Knowledge

Evanescent field

Source đź“ť

40: 519: 2305: 529: 196:
mode" or an "evanescent mode"; while a different author will just state that no such mode exists. Since the evanescent field corresponding to the mode was computed as a solution to the wave equation, it is often discussed as being an "evanescent wave" even though its properties (such as carrying no energy) are inconsistent with the definition of
492:) or (2) those in which the evanescent wave couples two media in which traveling waves are allowed, and hence permits the transfer of energy or a particle between the media (depending on the wave equation in use), even though no traveling-wave solutions are allowed in the region of space between the two media. An example of this is 2362:). The evanescent wave coupling takes place in the non-radiative field near each medium and as such is always associated with matter; i.e., with the induced currents and charges within a partially reflecting surface. In quantum mechanics the wave function interaction may be discussed in terms of particles and described as 600:
components, however, superimpose constructively, so there can be no solution without a non-vanishing transmitted wave. The transmitted wave cannot, however, be a sinusoidal wave, since it would then transport energy away from the boundary, but since the incident and reflected waves have equal energy,
124:
Everyday electronic devices and electrical appliances are surrounded by large fields which are evanescent; their operation involves alternating voltages (producing an electric field between them) and alternating currents (producing a magnetic field around them) which are expected to only carry power
2357:
interaction in electromagnetic field theory. Depending on the nature of the source element, the evanescent field involved is either predominantly electric (capacitive) or magnetic (inductive), unlike (propagating) waves in the far field where these components are connected (identical phase, in the
106:
For instance, in the illustration at the top of the article, energy is indeed carried in the horizontal direction. However, in the vertical direction, the field strength drops off exponentially with increasing distance above the surface. This leaves most of the field concentrated in a thin boundary
195:
The formal solution to the wave equation can describe modes having an identical form, but the change of the propagation constant from real to imaginary as the frequency drops below the cut-off frequency totally changes the physical nature of the result. The solution may be described as a "cut-off
144:
arise in various contexts where a propagating electromagnetic wave is involved (even if confined). The term then differentiates electromagnetic field components that accompany the propagating wave, but which do not themselves propagate. In other, similar cases, where a propagating electromagnetic
102:
In many cases one cannot simply say that a field is or is not "evanescent" – having the Poynting vector average to zero in some direction (or all directions). In most cases where they exist, evanescent fields are simply thought of and referred to the same as all other electric or magnetic fields
487:
More generally, practical applications of evanescent waves can be classified as (1) those in which the energy associated with the wave is used to excite some other phenomenon within the region of space where the original traveling wave becomes evanescent (for example, as in the
1801: 219:
arises from the physics involved. In these cases, solutions to the wave equation resulting in imaginary propagation constants are likewise called "evanescent", and have the essential property that no net energy is transferred, even though there is a non-zero field.
1395: 308:
within one third of a wavelength of any radio antenna. During normal operation, an antenna emits electromagnetic fields into the surrounding nearfield region, and a portion of the field energy is reabsorbed, while the remainder is radiated as EM waves.
1670: 2109: 605:. We therefore conclude that the transmitted wave must be a non-vanishing solution to Maxwell's equations that is not a traveling wave, and the only such solutions in a dielectric are those that decay exponentially: evanescent waves. 807: 2223: 103:
involved, without any special recognition of those fields' evanescence. The term's use is mostly limited to distinguishing a part of a field or solution in those cases where one might only expect the fields of a propagating wave.
552:
along z. One might expect that for angles leading to total internal reflection, the solution would consist of an incident wave and a reflected wave, with no transmitted wave at all, but there is no such solution that obeys
149:
at the interface between glass and air), the term is invoked to describe that part of the field where the wave is suppressed (such as light traveling through glass, impinging on a glass-to-air interface but beyond the
1930: 2556: 411: 1243:
are the refractive index of the medium where the incident wave and the reflected wave exist, the refractive index of the medium where the transmitted wave exists, and the angle of incidence respectively,
83:), one can still identify as an evanescent field the component of the electric or magnetic field that cannot be attributed to the propagating wave observed at a distance of many wavelengths (such as the 1531: 1160: 192:
propagate as a wave but falls off exponentially, so the field excited at that lower frequency is considered evanescent. It can also be simply said that propagation is "disallowed" for that frequency.
79:
but whose energy is spatially concentrated in the vicinity of the source (oscillating charges and currents). Even when there is a propagating electromagnetic wave produced (e.g., by a transmitting
1706: 2927:
Fan, Zhiyuan; Zhan, Li; Hu, Xiao; Xia, Yuxing (2008). "Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling".
358:, can overcome the diffraction limit; however these systems are then limited by the system's ability to accurately capture the evanescent waves. The limitation on their resolution is given by 125:
along internal wires, but not to the outsides of the devices. Even though the term "evanescent" is not mentioned in this ordinary context, the appliances' designers still may be concerned with
1250: 922: 866: 1456: 346:. Matter radiates both propagating and evanescent electromagnetic waves. Conventional optical systems capture only the information in the propagating waves and hence are subject to the 121:
from (or toward) the surface, so that one could properly describe the field as being "evanescent in the vertical direction". This is one example of the context dependence of the term.
1042: 1011: 1833: 1539: 1959: 593:
are satisfied if the reflected wave has the same amplitude as the incident one, because these components of the incident and reflected waves superimpose destructively. Their
2338:
may be effected by placing the fiber cores close together so that the evanescent field generated by one element excites a wave in the other fiber. This is used to produce
2260: 1981: 1241: 980: 2290: 2320:
refers to the coupling between two waves due to physical overlap of what would otherwise be described as the evanescent fields corresponding to the propagating waves.
478: 1214: 1187: 949: 51:) propagating along a metal-dielectric interface. The fields away from the surface die off exponentially (right hand graph) and those fields are thus described as 715: 666: 1989: 689: 640: 1857: 1698: 1082: 1062: 723: 458: 434: 2117: 2633: 90:
A hallmark of an evanescent field is that there is no net energy flow in that region. Since the net flow of electromagnetic energy is given by the average
2347: 2471: 2409: 489: 282: 2324: 161:, different technologies or problems have certain types of expected solutions, and when the primary solutions involve wave propagation the term 1865: 2711: 2331:
overlaps another dense medium in the vicinity. This disrupts the totality of the reflection, diverting some power into the second medium.
250:, in the case of acoustical waves) cannot be discontinuous at a boundary, as would be the case if there was no evanescent wave field. In 2308:
Plot of 1/e-penetration depth of the evanescent wave against angle of incidence in units of wavelength for different refraction indices.
316:) has been fabricated and demonstrated its competence for excitation of surface electromagnetic waves in the periodic structure using a 3014: 2962:
Karalis, Aristeidis; J.D. Joannopoulos; Marin Soljačić (February 2007). "Efficient wireless non-radiative mid-range energy transfer".
2516: 364: 1468: 1093: 130: 355: 1796:{\displaystyle \mathbf {E} (\mathbf {r} ,t)=\operatorname {Re} \left\{E(\mathbf {r} )e^{i\omega t}\right\}\mathbf {\hat {z}} } 2821: 2802:
Neice, A., "Methods and Limitations of Subwavelength Imaging", Advances in Imaging and Electron Physics, Vol. 163, July 2010.
2641: 2416:
to excite fluorophores close to a surface. This is useful when surface properties of biological samples need to be studied.
2374:
Evanescent wave coupling is commonly used in photonic and nanophotonic devices as waveguide sensors or couplers (see e.g.,
2451: 2481: 2327:
in which the evanescent field very close (see graph) to the surface of a dense medium at which a wave normally undergoes
305: 557:. Maxwell's equations in a dielectric medium impose a boundary condition of continuity for the components of the fields 2399: 2837:
Zeng, Shuwen; Yu, Xia; Law, Wing-Cheung; Zhang, Yating; Hu, Rui; Dinh, Xuan-Quyen; Ho, Ho-Pui; Yong, Ken-Tye (2013).
513: 1390:{\displaystyle k_{y}=k_{t}\cos \theta _{t}=\pm k_{t}\left(1-{\frac {\sin ^{2}\theta _{i}}{n_{ti}^{2}}}\right)^{1/2}} 616:
value. Because the vector has imaginary components, it may have a magnitude that is less than its real components.
1700:
direction), then the electric field of any of the waves (incident, reflected, or transmitted) can be expressed as
246:. The physical explanation for the existence of the evanescent wave is that the electric and magnetic fields (or 871: 815: 17: 2226: 129:
evanescence, in order to prevent or limit production of a propagating electromagnetic wave, which would lead to
94:, this means that the Poynting vector in these regions, as averaged over a complete oscillation cycle, is zero. 2666: 1404: 2385: 2578:
Takayama, O.; Bogdanov, A.A.; Lavrinenko, A.V. (2017). "Photonic surface waves on metamaterial interfaces".
1665:{\displaystyle k_{y}=\pm ik_{t}\left({\frac {\sin ^{2}\theta _{i}}{n_{ti}^{2}}}-1\right)^{1/2}=\pm i\alpha } 1016: 985: 294: 1809: 343: 3143: 3133: 347: 274: 1935: 3118: 2839:"Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement" 2466: 2413: 2328: 1462: 541: 522: 237: 48: 2350:
The device is usually called a power divider in the case of microwave transmission and modulation.
500: 2746:
Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting (2012).
2232: 1964: 3138: 3097: 2441: 2359: 1219: 958: 242: 151: 328: 3128: 2426: 2269: 602: 554: 301: 158: 39: 463: 290: 258:
representing particle motion normal to the boundary cannot be discontinuous at the boundary.
2381:
Evanescent wave coupling is used to excite, for example, dielectric microsphere resonators.
2981: 2936: 2850: 2759: 2720: 2587: 2431: 2339: 2104:{\displaystyle E(\mathbf {r} )=E_{o}e^{-i(-i\alpha y+\beta x)}=E_{o}e^{-\alpha y-i\beta x}} 1677: 1192: 1165: 927: 549: 342:, systems that capture the information contained in evanescent waves can be used to create 169: 76: 802:{\displaystyle \mathbf {k_{t}} \ =\ k_{y}{\hat {\mathbf {y} }}+k_{x}{\hat {\mathbf {x} }}} 8: 2218:{\textstyle \alpha =k_{t}\left({\frac {\sin ^{2}\theta _{i}}{n_{ti}^{2}}}-1\right)^{1/2}} 694: 645: 177: 165:
is frequently applied to field components or solutions which do not share that property.
2985: 2940: 2854: 2763: 2724: 2709:
Marston, Philip L.; Matula, T.J. (May 2002). "Scattering of acoustic evanescent waves".
2591: 671: 622: 3072: 3047: 2997: 2971: 2780: 2747: 2611: 2354: 1842: 1683: 1067: 1047: 494: 443: 419: 332: 262: 247: 134: 3077: 2909: 2838: 2817: 2785: 2662: 2637: 2603: 2446: 2363: 2335: 324: 251: 212: 133:, since a propagating wave "steals" its power from the circuitry or donates unwanted 3067: 3059: 3029: 3001: 2989: 2944: 2899: 2889: 2858: 2775: 2767: 2728: 2691: 2615: 2595: 613: 313: 181: 64: 31: 350:. Systems that capture the information contained in evanescent waves, such as the 75:, is an oscillating electric and/or magnetic field that does not propagate as an 3123: 2948: 2292:
is ignored since it does not physically make sense (the wave amplification along
544:
in two dimensions, with the interface between the media lying on the x axis, the
270: 91: 80: 3048:"Cell-substrate contacts illuminated by total internal reflection fluorescence" 2748:"Excitation of surface electromagnetic waves in a graphene-based Bragg grating" 2599: 2456: 2436: 2263: 1088: 545: 3103: 2993: 2862: 2398:
Evanescent wave coupling plays a major role in the theoretical explanation of
536:
and (bottom) evanescent wave at an interface in red (reflected waves omitted).
3112: 2913: 2392: 2375: 2343: 317: 286: 266: 255: 216: 185: 518: 269:
them to very low temperatures, and to illuminate very small objects such as
113:. However, despite energy flowing horizontally, along the vertical there is 2894: 2877: 2789: 2607: 109: 107:
layer very close to the interface; for that reason, it is referred to as a
44: 3081: 2577: 2384:
Evanescent coupling, as near field interaction, is one of the concerns in
184:) the propagation constant becomes an imaginary number. A solution to the 157:
Although all electromagnetic fields are classically governed according to
3063: 2304: 1925:{\displaystyle E(\mathbf {r} )=E_{0}e^{-i\mathbf {k} \cdot \mathbf {r} }} 1836: 609: 437: 3015:"'Evanescent coupling' could power gadgets wirelessly", Celeste Biever, 2976: 2904: 2878:"Advances in Functional Solution Processed Planar 1D Photonic Crystals" 2682:
Tineke Thio (2006). "A Bright Future for Subwavelength Light Sources".
952: 533: 339: 278: 236:, evanescent waves are formed when waves traveling in a medium undergo 2961: 2771: 2732: 2695: 2476: 2461: 2346:. At radio (and even optical) frequencies, such a device is called a 579:. For the polarization considered in this example, the conditions on 351: 233: 208: 173: 146: 84: 951:
is the magnitude of the wave vector of the transmitted wave (so the
240:
at its boundary because they strike it at an angle greater than the
30:"Evanesce" redirects here. For the album by Anatomy of a Ghost, see 481: 528: 27:
Type of field where the net flow of electromagnetic energy is zero
2405:
Evanescent wave coupling is used in powering devices wirelessly.
261:
Electromagnetic evanescent waves have been used to exert optical
203:
Although this article concentrates on electromagnetics, the term
2551:{\displaystyle \mathbf {S} =\mathbf {E} \times \mathbf {H} ^{*}} 406:{\displaystyle k\propto {\frac {1}{d}}\ln {\frac {1}{\delta }},} 289:
can be used in a gas sensor, and evanescent waves figure in the
2510: 2313: 229: 3030:
Wireless energy could power consumer, industrial electronics
2630:
IEEE Standard Dictionary of Electrical and Electronics Terms
2876:
Lova, Paola; Manfredi, Giovanni; Comoretto, Davide (2018).
1526:{\displaystyle \sin \theta _{i}>\sin \theta _{c}=n_{ti}} 1155:{\displaystyle n_{i}\sin \theta _{i}=n_{t}\sin \theta _{t}} 608:
Mathematically, evanescent waves can be characterized by a
265:
on small particles to trap them for experimentation, or to
197: 312:
Recently, a graphene-based Bragg grating (one-dimensional
3104:
Evanescent and propagating waves animation on Youtube.com
3033: 717:, the wave vector of the transmitted wave has the form 460:
is the distance between the object and the sensor, and
2745: 2120: 1680:
is perpendicular to the plane of incidence (along the
1407: 2875: 2634:
The Institute of Electrical and Electronics Engineers
2519: 2272: 2235: 1992: 1967: 1938: 1868: 1845: 1812: 1709: 1686: 1542: 1471: 1253: 1222: 1195: 1168: 1096: 1070: 1050: 1019: 988: 961: 930: 874: 818: 726: 697: 674: 648: 625: 507: 466: 446: 422: 367: 612:
where one or more of the vector's components has an
254:, the physical explanation is exactly analogous—the 2708: 2816:(5th Global ed.). Pearson. pp. 135–137. 2550: 2284: 2254: 2217: 2103: 1975: 1953: 1924: 1851: 1827: 1795: 1692: 1664: 1525: 1450: 1389: 1235: 1208: 1181: 1154: 1076: 1056: 1036: 1005: 974: 943: 916: 860: 801: 709: 683: 660: 634: 472: 452: 428: 405: 2472:Total internal reflection fluorescence microscope 2410:total internal reflection fluorescence microscope 1819: 1787: 490:total internal reflection fluorescence microscope 283:total internal reflection fluorescence microscope 3110: 514:Total internal reflection § Evanescent wave 2702: 1932:, and substituting the transmitted wave vector 223: 145:wave would normally be expected (such as light 2836: 2926: 2712:Journal of the Acoustical Society of America 2622: 2391:Coupling of optical fibers without loss for 2353:Evanescent-wave coupling is synonymous with 668:and the interface of the two mediums as the 2681: 2325:frustrated total internal reflection (FTIR) 2299: 917:{\displaystyle k_{y}=k_{t}\cos \theta _{t}} 861:{\displaystyle k_{x}=k_{t}\sin \theta _{t}} 2650: 1451:{\textstyle n_{ti}={\frac {n_{t}}{n_{i}}}} 3071: 2975: 2903: 2893: 2779: 2303: 527: 517: 38: 3045: 2656: 327:, the evanescent-wave solutions of the 14: 3111: 356:near field scanning optical microscopy 2811: 2675: 2412:uses the evanescent wave produced by 1037:{\displaystyle {\hat {\mathbf {y} }}} 1006:{\displaystyle {\hat {\mathbf {x} }}} 176:is a strong function of frequency (a 2580:Journal of Physics: Condensed Matter 1983:, we find for the transmitted wave: 304:, evanescent waves are found in the 207:is used similarly in fields such as 188:having an imaginary wavenumber does 1828:{\displaystyle \mathbf {\hat {z}} } 24: 2400:extraordinary optical transmission 1461:If a part of the condition of the 619:For the plane of incidence as the 508:Total internal reflection of light 180:). Below a certain frequency (the 97: 25: 3155: 3091: 2843:Sensors and Actuators B: Chemical 2538: 2529: 2521: 2000: 1969: 1954:{\displaystyle \mathbf {k_{t}} } 1945: 1941: 1916: 1908: 1876: 1816: 1784: 1753: 1719: 1711: 1024: 993: 982:is the angle of refraction, and 789: 762: 733: 729: 275:single protein and DNA molecules 3039: 3023: 3008: 2955: 2920: 2869: 2830: 2482:Wheeler–Feynman absorber theory 2369: 1044:are the unit vectors along the 331:give rise to the phenomenon of 285:). The evanescent wave from an 2805: 2796: 2739: 2571: 2513:, the complex Poynting vector 2495: 2055: 2031: 2004: 1996: 1880: 1872: 1757: 1749: 1729: 1715: 1028: 997: 793: 766: 43:Schematic representation of a 13: 1: 2565: 2386:electromagnetic compatibility 2296:the direction in this case). 1084:axis direction respectively. 3046:Axelrod, D. (1 April 1981). 2949:10.1016/j.optcom.2008.07.077 2661:(3rd ed.). John-Wiley. 2657:Jackson, John David (1999). 2255:{\displaystyle \beta =k_{x}} 1976:{\displaystyle \mathbf {k} } 498:, and is known generally as 295:attenuated total reflectance 224:Evanescent wave applications 140:The term "evanescent field" 87:of a transmitting antenna). 7: 3052:The Journal of Cell Biology 2419: 1862:By assuming plane waves as 1236:{\displaystyle \theta _{i}} 975:{\displaystyle \theta _{t}} 10: 3160: 2882:Advanced Optical Materials 2501:Or, expressing the fields 532:Representation of a (top) 511: 495:wave-mechanical tunnelling 117:net propagation of energy 29: 2994:10.1016/j.aop.2007.04.017 2863:10.1016/j.snb.2012.09.073 2659:Classical Electrodynamics 2467:Total internal reflection 2414:total internal reflection 2329:total internal reflection 2323:One classical example is 2285:{\displaystyle +i\alpha } 1463:total internal reflection 542:total internal reflection 523:Total internal reflection 333:wave-mechanical tunneling 256:Schrödinger wave-function 238:total internal reflection 49:surface plasmon polariton 2600:10.1088/1361-648X/aa8bdd 2488: 2452:Resonant energy transfer 2318:evanescent-wave coupling 2300:Evanescent-wave coupling 501:evanescent wave coupling 318:prism coupling technique 2442:Plasmonic metamaterials 2360:impedance of free space 1064:axis direction and the 534:refracted incident wave 473:{\displaystyle \delta } 344:super-resolution images 2895:10.1002/adom.201800730 2812:Hecht, Eugene (2017). 2552: 2427:Coupling (electronics) 2309: 2286: 2256: 2219: 2105: 1977: 1955: 1926: 1853: 1829: 1797: 1694: 1666: 1527: 1452: 1391: 1237: 1210: 1183: 1156: 1078: 1058: 1038: 1007: 976: 945: 918: 862: 803: 711: 685: 662: 636: 603:conservation of energy 540:For example, consider 537: 525: 474: 454: 440:that can be resolved, 430: 407: 302:electrical engineering 60: 2929:Optics Communications 2636:. 1992. p. 458. 2558:has a zero real part. 2553: 2340:fiber-optic splitters 2334:Coupling between two 2307: 2287: 2257: 2220: 2106: 1978: 1956: 1927: 1854: 1830: 1798: 1695: 1667: 1533:, is satisfied, then 1528: 1453: 1392: 1238: 1211: 1209:{\displaystyle n_{t}} 1184: 1182:{\displaystyle n_{i}} 1157: 1079: 1059: 1039: 1008: 977: 946: 944:{\displaystyle k_{t}} 919: 863: 804: 712: 686: 663: 637: 531: 521: 512:Further information: 475: 455: 431: 408: 291:infrared spectroscopy 42: 3064:10.1083/jcb.89.1.141 2646:. IEEE STD 100-1992. 2517: 2432:Electromagnetic wave 2348:directional coupler. 2270: 2233: 2227:attenuation constant 2118: 1990: 1965: 1936: 1866: 1843: 1810: 1707: 1684: 1540: 1469: 1405: 1251: 1220: 1193: 1166: 1094: 1068: 1048: 1017: 986: 959: 928: 872: 816: 724: 695: 672: 646: 623: 480:is a measure of the 464: 444: 420: 365: 329:Schrödinger equation 170:propagation constant 77:electromagnetic wave 2986:2008AnPhy.323...34K 2941:2008OptCo.281.5467F 2855:2013SeAcB.176.1128Z 2764:2012NatSR...2E.737S 2725:2002ASAJ..111.2378M 2592:2017JPCM...29T3001T 2187: 1622: 1365: 710:{\displaystyle y=0} 661:{\displaystyle z=0} 601:this would violate 555:Maxwell's equations 293:technique known as 178:dispersion relation 159:Maxwell's equations 3019:, 15 November 2006 2752:Scientific Reports 2684:American Scientist 2548: 2336:optical waveguides 2310: 2282: 2252: 2215: 2170: 2101: 1973: 1951: 1922: 1849: 1825: 1793: 1690: 1662: 1605: 1523: 1448: 1387: 1348: 1233: 1206: 1179: 1152: 1074: 1054: 1034: 1003: 972: 941: 914: 858: 799: 707: 684:{\displaystyle xz} 681: 658: 635:{\displaystyle xy} 632: 538: 526: 470: 450: 426: 403: 263:radiation pressure 248:pressure gradients 172:of a hollow metal 168:For instance, the 61: 3144:Quantum mechanics 3134:Materials science 2964:Annals of Physics 2823:978-1-292-09693-3 2772:10.1038/srep00737 2733:10.1121/1.4778056 2696:10.1511/2006.1.40 2643:978-1-55937-240-4 2447:Quantum tunneling 2364:quantum tunneling 2188: 1852:{\displaystyle z} 1822: 1790: 1693:{\displaystyle z} 1623: 1446: 1366: 1077:{\displaystyle y} 1057:{\displaystyle x} 1031: 1000: 796: 769: 747: 741: 548:along y, and the 453:{\displaystyle d} 429:{\displaystyle k} 398: 382: 348:diffraction limit 325:quantum mechanics 306:near-field region 252:quantum mechanics 213:quantum mechanics 182:cut-off frequency 16:(Redirected from 3151: 3119:Electromagnetism 3086: 3085: 3075: 3043: 3037: 3027: 3021: 3017:NewScientist.com 3012: 3006: 3005: 2979: 2959: 2953: 2952: 2924: 2918: 2917: 2907: 2897: 2873: 2867: 2866: 2834: 2828: 2827: 2809: 2803: 2800: 2794: 2793: 2783: 2743: 2737: 2736: 2706: 2700: 2699: 2679: 2673: 2672: 2654: 2648: 2647: 2632:. New York, NY: 2626: 2620: 2619: 2575: 2559: 2557: 2555: 2554: 2549: 2547: 2546: 2541: 2532: 2524: 2499: 2291: 2289: 2288: 2283: 2261: 2259: 2258: 2253: 2251: 2250: 2224: 2222: 2221: 2216: 2214: 2213: 2209: 2200: 2196: 2189: 2186: 2181: 2169: 2168: 2167: 2155: 2154: 2144: 2136: 2135: 2110: 2108: 2107: 2102: 2100: 2099: 2072: 2071: 2059: 2058: 2019: 2018: 2003: 1982: 1980: 1979: 1974: 1972: 1960: 1958: 1957: 1952: 1950: 1949: 1948: 1931: 1929: 1928: 1923: 1921: 1920: 1919: 1911: 1895: 1894: 1879: 1859:axis direction. 1858: 1856: 1855: 1850: 1834: 1832: 1831: 1826: 1824: 1823: 1815: 1802: 1800: 1799: 1794: 1792: 1791: 1783: 1780: 1776: 1775: 1774: 1756: 1722: 1714: 1699: 1697: 1696: 1691: 1671: 1669: 1668: 1663: 1649: 1648: 1644: 1635: 1631: 1624: 1621: 1616: 1604: 1603: 1602: 1590: 1589: 1579: 1571: 1570: 1552: 1551: 1532: 1530: 1529: 1524: 1522: 1521: 1506: 1505: 1487: 1486: 1457: 1455: 1454: 1449: 1447: 1445: 1444: 1435: 1434: 1425: 1420: 1419: 1396: 1394: 1393: 1388: 1386: 1385: 1381: 1372: 1368: 1367: 1364: 1359: 1347: 1346: 1345: 1333: 1332: 1322: 1308: 1307: 1292: 1291: 1276: 1275: 1263: 1262: 1242: 1240: 1239: 1234: 1232: 1231: 1215: 1213: 1212: 1207: 1205: 1204: 1188: 1186: 1185: 1180: 1178: 1177: 1161: 1159: 1158: 1153: 1151: 1150: 1135: 1134: 1122: 1121: 1106: 1105: 1083: 1081: 1080: 1075: 1063: 1061: 1060: 1055: 1043: 1041: 1040: 1035: 1033: 1032: 1027: 1022: 1012: 1010: 1009: 1004: 1002: 1001: 996: 991: 981: 979: 978: 973: 971: 970: 950: 948: 947: 942: 940: 939: 923: 921: 920: 915: 913: 912: 897: 896: 884: 883: 867: 865: 864: 859: 857: 856: 841: 840: 828: 827: 808: 806: 805: 800: 798: 797: 792: 787: 784: 783: 771: 770: 765: 760: 757: 756: 745: 739: 738: 737: 736: 716: 714: 713: 708: 690: 688: 687: 682: 667: 665: 664: 659: 641: 639: 638: 633: 479: 477: 476: 471: 459: 457: 456: 451: 435: 433: 432: 427: 412: 410: 409: 404: 399: 391: 383: 375: 314:photonic crystal 271:biological cells 69:evanescent field 65:electromagnetics 32:Evanesce (album) 21: 3159: 3158: 3154: 3153: 3152: 3150: 3149: 3148: 3109: 3108: 3098:Evanescent wave 3094: 3089: 3044: 3040: 3028: 3024: 3013: 3009: 2977:physics/0611063 2960: 2956: 2925: 2921: 2888:(24): 1800730. 2874: 2870: 2835: 2831: 2824: 2810: 2806: 2801: 2797: 2744: 2740: 2707: 2703: 2680: 2676: 2669: 2655: 2651: 2644: 2628: 2627: 2623: 2576: 2572: 2568: 2563: 2562: 2542: 2537: 2536: 2528: 2520: 2518: 2515: 2514: 2500: 2496: 2491: 2486: 2422: 2372: 2302: 2271: 2268: 2267: 2246: 2242: 2234: 2231: 2230: 2205: 2201: 2182: 2174: 2163: 2159: 2150: 2146: 2145: 2143: 2142: 2138: 2137: 2131: 2127: 2119: 2116: 2115: 2077: 2073: 2067: 2063: 2024: 2020: 2014: 2010: 1999: 1991: 1988: 1987: 1968: 1966: 1963: 1962: 1944: 1940: 1939: 1937: 1934: 1933: 1915: 1907: 1900: 1896: 1890: 1886: 1875: 1867: 1864: 1863: 1844: 1841: 1840: 1814: 1813: 1811: 1808: 1807: 1782: 1781: 1764: 1760: 1752: 1745: 1741: 1718: 1710: 1708: 1705: 1704: 1685: 1682: 1681: 1640: 1636: 1617: 1609: 1598: 1594: 1585: 1581: 1580: 1578: 1577: 1573: 1572: 1566: 1562: 1547: 1543: 1541: 1538: 1537: 1514: 1510: 1501: 1497: 1482: 1478: 1470: 1467: 1466: 1440: 1436: 1430: 1426: 1424: 1412: 1408: 1406: 1403: 1402: 1377: 1373: 1360: 1352: 1341: 1337: 1328: 1324: 1323: 1321: 1314: 1310: 1309: 1303: 1299: 1287: 1283: 1271: 1267: 1258: 1254: 1252: 1249: 1248: 1227: 1223: 1221: 1218: 1217: 1200: 1196: 1194: 1191: 1190: 1173: 1169: 1167: 1164: 1163: 1146: 1142: 1130: 1126: 1117: 1113: 1101: 1097: 1095: 1092: 1091: 1069: 1066: 1065: 1049: 1046: 1045: 1023: 1021: 1020: 1018: 1015: 1014: 992: 990: 989: 987: 984: 983: 966: 962: 960: 957: 956: 935: 931: 929: 926: 925: 908: 904: 892: 888: 879: 875: 873: 870: 869: 852: 848: 836: 832: 823: 819: 817: 814: 813: 788: 786: 785: 779: 775: 761: 759: 758: 752: 748: 732: 728: 727: 725: 722: 721: 696: 693: 692: 673: 670: 669: 647: 644: 643: 624: 621: 620: 598: 591: 584: 577: 570: 566: 562: 516: 510: 484:of the sensor. 465: 462: 461: 445: 442: 441: 436:is the maximal 421: 418: 417: 390: 374: 366: 363: 362: 226: 100: 98:Use of the term 92:Poynting vector 73:evanescent wave 35: 28: 23: 22: 18:Evanescent wave 15: 12: 11: 5: 3157: 3147: 3146: 3141: 3139:Nanotechnology 3136: 3131: 3126: 3121: 3107: 3106: 3101: 3093: 3092:External links 3090: 3088: 3087: 3058:(1): 141–145. 3038: 3022: 3007: 2954: 2919: 2868: 2829: 2822: 2804: 2795: 2738: 2701: 2674: 2667: 2649: 2642: 2621: 2586:(46): 463001. 2569: 2567: 2564: 2561: 2560: 2545: 2540: 2535: 2531: 2527: 2523: 2493: 2492: 2490: 2487: 2485: 2484: 2479: 2474: 2469: 2464: 2459: 2454: 2449: 2444: 2439: 2437:Plasmonic lens 2434: 2429: 2423: 2421: 2418: 2371: 2368: 2312:Especially in 2301: 2298: 2281: 2278: 2275: 2264:phase constant 2249: 2245: 2241: 2238: 2212: 2208: 2204: 2199: 2195: 2192: 2185: 2180: 2177: 2173: 2166: 2162: 2158: 2153: 2149: 2141: 2134: 2130: 2126: 2123: 2112: 2111: 2098: 2095: 2092: 2089: 2086: 2083: 2080: 2076: 2070: 2066: 2062: 2057: 2054: 2051: 2048: 2045: 2042: 2039: 2036: 2033: 2030: 2027: 2023: 2017: 2013: 2009: 2006: 2002: 1998: 1995: 1971: 1947: 1943: 1918: 1914: 1910: 1906: 1903: 1899: 1893: 1889: 1885: 1882: 1878: 1874: 1871: 1848: 1821: 1818: 1804: 1803: 1789: 1786: 1779: 1773: 1770: 1767: 1763: 1759: 1755: 1751: 1748: 1744: 1740: 1737: 1734: 1731: 1728: 1725: 1721: 1717: 1713: 1689: 1674: 1673: 1661: 1658: 1655: 1652: 1647: 1643: 1639: 1634: 1630: 1627: 1620: 1615: 1612: 1608: 1601: 1597: 1593: 1588: 1584: 1576: 1569: 1565: 1561: 1558: 1555: 1550: 1546: 1520: 1517: 1513: 1509: 1504: 1500: 1496: 1493: 1490: 1485: 1481: 1477: 1474: 1443: 1439: 1433: 1429: 1423: 1418: 1415: 1411: 1399: 1398: 1384: 1380: 1376: 1371: 1363: 1358: 1355: 1351: 1344: 1340: 1336: 1331: 1327: 1320: 1317: 1313: 1306: 1302: 1298: 1295: 1290: 1286: 1282: 1279: 1274: 1270: 1266: 1261: 1257: 1230: 1226: 1203: 1199: 1176: 1172: 1149: 1145: 1141: 1138: 1133: 1129: 1125: 1120: 1116: 1112: 1109: 1104: 1100: 1073: 1053: 1030: 1026: 999: 995: 969: 965: 938: 934: 911: 907: 903: 900: 895: 891: 887: 882: 878: 855: 851: 847: 844: 839: 835: 831: 826: 822: 810: 809: 795: 791: 782: 778: 774: 768: 764: 755: 751: 744: 735: 731: 706: 703: 700: 680: 677: 657: 654: 651: 631: 628: 596: 589: 582: 575: 568: 564: 560: 509: 506: 469: 449: 425: 414: 413: 402: 397: 394: 389: 386: 381: 378: 373: 370: 243:critical angle 225: 222: 152:critical angle 131:radiation loss 99: 96: 26: 9: 6: 4: 3: 2: 3156: 3145: 3142: 3140: 3137: 3135: 3132: 3130: 3129:Metamaterials 3127: 3125: 3122: 3120: 3117: 3116: 3114: 3105: 3102: 3099: 3096: 3095: 3083: 3079: 3074: 3069: 3065: 3061: 3057: 3053: 3049: 3042: 3036:press release 3035: 3031: 3026: 3020: 3018: 3011: 3003: 2999: 2995: 2991: 2987: 2983: 2978: 2973: 2969: 2965: 2958: 2950: 2946: 2942: 2938: 2934: 2930: 2923: 2915: 2911: 2906: 2901: 2896: 2891: 2887: 2883: 2879: 2872: 2864: 2860: 2856: 2852: 2849:: 1128–1133. 2848: 2844: 2840: 2833: 2825: 2819: 2815: 2808: 2799: 2791: 2787: 2782: 2777: 2773: 2769: 2765: 2761: 2757: 2753: 2749: 2742: 2734: 2730: 2726: 2722: 2718: 2714: 2713: 2705: 2697: 2693: 2689: 2685: 2678: 2670: 2664: 2660: 2653: 2645: 2639: 2635: 2631: 2625: 2617: 2613: 2609: 2605: 2601: 2597: 2593: 2589: 2585: 2581: 2574: 2570: 2543: 2533: 2525: 2512: 2508: 2504: 2498: 2494: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2465: 2463: 2460: 2458: 2455: 2453: 2450: 2448: 2445: 2443: 2440: 2438: 2435: 2433: 2430: 2428: 2425: 2424: 2417: 2415: 2411: 2406: 2403: 2401: 2396: 2394: 2393:fiber tapping 2389: 2387: 2382: 2379: 2377: 2376:prism coupler 2367: 2365: 2361: 2358:ratio of the 2356: 2351: 2349: 2345: 2344:fiber tapping 2341: 2337: 2332: 2330: 2326: 2321: 2319: 2315: 2306: 2297: 2295: 2279: 2276: 2273: 2265: 2247: 2243: 2239: 2236: 2228: 2210: 2206: 2202: 2197: 2193: 2190: 2183: 2178: 2175: 2171: 2164: 2160: 2156: 2151: 2147: 2139: 2132: 2128: 2124: 2121: 2096: 2093: 2090: 2087: 2084: 2081: 2078: 2074: 2068: 2064: 2060: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2028: 2025: 2021: 2015: 2011: 2007: 1993: 1986: 1985: 1984: 1912: 1904: 1901: 1897: 1891: 1887: 1883: 1869: 1860: 1846: 1838: 1777: 1771: 1768: 1765: 1761: 1746: 1742: 1738: 1735: 1732: 1726: 1723: 1703: 1702: 1701: 1687: 1679: 1659: 1656: 1653: 1650: 1645: 1641: 1637: 1632: 1628: 1625: 1618: 1613: 1610: 1606: 1599: 1595: 1591: 1586: 1582: 1574: 1567: 1563: 1559: 1556: 1553: 1548: 1544: 1536: 1535: 1534: 1518: 1515: 1511: 1507: 1502: 1498: 1494: 1491: 1488: 1483: 1479: 1475: 1472: 1464: 1459: 1441: 1437: 1431: 1427: 1421: 1416: 1413: 1409: 1382: 1378: 1374: 1369: 1361: 1356: 1353: 1349: 1342: 1338: 1334: 1329: 1325: 1318: 1315: 1311: 1304: 1300: 1296: 1293: 1288: 1284: 1280: 1277: 1272: 1268: 1264: 1259: 1255: 1247: 1246: 1245: 1228: 1224: 1201: 1197: 1174: 1170: 1147: 1143: 1139: 1136: 1131: 1127: 1123: 1118: 1114: 1110: 1107: 1102: 1098: 1090: 1087:By using the 1085: 1071: 1051: 967: 963: 954: 936: 932: 909: 905: 901: 898: 893: 889: 885: 880: 876: 853: 849: 845: 842: 837: 833: 829: 824: 820: 780: 776: 772: 753: 749: 742: 720: 719: 718: 704: 701: 698: 678: 675: 655: 652: 649: 629: 626: 617: 615: 611: 606: 604: 599: 592: 585: 578: 571: 556: 551: 547: 543: 535: 530: 524: 520: 515: 505: 503: 502: 497: 496: 491: 485: 483: 467: 447: 439: 423: 400: 395: 392: 387: 384: 379: 376: 371: 368: 361: 360: 359: 357: 353: 349: 345: 341: 336: 334: 330: 326: 321: 319: 315: 310: 307: 303: 298: 296: 292: 288: 287:optical fiber 284: 280: 276: 272: 268: 264: 259: 257: 253: 249: 245: 244: 239: 235: 231: 221: 218: 217:wave equation 214: 210: 206: 201: 199: 193: 191: 187: 186:wave equation 183: 179: 175: 171: 166: 164: 160: 155: 153: 148: 143: 138: 136: 132: 128: 122: 120: 116: 112: 111: 104: 95: 93: 88: 86: 82: 78: 74: 70: 66: 58: 54: 50: 46: 41: 37: 33: 19: 3055: 3051: 3041: 3025: 3016: 3010: 2967: 2963: 2957: 2935:(21): 5467. 2932: 2928: 2922: 2905:11567/928329 2885: 2881: 2871: 2846: 2842: 2832: 2813: 2807: 2798: 2755: 2751: 2741: 2716: 2710: 2704: 2690:(1): 40–47. 2687: 2683: 2677: 2658: 2652: 2629: 2624: 2583: 2579: 2573: 2506: 2502: 2497: 2407: 2404: 2397: 2390: 2383: 2380: 2373: 2370:Applications 2352: 2333: 2322: 2317: 2311: 2293: 2113: 1861: 1805: 1678:polarization 1675: 1460: 1400: 1086: 811: 618: 607: 594: 587: 580: 573: 558: 550:polarization 539: 499: 493: 486: 415: 337: 322: 311: 299: 260: 241: 227: 215:, where the 204: 202: 194: 189: 167: 162: 156: 141: 139: 135:interference 126: 123: 118: 114: 110:surface wave 108: 105: 101: 89: 72: 68: 62: 56: 52: 45:surface wave 36: 2719:(5): 2378. 2457:Snell's law 1837:unit vector 1089:Snell's law 610:wave vector 438:wave vector 281:(as in the 127:maintaining 3113:Categories 2668:047130932X 2566:References 2355:near field 953:wavenumber 340:microscopy 279:microscopy 205:evanescent 163:evanescent 53:evanescent 2970:(1): 34. 2914:2195-1071 2544:∗ 2534:× 2477:Waveguide 2462:Superlens 2280:α 2237:β 2191:− 2161:θ 2157:⁡ 2122:α 2094:β 2088:− 2082:α 2079:− 2050:β 2041:α 2035:− 2026:− 1913:⋅ 1902:− 1820:^ 1788:^ 1769:ω 1739:⁡ 1660:α 1654:± 1626:− 1596:θ 1592:⁡ 1557:± 1499:θ 1495:⁡ 1480:θ 1476:⁡ 1339:θ 1335:⁡ 1319:− 1297:± 1285:θ 1281:⁡ 1225:θ 1144:θ 1140:⁡ 1115:θ 1111:⁡ 1029:^ 998:^ 964:θ 906:θ 902:⁡ 850:θ 846:⁡ 794:^ 767:^ 691:plane at 642:plane at 614:imaginary 468:δ 396:δ 388:⁡ 372:∝ 352:superlens 234:acoustics 209:acoustics 174:waveguide 147:refracted 85:far field 59:direction 2790:23071901 2608:29053474 2420:See also 924:, where 3082:7014571 3073:2111781 3002:1887505 2982:Bibcode 2937:Bibcode 2851:Bibcode 2781:3471096 2760:Bibcode 2758:: 737. 2721:Bibcode 2616:1528860 2588:Bibcode 2511:phasors 2342:and in 2262:is the 2225:is the 1839:in the 1835:is the 1676:If the 482:quality 81:antenna 55:in the 3124:Optics 3080:  3070:  3000:  2912:  2820:  2814:Optics 2788:  2778:  2665:  2640:  2614:  2606:  2314:optics 2229:, and 2114:where 1806:where 1216:, and 1162:where 746:  740:  572:, and 546:normal 416:where 230:optics 2998:S2CID 2972:arXiv 2612:S2CID 2489:Notes 1961:into 1401:with 812:with 71:, or 67:, an 3078:PMID 2910:ISSN 2818:ISBN 2786:PMID 2663:ISBN 2638:ISBN 2604:PMID 2505:and 1489:> 1013:and 868:and 586:and 354:and 277:for 267:cool 232:and 211:and 198:wave 142:does 119:away 3068:PMC 3060:doi 3034:MIT 2990:doi 2968:323 2945:doi 2933:281 2900:hdl 2890:doi 2859:doi 2847:176 2776:PMC 2768:doi 2729:doi 2717:111 2692:doi 2596:doi 2509:as 2378:). 2148:sin 1583:sin 1492:sin 1473:sin 1465:as 1326:sin 1278:cos 1137:sin 1108:sin 955:), 899:cos 843:sin 567:, D 563:, H 338:In 323:In 300:In 273:or 228:In 190:not 154:). 63:In 3115:: 3076:. 3066:. 3056:89 3054:. 3050:. 3032:– 2996:. 2988:. 2980:. 2966:. 2943:. 2931:. 2908:. 2898:. 2884:. 2880:. 2857:. 2845:. 2841:. 2784:. 2774:. 2766:. 2754:. 2750:. 2727:. 2715:. 2688:94 2686:. 2610:. 2602:. 2594:. 2584:29 2582:. 2408:A 2402:. 2395:. 2388:. 2366:. 2316:, 2266:. 1736:Re 1458:. 1189:, 583:|| 565:|| 561:|| 504:. 385:ln 335:. 320:. 297:. 200:. 137:. 115:no 3100:s 3084:. 3062:: 3004:. 2992:: 2984:: 2974:: 2951:. 2947:: 2939:: 2916:. 2902:: 2892:: 2886:6 2865:. 2861:: 2853:: 2826:. 2792:. 2770:: 2762:: 2756:2 2735:. 2731:: 2723:: 2698:. 2694:: 2671:. 2618:. 2598:: 2590:: 2539:H 2530:E 2526:= 2522:S 2507:H 2503:E 2294:y 2277:i 2274:+ 2248:x 2244:k 2240:= 2211:2 2207:/ 2203:1 2198:) 2194:1 2184:2 2179:i 2176:t 2172:n 2165:i 2152:2 2140:( 2133:t 2129:k 2125:= 2097:x 2091:i 2085:y 2075:e 2069:o 2065:E 2061:= 2056:) 2053:x 2047:+ 2044:y 2038:i 2032:( 2029:i 2022:e 2016:o 2012:E 2008:= 2005:) 2001:r 1997:( 1994:E 1970:k 1946:t 1942:k 1917:r 1909:k 1905:i 1898:e 1892:0 1888:E 1884:= 1881:) 1877:r 1873:( 1870:E 1847:z 1817:z 1785:z 1778:} 1772:t 1766:i 1762:e 1758:) 1754:r 1750:( 1747:E 1743:{ 1733:= 1730:) 1727:t 1724:, 1720:r 1716:( 1712:E 1688:z 1672:. 1657:i 1651:= 1646:2 1642:/ 1638:1 1633:) 1629:1 1619:2 1614:i 1611:t 1607:n 1600:i 1587:2 1575:( 1568:t 1564:k 1560:i 1554:= 1549:y 1545:k 1519:i 1516:t 1512:n 1508:= 1503:c 1484:i 1442:i 1438:n 1432:t 1428:n 1422:= 1417:i 1414:t 1410:n 1397:. 1383:2 1379:/ 1375:1 1370:) 1362:2 1357:i 1354:t 1350:n 1343:i 1330:2 1316:1 1312:( 1305:t 1301:k 1294:= 1289:t 1273:t 1269:k 1265:= 1260:y 1256:k 1229:i 1202:t 1198:n 1175:i 1171:n 1148:t 1132:t 1128:n 1124:= 1119:i 1103:i 1099:n 1072:y 1052:x 1025:y 994:x 968:t 937:t 933:k 910:t 894:t 890:k 886:= 881:y 877:k 854:t 838:t 834:k 830:= 825:x 821:k 790:x 781:x 777:k 773:+ 763:y 754:y 750:k 743:= 734:t 730:k 705:0 702:= 699:y 679:z 676:x 656:0 653:= 650:z 630:y 627:x 597:x 595:H 590:y 588:B 581:E 576:y 574:B 569:y 559:E 448:d 424:k 401:, 393:1 380:d 377:1 369:k 57:z 47:( 34:. 20:)

Index

Evanescent wave
Evanesce (album)

surface wave
surface plasmon polariton
electromagnetics
electromagnetic wave
antenna
far field
Poynting vector
surface wave
radiation loss
interference
refracted
critical angle
Maxwell's equations
propagation constant
waveguide
dispersion relation
cut-off frequency
wave equation
wave
acoustics
quantum mechanics
wave equation
optics
acoustics
total internal reflection
critical angle
pressure gradients

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑