862: 2812: 2808: 2798: 2761: 2757: 2701: 2697: 2676: 2672: 2637: 2587: 2583: 2533: 2507: 2487: 2466:. Retrieved 2458: 2449: 2438:. Retrieved 2408: 2398: 2363: 2359: 2349: 2328: 2303: 2290: 2278: 2254: 2233: 2224: 2192:0.01 mm 2118:0.05 mm 1889: 1876: 1872: 1867: 1865: 1862:IBM Research 1852: 1844: 1827: 1825: 1807: 1803:IBM Research 1792: 1746:on/off ratio 1728:cell target 1713:Requirements 1672: 1642: 1629: 1620: 1603: 1524: 1523: 1424:Punched tape 1418:Punched card 1384:Time crystal 1346: 1252:Hyper CD-ROM 1191:Optical disc 1083:Tape library 1018:FeFET memory 999:Early-stage 975: 879:CompactFlash 874:Memory Stick 834:Flash memory 796:Diode matrix 780:Non-volatile 564:Kryder's law 554:Amdahl's law 479:Software rot 454:Logical disk 354:File copying 289:Data storage 244:File sharing 229:Data cluster 45:data storage 3474:Moore's law 3405:Neuroethics 3400:Cyberethics 3221:Atomtronics 2955:(1): 3134. 2869:: 1870273. 1942:100 nm 1904:Device Size 1757:# of states 1559:. Notably, 1541:electrolyte 1483:Floppy disk 1435:Drum memory 869:Memory card 836:is used in: 770:(2002–2010) 735:(1946–1947) 559:Moore's law 404:Boot sector 344:Object file 249:File system 60:Memory cell 3614:Categories 3602:inside HPC 3365:Automation 3005:Adv. Mater 2949:Nat Commun 2863:Adv. Mater 2468:2020-07-16 2463:ETH Zurich 2440:2020-07-16 2341:References 2016:36 μm 1910:Reference 1838:, and the 1779:write time 1406:Historical 1078:Tape drive 904:SmartMedia 727:Historical 424:Disk image 419:Disk array 294:Data store 95:MOS memory 85:Memory map 3395:Bioethics 3281:Millipede 3099:244484634 3091:1616-301X 2927:104934211 2736:133605392 2620:251159631 2604:0036-8075 2560:211211273 2206:2D MXene 2077:PEDOT:PSS 2054:1 mm 1989:1 mm 1686:Kirchhoff 1669:Principle 1587:Operation 1465:Disk pack 1430:Plugboard 1267:DVD-Video 1196:LaserDisc 1094:Videotape 965:3D XPoint 956:Memristor 596:CPU cache 364:Core dump 284:Data bank 234:Directory 3577:MIT News 3316:UltraRAM 3033:49655665 3025:29974526 2987:32561717 2841:32174807 2790:27493624 2728:31023890 2664:58674536 2612:35901152 2435:58674536 2390:24177330 2366:: 2676. 2251:MO-ECRAM 2221:Li-ECRAM 2012:Graphene 1394:UltraRAM 1272:DVD card 1227:Video CD 1212:CD Video 982:Nano-RAM 951:Memistor 924:XQD card 899:SIM card 757:Dekatron 643:XDR DRAM 638:EDO DRAM 575:Volatile 369:Hex dump 279:Database 174:Metadata 169:Big data 3262:Memory 2978:7371700 2957:Bibcode 2919:1472248 2832:7054461 2815:: 103. 2781:4954855 2764:: 333. 2706:Bibcode 2698:Science 2584:Science 2368:Bibcode 2230:H-ECRAM 2212:200 ns 2209:100 μm 1901:Channel 1733:G range 1688:'s and 1479:(~1970) 1473:(~1968) 1455:(1960s) 1292:Blu-ray 1282:MiniDVD 1277:DVD-RAM 1237:Mini CD 1179:Optical 1139:U-matic 1134:MicroMV 1114:Betamax 978:(ECRAM) 919:MicroP2 894:SD card 884:PC Card 675:1T-SRAM 633:QDRSRAM 224:Storage 54:General 32:Synapse 3390:Ethics 3358:Topics 3147:Fields 3097:  3089:  3031:  3023:  2985:  2975:  2925:  2917:  2839:  2829:  2788:  2778:  2734:  2726:  2662:  2652:  2618:  2610:  2602:  2558:  2548:  2433:  2423:  2388:  2159:210 ms 1940:100 x 1720:Metric 1639:Arrays 1485:(1971) 1467:(1962) 1461:(1962) 1449:(1957) 1443:(1949) 1437:(1932) 1426:(1725) 1420:(1725) 1414:(1725) 1287:HD DVD 1247:CD-ROM 1203:(CDDA) 1129:MiniDV 848:(SSHD) 830:(SSS) 816:EEPROM 764:(2009) 753:(1952) 747:(1951) 741:(1947) 359:Backup 3311:SONOS 3271:ECRAM 3266:CBRAM 3258:GPGPU 3095:S2CID 3029:S2CID 2923:S2CID 2732:S2CID 2660:S2CID 2616:S2CID 2556:S2CID 2431:S2CID 2257:OxRam 2196:0.1 s 2058:10 ms 2020:10 ms 1993:0.5 s 1830:from 1763:1000 1741:9-72 1626:Speed 1600:Write 1531:with 1347:ECRAM 1327:CBRAM 1262:DVD+R 1222:CD-RW 1159:D-VHS 1154:VHS-C 1149:S-VHS 1090:(DDS) 1013:ReRAM 1008:FeRAM 1001:NVRAM 987:CBRAM 944:NVRAM 842:(SSD) 811:EPROM 768:Z-RAM 762:T-RAM 694:(CAM) 682:ReRAM 648:RDRAM 628:LPDDR 623:SGRAM 618:SDRAM 613:eDRAM 47:types 3525:List 3328:RFID 3306:RRAM 3296:PRAM 3291:NRAM 3286:MRAM 3276:FRAM 3087:ISSN 3021:PMID 2983:PMID 2915:OSTI 2837:PMID 2786:PMID 2724:PMID 2650:ISBN 2608:PMID 2600:ISSN 2546:ISBN 2421:ISBN 2386:PMID 2267:VLSI 2122:5 ms 2085:5 ms 2040:α-MO 1946:5 ns 1760:n.a. 1749:n.a. 1723:Unit 1705:and 1617:Read 1337:NRAM 1309:WORM 1217:CD-R 971:MRAM 806:PROM 801:MROM 703:VRAM 687:QRAM 670:SRAM 658:GDDR 608:DRAM 504:RAID 154:Data 43:and 3077:doi 3013:doi 2973:PMC 2965:doi 2907:doi 2871:doi 2827:PMC 2817:doi 2776:PMC 2766:doi 2714:doi 2702:364 2642:doi 2592:doi 2588:377 2538:doi 2413:doi 2376:doi 2245:KTH 1971:1−x 1898:Ion 1848:XOR 1690:Ohm 1609:or 1257:DVD 1144:VHS 961:PCM 914:SxS 789:ROM 663:HBM 653:DDR 584:RAM 3616:: 3600:. 3588:. 3575:. 3562:. 3549:. 3093:. 3085:. 3073:32 3071:. 3067:. 3053:^ 3027:. 3019:. 3009:30 3007:. 2995:^ 2981:. 2971:. 2963:. 2953:11 2951:. 2947:. 2935:^ 2921:. 2913:. 2903:28 2901:. 2897:. 2885:^ 2867:30 2865:. 2861:. 2849:^ 2835:. 2825:. 2813:14 2811:. 2807:. 2784:. 2774:. 2762:10 2760:. 2756:. 2744:^ 2730:. 2722:. 2712:. 2700:. 2696:. 2684:^ 2658:. 2648:. 2628:^ 2614:. 2606:. 2598:. 2586:. 2582:. 2568:^ 2554:. 2544:. 2518:^ 2510:, 2498:^ 2490:, 2477:^ 2457:. 2429:. 2419:. 2407:. 2384:. 2374:. 2362:. 2358:. 2291:A 2203:H 2179:WO 2142:WO 2105:WO 2028:Li 2001:Li 1975:CO 1966:Li 1954:Li 1928:WO 1916:Li 1880:10 1856:10 1842:: 1787:1 1783:ns 1774:5 1752:8 1737:nS 1709:. 1696:, 1207:CD 1124:DV 3592:. 3579:. 3566:. 3553:. 3132:e 3125:t 3118:v 3101:. 3079:: 3035:. 3015:: 2989:. 2967:: 2959:: 2929:. 2909:: 2879:. 2873:: 2843:. 2819:: 2792:. 2768:: 2738:. 2716:: 2708:: 2666:. 2644:: 2622:. 2594:: 2562:. 2540:: 2486:' 2471:. 2443:. 2415:: 2392:. 2378:: 2370:: 2364:4 2184:3 2167:H 2147:3 2130:H 2110:3 2093:H 2066:H 2052:~ 2045:3 1987:~ 1980:2 1933:3 1771:% 1513:e 1506:t 1499:v 967:) 963:( 34:. 20:)

Index

Electrochemical random-access memory
Synapse
Computer memory
data storage
Memory cell
Memory coherence
Cache coherence
Memory hierarchy
Memory access pattern
Memory map
Secondary storage
MOS memory
floating-gate
Continuous availability
Areal density (computer storage)
Block (data storage)
Object storage
Direct-attached storage
Network-attached storage
Storage area network
Block-level storage
Single-instance storage
Data
Structured data
Unstructured data
Big data
Metadata
Data compression
Data corruption
Data cleansing

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.