Knowledge

FAIRE-Seq

Source 📝

89:
phenol-chloroform extraction. This method creates two phases, an organic and an aqueous phase. Due to their biochemical properties, the DNA fragments cross-linked to nucleosomes will preferentially sit in the organic phase. Nucleosome depleted or ‘open’ regions on the other hand will be found in the aqueous phase. By specifically extracting the aqueous phase, only nucleosome-depleted regions will be purified and enriched.
134:
the enriched signal by combining the parameter callpeak with other options like 'broad', 'broad cutoff', 'no model' or 'shift'. ZINBA is a generic algorithm for detection of enrichment in short read dataset. It thus helps in the accurate detection of signal in complex datasets having low signal-to noise ratio.
137:
BedTools is used to merge the enriched regions residing close to each other to form COREs (Cluster of open regulatory elements). This helps in the identification of chromatin accessible regions and gene regulation patterns which would have been undetectable otherwise, considering the lower resolution
133:
Next, the identification of genomic regions with open chromatin, is done by using a peak calling algorithm. Different tools offer packages to do this (e.g. ChIPOTle ZINBA and MACS2). ChIPOTle uses a sliding window of 300bp to identify statistically significant signals. In contrast, MACS2 identifies
121:
There are several aspects of FAIRE-seq that require attention when analysing and interpreting the data. For one, it has been stated that FAIRE-seq will have a higher coverage at enhancer regions over promoter regions. This is in contrast to the alternative method of DNase-seq who is known to show a
88:
FAIRE uses the biochemical properties of protein-bound DNA to separate nucleosome-depleted regions in the genome. Cells will be subjected to cross-linking, ensuring that the interaction between the nucleosomes and DNA are fixed. After sonication, the fragmented and fixed DNA is separated using a
105:
Depending on the size of the genome FAIRE-seq is performed on, a minimum of reads is required to create an appropriate coverage of the data, ensuring a proper signal can be determined. In addition, a reference or input genome, which has not been cross-linked, is often sequenced alongside to
55:, the FAIRE-Seq protocol doesn't require the permeabilization of cells or isolation of nuclei, and can analyse any cell type. In a study of seven diverse human cell types, DNase-seq and FAIRE-seq produced strong cross-validation, with each cell type having 1-2% of the human genome as open 79:
than it is in nucleosome-depleted regions of the genome. This method then segregates the non cross-linked DNA that is usually found in open chromatin, which is then sequenced. The protocol consists of cross linking, phenol extraction and sequencing the DNA in aqueous phase.
101:
techniques. In general, libraries are made by ligating specific adapters to the DNA fragments that allow them to cluster on a platform and be amplified resulting in the DNA sequences being read/determined, and this in parallel for millions of the DNA fragments.
122:
higher sensitivity towards promoter regions. In addition, FAIRE-seq has been stated to show prefers for internal introns and exons. In general it is also believed that FAIRE-seq data displays a higher background level, making it a less sensitive method.
144:
The major limitation of this method, i.e. the low signal-to-noise ratio compared to other chromatin accessibility assays, makes the computational interpretation of these data very difficult.
229:
Landt, Stephen G.; Marinov, Georgi K.; Kundaje, Anshul; Kheradpour, Pouya; Pauli, Florencia; Batzoglou, Serafim; Bernstein, Bradley E.; Bickel, Peter; Brown, James B. (2012-09-01).
946:
Crawford, Gregory E.; Holt, Ingeborg E.; Whittle, James; Webb, Bryn D.; Tai, Denise; Davis, Sean; Margulies, Elliott H.; Chen, YiDong; Bernat, John A. (2006-01-01).
606:
Zhang, Yong; Liu, Tao; Meyer, Clifford A.; Eeckhoute, Jérôme; Johnson, David S.; Bernstein, Bradley E.; Nusbaum, Chad; Myers, Richard M.; Brown, Myles (2008-01-01).
378:
Song, Lingyun; Zhang, Zhancheng; Grasfeder, Linda L.; Boyle, Alan P.; Giresi, Paul G.; Lee, Bum-Kyu; Sheffield, Nathan C.; Gräf, Stefan; Huss, Mikael (2011-10-01).
286:
Sims, David; Sudbery, Ian; Ilott, Nicholas E.; Heger, Andreas; Ponting, Chris P. (2014). "Sequencing depth and coverage: key considerations in genomic analyses".
889:
Boyle, Alan P.; Davis, Sean; Shulha, Hennady P.; Meltzer, Paul; Margulies, Elliott H.; Weng, Zhiping; Furey, Terrence S.; Crawford, Gregory E. (2008-01-25).
160:
employs the Tn5 transposase, which inserts specified fragments or transposons into accessible regions of the genome to identify and sequence open chromatin.
1005:"Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position" 781:
Hinrichs, A. S.; Karolchik, D.; Baertsch, R.; Barber, G. P.; Bejerano, G.; Clawson, H.; Diekhans, M.; Furey, T. S.; Harte, R. A. (2006-01-01).
549:"ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions" 156:
uses the ability of the DNase I enzyme to cleave free/open/accessible DNA to identify and sequence open chromatin. The subsequently developed
329:
Kumar, Vibhor; Muratani, Masafumi; Rayan, Nirmala Arul; Kraus, Petra; Lufkin, Thomas; Ng, Huck Hui; Prabhakar, Shyam (2013-07-01).
1066: 182:"FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin" 110: 113:. However, this method does not allow a genome wide / high-throughput quantification of the extracted fragments. 1003:
Buenrostro, Jason D.; Giresi, Paul G.; Zaba, Lisa C.; Chang, Howard Y.; Greenleaf, William J. (2013-12-01).
48: 47:
associated with regulatory activity. The technique was developed in the laboratory of Jason D. Lieb at the
380:"Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity" 948:"Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS)" 441: 141:
Data is typically visualized as tracks (e.g. bigWig) and can be uploaded to the UCSC genome browser.
1071: 130:
In a first step FAIRE-seq data are mapped to the reference genome of the model organism used.
547:
Rashid, Naim U.; Giresi, Paul G.; Ibrahim, Joseph G.; Sun, Wei; Lieb, Jason D. (2011-01-01).
109:
Note that the extracted FAIRE-fragments can be quantified in an alternative method by using
678: 8: 682: 1037: 1004: 980: 947: 923: 890: 866: 839: 815: 782: 758: 725: 701: 666: 642: 607: 583: 548: 524: 489: 465: 436: 412: 311: 263: 230: 206: 181: 1042: 1024: 985: 967: 928: 910: 871: 820: 802: 763: 745: 706: 647: 629: 588: 570: 529: 511: 470: 417: 399: 360: 352: 303: 268: 250: 211: 40: 741: 315: 1032: 1016: 975: 959: 918: 902: 861: 851: 810: 794: 753: 737: 696: 686: 637: 619: 578: 560: 519: 501: 460: 450: 407: 391: 342: 295: 258: 242: 201: 193: 891:"High-resolution mapping and characterization of open chromatin across the genome" 691: 906: 98: 1060: 1028: 971: 914: 806: 749: 633: 624: 574: 565: 515: 506: 403: 379: 356: 254: 97:
FAIRE-extracted DNA fragments can be analyzed in a high-throughput way using
1046: 989: 932: 875: 856: 824: 767: 710: 651: 592: 533: 474: 455: 421: 364: 307: 272: 215: 152:
There are several methods that can be used as an alternative to FAIRE-seq.
68: 395: 246: 798: 231:"ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia" 726:"BEDTools: a flexible suite of utilities for comparing genomic features" 665:
Koohy, Hashem; Down, Thomas A.; Spivakov, Mikhail; Hubbard, Tim (2014).
1020: 963: 197: 72: 347: 330: 153: 56: 52: 299: 490:"ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data" 331:"Uniform, optimal signal processing of mapped deep-sequencing data" 157: 180:
Giresi, PG; Kim, J; McDaniell, RM; Iyer, VR; Lieb, JD (Jun 2007).
179: 780: 44: 488:
Buck, Michael J; Nobel, Andrew B; Lieb, Jason D (2005-01-01).
228: 1002: 76: 43:
used for determining the sequences of DNA regions in the
664: 945: 888: 377: 328: 667:"A Comparison of Peak Callers Used for DNase-Seq Data" 605: 546: 285: 840:"Chromatin accessibility: a window into the genome" 437:"Chromatin accessibility: a window into the genome" 1058: 783:"The UCSC Genome Browser Database: update 2006" 435:Tsompana, Maria; Buck, Michael J (2014-11-20). 170: 724:Quinlan, Aaron R.; Hall, Ira M. (2010-03-15). 175: 173: 487: 837: 434: 723: 67:The protocol is based on the fact that the 1036: 979: 922: 865: 855: 814: 757: 700: 690: 641: 623: 608:"Model-based analysis of ChIP-Seq (MACS)" 582: 564: 523: 505: 464: 454: 411: 346: 262: 205: 125: 106:determine the level of background noise. 1059: 147: 838:Tsompana, M; Buck, MJ (2014-11-20). 71:cross-linking is more efficient in 13: 14: 1083: 138:FAIRE-seq often brings with it. 996: 939: 882: 831: 774: 717: 658: 599: 540: 481: 428: 371: 322: 279: 222: 116: 51:, Chapel Hill. In contrast to 1: 742:10.1093/bioinformatics/btq033 163: 92: 1067:Molecular biology techniques 692:10.1371/journal.pone.0096303 49:University of North Carolina 7: 844:Epigenetics & Chromatin 442:Epigenetics & Chromatin 62: 10: 1088: 907:10.1016/j.cell.2007.12.014 99:next-generation sequencing 625:10.1186/gb-2008-9-9-r137 566:10.1186/gb-2011-12-7-r67 507:10.1186/gb-2005-6-11-r97 83: 39:lements) is a method in 288:Nature Reviews Genetics 857:10.1186/1756-8935-7-33 793:(suppl 1): D590–D598. 787:Nucleic Acids Research 456:10.1186/1756-8935-7-33 126:Computational analysis 396:10.1101/gr.121541.111 247:10.1101/gr.136184.111 335:Nature Biotechnology 683:2014PLoSO...996303K 148:Alternative methods 1021:10.1038/nmeth.2688 964:10.1101/gr.4074106 799:10.1093/nar/gkj144 198:10.1101/gr.5533506 1015:(12): 1213–1218. 390:(10): 1757–1767. 41:molecular biology 1079: 1051: 1050: 1040: 1000: 994: 993: 983: 943: 937: 936: 926: 886: 880: 879: 869: 859: 835: 829: 828: 818: 778: 772: 771: 761: 721: 715: 714: 704: 694: 662: 656: 655: 645: 627: 603: 597: 596: 586: 568: 544: 538: 537: 527: 509: 485: 479: 478: 468: 458: 432: 426: 425: 415: 375: 369: 368: 350: 348:10.1038/nbt.2596 326: 320: 319: 283: 277: 276: 266: 241:(9): 1813–1831. 226: 220: 219: 209: 177: 111:quantitative PCR 1087: 1086: 1082: 1081: 1080: 1078: 1077: 1076: 1072:Gene expression 1057: 1056: 1055: 1054: 1001: 997: 952:Genome Research 944: 940: 887: 883: 836: 832: 779: 775: 722: 718: 663: 659: 604: 600: 545: 541: 486: 482: 433: 429: 384:Genome Research 376: 372: 327: 323: 300:10.1038/nrg3642 284: 280: 235:Genome Research 227: 223: 186:Genome Research 178: 171: 166: 150: 128: 119: 95: 86: 65: 12: 11: 5: 1085: 1075: 1074: 1069: 1053: 1052: 1009:Nature Methods 995: 958:(1): 123–131. 938: 901:(2): 311–322. 881: 830: 773: 736:(6): 841–842. 730:Bioinformatics 716: 657: 612:Genome Biology 598: 553:Genome Biology 539: 494:Genome Biology 480: 427: 370: 341:(7): 615–622. 321: 294:(2): 121–132. 278: 221: 168: 167: 165: 162: 149: 146: 127: 124: 118: 115: 94: 91: 85: 82: 64: 61: 9: 6: 4: 3: 2: 1084: 1073: 1070: 1068: 1065: 1064: 1062: 1048: 1044: 1039: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 999: 991: 987: 982: 977: 973: 969: 965: 961: 957: 953: 949: 942: 934: 930: 925: 920: 916: 912: 908: 904: 900: 896: 892: 885: 877: 873: 868: 863: 858: 853: 849: 845: 841: 834: 826: 822: 817: 812: 808: 804: 800: 796: 792: 788: 784: 777: 769: 765: 760: 755: 751: 747: 743: 739: 735: 731: 727: 720: 712: 708: 703: 698: 693: 688: 684: 680: 677:(5): e96303. 676: 672: 668: 661: 653: 649: 644: 639: 635: 631: 626: 621: 617: 613: 609: 602: 594: 590: 585: 580: 576: 572: 567: 562: 558: 554: 550: 543: 535: 531: 526: 521: 517: 513: 508: 503: 499: 495: 491: 484: 476: 472: 467: 462: 457: 452: 448: 444: 443: 438: 431: 423: 419: 414: 409: 405: 401: 397: 393: 389: 385: 381: 374: 366: 362: 358: 354: 349: 344: 340: 336: 332: 325: 317: 313: 309: 305: 301: 297: 293: 289: 282: 274: 270: 265: 260: 256: 252: 248: 244: 240: 236: 232: 225: 217: 213: 208: 203: 199: 195: 192:(6): 877–85. 191: 187: 183: 176: 174: 169: 161: 159: 155: 145: 142: 139: 135: 131: 123: 114: 112: 107: 103: 100: 90: 81: 78: 74: 70: 60: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 18: 1012: 1008: 998: 955: 951: 941: 898: 894: 884: 847: 843: 833: 790: 786: 776: 733: 729: 719: 674: 670: 660: 615: 611: 601: 556: 552: 542: 497: 493: 483: 446: 440: 430: 387: 383: 373: 338: 334: 324: 291: 287: 281: 238: 234: 224: 189: 185: 151: 143: 140: 136: 132: 129: 120: 108: 104: 96: 87: 69:formaldehyde 66: 36: 32: 31:solation of 28: 24: 23:ormaldehyde- 20: 16: 15: 618:(9): R137. 500:(11): R97. 117:Sensitivity 1061:Categories 559:(7): R67. 164:References 93:Sequencing 73:nucleosome 35:egulatory 1029:1548-7105 972:1088-9051 915:1097-4172 850:(1): 33. 807:0305-1048 750:1367-4803 634:1474-760X 575:1474-760X 516:1465-6906 449:(1): 33. 404:1088-9051 357:1546-1696 255:1549-5469 154:DNase-seq 57:chromatin 53:DNase-Seq 17:FAIRE-Seq 1047:24097267 990:16344561 933:18243105 876:25473421 825:16381938 768:20110278 711:24810143 671:PLOS ONE 652:18798982 593:21787385 534:16277752 475:25473421 422:21750106 365:23770639 316:13325739 308:24434847 273:22955991 216:17179217 158:ATAC-seq 63:Workflow 27:ssisted 1038:3959825 981:1356136 924:2669738 867:4253006 816:1347506 759:2832824 702:4014496 679:Bibcode 643:2592715 584:3218829 525:1297653 466:4253006 413:3202292 264:3431496 207:1891346 75:-bound 1045:  1035:  1027:  988:  978:  970:  931:  921:  913:  874:  864:  823:  813:  805:  766:  756:  748:  709:  699:  650:  640:  632:  591:  581:  573:  532:  522:  514:  473:  463:  420:  410:  402:  363:  355:  314:  306:  271:  261:  253:  214:  204:  45:genome 312:S2CID 84:FAIRE 1043:PMID 1025:ISSN 986:PMID 968:ISSN 929:PMID 911:ISSN 895:Cell 872:PMID 821:PMID 803:ISSN 764:PMID 746:ISSN 707:PMID 648:PMID 630:ISSN 589:PMID 571:ISSN 530:PMID 512:ISSN 471:PMID 418:PMID 400:ISSN 361:PMID 353:ISSN 304:PMID 269:PMID 251:ISSN 212:PMID 1033:PMC 1017:doi 976:PMC 960:doi 919:PMC 903:doi 899:132 862:PMC 852:doi 811:PMC 795:doi 754:PMC 738:doi 697:PMC 687:doi 638:PMC 620:doi 579:PMC 561:doi 520:PMC 502:doi 461:PMC 451:doi 408:PMC 392:doi 343:doi 296:doi 259:PMC 243:doi 202:PMC 194:doi 77:DNA 1063:: 1041:. 1031:. 1023:. 1013:10 1011:. 1007:. 984:. 974:. 966:. 956:16 954:. 950:. 927:. 917:. 909:. 897:. 893:. 870:. 860:. 846:. 842:. 819:. 809:. 801:. 791:34 789:. 785:. 762:. 752:. 744:. 734:26 732:. 728:. 705:. 695:. 685:. 673:. 669:. 646:. 636:. 628:. 614:. 610:. 587:. 577:. 569:. 557:12 555:. 551:. 528:. 518:. 510:. 496:. 492:. 469:. 459:. 445:. 439:. 416:. 406:. 398:. 388:21 386:. 382:. 359:. 351:. 339:31 337:. 333:. 310:. 302:. 292:15 290:. 267:. 257:. 249:. 239:22 237:. 233:. 210:. 200:. 190:17 188:. 184:. 172:^ 59:. 1049:. 1019:: 992:. 962:: 935:. 905:: 878:. 854:: 848:7 827:. 797:: 770:. 740:: 713:. 689:: 681:: 675:9 654:. 622:: 616:9 595:. 563:: 536:. 504:: 498:6 477:. 453:: 447:7 424:. 394:: 367:. 345:: 318:. 298:: 275:. 245:: 218:. 196:: 37:E 33:R 29:I 25:A 21:F 19:(

Index

molecular biology
genome
University of North Carolina
DNase-Seq
chromatin
formaldehyde
nucleosome
DNA
next-generation sequencing
quantitative PCR
DNase-seq
ATAC-seq


"FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin"
doi
10.1101/gr.5533506
PMC
1891346
PMID
17179217
"ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia"
doi
10.1101/gr.136184.111
ISSN
1549-5469
PMC
3431496
PMID
22955991

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.