Knowledge

Euler system

Source đź“ť

407: 468:
refers to the elements in an Euler system as "arithmetic incarnations of zeta" and describes the property of being an Euler system as "an arithmetic reflection of the fact that these incarnations are related to special values of Euler products".
107:
Although there are several definitions of special sorts of Euler system, there seems to be no published definition of an Euler system that covers all known cases. But it is possible to say roughly what an Euler system is, as follows:
655: 198: 699: 970:-adic Hodge theory and values of zeta functions of modular forms", in Pierre Berthelot; Jean-Marc Fontaine; Luc Illusie; Kazuya Kato; Michael Rapoport (eds.), 540: 402:{\displaystyle {\rm {cor}}_{G/F}(c_{G})=\prod _{q\in \Sigma (G/F)}P(\mathrm {Fr} _{q}^{-1}|{\rm {Hom}}_{O}(T,O(1));\mathrm {Fr} _{q}^{-1})c_{F}} 1288: 1485: 1256: 1179: 1117: 1066: 1470: 1332: 1449: 1515: 954: 929: 869: 817: 88: 661: 1546: 1413: 1281: 1454: 1439: 1475: 879: 79:, thus giving bounds on their orders, which in turn has led to deep theorems such as the finiteness of some 1379: 1274: 938: 905: 874: 1171: 1149: 1021:
Kolyvagin, V. A. (1988), "The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves",
1099: 1087: 1365: 1340: 1197: 778: 80: 45: 1444: 1480: 1318: 1202: 155: 1408: 1323: 1239: 1189: 1157: 1135: 1076: 1042: 1007: 979: 898: 8: 886: 805: 1434: 1388: 1227: 909: 793: 990: 974:, AstĂ©risque, vol. 295, Paris: SociĂ©tĂ© MathĂ©matique de France, pp. 117–290, 1500: 1490: 1219: 1175: 1123: 1113: 1062: 1030: 950: 925: 72: 25: 1253: 1165: 650:{\displaystyle N_{Q(\zeta _{nl})/Q(\zeta _{l})}(\alpha _{nl})=\alpha _{n}^{F_{l}-1}} 1418: 1370: 1211: 1103: 1054: 942: 889:(1984), "Higher regulators and values of L-functions", in R. V. Gamkrelidze (ed.), 33: 994: 1260: 1235: 1185: 1153: 1143: 1131: 1072: 1058: 1038: 1003: 975: 921: 894: 752: 60:
because the factors relating different elements of an Euler system resemble the
29: 1266: 1053:, Progr. Math., vol. 87, Boston, MA: Birkhäuser Boston, pp. 435–483, 821: 57: 1540: 1349: 1304: 1223: 1127: 1034: 797: 774: 129:, or by something closely related such as square-free integers. The elements 65: 41: 1520: 96: 76: 61: 1083: 986: 963: 465: 92: 17: 1108: 1002:, vol. I, ZĂĽrich: European Mathematical Society, pp. 335–357, 1297: 1231: 949:, Springer Monographs in Mathematics, Springer-Verlag, pp. 71–87, 913: 84: 1167:
Galois representations in arithmetic algebraic geometry (Durham, 1996)
751:. Kolyvagin used this Euler system to give an elementary proof of the 1215: 777:
of an elliptic curve, and used this to show that in some cases the
522:
coprime. Then the cyclotomic Euler system is the set of numbers α
138:
are typically elements of some Galois cohomology group such as H(
1164:
Scholl, A. J. (1998), "An introduction to Kato's Euler systems",
1017:. Proceedings of the congress held in Madrid, August 22–30, 2006 121:. These elements are often indexed by certain number fields 972:
Cohomologies p-adiques et applications arithmétiques. III.
1198:"On the ideal class groups of real abelian number fields" 904: 71:
Euler systems can be used to construct annihilators of
1170:, London Math. Soc. Lecture Note Ser., vol. 254, 993:; Javier Soria; Juan Luis Varona; et al. (eds.), 1252:
Several papers on Kolyvagin systems are available at
1023:
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya
664: 543: 201: 91:, considered simpler than the original proof due to 112:An Euler system is given by collection of elements 693: 649: 401: 165:The most important condition is that the elements 989:(2007), "Iwasawa theory and generalizations", in 1538: 1296: 1148:, Annals of Mathematics Studies, vol. 147, 920:, Lecture Notes in Mathematics, vol. 1716, 773:Kolyvagin constructed an Euler system from the 461:have to satisfy, such as congruence conditions. 893:(in Russian), vol. 24, pp. 181–238, 792:consists of certain elements occurring in the 694:{\displaystyle \alpha _{nl}\equiv \alpha _{n}} 1282: 937: 1092:Memoirs of the American Mathematical Society 431:) considered as an element of O, which when 816:to prove one divisibility in Barry Mazur's 423:) is defined to be the element det(1-τ 48:, which was motivated by his earlier paper 1289: 1275: 1082: 1049:Kolyvagin, V. A. (1990), "Euler systems", 24:is a collection of compatible elements of 1107: 1048: 1020: 885: 809: 49: 37: 996:International Congress of Mathematicians 867: 191:are related by a simple formula, such as 482:For every square-free positive integer 452:There may be other conditions that the 1539: 1195: 1163: 784: 53: 1270: 1141: 1051:The Grothendieck Festschrift, Vol. II 1471:Birch and Swinnerton-Dyer conjecture 985: 962: 918:Arithmetic Theory of Elliptic Curves 852: 840: 813: 812:—were used by Kazuya Kato in 477: 125:containing some fixed number field 13: 368: 365: 325: 322: 319: 293: 290: 260: 211: 208: 205: 14: 1558: 1516:Main conjecture of Iwasawa theory 1246: 947:Cyclotomic Fields and Zeta Values 870:"Euler systems for number fields" 818:main conjecture of Iwasawa theory 768: 763: 725:is a Frobenius automorphism with 89:main conjecture of Iwasawa theory 56:. Euler systems are named after 447:) considered as an element of O. 891:Current problems in mathematics 439:is not the same as det(1-τ 1450:Ramanujan–Petersson conjecture 1440:Generalized Riemann hypothesis 1336:-functions of Hecke characters 846: 834: 613: 597: 592: 579: 568: 552: 534:. These satisfy the relations 386: 357: 354: 348: 336: 312: 285: 277: 263: 243: 230: 1: 1409:Analytic class number formula 861: 800:. These elements—named 758: 102: 1414:Riemann–von Mangoldt formula 1059:10.1007/978-0-8176-4575-5_11 868:Banaszak, Grzegorz (2001) , 154:-adic representation of the 7: 875:Encyclopedia of Mathematics 472: 32:. They were introduced by 10: 1563: 1196:Thaine, Francisco (1988), 1172:Cambridge University Press 1150:Princeton University Press 1499: 1463: 1427: 1401: 1358: 1311: 945:(2006), "Euler systems", 183:for two different fields 827: 712:is a prime not dividing 701:modulo all primes above 411:Here the "Euler factor" 1547:Algebraic number theory 1366:Dedekind zeta functions 808:who introduced them in 81:Tate-Shafarevich groups 46:modular elliptic curves 1254:Barry Mazur's web page 1086:; Rubin, Karl (2004), 779:Tate-Shafarevich group 695: 651: 403: 1486:Bloch–Kato conjecture 1481:Beilinson conjectures 1464:Algebraic conjectures 1319:Riemann zeta function 1203:Annals of Mathematics 696: 652: 404: 156:absolute Galois group 1491:Langlands conjecture 1476:Deligne's conjecture 1428:Analytic conjectures 1174:, pp. 379–460, 1142:Rubin, Karl (2000), 887:Beilinson, Alexander 662: 541: 199: 87:'s new proof of the 1445:Lindelöf hypothesis 1088:"Kolyvagin systems" 806:Alexander Beilinson 790:Kato's Euler system 785:Kato's Euler system 646: 385: 310: 1435:Riemann hypothesis 1359:Algebraic examples 1263:(as of July 2005). 1259:2011-05-17 at the 802:Beilinson elements 794:algebraic K-theory 691: 647: 619: 435:happens to act on 399: 363: 288: 281: 73:ideal class groups 28:groups indexed by 1534: 1533: 1312:Analytic examples 1206:, Second Series, 1181:978-0-521-64419-8 1119:978-0-8218-3512-8 1109:10.1090/memo/0799 1068:978-0-8176-3428-5 908:; Greenberg, R.; 249: 52:and the work of 40:) in his work on 26:Galois cohomology 1554: 1455:Artin conjecture 1419:Weil conjectures 1291: 1284: 1277: 1268: 1267: 1242: 1192: 1160: 1138: 1111: 1079: 1045: 1029:(6): 1154–1180, 1016: 1015: 1014: 1001: 982: 959: 934: 901: 882: 855: 850: 844: 838: 810:Beilinson (1984) 750: 749: 700: 698: 697: 692: 690: 689: 677: 676: 656: 654: 653: 648: 645: 638: 637: 627: 612: 611: 596: 595: 591: 590: 575: 567: 566: 478:Cyclotomic units 408: 406: 405: 400: 398: 397: 384: 376: 371: 335: 334: 329: 328: 315: 309: 301: 296: 280: 273: 242: 241: 229: 228: 224: 215: 214: 50:Kolyvagin (1988) 1562: 1561: 1557: 1556: 1555: 1553: 1552: 1551: 1537: 1536: 1535: 1530: 1495: 1459: 1423: 1397: 1354: 1307: 1295: 1261:Wayback Machine 1249: 1216:10.2307/1971460 1182: 1120: 1069: 1012: 1010: 999: 991:Marta Sanz-SolĂ© 957: 932: 922:Springer-Verlag 864: 859: 858: 851: 847: 839: 835: 830: 822:elliptic curves 787: 771: 766: 761: 753:Gras conjecture 748: 743: 742: 741: 739: 733: 724: 685: 681: 669: 665: 663: 660: 659: 633: 629: 628: 623: 604: 600: 586: 582: 571: 559: 555: 548: 544: 542: 539: 538: 533: 527: 513: 507: 501: 495: 480: 475: 460: 393: 389: 377: 372: 364: 330: 318: 317: 316: 311: 302: 297: 289: 269: 253: 237: 233: 220: 216: 204: 203: 202: 200: 197: 196: 182: 173: 137: 120: 105: 12: 11: 5: 1560: 1550: 1549: 1532: 1531: 1529: 1528: 1523: 1518: 1512: 1510: 1497: 1496: 1494: 1493: 1488: 1483: 1478: 1473: 1467: 1465: 1461: 1460: 1458: 1457: 1452: 1447: 1442: 1437: 1431: 1429: 1425: 1424: 1422: 1421: 1416: 1411: 1405: 1403: 1399: 1398: 1396: 1395: 1386: 1377: 1368: 1362: 1360: 1356: 1355: 1353: 1352: 1347: 1338: 1330: 1321: 1315: 1313: 1309: 1308: 1294: 1293: 1286: 1279: 1271: 1265: 1264: 1248: 1247:External links 1245: 1244: 1243: 1193: 1180: 1161: 1139: 1118: 1080: 1067: 1046: 1018: 983: 960: 955: 935: 930: 902: 883: 863: 860: 857: 856: 845: 832: 831: 829: 826: 798:modular curves 786: 783: 775:Heegner points 770: 769:Heegner points 767: 765: 764:Elliptic units 762: 760: 757: 744: 735: 729: 720: 706: 705: 688: 684: 680: 675: 672: 668: 657: 644: 641: 636: 632: 626: 622: 618: 615: 610: 607: 603: 599: 594: 589: 585: 581: 578: 574: 570: 565: 562: 558: 554: 551: 547: 529: 523: 509: 503: 497: 491: 479: 476: 474: 471: 463: 462: 456: 449: 448: 409: 396: 392: 388: 383: 380: 375: 370: 367: 362: 359: 356: 353: 350: 347: 344: 341: 338: 333: 327: 324: 321: 314: 308: 305: 300: 295: 292: 287: 284: 279: 276: 272: 268: 265: 262: 259: 256: 252: 248: 245: 240: 236: 232: 227: 223: 219: 213: 210: 207: 193: 192: 178: 169: 163: 133: 116: 104: 101: 83:. This led to 58:Leonhard Euler 42:Heegner points 9: 6: 4: 3: 2: 1559: 1548: 1545: 1544: 1542: 1527: 1524: 1522: 1519: 1517: 1514: 1513: 1511: 1509: 1507: 1503: 1498: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1468: 1466: 1462: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1432: 1430: 1426: 1420: 1417: 1415: 1412: 1410: 1407: 1406: 1404: 1400: 1394: 1392: 1387: 1385: 1383: 1378: 1376: 1374: 1369: 1367: 1364: 1363: 1361: 1357: 1351: 1350:Selberg class 1348: 1346: 1344: 1339: 1337: 1335: 1331: 1329: 1327: 1322: 1320: 1317: 1316: 1314: 1310: 1306: 1305:number theory 1302: 1300: 1292: 1287: 1285: 1280: 1278: 1273: 1272: 1269: 1262: 1258: 1255: 1251: 1250: 1241: 1237: 1233: 1229: 1225: 1221: 1217: 1213: 1209: 1205: 1204: 1199: 1194: 1191: 1187: 1183: 1177: 1173: 1169: 1168: 1162: 1159: 1155: 1151: 1147: 1146: 1145:Euler systems 1140: 1137: 1133: 1129: 1125: 1121: 1115: 1110: 1105: 1101: 1097: 1093: 1089: 1085: 1081: 1078: 1074: 1070: 1064: 1060: 1056: 1052: 1047: 1044: 1040: 1036: 1032: 1028: 1024: 1019: 1009: 1005: 998: 997: 992: 988: 984: 981: 977: 973: 969: 965: 961: 958: 956:3-540-33068-2 952: 948: 944: 940: 936: 933: 931:3-540-66546-3 927: 923: 919: 915: 911: 907: 903: 900: 896: 892: 888: 884: 881: 877: 876: 871: 866: 865: 854: 849: 842: 837: 833: 825: 823: 819: 815: 811: 807: 803: 799: 795: 791: 782: 780: 776: 756: 754: 747: 738: 732: 728: 723: 719: 715: 711: 704: 686: 682: 678: 673: 670: 666: 658: 642: 639: 634: 630: 624: 620: 616: 608: 605: 601: 587: 583: 576: 572: 563: 560: 556: 549: 545: 537: 536: 535: 532: 528:= 1 − ζ 526: 521: 517: 512: 506: 500: 494: 489: 485: 470: 467: 459: 455: 451: 450: 446: 442: 438: 434: 430: 426: 422: 418: 414: 410: 394: 390: 381: 378: 373: 360: 351: 345: 342: 339: 331: 306: 303: 298: 282: 274: 270: 266: 257: 254: 250: 246: 238: 234: 225: 221: 217: 195: 194: 190: 187: âŠ†  186: 181: 177: 172: 168: 164: 161: 157: 153: 149: 145: 141: 136: 132: 128: 124: 119: 115: 111: 110: 109: 100: 98: 94: 90: 86: 82: 78: 77:Selmer groups 74: 69: 67: 66:Euler product 63: 62:Euler factors 59: 55: 54:Thaine (1988) 51: 47: 43: 39: 35: 31: 27: 23: 19: 1526:Euler system 1525: 1521:Selmer group 1505: 1501: 1390: 1381: 1372: 1342: 1341:Automorphic 1333: 1325: 1298: 1207: 1201: 1166: 1144: 1095: 1091: 1084:Mazur, Barry 1050: 1026: 1022: 1011:, retrieved 995: 987:Kato, Kazuya 971: 967: 964:Kato, Kazuya 946: 917: 906:Coates, J.H. 890: 873: 848: 836: 801: 789: 788: 772: 745: 736: 730: 726: 721: 717: 713: 709: 707: 702: 530: 524: 519: 515: 510: 504: 498: 496:of 1, with ζ 492: 487: 483: 481: 464: 457: 453: 444: 440: 436: 432: 428: 424: 420: 416: 412: 188: 184: 179: 175: 170: 166: 159: 151: 147: 143: 139: 134: 130: 126: 122: 117: 113: 106: 97:Andrew Wiles 70: 22:Euler system 21: 15: 1380:Hasse–Weil 1210:(1): 1–18, 943:Sujatha, R. 910:Ribet, K.A. 814:Kato (2004) 781:is finite. 466:Kazuya Kato 93:Barry Mazur 18:mathematics 1508:-functions 1393:-functions 1384:-functions 1375:-functions 1345:-functions 1328:-functions 1324:Dirichlet 1301:-functions 1013:2010-08-12 939:Coates, J. 862:References 759:Gauss sums 490:-th root ζ 103:Definition 85:Karl Rubin 1224:0003-486X 1128:0065-9266 1035:0373-2436 966:(2004), " 914:Rubin, K. 880:EMS Press 853:Kato 2007 841:Kato 2007 683:α 679:≡ 667:α 640:− 621:α 602:α 584:ζ 557:ζ 379:− 304:− 261:Σ 258:∈ 251:∏ 34:Kolyvagin 1541:Category 1402:Theorems 1389:Motivic 1257:Archived 916:(1999), 843:, §2.5.1 486:pick an 473:Examples 415:(τ| 146:) where 1240:0951505 1232:1971460 1190:1696501 1158:1749177 1136:2031496 1100:viii+96 1098:(799): 1077:1106906 1043:0984214 1008:2334196 980:2104361 899:0760999 36: ( 1504:-adic 1371:Artin 1238:  1230:  1222:  1188:  1178:  1156:  1134:  1126:  1116:  1075:  1065:  1041:  1033:  1006:  978:  953:  928:  897:  804:after 708:where 64:of an 30:fields 1228:JSTOR 1000:(PDF) 828:Notes 740:) = ζ 150:is a 20:, an 1220:ISSN 1176:ISBN 1124:ISSN 1114:ISBN 1063:ISBN 1031:ISSN 951:ISBN 926:ISBN 820:for 716:and 514:for 174:and 95:and 38:1990 1303:in 1212:doi 1208:128 1104:doi 1096:168 1055:doi 796:of 502:= ζ 158:of 75:or 44:on 16:In 1543:: 1236:MR 1234:, 1226:, 1218:, 1200:, 1186:MR 1184:, 1154:MR 1152:, 1132:MR 1130:, 1122:, 1112:, 1102:, 1094:, 1090:, 1073:MR 1071:, 1061:, 1039:MR 1037:, 1027:52 1025:, 1004:MR 976:MR 941:; 924:, 912:; 895:MR 878:, 872:, 824:. 755:. 734:(ζ 499:mn 142:, 99:. 68:. 1506:L 1502:p 1391:L 1382:L 1373:L 1343:L 1334:L 1326:L 1299:L 1290:e 1283:t 1276:v 1214:: 1106:: 1057:: 968:p 746:n 737:n 731:l 727:F 722:l 718:F 714:n 710:l 703:l 687:n 674:l 671:n 643:1 635:l 631:F 625:n 617:= 614:) 609:l 606:n 598:( 593:) 588:l 580:( 577:Q 573:/ 569:) 564:l 561:n 553:( 550:Q 546:N 531:n 525:n 520:n 518:, 516:m 511:n 508:ζ 505:m 493:n 488:n 484:n 458:F 454:c 445:B 443:| 441:x 437:B 433:x 429:B 427:| 425:x 421:x 419:; 417:B 413:P 395:F 391:c 387:) 382:1 374:q 369:r 366:F 361:; 358:) 355:) 352:1 349:( 346:O 343:, 340:T 337:( 332:O 326:m 323:o 320:H 313:| 307:1 299:q 294:r 291:F 286:( 283:P 278:) 275:F 271:/ 267:G 264:( 255:q 247:= 244:) 239:G 235:c 231:( 226:F 222:/ 218:G 212:r 209:o 206:c 189:G 185:F 180:G 176:c 171:F 167:c 162:. 160:K 152:p 148:T 144:T 140:F 135:F 131:c 127:K 123:F 118:F 114:c

Index

mathematics
Galois cohomology
fields
Kolyvagin
1990
Heegner points
modular elliptic curves
Kolyvagin (1988)
Thaine (1988)
Leonhard Euler
Euler factors
Euler product
ideal class groups
Selmer groups
Tate-Shafarevich groups
Karl Rubin
main conjecture of Iwasawa theory
Barry Mazur
Andrew Wiles
absolute Galois group
Kazuya Kato
Gras conjecture
Heegner points
Tate-Shafarevich group
algebraic K-theory
modular curves
Alexander Beilinson
Beilinson (1984)
Kato (2004)
main conjecture of Iwasawa theory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑