Knowledge

Fermionic condensate

Source đź“ť

724: 25: 101: 737: 1526: 948:
in 1995, there naturally arose the prospect of creating a similar sort of condensate made from fermionic atoms, which would form a superfluid by the BCS mechanism. However, early calculations indicated that the temperature required for producing Cooper pairing in atoms would be too cold to achieve.
980:
managed to coax fermionic atoms into forming molecular bosons, which then underwent Bose–Einstein condensation. However, this was not a true fermionic condensate. On December 16, 2003, Jin managed to produce a condensate out of fermionic atoms for the first time. The experiment involved
913:. As long as collisions with the ionic lattice of the solid do not supply enough energy to break the Cooper pairs, the electron fluid will be able to flow without dissipation. As a result, it becomes a superfluid, and the material through which it flows a superconductor. 861:, such as the lack of a definite shape and the ability to flow in response to applied forces. However, superfluids possess some properties that do not appear in ordinary matter. For instance, they can flow at high velocities without dissipating any energy—i.e. zero 916:
The BCS theory was phenomenally successful in describing superconductors. Soon after the publication of the BCS paper, several theorists proposed that a similar phenomenon could occur in fluids made up of fermions other than electrons, such as
1199:
The theory of superfluid helium-3 is a little more complicated than the BCS theory of superconductivity. These complications arise because helium atoms repel each other much more strongly than electrons, but the basic idea is the
1108:) by forming a quark condensate. The existence of such a fermion condensate was first shown explicitly in the lattice formulation of QCD. The quark condensate is therefore an 909:
for describing superconductivity. These authors showed that, below a certain temperature, electrons (which are fermions) can pair up to form bound pairs now known as
925:
showed that helium-3 becomes a superfluid below 0.0025 K. It was soon verified that the superfluidity of helium-3 arises from a BCS-like mechanism.
768: 953:
suggested a way of bypassing this difficulty. He speculated that fermionic atoms could be coaxed into pairing up by subjecting them to a strong
54: 1463: 1361: 761: 1351: 849:
Fermionic condensates are attained at lower temperatures than Bose–Einstein condensates. Fermionic condensates are a type of
1272:
Regal, C.A.; Greiner, M.; Jin, D.S. (28 January 2004). "Observation of resonance condensation of Fermionic atom pairs".
869:, which act as "holes" in the medium where superfluidity breaks down. Superfluidity was originally discovered in liquid 1973: 754: 741: 76: 893:. However, there is a well-known mechanism by which a superfluid may be formed from fermions: That mechanism is the 47: 723: 1730: 1800: 1725: 1456: 833: 506: 1983: 1912: 1740: 1968: 1922: 1795: 1540: 805: 681: 161: 1140: 1085: 853:. As the name suggests, a superfluid possesses fluid properties similar to those possessed by ordinary 686: 311: 1978: 1449: 886: 576: 251: 37: 812:
atoms under similar conditions. The earliest recognized fermionic condensate described the state of
1947: 1846: 1476: 1374: 571: 566: 92: 41: 33: 656: 1993: 1841: 969: 261: 666: 1998: 1988: 1866: 1856: 1606: 1601: 1062: 1007: 906: 651: 591: 561: 511: 231: 121: 58: 985:-40 atoms cooled to a temperature of 5Ă—10 K, subjected to a time-varying magnetic field. 691: 306: 291: 1785: 1413: 1291: 1053:
of a superconductor, giving rise to the unusual electromagnetic properties of such states.
1002:
is an example of a fermionic condensate that appears in theories of massless fermions with
885:
It is far more difficult to produce a fermionic superfluid than a bosonic one, because the
281: 1362:"NIST/University of Colorado scientists create new form of matter: A Fermionic condensate" 1073:
is partly responsible for giving masses to hadrons (along with other condensates like the
8: 1760: 1652: 1642: 1555: 1510: 1343: 922: 521: 331: 181: 1417: 1295: 1907: 1836: 1670: 1403: 1315: 1281: 1128: 701: 661: 636: 384: 375: 1937: 1932: 1902: 1861: 1750: 1702: 1687: 1580: 1550: 1429: 1365: 1347: 1307: 1251: 1243: 1023: 973: 817: 631: 476: 366: 286: 1319: 1892: 1515: 1421: 1299: 1233: 1074: 1035: 902: 866: 336: 301: 296: 256: 226: 196: 156: 116: 1425: 1303: 1882: 1735: 1472: 1109: 1046: 1003: 824:
is analogous. The first atomic fermionic condensate was created by a team led by
646: 596: 466: 221: 133: 1045:. The bound states themselves then form a condensate. Since the Cooper pair has 921:
atoms. These speculations were confirmed in 1971, when experiments performed by
1680: 1675: 1632: 1565: 1560: 1167:. These Cooper pairs are substantially larger than the interatomic separation. 1132: 1050: 961: 954: 825: 793: 728: 696: 676: 671: 626: 546: 481: 379: 266: 111: 1962: 1917: 1897: 1820: 1780: 1715: 1647: 1570: 1433: 1247: 890: 407: 388: 370: 271: 191: 1394:
Hägler, Ph. (2010). "Hadron structure from lattice quantum chromodynamics".
601: 1942: 1815: 1810: 1805: 1770: 1720: 1637: 1311: 1255: 1124: 1113: 965: 934: 898: 829: 621: 611: 581: 541: 536: 516: 361: 341: 201: 1441: 1851: 1745: 1657: 1286: 1160: 1042: 1038: 938: 910: 801: 706: 641: 616: 586: 531: 526: 458: 100: 1364:(Press release). University of Colorado. 28 January 2004. Archived from 1790: 1765: 1692: 1662: 1596: 1575: 1164: 1120: 1101: 1080:
In an approximate version of QCD, which has vanishing quark masses for
1070: 1019: 894: 850: 790: 551: 393: 186: 1176: 982: 862: 820:; the physics of other examples including recent work with fermionic 606: 556: 429: 276: 176: 1525: 1238: 1221: 1927: 1755: 1181: 1152: 1027: 942: 918: 870: 813: 166: 1408: 1887: 1775: 1710: 1627: 1622: 1156: 797: 486: 471: 434: 425: 420: 865:. At lower velocities, energy is dissipated by the formation of 1496: 854: 439: 415: 146: 1505: 1491: 1136: 1031: 874: 809: 444: 141: 950: 945: 821: 1501: 977: 858: 151: 1131:. However, the vacuum carries no charge. Hence all the 1049:, this fermion condensate breaks the electromagnetic 1220:DeMarco, Brian; Bohn, John; Cornell, Eric (2006). 1219: 1159:and at very low temperatures, they form two-atom 928: 1960: 1135:are unbroken. Corrections for the masses of the 46:but its sources remain unclear because it lacks 1373:Rodgers, Peter; DumĂ©, Bell (January 28, 2004). 1271: 1065:(QCD) the chiral condensate is also called the 1337: 1457: 762: 1471: 1372: 889:prohibits fermions from occupying the same 1464: 1450: 1006:breaking, such as the theory of quarks in 960:In 2003, working on Holland's suggestion, 769: 755: 99: 1407: 1285: 1237: 1112:of transitions between several phases of 941:produced a Bose–Einstein condensate from 77:Learn how and when to remove this message 880: 1961: 1393: 1375:"Fermionic condensate makes its debut" 1163:which are bosonic and condense into a 1146: 1445: 1267: 1265: 1026:has a fermion condensate. A pair of 993: 18: 13: 14: 2010: 1262: 1524: 844: 736: 735: 722: 23: 1034:with opposite spins can form a 808:, a superfluid phase formed by 804:. It is closely related to the 1213: 1193: 929:Condensates of fermionic atoms 834:University of Colorado Boulder 1: 1913:Macroscopic quantum phenomena 1426:10.1016/j.physrep.2009.12.008 1304:10.1103/PhysRevLett.92.040403 1206: 1013: 839: 1923:Order and disorder (physics) 1187: 1119:This is very similar to the 1100:symmetry of the theory. The 7: 1170: 1104:breaks this symmetry to SU( 1088:, there is an exact chiral 988: 949:In 2001, Murray Holland at 10: 2015: 1330: 1222:"Deborah S. Jin 1968–2016" 1141:chiral perturbation theory 1139:can be incorporated using 1123:of superconductivity. The 312:Spin gapless semiconductor 1875: 1829: 1701: 1615: 1589: 1533: 1522: 1484: 887:Pauli exclusion principle 252:Electronic band structure 1974:Condensed matter physics 1948:Thermo-dielectric effect 1847:Enthalpy of vaporization 1541:Bose–Einstein condensate 897:, discovered in 1957 by 806:Bose–Einstein condensate 162:Bose–Einstein condensate 93:Condensed matter physics 32:This article includes a 1842:Enthalpy of sublimation 1338:Guenault, Tony (2003). 1274:Physical Review Letters 1069:. This property of the 970:University of Innsbruck 61:more precise citations. 1857:Latent internal energy 1607:Color-glass condensate 1063:quantum chromodynamics 1056: 1008:Quantum Chromodynamics 787:Fermi–Dirac condensate 1667:Magnetically ordered 1127:are analogous to the 881:Fermionic superfluids 307:Topological insulator 1984:Quantum field theory 1546:Fermionic condensate 1344:Taylor & Francis 783:fermionic condensate 325:Electronic phenomena 172:Fermionic condensate 1969:American inventions 1761:Chemical ionization 1653:Programmable matter 1643:Quantum spin liquid 1511:Supercritical fluid 1418:2010PhR...490...49H 1368:on 7 December 2006. 1296:2004PhRvL..92d0403R 1147:Helium-3 superfluid 1129:pseudoscalar mesons 332:Quantum Hall effect 1908:Leidenfrost effect 1837:Enthalpy of fusion 1602:Quark–gluon plasma 923:D.D. Osheroff 907:R. Schrieffer 867:quantized vortices 729:Physics portal 34:list of references 1956: 1955: 1938:Superheated vapor 1933:Superconductivity 1903:Equation of state 1751:Flash evaporation 1703:Phase transitions 1688:String-net liquid 1581:Photonic molecule 1551:Degenerate matter 1353:978-0-7484-0892-4 1340:Basic superfluids 1024:superconductivity 1000:chiral condensate 994:Chiral condensate 974:Wolfgang Ketterle 800:particles at low 779: 778: 477:Granular material 245:Electronic phases 87: 86: 79: 2006: 1979:Phases of matter 1893:Compressed fluid 1528: 1473:States of matter 1466: 1459: 1452: 1443: 1442: 1437: 1411: 1389: 1387: 1385: 1369: 1357: 1324: 1323: 1289: 1287:cond-mat/0401554 1269: 1260: 1259: 1241: 1217: 1201: 1197: 1133:gauge symmetries 1099: 1075:gluon condensate 1067:quark condensate 903:L.N. Cooper 877:, not fermions. 873:whose atoms are 771: 764: 757: 744: 739: 738: 731: 727: 726: 337:Spin Hall effect 227:Phase transition 197:Luttinger liquid 134:States of matter 117:Phase transition 103: 89: 88: 82: 75: 71: 68: 62: 57:this article by 48:inline citations 27: 26: 19: 2014: 2013: 2009: 2008: 2007: 2005: 2004: 2003: 1959: 1958: 1957: 1952: 1883:Baryonic matter 1871: 1825: 1796:Saturated fluid 1736:Crystallization 1697: 1671:Antiferromagnet 1611: 1585: 1529: 1520: 1480: 1470: 1440: 1402:(3–5): 49–175. 1396:Physics Reports 1383: 1381: 1360: 1354: 1333: 1328: 1327: 1270: 1263: 1239:10.1038/538318a 1218: 1214: 1209: 1204: 1198: 1194: 1190: 1173: 1149: 1116:in this limit. 1110:order parameter 1089: 1059: 1047:electric charge 1016: 1004:chiral symmetry 996: 991: 931: 899:J. Bardeen 883: 847: 842: 775: 734: 721: 720: 713: 712: 711: 501: 493: 492: 491: 467:Amorphous solid 461: 451: 450: 449: 428: 410: 400: 399: 398: 387: 385:Antiferromagnet 378: 376:Superparamagnet 369: 356: 355:Magnetic phases 348: 347: 346: 326: 318: 317: 316: 246: 238: 237: 236: 222:Order parameter 216: 215:Phase phenomena 208: 207: 206: 136: 126: 83: 72: 66: 63: 52: 38:related reading 28: 24: 17: 16:State of matter 12: 11: 5: 2012: 2002: 2001: 1996: 1994:Quantum phases 1991: 1986: 1981: 1976: 1971: 1954: 1953: 1951: 1950: 1945: 1940: 1935: 1930: 1925: 1920: 1915: 1910: 1905: 1900: 1895: 1890: 1885: 1879: 1877: 1873: 1872: 1870: 1869: 1864: 1862:Trouton's rule 1859: 1854: 1849: 1844: 1839: 1833: 1831: 1827: 1826: 1824: 1823: 1818: 1813: 1808: 1803: 1798: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1753: 1748: 1743: 1738: 1733: 1731:Critical point 1728: 1723: 1718: 1713: 1707: 1705: 1699: 1698: 1696: 1695: 1690: 1685: 1684: 1683: 1678: 1673: 1665: 1660: 1655: 1650: 1645: 1640: 1635: 1633:Liquid crystal 1630: 1625: 1619: 1617: 1613: 1612: 1610: 1609: 1604: 1599: 1593: 1591: 1587: 1586: 1584: 1583: 1578: 1573: 1568: 1566:Strange matter 1563: 1561:Rydberg matter 1558: 1553: 1548: 1543: 1537: 1535: 1531: 1530: 1523: 1521: 1519: 1518: 1513: 1508: 1499: 1494: 1488: 1486: 1482: 1481: 1469: 1468: 1461: 1454: 1446: 1439: 1438: 1391: 1370: 1358: 1352: 1334: 1332: 1329: 1326: 1325: 1261: 1211: 1210: 1208: 1205: 1203: 1202: 1191: 1189: 1186: 1185: 1184: 1179: 1172: 1169: 1148: 1145: 1058: 1055: 1051:gauge symmetry 1015: 1012: 995: 992: 990: 987: 955:magnetic field 930: 927: 895:BCS transition 882: 879: 846: 843: 841: 838: 826:Deborah S. Jin 818:superconductor 777: 776: 774: 773: 766: 759: 751: 748: 747: 746: 745: 732: 715: 714: 710: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 624: 619: 614: 609: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 509: 503: 502: 499: 498: 495: 494: 490: 489: 484: 482:Liquid crystal 479: 474: 469: 463: 462: 457: 456: 453: 452: 448: 447: 442: 437: 432: 423: 418: 412: 411: 408:Quasiparticles 406: 405: 402: 401: 397: 396: 391: 382: 373: 367:Superdiamagnet 364: 358: 357: 354: 353: 350: 349: 345: 344: 339: 334: 328: 327: 324: 323: 320: 319: 315: 314: 309: 304: 299: 294: 292:Thermoelectric 289: 287:Superconductor 284: 279: 274: 269: 267:Mott insulator 264: 259: 254: 248: 247: 244: 243: 240: 239: 235: 234: 229: 224: 218: 217: 214: 213: 210: 209: 205: 204: 199: 194: 189: 184: 179: 174: 169: 164: 159: 154: 149: 144: 138: 137: 132: 131: 128: 127: 125: 124: 119: 114: 108: 105: 104: 96: 95: 85: 84: 67:September 2018 42:external links 31: 29: 22: 15: 9: 6: 4: 3: 2: 2011: 2000: 1999:Superfluidity 1997: 1995: 1992: 1990: 1989:Exotic matter 1987: 1985: 1982: 1980: 1977: 1975: 1972: 1970: 1967: 1966: 1964: 1949: 1946: 1944: 1941: 1939: 1936: 1934: 1931: 1929: 1926: 1924: 1921: 1919: 1918:Mpemba effect 1916: 1914: 1911: 1909: 1906: 1904: 1901: 1899: 1898:Cooling curve 1896: 1894: 1891: 1889: 1886: 1884: 1881: 1880: 1878: 1874: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1834: 1832: 1828: 1822: 1821:Vitrification 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1786:Recombination 1784: 1782: 1781:Melting point 1779: 1777: 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1726:Critical line 1724: 1722: 1719: 1717: 1716:Boiling point 1714: 1712: 1709: 1708: 1706: 1704: 1700: 1694: 1691: 1689: 1686: 1682: 1679: 1677: 1674: 1672: 1669: 1668: 1666: 1664: 1661: 1659: 1656: 1654: 1651: 1649: 1648:Exotic matter 1646: 1644: 1641: 1639: 1636: 1634: 1631: 1629: 1626: 1624: 1621: 1620: 1618: 1614: 1608: 1605: 1603: 1600: 1598: 1595: 1594: 1592: 1588: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1538: 1536: 1532: 1527: 1517: 1514: 1512: 1509: 1507: 1503: 1500: 1498: 1495: 1493: 1490: 1489: 1487: 1483: 1478: 1474: 1467: 1462: 1460: 1455: 1453: 1448: 1447: 1444: 1435: 1431: 1427: 1423: 1419: 1415: 1410: 1405: 1401: 1397: 1392: 1380: 1379:Physics World 1376: 1371: 1367: 1363: 1359: 1355: 1349: 1345: 1341: 1336: 1335: 1321: 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1288: 1283: 1280:(4): 040403. 1279: 1275: 1268: 1266: 1257: 1253: 1249: 1245: 1240: 1235: 1232:(7625): 318. 1231: 1227: 1223: 1216: 1212: 1196: 1192: 1183: 1180: 1178: 1175: 1174: 1168: 1166: 1162: 1158: 1154: 1144: 1142: 1138: 1134: 1130: 1126: 1122: 1117: 1115: 1111: 1107: 1103: 1097: 1093: 1087: 1083: 1078: 1076: 1072: 1068: 1064: 1054: 1052: 1048: 1044: 1040: 1037: 1033: 1029: 1025: 1021: 1011: 1009: 1005: 1001: 986: 984: 981:500,000  979: 975: 971: 967: 963: 958: 956: 952: 947: 944: 940: 936: 926: 924: 920: 914: 912: 908: 904: 900: 896: 892: 891:quantum state 888: 878: 876: 872: 868: 864: 860: 856: 852: 845:Superfluidity 837: 835: 832:atoms at the 831: 827: 823: 819: 815: 811: 807: 803: 799: 795: 792: 788: 784: 772: 767: 765: 760: 758: 753: 752: 750: 749: 743: 733: 730: 725: 719: 718: 717: 716: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 628: 625: 623: 620: 618: 615: 613: 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 583: 580: 578: 575: 573: 570: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 515: 513: 510: 508: 507:Van der Waals 505: 504: 497: 496: 488: 485: 483: 480: 478: 475: 473: 470: 468: 465: 464: 460: 455: 454: 446: 443: 441: 438: 436: 433: 431: 427: 424: 422: 419: 417: 414: 413: 409: 404: 403: 395: 392: 390: 386: 383: 381: 377: 374: 372: 368: 365: 363: 360: 359: 352: 351: 343: 340: 338: 335: 333: 330: 329: 322: 321: 313: 310: 308: 305: 303: 302:Ferroelectric 300: 298: 297:Piezoelectric 295: 293: 290: 288: 285: 283: 280: 278: 275: 273: 272:Semiconductor 270: 268: 265: 263: 260: 258: 255: 253: 250: 249: 242: 241: 233: 230: 228: 225: 223: 220: 219: 212: 211: 203: 200: 198: 195: 193: 192:Superfluidity 190: 188: 185: 183: 180: 178: 175: 173: 170: 168: 165: 163: 160: 158: 155: 153: 150: 148: 145: 143: 140: 139: 135: 130: 129: 123: 120: 118: 115: 113: 110: 109: 107: 106: 102: 98: 97: 94: 91: 90: 81: 78: 70: 60: 56: 50: 49: 43: 39: 35: 30: 21: 20: 1943:Superheating 1816:Vaporization 1811:Triple point 1806:Supercooling 1771:Lambda point 1721:Condensation 1638:Time crystal 1616:Other states 1556:Quantum Hall 1545: 1399: 1395: 1390:</ref> 1382:. Retrieved 1378: 1366:the original 1339: 1277: 1273: 1229: 1225: 1215: 1195: 1161:Cooper pairs 1150: 1125:Cooper pairs 1118: 1114:quark matter 1105: 1095: 1091: 1081: 1079: 1066: 1060: 1017: 999: 997: 966:Rudolf Grimm 959: 935:Eric Cornell 932: 915: 911:Cooper pairs 884: 848: 830:potassium-40 802:temperatures 786: 782: 780: 637:von Klitzing 342:Kondo effect 202:Time crystal 182:Fermi liquid 171: 73: 64: 53:Please help 45: 1852:Latent heat 1801:Sublimation 1746:Evaporation 1681:Ferromagnet 1676:Ferrimagnet 1658:Dark matter 1590:High energy 1043:Cooper pair 1039:bound state 962:Deborah Jin 939:Carl Wieman 459:Soft matter 380:Ferromagnet 59:introducing 1963:Categories 1867:Volatility 1830:Quantities 1791:Regelation 1766:Ionization 1741:Deposition 1693:Superglass 1663:Antimatter 1597:QCD matter 1576:Supersolid 1571:Superfluid 1534:Low energy 1207:References 1165:superfluid 1155:atom is a 1121:BCS theory 1102:QCD vacuum 1071:QCD vacuum 1020:BCS theory 1014:BCS theory 851:superfluid 840:Background 796:formed by 791:superfluid 602:Louis NĂ©el 592:Schrieffer 500:Scientists 394:Spin glass 389:Metamagnet 371:Paramagnet 187:Supersolid 1434:0370-1573 1409:0912.5483 1248:0028-0836 1188:Footnotes 1177:Fermi gas 1041:called a 1028:electrons 983:potassium 964:at JILA, 863:viscosity 836:in 2003. 814:electrons 798:fermionic 702:Wetterich 682:Abrikosov 597:Josephson 567:Van Vleck 557:Luttinger 430:Polariton 362:Diamagnet 282:Conductor 277:Semimetal 262:Insulator 177:Fermi gas 1928:Spinodal 1876:Concepts 1756:Freezing 1320:10799388 1312:14995356 1256:27762370 1182:Bose gas 1171:See also 1153:helium-3 1086:flavours 989:Examples 943:rubidium 919:helium-3 871:helium-4 742:Category 687:Ginzburg 662:Laughlin 622:Kadanoff 577:Shockley 562:Anderson 517:von Laue 167:Bose gas 1888:Binodal 1776:Melting 1711:Boiling 1628:Crystal 1623:Colloid 1414:Bibcode 1331:Sources 1292:Bibcode 1157:fermion 1094:) Ă— SU( 968:at the 855:liquids 810:bosonic 789:) is a 692:Leggett 667:Störmer 652:Bednorz 612:Giaever 582:Bardeen 572:Hubbard 547:Peierls 537:Onsager 487:Polymer 472:Colloid 435:Polaron 426:Plasmon 421:Exciton 55:improve 1516:Plasma 1497:Liquid 1432:  1384:29 Jun 1350:  1318:  1310:  1254:  1246:  1226:Nature 1137:quarks 1084:quark 1036:scalar 972:, and 905:, and 875:bosons 828:using 740:  707:Perdew 697:Parisi 657:MĂĽller 647:Rohrer 642:Binnig 632:Wilson 627:Fisher 587:Cooper 552:Landau 440:Magnon 416:Phonon 257:Plasma 157:Plasma 147:Liquid 112:Phases 1506:Vapor 1492:Solid 1485:State 1404:arXiv 1316:S2CID 1282:arXiv 1200:same. 1032:metal 1030:in a 946:atoms 933:When 859:gases 822:atoms 816:in a 794:phase 607:Esaki 532:Bloch 527:Debye 522:Bragg 512:Onnes 445:Roton 142:Solid 40:, or 1477:list 1430:ISSN 1386:2019 1348:ISBN 1308:PMID 1252:PMID 1244:ISSN 1018:The 951:JILA 937:and 857:and 785:(or 677:Tsui 672:Yang 617:Kohn 542:Mott 1502:Gas 1422:doi 1400:490 1300:doi 1234:doi 1230:538 1090:SU( 1077:). 1061:In 1057:QCD 1022:of 978:MIT 976:at 232:QCP 152:Gas 122:QCP 1965:: 1504:/ 1428:. 1420:. 1412:. 1398:. 1377:. 1346:. 1342:. 1314:. 1306:. 1298:. 1290:. 1278:92 1276:. 1264:^ 1250:. 1242:. 1228:. 1224:. 1151:A 1143:. 1010:. 998:A 957:. 901:, 781:A 44:, 36:, 1479:) 1475:( 1465:e 1458:t 1451:v 1436:. 1424:: 1416:: 1406:: 1388:. 1356:. 1322:. 1302:: 1294:: 1284:: 1258:. 1236:: 1106:N 1098:) 1096:N 1092:N 1082:N 770:e 763:t 756:v 80:) 74:( 69:) 65:( 51:.

Index

list of references
related reading
external links
inline citations
improve
introducing
Learn how and when to remove this message
Condensed matter physics

Phases
Phase transition
QCP
States of matter
Solid
Liquid
Gas
Plasma
Bose–Einstein condensate
Bose gas
Fermionic condensate
Fermi gas
Fermi liquid
Supersolid
Superfluidity
Luttinger liquid
Time crystal
Order parameter
Phase transition
QCP
Electronic band structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑