Knowledge

Gauge fixing

Source 📝

3352:, since motions of electric charge or magnetic field appear everywhere instantaneously as changes to the potentials. This is justified by noting that the scalar and vector potentials themselves do not affect the motions of charges, only the combinations of their derivatives that form the electromagnetic field strength. Although one can compute the field strengths explicitly in the Coulomb gauge and demonstrate that changes in them propagate at the speed of light, it is much simpler to observe that the field strengths are unchanged under gauge transformations and to demonstrate causality in the manifestly Lorentz covariant Lorenz gauge described below. 4407:
no effect on any physical observable. A quantity or expression that does not depend on the gauge function is said to be gauge invariant: All physical observables are required to be gauge invariant. A gauge transformation from the Coulomb gauge to another gauge is made by taking the gauge function to be the sum of a specific function which will give the desired gauge transformation and the arbitrary function. If the arbitrary function is then set to zero, the gauge is said to be fixed. Calculations may be carried out in a fixed gauge but must be done in a way that is gauge invariant.
865: 7373: 47: 2572: 4248: 3786: 2411: 4389: 5239:
waves in the four-potential. The transverse polarizations correspond to classical radiation, i.e., transversely polarized waves in the field strength. To suppress the "unphysical" longitudinal and time-like polarization states, which are not observed in experiments at classical distance scales, one
4406:
is an arbitrary scalar field called the gauge function. The fields that are the derivatives of the gauge function are known as pure gauge fields and the arbitrariness associated with the gauge function is known as gauge freedom. In a calculation that is carried out correctly the pure gauge terms have
3904:
at infinity is a consequence of the unphysical assumption that the magnetic field is uniform throughout the whole of space. Although this vector potential is unrealistic in general it can provide a good approximation to the potential in a finite volume of space in which the magnetic field is uniform.
2845:
As an illustration of gauge fixing, one may look at a cylindrical rod and attempt to tell whether it is twisted. If the rod is perfectly cylindrical, then the circular symmetry of the cross section makes it impossible to tell whether or not it is twisted. However, if there were a straight line drawn
2739:
Although classical electromagnetism is now often spoken of as a gauge theory, it was not originally conceived in these terms. The motion of a classical point charge is affected only by the electric and magnetic field strengths at that point, and the potentials can be treated as a mere mathematical
5768:). For this reason, and because their appearance in spin sums can be seen as a mere mathematical device in QED (much like the electromagnetic four-potential in classical electrodynamics), they are often spoken of as "unphysical". But unlike the constraint-based gauge fixing procedures above, the 3088: 2030:
Although the unphysical axes in the space of detailed configurations are a fundamental property of the physical model, there is no special set of directions "perpendicular" to them. Hence there is an enormous amount of freedom involved in taking a "cross section" representing each physical
2225: 2740:
device for simplifying some proofs and calculations. Not until the advent of quantum field theory could it be said that the potentials themselves are part of the physical configuration of a system. The earliest consequence to be accurately predicted and experimentally verified was the
4090: 3613: 3202: 4836: 4943: 3574: 3801:
The Coulomb gauge admits a natural Hamiltonian formulation of the evolution equations of the electromagnetic field interacting with a conserved current, which is an advantage for the quantization of the theory. The Coulomb gauge is, however, not Lorentz covariant. If a
3806:
to a new inertial frame is carried out, a further gauge transformation has to be made to retain the Coulomb gauge condition. Because of this, the Coulomb gauge is not used in covariant perturbation theory, which has become standard for the treatment of relativistic
4252: 6584: 2567:{\displaystyle \mathbf {E} =-\nabla \varphi -{\frac {\partial {\mathbf {A} }}{\partial t}}-\nabla {\frac {\partial {\psi }}{\partial t}}=-\nabla \left(\varphi +{\frac {\partial {\psi }}{\partial t}}\right)-{\frac {\partial {\mathbf {A} }}{\partial t}}.} 6683: 2400: 4507: 4580: 5446: 3894: 2136: 5596: 2969: 2026:
along unphysical axes in configuration space. Most of the quantitative physical predictions of a gauge theory can only be obtained under a coherent prescription for suppressing or ignoring these unphysical degrees of freedom.
2630: 5032: 2035:
detailed configuration (or even a weighted distribution of them). Judicious gauge fixing can simplify calculations immensely, but becomes progressively harder as the physical model becomes more realistic; its application to
4735: 5657:
in which infinitesimal perturbations along "physical" directions in configuration space are entirely uncoupled from those along "unphysical" directions, allowing the latter to be absorbed into the physically meaningless
4840: 3815:(QED). Lorentz covariant gauges such as the Lorenz gauge are usually used in these theories. Amplitudes of physical processes in QED in the noncovariant Coulomb gauge coincide with those in the covariant Lorenz gauge. 5111: 3092: 4023: 5704:. An expansion of this factor as a sum over photon polarizations involves terms containing all four possible polarizations. Transversely polarized radiation can be expressed mathematically as a sum over either a 2793: 3374: 2102:
degree of freedom in an electromagnetic field configuration has a separately measurable effect on the motions of test charges in the vicinity. These "field strength" variables can be expressed in terms of the
2271: 6016: 5666:. When Ο is finite, each physical configuration (orbit of the group of gauge transformations) is represented not by a single solution of a constraint equation but by a Gaussian distribution centered on the 2945: 6340: 3260: 5229: 5791:
of the embedding of gauge freedom axes within the space of detailed configurations. This leads to the explicit appearance of forward and backward polarized gauge bosons in Feynman diagrams, along with
5787:. The couplings between physical and unphysical perturbation axes do not entirely disappear under the corresponding change of variables; to obtain correct results, one must account for the non-trivial 4243:{\displaystyle \varphi (\mathbf {r} ,t)=\int {\frac {\nabla '\cdot {\mathbf {E} }(\mathbf {r} ',t)}{4\pi R}}\operatorname {d} \!^{3}\mathbf {r} '-{\frac {\partial {\psi (\mathbf {r} ,t)}}{\partial t}}} 6486: 5727:. Spin sums can be very helpful both in simplifying expressions and in obtaining a physical understanding of the experimental effects associated with different terms in a theoretical calculation. 3781:{\displaystyle \int \mathbf {A} ^{2}(\mathbf {r} ,t)d^{3}\mathbf {r} =\iint {\frac {\mathbf {B} (\mathbf {r} ,t)\cdot \mathbf {B} (\mathbf {r} ',t)}{4\pi R}}d^{3}\mathbf {r} \,d^{3}\mathbf {r} '.} 5733:
used arguments along approximately these lines largely to justify calculation procedures that produced consistent, finite, high precision results for important observable parameters such as the
6479: 6588: 4082: 3603:, no gauge arbitrariness remains. Because of this, the Coulomb gauge is said to be a complete gauge, in contrast to gauges where some gauge arbitrariness remains, like the Lorenz gauge below. 2052:
and computationally tractable gauge fixing procedures, and efforts to demonstrate their equivalence in the face of a bewildering variety of technical difficulties, has been a major driver of
2331: 4436: 4954:
in some sense: there remains a subspace of gauge transformations which can also preserve the constraint. These remaining degrees of freedom correspond to gauge functions which satisfy the
2326: 5288: 4625: 4516: 3296: 5369: 3954: 6819: 3829: 6281: 5953: 6749: 4384:{\displaystyle \mathbf {A} (\mathbf {r} ,t)=\nabla \times \int {\frac {\mathbf {B} (\mathbf {r} ',t)}{4\pi R}}\operatorname {d} \!^{3}\mathbf {r} '+\nabla \psi (\mathbf {r} ,t)} 5524: 2862:. In summary, to tell whether the rod is twisted, the gauge must be known. Physical quantities, such as the energy of the torsion, do not depend on the gauge, i.e., they are 5601: 5353: 5169: 4691: 6401: 2584: 4960: 5824: 2124: 3324: 5468: â†’ 0 but postpones taking that limit until after the theory has been quantized. It improves the rigor of certain existence and equivalence proofs. Most 4087:
As a consequence of the considerations above, the electromagnetic potentials may be expressed in their most general forms in terms of the electromagnetic fields as
2830: 2022:
of detailed local field configurations. Any two detailed configurations in the same equivalence class are related by a certain transformation, equivalent to a
5046: 604: 5737:
of the electron. Although his arguments sometimes lacked mathematical rigor even by physicists' standards and glossed over details such as the derivation of
3959: 5799:. The relationship between these entities, and the reasons why they do not appear as particles in the quantum mechanical sense, becomes more evident in the 5296:
can be accounted for by the role that the longitudinal and time-like polarizations play in interactions between charged particles at microscopic distances.
5712:
basis. Similarly, one can combine the longitudinal and time-like gauge polarizations to obtain "forward" and "backward" polarizations; these are a form of
5646: 2755: 5761: 5675: 4424: 577: 5609: 2237: 5958: 2893: 2744:, which has no classical counterpart. Nevertheless, gauge freedom is still true in these theories. For example, the Aharonov–Bohm effect depends on a 7148: 5036:
These remaining gauge degrees of freedom propagate at the speed of light. To obtain a fully fixed gauge, one must add boundary conditions along the
1114: 589: 6286: 4947:
It can be seen from these equations that, in the absence of current and charge, the solutions are potentials which propagate at the speed of light.
2220:{\displaystyle {\mathbf {E} }=-\nabla \varphi -{\frac {\partial {\mathbf {A} }}{\partial t}}\,,\quad {\mathbf {B} }=\nabla \times {\mathbf {A} }.} 5604:, can be eliminated by "completing the square" to obtain the previous form. From a mathematical perspective the auxiliary field is a variety of 5181: 3083:{\displaystyle \varphi (\mathbf {r} ,t)={\frac {1}{4\pi \varepsilon _{0}}}\int {\frac {\mathbf {\rho } (\mathbf {r} ',t)}{R}}d^{3}\mathbf {r} '} 1981: 2846:
along the length of the rod, then one could easily say whether or not there is a twist by looking at the state of the line. Drawing a line is
3338: 4831:{\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}\varphi }{\partial t^{2}}}-\nabla ^{2}{\varphi }={\frac {\rho }{\varepsilon _{0}}}} 1034: 6448: 5724: 2011: 840: 609: 6024:
gauge theory in D dimensions, the maximal abelian subgroup is a U(1)×U(1) subgroup. If this is chosen to be the one generated by the
1074: 4938:{\displaystyle {\frac {1}{c^{2}}}{\frac {\partial ^{2}\mathbf {A} }{\partial t^{2}}}-\nabla ^{2}{\mathbf {A} }=\mu _{0}\mathbf {J} } 2879: 3610:
over all space is minimal for this gauge: All other gauges give a larger integral. The minimum value given by the Coulomb gauge is
619: 5250: 4587: 3197:{\displaystyle \mathbf {A} (\mathbf {r} ,t)=\nabla \times \int {\frac {\mathbf {B} (\mathbf {r} ',t)}{4\pi R}}d^{3}\mathbf {r} '} 6345:
This applies regularly in higher algebras (of groups in the algebras), for example the Clifford Algebra and as it is regularly.
5835:
gauge theory in D dimensions, the maximal abelian subgroup is a U(1) subgroup. If this is chosen to be the one generated by the
444: 7141: 7098: 3222: 459: 454: 81: 6774: 3569:{\displaystyle \mathbf {A} (\mathbf {r} ,t)={\frac {1}{4\pi \varepsilon _{0}}}\,\nabla \times \int \leftd^{3}\mathbf {r} '.} 469: 1839: 6044: 5848: 4725:; it is often misspelled "Lorentz gauge". (Neither was the first to use it in calculations; it was introduced in 1888 by 6711: 3578:
Further gauge transformations that retain the Coulomb gauge condition might be made with gauge functions that satisfy
1974: 5178:
Two solutions of these equations for the same current configuration differ by a solution of the vacuum wave equation
4028: 3896:
plus the gradient of any scalar field (the gauge function), which can be confirmed by calculating the div and curl of
7376: 7117: 71: 6483:
This is another gauge in which the potentials can be expressed in a simple way in terms of the instantaneous fields
339: 7408: 7248: 7134: 3588:, but as the only solution to this equation that vanishes at infinity (where all fields are required to vanish) is 2949:
It is particularly useful for "semi-classical" calculations in quantum mechanics, in which the vector potential is
1604: 2296: 7171: 5788: 3265: 877: 254: 6579:{\displaystyle \mathbf {A} (\mathbf {r} ,t)=-\mathbf {r} \times \int _{0}^{1}\mathbf {B} (u\mathbf {r} ,t)u\,du} 6380: 2018:
variables. By definition, a gauge theory represents each physically distinct configuration of the system as an
7062: 4694: 2077: 833: 599: 76: 6940:
Gubarev, F. V.; Stodolsky, L.; Zakharov, V. I. (2001). "On the Significance of the Vector Potential Squared".
3919: 7403: 2962: 1967: 1152: 991: 951: 614: 319: 17: 1709: 1634: 981: 479: 219: 86: 209: 7298: 7181: 6887: 6839: 6678:{\displaystyle \varphi (\mathbf {r} ,t)=-\mathbf {r} \cdot \int _{0}^{1}\mathbf {E} (u\mathbf {r} ,t)du.} 5796: 5765: 5738: 1147: 1084: 772: 647: 544: 519: 439: 7002:
Adkins, Gregory S. (1987-09-15). "Feynman rules of Coulomb-gauge QED and the electron magnetic moment".
2395:{\displaystyle {\mathbf {B} }=\nabla \times ({\mathbf {A} }+\nabla \psi )=\nabla \times {\mathbf {A} }.} 4502:{\displaystyle \nabla \cdot {\mathbf {A} }+{\frac {1}{c^{2}}}{\frac {\partial \varphi }{\partial t}}=0} 986: 272: 6353:
Various other gauges, which can be beneficial in specific situations have appeared in the literature.
1819: 7398: 7319: 7258: 7186: 5734: 5689:
The photon propagator, which is the multiplicative factor corresponding to an internal photon in the
5232: 4726: 3795: 2127: 1137: 1079: 826: 787: 314: 304: 244: 239: 179: 5334: 5116: 4630: 4575:{\displaystyle \nabla \cdot {\mathbf {A} }+{\frac {1}{c}}{\frac {\partial \varphi }{\partial t}}=0.} 3355:
Another expression for the vector potential, in terms of the time-retarded electric current density
5776: 2887: 2798: 2741: 1639: 1264: 1157: 1094: 1054: 324: 1629: 757: 259: 7413: 7212: 7157: 6942: 5792: 5623: 5441:{\displaystyle \delta {\mathcal {L}}=-{\frac {\left(\partial _{\mu }A^{\mu }\right)^{2}}{2\xi }}} 5293: 5235:, and hence that the Lorenz gauge condition allows transversely, longitudinally, and "time-like" 3812: 2961:
The potentials can be expressed in terms of instantaneous values of the fields and densities (in
2814: 2023: 1919: 1379: 1187: 1182: 1024: 637: 164: 154: 149: 4084:
are unitary vectors of the Cartesian coordinate system (z-axis aligned with the magnetic field).
762: 732: 5784: 5754: 5713: 4418: 3808: 3803: 2950: 2095: 2045: 1789: 1769: 1259: 1192: 1089: 1049: 584: 354: 129: 7334: 2109: 3889:{\displaystyle {\mathbf {A} }(\mathbf {r} ,t)=-{\frac {1}{2}}\mathbf {r} \times \mathbf {B} } 3309: 2802: 1674: 1529: 1225: 1162: 1069: 931: 682: 369: 359: 309: 299: 3790:
In regions far from electric charge the scalar potential becomes zero. This is known as the
7011: 6960: 6906: 6848: 6756: 5709: 5683: 5659: 5469: 5236: 2858:; it need not be straight. Almost any line is a valid gauge fixing, i.e., there is a large 2069: 2053: 2049: 2037: 1924: 1699: 1230: 1064: 856: 807: 707: 672: 424: 289: 189: 174: 109: 7344: 6885:
Jackson, J. D. (2002). "From Lorenz to Coulomb and other explicit gauge transformations".
976: 46: 8: 7288: 5723:
factor in terms of circularly polarized (spin ±1) and light-cone coordinates is called a
5705: 5663: 5654: 5324:
are a generalization of the Lorenz gauge applicable to theories expressed in terms of an
5245: 4732:
The Lorenz gauge leads to the following inhomogeneous wave equations for the potentials:
1934: 1254: 767: 747: 742: 549: 534: 419: 389: 284: 214: 7015: 6964: 6910: 6852: 5591:{\displaystyle \delta {\mathcal {L}}=B\,\partial _{\mu }A^{\mu }+{\frac {\xi }{2}}B^{2}} 1644: 1369: 7354: 7329: 7253: 6984: 6950: 6922: 6896: 6864: 6414: 6025: 5750: 5631: 5329: 4714: 2806: 2736:
of this theory. Gauge fixing can be done in many ways, some of which we exhibit below.
2104: 1944: 1869: 1799: 1679: 1664: 1594: 1554: 1544: 1504: 1419: 1309: 1269: 1039: 1001: 956: 944: 921: 916: 642: 382: 184: 144: 464: 7314: 7283: 7113: 7094: 7058: 7035: 7027: 6976: 6926: 6868: 6860: 5231:
In this form it is clear that the components of the potential separately satisfy the
2883: 2019: 1899: 1829: 1714: 1704: 1549: 1484: 1454: 1424: 1284: 1279: 1109: 1029: 1019: 911: 702: 6988: 6442: 1614: 7349: 7232: 7019: 6968: 6914: 6856: 6701: 5746: 5701: 5492: 5325: 2810: 2625:{\displaystyle \varphi \rightarrow \varphi -{\frac {\partial {\psi }}{\partial t}}} 2065: 1939: 1854: 1834: 1804: 1754: 1574: 1564: 1559: 1444: 1429: 1359: 1044: 971: 961: 896: 802: 717: 677: 667: 554: 509: 492: 409: 344: 114: 38: 5027:{\displaystyle {\frac {\partial ^{2}\psi }{\partial t^{2}}}=c^{2}\nabla ^{2}\psi } 7293: 7278: 7176: 7086: 6410: 5730: 5690: 5605: 5514: 5241: 4722: 4717:. Note, however, that this gauge was originally named after the Danish physicist 3348:
The instantaneous nature of these potentials appears, at first sight, to violate
2073: 2041: 2015: 1884: 1879: 1849: 1844: 1814: 1774: 1744: 1724: 1624: 1514: 1509: 1474: 1459: 1434: 1414: 1394: 1324: 1314: 1235: 1197: 1099: 1059: 891: 869: 864: 737: 662: 657: 524: 399: 364: 224: 124: 6972: 777: 27:
Procedure of coping with redundant degrees of freedom in physical field theories
7324: 5800: 5679: 5627: 4510: 2890:
and is defined by the gauge condition (more precisely, gauge fixing condition)
2854:
of the cross section at each point of the rod. The line is the equivalent of a
2088: 2081: 1909: 1859: 1779: 1764: 1749: 1729: 1694: 1689: 1684: 1669: 1654: 1619: 1609: 1534: 1469: 1439: 1374: 1339: 1329: 1304: 1175: 1132: 996: 697: 692: 514: 404: 329: 279: 229: 202: 159: 134: 104: 97: 1659: 7392: 7031: 7023: 6697: 5742: 5671: 4955: 4718: 2745: 1914: 1904: 1894: 1889: 1809: 1794: 1589: 1584: 1409: 1404: 1364: 1334: 1299: 1289: 1220: 1215: 812: 797: 782: 722: 434: 349: 334: 249: 234: 139: 3822:
the vector potential in the Coulomb gauge can be expressed in the so-called
6980: 6406: 5836: 5812: 5745:
soon demonstrated that his method was substantially equivalent to those of
5172: 2818: 2080:, which is presented here in space/time asymmetric Heaviside notation. The 1999: 1949: 1874: 1759: 1734: 1719: 1649: 1569: 1524: 1519: 1399: 1389: 1384: 1349: 1344: 1319: 1274: 1142: 1104: 926: 906: 792: 687: 652: 594: 529: 449: 414: 294: 169: 7126: 7039: 2850:. Drawing the line spoils the gauge symmetry, i.e., the circular symmetry 7273: 7263: 7227: 7202: 5356: 5106:{\displaystyle \partial _{\mu }\partial ^{\mu }A^{\nu }=\mu _{0}j^{\nu }} 1929: 1864: 1824: 1784: 1739: 1599: 1499: 1494: 1479: 1464: 1449: 712: 564: 394: 56: 6901: 7339: 7268: 7082: 6955: 6768: 5464:
is classically equivalent to Lorenz gauge: it is obtained in the limit
5037: 4707: 4018:{\displaystyle \mathbf {A} =B(\mathbf {r} \cdot {\hat {x}}){\hat {y}},} 3606:
The Coulomb gauge is a minimal gauge in the sense that the integral of
1579: 1489: 1354: 1294: 966: 901: 429: 6918: 6041:, then the maximal abelian gauge is that which maximizes the function 5845:, then the maximal abelian gauge is that which maximizes the function 3349: 752: 727: 539: 61: 2788:{\displaystyle \mathbf {A} \rightarrow \mathbf {A} +\nabla \psi \,.} 2098:
contain only "physical" degrees of freedom, in the sense that every
7222: 7207: 5667: 1539: 504: 499: 119: 5674:
of the gauge-fixed theory, this appears as a contribution to the
2266:{\displaystyle \mathbf {A} \rightarrow \mathbf {A} +\nabla \psi } 1995: 474: 6837:
Stewart, A. M. (2003). "Vector potential of the Coulomb gauge".
6417:, and requires longitudinal photons and a constraint on states. 6011:{\displaystyle {\mathbf {A} }_{\mu }=A_{\mu }^{a}\sigma _{a}\,.} 2940:{\displaystyle \nabla \cdot {\mathbf {A} }(\mathbf {r} ,t)=0\,.} 7217: 5760:
Forward and backward polarized radiation can be omitted in the
4713:
It is unique among the constraint gauges in retaining manifest
3306:′ is a point in the charge or current distribution), the 559: 66: 6335:{\displaystyle {\mathbf {A} }_{\mu }=A_{\mu }^{a}\lambda _{a}} 6021: 5832: 5780: 3905:
Another common choice for homogeneous constant fields is the
2698:
A particular choice of the scalar and vector potentials is a
2010:) denotes a mathematical procedure for coping with redundant 5795:, which are even more "unphysical" in that they violate the 5612:
of the theory, and especially when generalizing beyond QED.
5224:{\displaystyle \partial _{\mu }\partial ^{\mu }A^{\nu }=0.} 2851: 2752:
around a closed loop, and this integral is not changed by
2730: 5716:
in which the metric is off-diagonal. An expansion of the
2044:, especially when the computation is continued to higher 6939: 5622:
gauges was a significant technical advance in extending
2829: 2714:. The existence of arbitrary numbers of gauge functions 5244:. Classically, these identities are equivalent to the 4430: 3255:{\displaystyle \mathbf {R} =\mathbf {r} -\mathbf {r} '} 4654: 2809:, is a rather more complicated topic; for details see 6777: 6714: 6591: 6489: 6451: 6383: 6289: 6047: 5961: 5851: 5527: 5372: 5337: 5253: 5184: 5119: 5049: 5043:
Maxwell's equations in the Lorenz gauge simplify to
4963: 4843: 4738: 4633: 4590: 4519: 4439: 4255: 4093: 4031: 3962: 3922: 3832: 3616: 3377: 3312: 3268: 3225: 3095: 2972: 2896: 2758: 2587: 2414: 2334: 2299: 2240: 2139: 2112: 5741:
of the quantum theory, his calculations worked, and
5366:
term to the "physical" (gauge invariant) Lagrangian
7055:
Quantum field theory of point particles and strings
5823:gauge which fixes the gauge freedom outside of the 5641:prescription breaks the symmetry under local gauge 4425:
Covariant formulation of classical electromagnetism
6813: 6743: 6677: 6578: 6473: 6395: 6334: 6275: 6010: 5947: 5693:expansion of a QED calculation, contains a factor 5608:, and its use has advantages when identifying the 5590: 5440: 5355:. Instead of fixing the gauge by constraining the 5347: 5282: 5223: 5163: 5105: 5026: 4937: 4830: 4685: 4619: 4574: 4501: 4383: 4242: 4076: 4017: 3948: 3888: 3780: 3568: 3318: 3290: 3254: 3196: 3082: 2939: 2787: 2624: 2566: 2394: 2320: 2265: 2219: 2118: 7010:(6). American Physical Society (APS): 1929–1932. 6767:The nonlinear Dirac gauge condition (named after 6474:{\displaystyle \mathbf {r} \cdot \mathbf {A} =0.} 4338: 4181: 2056:from the late nineteenth century to the present. 7390: 5240:must also employ auxiliary constraints known as 4077:{\displaystyle {\hat {x}},{\hat {y}},{\hat {z}}} 2660:fields are unchanged if one takes any function 7081: 5362:, via an auxiliary equation, one adds a gauge 5292:Many of the differences between classical and 2956:The Coulomb gauge has a number of properties: 7142: 7093:. Amsterdam: Elsevier Butterworth Heinemann. 6880: 6878: 1975: 834: 6348: 5670:of the gauge breaking term. In terms of the 2321:{\displaystyle \nabla \times \nabla \psi =0} 2293:remains unchanged, since (with the identity 7156: 5283:{\displaystyle \partial _{\mu }j^{\mu }=0.} 4620:{\displaystyle \partial _{\mu }A^{\mu }=0.} 3291:{\displaystyle R=\left|\mathbf {R} \right|} 7149: 7135: 6875: 6830: 3818:For a uniform and constant magnetic field 1982: 1968: 863: 841: 827: 45: 6954: 6900: 6569: 6269: 6004: 5941: 5544: 5155: 5149: 5142: 5138: 4677: 4671: 4652: 3916:Landau gauge of the next section), where 3754: 3531: 3469: 3428: 2933: 2781: 2186: 2040:is fraught with complications related to 7052: 5806: 5600:The auxiliary field, sometimes called a 3949:{\displaystyle \mathbf {B} =B{\hat {z}}} 2828: 7107: 6884: 6836: 6687: 590:Electromagnetism and special relativity 14: 7391: 7001: 6814:{\displaystyle A_{\mu }A^{\mu }=k^{2}} 7130: 5649:of any two physically distinct gauge 2710:used to change the gauge is called a 2404:However, this transformation changes 2064:The archetypical gauge theory is the 610:Maxwell equations in curved spacetime 7057:. Addison-Wesley. pp. 210–213. 5753:, with whom Feynman shared the 1965 5630:. In addition to retaining manifest 5483:; a few are more tractable in other 5454:determines the choice of gauge. The 3302:is any position vector in space and 2953:but the Coulomb interaction is not. 2837:cylinder. (Note: the line is on the 2578: 2231: 6420: 6409:. It eliminates the negative-norm 6276:{\displaystyle \int d^{D}x\left\,,} 5948:{\displaystyle \int d^{D}x\left\,,} 24: 7075: 6744:{\displaystyle x^{\mu }A_{\mu }=0} 5546: 5533: 5398: 5378: 5340: 5255: 5196: 5186: 5061: 5051: 5012: 4982: 4968: 4901: 4881: 4865: 4794: 4774: 4760: 4592: 4557: 4549: 4520: 4484: 4476: 4440: 4358: 4334: 4281: 4231: 4204: 4177: 4124: 3798:was first quantized in this gauge. 3429: 3313: 3121: 2897: 2824: 2775: 2652:also remains the same. Hence, the 2613: 2603: 2552: 2540: 2520: 2510: 2493: 2478: 2468: 2462: 2450: 2438: 2426: 2376: 2364: 2345: 2306: 2300: 2257: 2201: 2177: 2165: 2153: 25: 7425: 7377:Template:Quantum mechanics topics 7112:(3rd ed.). New York: Wiley. 5472:computations are simplest in the 7372: 7371: 7249:Anomalous magnetic dipole moment 6653: 6642: 6619: 6599: 6553: 6542: 6519: 6499: 6491: 6461: 6453: 6293: 5965: 5151: 4931: 4912: 4875: 4673: 4528: 4448: 4368: 4347: 4303: 4294: 4265: 4257: 4215: 4190: 4146: 4136: 4101: 3978: 3964: 3924: 3882: 3874: 3844: 3835: 3767: 3750: 3708: 3699: 3682: 3674: 3660: 3636: 3622: 3555: 3513: 3484: 3475: 3387: 3379: 3280: 3244: 3235: 3227: 3219:is the electric charge density, 3186: 3143: 3134: 3105: 3097: 3072: 3037: 2980: 2914: 2905: 2869: 2841:of the cylinder, not inside it.) 2768: 2760: 2545: 2443: 2416: 2384: 2356: 2337: 2250: 2242: 2209: 2193: 2170: 2142: 2059: 2048:. Historically, the search for 5764:of a quantum field theory (see 4412: 2190: 7091:The classical theory of fields 7046: 6995: 6933: 6762: 6663: 6646: 6609: 6595: 6563: 6546: 6509: 6495: 5645:while preserving the ratio of 5521:with no independent dynamics: 5348:{\displaystyle {\mathcal {L}}} 5164:{\displaystyle j^{\nu }=\left} 4695:electromagnetic four-potential 4686:{\displaystyle A^{\mu }=\left} 4429:The Lorenz gauge is given, in 4378: 4364: 4317: 4298: 4275: 4261: 4225: 4211: 4160: 4141: 4111: 4097: 4068: 4053: 4038: 4006: 3997: 3991: 3974: 3940: 3854: 3840: 3722: 3703: 3692: 3678: 3646: 3632: 3504: 3479: 3397: 3383: 3157: 3138: 3115: 3101: 3051: 3032: 2990: 2976: 2924: 2910: 2764: 2675:and simultaneously transforms 2591: 2370: 2351: 2246: 2078:electromagnetic four-potential 1163:Renormalization group equation 13: 1: 6823: 6377:gauge obtained by the choice 6356: 5506:An equivalent formulation of 3909:(not to be confused with the 2963:International System of Units 992:Spontaneous symmetry breaking 952:Symmetry in quantum mechanics 615:Relativistic electromagnetism 6704:; sometimes also called the 5450:The choice of the parameter 5299: 5040:of the experimental region. 7: 7172:Euler–Heisenberg Lagrangian 6973:10.1103/PhysRevLett.86.2220 6888:American Journal of Physics 6840:European Journal of Physics 6706:relativistic PoincarĂ© gauge 6692:The gauge condition of the 6425:The gauge condition of the 3370:, has been obtained to be: 2691: 2685: 2638: 2279: 10: 7430: 6861:10.1088/0143-0807/24/5/308 6396:{\displaystyle \varphi =0} 5775:gauge generalizes well to 4584:This may be rewritten as: 4422: 4416: 987:Explicit symmetry breaking 340:LiĂ©nard–Wiechert potential 7363: 7307: 7241: 7195: 7187:Path integral formulation 7164: 7110:Classical Electrodynamics 6349:Less commonly used gauges 5779:gauge groups such as the 5739:Ward–Takahashi identities 5735:anomalous magnetic moment 5615:Historically, the use of 4727:George Francis FitzGerald 3796:Electromagnetic radiation 2683:via the transformations ( 2128:magnetic vector potential 2105:electric scalar potential 2072:formulation of continuum 1153:Bargmann–Wigner equations 1080:Path Integral Formulation 605:Mathematical descriptions 315:Electromagnetic radiation 305:Electromagnetic induction 245:Magnetic vector potential 240:Magnetic scalar potential 7355:Photon-photon scattering 7053:Hatfield, Brian (1992). 7024:10.1103/physrevd.36.1929 5825:maximal abelian subgroup 5678:for internal lines from 2888:condensed matter physics 2801:gauge theories, such as 2706:) and a scalar function 2119:{\displaystyle \varphi } 1158:Schwinger-Dyson equation 7409:Quantum electrodynamics 7299:Ward–Takahashi identity 7182:Gupta–Bleuler formalism 7158:Quantum electrodynamics 7108:Jackson, J. D. (1999). 5797:spin–statistics theorem 5766:Ward–Takahashi identity 5624:quantum electrodynamics 5602:Nakanishi–Lautrup field 5294:quantum electrodynamics 3813:quantum electrodynamics 3319:{\displaystyle \nabla } 2133:through the relations: 1188:Electroweak interaction 1183:Quantum electrodynamics 1148:Wheeler–DeWitt equation 1025:Background field method 155:Electrostatic induction 150:Electrostatic discharge 6815: 6745: 6679: 6580: 6475: 6397: 6336: 6277: 6012: 5949: 5755:Nobel Prize in Physics 5714:light-cone coordinates 5592: 5474:Feynman–'t Hooft gauge 5442: 5349: 5284: 5225: 5165: 5107: 5028: 4939: 4832: 4687: 4621: 4576: 4503: 4419:Lorenz gauge condition 4385: 4244: 4078: 4019: 3950: 3890: 3809:quantum field theories 3804:Lorentz transformation 3782: 3570: 3320: 3292: 3256: 3198: 3084: 2941: 2842: 2789: 2626: 2568: 2396: 2322: 2267: 2229:If the transformation 2221: 2120: 1193:Quantum chromodynamics 1050:Effective field theory 585:Electromagnetic tensor 7320:Breit–Wheeler process 7259:Klein–Nishina formula 6816: 6746: 6680: 6581: 6476: 6398: 6337: 6278: 6013: 5950: 5817:maximal abelian gauge 5807:Maximal abelian gauge 5700:corresponding to the 5593: 5443: 5350: 5285: 5233:Klein–Gordon equation 5226: 5166: 5108: 5029: 4940: 4833: 4688: 4622: 4577: 4504: 4386: 4245: 4079: 4020: 3951: 3891: 3783: 3571: 3321: 3293: 3257: 3199: 3085: 2942: 2832: 2790: 2627: 2569: 2397: 2323: 2268: 2222: 2121: 1138:Klein–Gordon equation 1070:LSZ reduction formula 578:Covariant formulation 370:Synchrotron radiation 310:Electromagnetic pulse 300:Electromagnetic field 7404:Quantum field theory 6775: 6757:position four-vector 6712: 6694:Fock–Schwinger gauge 6688:Fock–Schwinger gauge 6589: 6487: 6449: 6381: 6287: 6045: 5959: 5849: 5813:abelian gauge theory 5793:Faddeev–Popov ghosts 5710:circularly polarized 5626:computations beyond 5525: 5490:gauges, such as the 5470:quantum field theory 5370: 5335: 5251: 5182: 5117: 5047: 4961: 4950:The Lorenz gauge is 4841: 4736: 4631: 4588: 4517: 4437: 4253: 4091: 4029: 3960: 3920: 3900:. The divergence of 3830: 3614: 3375: 3310: 3266: 3223: 3093: 2970: 2894: 2756: 2742:Aharonov–Bohm effect 2585: 2412: 2332: 2297: 2238: 2137: 2110: 2054:mathematical physics 2050:logically consistent 2038:quantum field theory 1231:Theory of everything 1065:Lattice field theory 1035:Correlation function 857:Quantum field theory 620:Stress–energy tensor 545:Reluctance (complex) 290:Displacement current 7335:DelbrĂŒck scattering 7289:Vacuum polarization 7213:Faddeev–Popov ghost 7016:1987PhRvD..36.1929A 6965:2001PhRvL..86.2220G 6911:2002AmJPh..70..917J 6853:2003EJPh...24..519S 6640: 6540: 6429:(also known as the 6365:(also known as the 6321: 6253: 6220: 6187: 6154: 6121: 6088: 5993: 5925: 5892: 5664:functional integral 5655:change of variables 5647:functional measures 5246:continuity equation 3465: 2878:(also known as the 2815:Faddeev–Popov ghost 2729:corresponds to the 2096:Maxwell's equations 2031:configuration by a 1210:Incomplete theories 535:Magnetomotive force 420:Electromotive force 390:Alternating current 325:Jefimenko equations 285:Cyclotron radiation 7330:Compton scattering 6811: 6741: 6675: 6626: 6576: 6526: 6471: 6415:Lorentz invariance 6405:It is named after 6393: 6332: 6307: 6273: 6239: 6206: 6173: 6140: 6107: 6074: 6026:Gell-Mann matrices 6008: 5979: 5945: 5911: 5878: 5751:Sin-Itiro Tomonaga 5653:. This permits a 5632:Lorentz invariance 5588: 5438: 5345: 5330:Lagrangian density 5280: 5221: 5161: 5103: 5024: 4935: 4828: 4715:Lorentz invariance 4683: 4663: 4617: 4572: 4499: 4381: 4240: 4074: 4015: 3946: 3886: 3778: 3566: 3443: 3316: 3288: 3252: 3194: 3080: 2937: 2843: 2833:Gauge fixing of a 2807:general relativity 2785: 2622: 2576:If another change 2564: 2392: 2318: 2263: 2217: 2116: 2012:degrees of freedom 1075:Partition function 1002:Topological charge 922:General relativity 917:Special relativity 383:Electrical network 220:Gauss magnetic law 185:Static electricity 145:Electric potential 7386: 7385: 7345:MĂžller scattering 7315:Bhabha scattering 7284:Uehling potential 7233:Virtual particles 7100:978-0-7506-2768-9 7004:Physical Review D 6949:(11): 2220–2222. 6919:10.1119/1.1491265 6413:, lacks manifest 5803:of quantization. 5762:asymptotic states 5676:photon propagator 5610:asymptotic states 5576: 5517:, a scalar field 5436: 4996: 4895: 4859: 4826: 4788: 4754: 4662: 4564: 4544: 4491: 4471: 4332: 4238: 4175: 4071: 4056: 4041: 4009: 3994: 3943: 3871: 3737: 3529: 3426: 3172: 3058: 3019: 2884:quantum chemistry 2803:Yang–Mills theory 2702:(more precisely, 2646: 2645: 2620: 2559: 2527: 2485: 2457: 2287: 2286: 2184: 2020:equivalence class 1992: 1991: 1055:Expectation value 1030:BRST quantization 977:PoincarĂ© symmetry 932:Yang–Mills theory 912:Quantum mechanics 851: 850: 550:Reluctance (real) 520:Gyrator–capacitor 465:Resonant cavities 355:Maxwell equations 16:(Redirected from 7421: 7399:Electromagnetism 7375: 7374: 7350:Schwinger effect 7151: 7144: 7137: 7128: 7127: 7123: 7104: 7087:Lifshitz, Evgeny 7069: 7068: 7050: 7044: 7043: 6999: 6993: 6992: 6958: 6943:Phys. Rev. Lett. 6937: 6931: 6930: 6904: 6882: 6873: 6872: 6834: 6820: 6818: 6817: 6812: 6810: 6809: 6797: 6796: 6787: 6786: 6750: 6748: 6747: 6742: 6734: 6733: 6724: 6723: 6702:Julian Schwinger 6684: 6682: 6681: 6676: 6656: 6645: 6639: 6634: 6622: 6602: 6585: 6583: 6582: 6577: 6556: 6545: 6539: 6534: 6522: 6502: 6494: 6480: 6478: 6477: 6472: 6464: 6456: 6427:multipolar gauge 6421:Multipolar gauge 6402: 6400: 6399: 6394: 6341: 6339: 6338: 6333: 6331: 6330: 6320: 6315: 6303: 6302: 6297: 6296: 6282: 6280: 6279: 6274: 6268: 6264: 6263: 6262: 6257: 6252: 6247: 6230: 6229: 6224: 6219: 6214: 6197: 6196: 6191: 6186: 6181: 6164: 6163: 6158: 6153: 6148: 6131: 6130: 6125: 6120: 6115: 6098: 6097: 6092: 6087: 6082: 6060: 6059: 6017: 6015: 6014: 6009: 6003: 6002: 5992: 5987: 5975: 5974: 5969: 5968: 5954: 5952: 5951: 5946: 5940: 5936: 5935: 5934: 5929: 5924: 5919: 5902: 5901: 5896: 5891: 5886: 5864: 5863: 5747:Julian Schwinger 5702:Minkowski metric 5597: 5595: 5594: 5589: 5587: 5586: 5577: 5569: 5564: 5563: 5554: 5553: 5537: 5536: 5502: 5482: 5447: 5445: 5444: 5439: 5437: 5435: 5427: 5426: 5421: 5417: 5416: 5415: 5406: 5405: 5390: 5382: 5381: 5354: 5352: 5351: 5346: 5344: 5343: 5326:action principle 5289: 5287: 5286: 5281: 5273: 5272: 5263: 5262: 5230: 5228: 5227: 5222: 5214: 5213: 5204: 5203: 5194: 5193: 5170: 5168: 5167: 5162: 5160: 5156: 5154: 5129: 5128: 5112: 5110: 5109: 5104: 5102: 5101: 5092: 5091: 5079: 5078: 5069: 5068: 5059: 5058: 5033: 5031: 5030: 5025: 5020: 5019: 5010: 5009: 4997: 4995: 4994: 4993: 4980: 4976: 4975: 4965: 4944: 4942: 4941: 4936: 4934: 4929: 4928: 4916: 4915: 4909: 4908: 4896: 4894: 4893: 4892: 4879: 4878: 4873: 4872: 4862: 4860: 4858: 4857: 4845: 4837: 4835: 4834: 4829: 4827: 4825: 4824: 4812: 4807: 4802: 4801: 4789: 4787: 4786: 4785: 4772: 4768: 4767: 4757: 4755: 4753: 4752: 4740: 4705: 4692: 4690: 4689: 4684: 4682: 4678: 4676: 4664: 4655: 4643: 4642: 4626: 4624: 4623: 4618: 4610: 4609: 4600: 4599: 4581: 4579: 4578: 4573: 4565: 4563: 4555: 4547: 4545: 4537: 4532: 4531: 4508: 4506: 4505: 4500: 4492: 4490: 4482: 4474: 4472: 4470: 4469: 4457: 4452: 4451: 4405: 4390: 4388: 4387: 4382: 4371: 4354: 4350: 4344: 4343: 4333: 4331: 4320: 4310: 4306: 4297: 4291: 4268: 4260: 4249: 4247: 4246: 4241: 4239: 4237: 4229: 4228: 4218: 4202: 4197: 4193: 4187: 4186: 4176: 4174: 4163: 4153: 4149: 4140: 4139: 4130: 4121: 4104: 4083: 4081: 4080: 4075: 4073: 4072: 4064: 4058: 4057: 4049: 4043: 4042: 4034: 4024: 4022: 4021: 4016: 4011: 4010: 4002: 3996: 3995: 3987: 3981: 3967: 3955: 3953: 3952: 3947: 3945: 3944: 3936: 3927: 3895: 3893: 3892: 3887: 3885: 3877: 3872: 3864: 3847: 3839: 3838: 3787: 3785: 3784: 3779: 3774: 3770: 3764: 3763: 3753: 3748: 3747: 3738: 3736: 3725: 3715: 3711: 3702: 3685: 3677: 3671: 3663: 3658: 3657: 3639: 3631: 3630: 3625: 3602: 3587: 3575: 3573: 3572: 3567: 3562: 3558: 3552: 3551: 3542: 3538: 3530: 3528: 3527: 3518: 3517: 3516: 3507: 3491: 3487: 3478: 3471: 3464: 3460: 3451: 3427: 3425: 3424: 3423: 3404: 3390: 3382: 3369: 3325: 3323: 3322: 3317: 3297: 3295: 3294: 3289: 3287: 3283: 3261: 3259: 3258: 3253: 3251: 3247: 3238: 3230: 3218: 3203: 3201: 3200: 3195: 3193: 3189: 3183: 3182: 3173: 3171: 3160: 3150: 3146: 3137: 3131: 3108: 3100: 3089: 3087: 3086: 3081: 3079: 3075: 3069: 3068: 3059: 3054: 3044: 3040: 3031: 3025: 3020: 3018: 3017: 3016: 2997: 2983: 2946: 2944: 2943: 2938: 2917: 2909: 2908: 2880:transverse gauge 2811:Gribov ambiguity 2797:Gauge fixing in 2794: 2792: 2791: 2786: 2771: 2763: 2728: 2674: 2640: 2631: 2629: 2628: 2623: 2621: 2619: 2611: 2610: 2601: 2579: 2573: 2571: 2570: 2565: 2560: 2558: 2550: 2549: 2548: 2538: 2533: 2529: 2528: 2526: 2518: 2517: 2508: 2486: 2484: 2476: 2475: 2466: 2458: 2456: 2448: 2447: 2446: 2436: 2419: 2401: 2399: 2398: 2393: 2388: 2387: 2360: 2359: 2341: 2340: 2327: 2325: 2324: 2319: 2281: 2272: 2270: 2269: 2264: 2253: 2245: 2232: 2226: 2224: 2223: 2218: 2213: 2212: 2197: 2196: 2185: 2183: 2175: 2174: 2173: 2163: 2146: 2145: 2125: 2123: 2122: 2117: 2008:choosing a gauge 1984: 1977: 1970: 1045:Effective action 972:Lorentz symmetry 897:Electromagnetism 867: 853: 852: 843: 836: 829: 510:Electric machine 493:Magnetic circuit 455:Parallel circuit 445:Network analysis 410:Electric current 345:London equations 190:Triboelectricity 180:Potential energy 49: 39:Electromagnetism 30: 29: 21: 7429: 7428: 7424: 7423: 7422: 7420: 7419: 7418: 7389: 7388: 7387: 7382: 7381: 7359: 7303: 7294:Vertex function 7279:Schwinger limit 7254:Furry's theorem 7237: 7191: 7177:Feynman diagram 7160: 7155: 7120: 7101: 7078: 7076:Further reading 7073: 7072: 7065: 7051: 7047: 7000: 6996: 6938: 6934: 6902:physics/0204034 6883: 6876: 6835: 6831: 6826: 6805: 6801: 6792: 6788: 6782: 6778: 6776: 6773: 6772: 6765: 6729: 6725: 6719: 6715: 6713: 6710: 6709: 6690: 6652: 6641: 6635: 6630: 6618: 6598: 6590: 6587: 6586: 6552: 6541: 6535: 6530: 6518: 6498: 6490: 6488: 6485: 6484: 6460: 6452: 6450: 6447: 6446: 6423: 6382: 6379: 6378: 6359: 6351: 6326: 6322: 6316: 6311: 6298: 6292: 6291: 6290: 6288: 6285: 6284: 6258: 6248: 6243: 6235: 6234: 6225: 6215: 6210: 6202: 6201: 6192: 6182: 6177: 6169: 6168: 6159: 6149: 6144: 6136: 6135: 6126: 6116: 6111: 6103: 6102: 6093: 6083: 6078: 6070: 6069: 6068: 6064: 6055: 6051: 6046: 6043: 6042: 6040: 6033: 5998: 5994: 5988: 5983: 5970: 5964: 5963: 5962: 5960: 5957: 5956: 5930: 5920: 5915: 5907: 5906: 5897: 5887: 5882: 5874: 5873: 5872: 5868: 5859: 5855: 5850: 5847: 5846: 5844: 5827:. Examples are 5809: 5773: 5731:Richard Feynman 5722: 5699: 5691:Feynman diagram 5680:virtual photons 5643:transformations 5639: 5621: 5606:Goldstone boson 5582: 5578: 5568: 5559: 5555: 5549: 5545: 5532: 5531: 5526: 5523: 5522: 5515:auxiliary field 5512: 5497: 5489: 5477: 5461: 5428: 5422: 5411: 5407: 5401: 5397: 5396: 5392: 5391: 5389: 5377: 5376: 5371: 5368: 5367: 5339: 5338: 5336: 5333: 5332: 5321: 5310: 5307: 5268: 5264: 5258: 5254: 5252: 5249: 5248: 5242:Ward identities 5209: 5205: 5199: 5195: 5189: 5185: 5183: 5180: 5179: 5150: 5137: 5133: 5124: 5120: 5118: 5115: 5114: 5097: 5093: 5087: 5083: 5074: 5070: 5064: 5060: 5054: 5050: 5048: 5045: 5044: 5015: 5011: 5005: 5001: 4989: 4985: 4981: 4971: 4967: 4966: 4964: 4962: 4959: 4958: 4930: 4924: 4920: 4911: 4910: 4904: 4900: 4888: 4884: 4880: 4874: 4868: 4864: 4863: 4861: 4853: 4849: 4844: 4842: 4839: 4838: 4820: 4816: 4811: 4803: 4797: 4793: 4781: 4777: 4773: 4763: 4759: 4758: 4756: 4748: 4744: 4739: 4737: 4734: 4733: 4723:Hendrik Lorentz 4704: 4698: 4672: 4653: 4651: 4647: 4638: 4634: 4632: 4629: 4628: 4605: 4601: 4595: 4591: 4589: 4586: 4585: 4556: 4548: 4546: 4536: 4527: 4526: 4518: 4515: 4514: 4483: 4475: 4473: 4465: 4461: 4456: 4447: 4446: 4438: 4435: 4434: 4427: 4421: 4415: 4410: 4392: 4367: 4346: 4345: 4339: 4337: 4321: 4302: 4301: 4293: 4292: 4290: 4264: 4256: 4254: 4251: 4250: 4230: 4214: 4207: 4203: 4201: 4189: 4188: 4182: 4180: 4164: 4145: 4144: 4135: 4134: 4123: 4122: 4120: 4100: 4092: 4089: 4088: 4063: 4062: 4048: 4047: 4033: 4032: 4030: 4027: 4026: 4001: 4000: 3986: 3985: 3977: 3963: 3961: 3958: 3957: 3935: 3934: 3923: 3921: 3918: 3917: 3915: 3881: 3873: 3863: 3843: 3834: 3833: 3831: 3828: 3827: 3824:symmetric gauge 3792:radiation gauge 3766: 3765: 3759: 3755: 3749: 3743: 3739: 3726: 3707: 3706: 3698: 3681: 3673: 3672: 3670: 3659: 3653: 3649: 3635: 3626: 3621: 3620: 3615: 3612: 3611: 3589: 3579: 3554: 3553: 3547: 3543: 3523: 3519: 3512: 3511: 3483: 3482: 3474: 3473: 3472: 3470: 3456: 3452: 3447: 3442: 3438: 3419: 3415: 3408: 3403: 3386: 3378: 3376: 3373: 3372: 3356: 3311: 3308: 3307: 3279: 3275: 3267: 3264: 3263: 3243: 3242: 3234: 3226: 3224: 3221: 3220: 3205: 3185: 3184: 3178: 3174: 3161: 3142: 3141: 3133: 3132: 3130: 3104: 3096: 3094: 3091: 3090: 3071: 3070: 3064: 3060: 3036: 3035: 3027: 3026: 3024: 3012: 3008: 3001: 2996: 2979: 2971: 2968: 2967: 2913: 2904: 2903: 2895: 2892: 2891: 2872: 2864:gauge invariant 2827: 2825:An illustration 2767: 2759: 2757: 2754: 2753: 2715: 2704:gauge potential 2661: 2612: 2606: 2602: 2600: 2586: 2583: 2582: 2551: 2544: 2543: 2539: 2537: 2519: 2513: 2509: 2507: 2500: 2496: 2477: 2471: 2467: 2465: 2449: 2442: 2441: 2437: 2435: 2415: 2413: 2410: 2409: 2383: 2382: 2355: 2354: 2336: 2335: 2333: 2330: 2329: 2298: 2295: 2294: 2249: 2241: 2239: 2236: 2235: 2208: 2207: 2192: 2191: 2176: 2169: 2168: 2164: 2162: 2141: 2140: 2138: 2135: 2134: 2111: 2108: 2107: 2076:in terms of an 2074:electrodynamics 2062: 2042:renormalization 1988: 1959: 1958: 1957: 1955: 1249: 1241: 1240: 1236:Quantum gravity 1211: 1203: 1202: 1198:Higgs mechanism 1178: 1168: 1167: 1143:Proca equations 1128: 1120: 1119: 1115:Wightman Axioms 1100:Renormalization 1060:Feynman diagram 1015: 1007: 1006: 947: 937: 936: 887: 872: 870:Feynman diagram 847: 818: 817: 633: 625: 624: 580: 570: 569: 525:Induction motor 495: 485: 484: 400:Current density 385: 375: 374: 365:Poynting vector 275: 273:Electrodynamics 265: 264: 260:Right-hand rule 225:Magnetic dipole 215:Biot–Savart law 205: 195: 194: 130:Electric dipole 125:Electric charge 100: 28: 23: 22: 15: 12: 11: 5: 7427: 7417: 7416: 7414:Gauge theories 7411: 7406: 7401: 7384: 7383: 7380: 7379: 7365: 7364: 7361: 7360: 7358: 7357: 7352: 7347: 7342: 7337: 7332: 7327: 7325:Bremsstrahlung 7322: 7317: 7311: 7309: 7305: 7304: 7302: 7301: 7296: 7291: 7286: 7281: 7276: 7271: 7266: 7261: 7256: 7251: 7245: 7243: 7239: 7238: 7236: 7235: 7230: 7225: 7220: 7215: 7210: 7205: 7199: 7197: 7193: 7192: 7190: 7189: 7184: 7179: 7174: 7168: 7166: 7162: 7161: 7154: 7153: 7146: 7139: 7131: 7125: 7124: 7118: 7105: 7099: 7077: 7074: 7071: 7070: 7063: 7045: 6994: 6956:hep-ph/0010057 6932: 6895:(9): 917–928. 6874: 6847:(5): 519–524. 6828: 6827: 6825: 6822: 6808: 6804: 6800: 6795: 6791: 6785: 6781: 6764: 6761: 6740: 6737: 6732: 6728: 6722: 6718: 6689: 6686: 6674: 6671: 6668: 6665: 6662: 6659: 6655: 6651: 6648: 6644: 6638: 6633: 6629: 6625: 6621: 6617: 6614: 6611: 6608: 6605: 6601: 6597: 6594: 6575: 6572: 6568: 6565: 6562: 6559: 6555: 6551: 6548: 6544: 6538: 6533: 6529: 6525: 6521: 6517: 6514: 6511: 6508: 6505: 6501: 6497: 6493: 6470: 6467: 6463: 6459: 6455: 6443:Henri PoincarĂ© 6439:PoincarĂ© gauge 6422: 6419: 6392: 6389: 6386: 6371:temporal gauge 6358: 6355: 6350: 6347: 6343: 6342: 6329: 6325: 6319: 6314: 6310: 6306: 6301: 6295: 6272: 6267: 6261: 6256: 6251: 6246: 6242: 6238: 6233: 6228: 6223: 6218: 6213: 6209: 6205: 6200: 6195: 6190: 6185: 6180: 6176: 6172: 6167: 6162: 6157: 6152: 6147: 6143: 6139: 6134: 6129: 6124: 6119: 6114: 6110: 6106: 6101: 6096: 6091: 6086: 6081: 6077: 6073: 6067: 6063: 6058: 6054: 6050: 6038: 6031: 6018: 6007: 6001: 5997: 5991: 5986: 5982: 5978: 5973: 5967: 5944: 5939: 5933: 5928: 5923: 5918: 5914: 5910: 5905: 5900: 5895: 5890: 5885: 5881: 5877: 5871: 5867: 5862: 5858: 5854: 5842: 5808: 5805: 5801:BRST formalism 5771: 5720: 5697: 5682:of unphysical 5651:configurations 5637: 5628:one-loop order 5619: 5585: 5581: 5575: 5572: 5567: 5562: 5558: 5552: 5548: 5543: 5540: 5535: 5530: 5513:gauge uses an 5510: 5487: 5459: 5434: 5431: 5425: 5420: 5414: 5410: 5404: 5400: 5395: 5388: 5385: 5380: 5375: 5342: 5317: 5309: 5303: 5298: 5279: 5276: 5271: 5267: 5261: 5257: 5220: 5217: 5212: 5208: 5202: 5198: 5192: 5188: 5159: 5153: 5148: 5145: 5141: 5136: 5132: 5127: 5123: 5100: 5096: 5090: 5086: 5082: 5077: 5073: 5067: 5063: 5057: 5053: 5023: 5018: 5014: 5008: 5004: 5000: 4992: 4988: 4984: 4979: 4974: 4970: 4933: 4927: 4923: 4919: 4914: 4907: 4903: 4899: 4891: 4887: 4883: 4877: 4871: 4867: 4856: 4852: 4848: 4823: 4819: 4815: 4810: 4806: 4800: 4796: 4792: 4784: 4780: 4776: 4771: 4766: 4762: 4751: 4747: 4743: 4721:and not after 4700: 4681: 4675: 4670: 4667: 4661: 4658: 4650: 4646: 4641: 4637: 4616: 4613: 4608: 4604: 4598: 4594: 4571: 4568: 4562: 4559: 4554: 4551: 4543: 4540: 4535: 4530: 4525: 4522: 4511:Gaussian units 4498: 4495: 4489: 4486: 4481: 4478: 4468: 4464: 4460: 4455: 4450: 4445: 4442: 4417:Main article: 4414: 4411: 4409: 4408: 4380: 4377: 4374: 4370: 4366: 4363: 4360: 4357: 4353: 4349: 4342: 4336: 4330: 4327: 4324: 4319: 4316: 4313: 4309: 4305: 4300: 4296: 4289: 4286: 4283: 4280: 4277: 4274: 4271: 4267: 4263: 4259: 4236: 4233: 4227: 4224: 4221: 4217: 4213: 4210: 4206: 4200: 4196: 4192: 4185: 4179: 4173: 4170: 4167: 4162: 4159: 4156: 4152: 4148: 4143: 4138: 4133: 4129: 4126: 4119: 4116: 4113: 4110: 4107: 4103: 4099: 4096: 4085: 4070: 4067: 4061: 4055: 4052: 4046: 4040: 4037: 4014: 4008: 4005: 3999: 3993: 3990: 3984: 3980: 3976: 3973: 3970: 3966: 3942: 3939: 3933: 3930: 3926: 3913: 3884: 3880: 3876: 3870: 3867: 3862: 3859: 3856: 3853: 3850: 3846: 3842: 3837: 3816: 3799: 3788: 3777: 3773: 3769: 3762: 3758: 3752: 3746: 3742: 3735: 3732: 3729: 3724: 3721: 3718: 3714: 3710: 3705: 3701: 3697: 3694: 3691: 3688: 3684: 3680: 3676: 3669: 3666: 3662: 3656: 3652: 3648: 3645: 3642: 3638: 3634: 3629: 3624: 3619: 3604: 3576: 3565: 3561: 3557: 3550: 3546: 3541: 3537: 3534: 3526: 3522: 3515: 3510: 3506: 3503: 3500: 3497: 3494: 3490: 3486: 3481: 3477: 3468: 3463: 3459: 3455: 3450: 3446: 3441: 3437: 3434: 3431: 3422: 3418: 3414: 3411: 3407: 3402: 3399: 3396: 3393: 3389: 3385: 3381: 3339:volume element 3315: 3286: 3282: 3278: 3274: 3271: 3250: 3246: 3241: 3237: 3233: 3229: 3192: 3188: 3181: 3177: 3170: 3167: 3164: 3159: 3156: 3153: 3149: 3145: 3140: 3136: 3129: 3126: 3123: 3120: 3117: 3114: 3111: 3107: 3103: 3099: 3078: 3074: 3067: 3063: 3057: 3053: 3050: 3047: 3043: 3039: 3034: 3030: 3023: 3015: 3011: 3007: 3004: 3000: 2995: 2992: 2989: 2986: 2982: 2978: 2975: 2958: 2936: 2932: 2929: 2926: 2923: 2920: 2916: 2912: 2907: 2902: 2899: 2871: 2868: 2856:gauge function 2826: 2823: 2784: 2780: 2777: 2774: 2770: 2766: 2762: 2712:gauge function 2644: 2643: 2634: 2632: 2618: 2615: 2609: 2605: 2599: 2596: 2593: 2590: 2563: 2557: 2554: 2547: 2542: 2536: 2532: 2525: 2522: 2516: 2512: 2506: 2503: 2499: 2495: 2492: 2489: 2483: 2480: 2474: 2470: 2464: 2461: 2455: 2452: 2445: 2440: 2434: 2431: 2428: 2425: 2422: 2418: 2391: 2386: 2381: 2378: 2375: 2372: 2369: 2366: 2363: 2358: 2353: 2350: 2347: 2344: 2339: 2317: 2314: 2311: 2308: 2305: 2302: 2289:is made, then 2285: 2284: 2275: 2273: 2262: 2259: 2256: 2252: 2248: 2244: 2216: 2211: 2206: 2203: 2200: 2195: 2189: 2182: 2179: 2172: 2167: 2161: 2158: 2155: 2152: 2149: 2144: 2115: 2089:magnetic field 2082:electric field 2061: 2058: 2000:gauge theories 1990: 1989: 1987: 1986: 1979: 1972: 1964: 1961: 1960: 1953: 1952: 1947: 1942: 1937: 1932: 1927: 1922: 1917: 1912: 1907: 1902: 1897: 1892: 1887: 1882: 1877: 1872: 1867: 1862: 1857: 1852: 1847: 1842: 1837: 1832: 1827: 1822: 1817: 1812: 1807: 1802: 1797: 1792: 1787: 1782: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1732: 1727: 1722: 1717: 1712: 1707: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1667: 1662: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1577: 1572: 1567: 1562: 1557: 1552: 1547: 1542: 1537: 1532: 1527: 1522: 1517: 1512: 1507: 1502: 1497: 1492: 1487: 1482: 1477: 1472: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1377: 1372: 1367: 1362: 1357: 1352: 1347: 1342: 1337: 1332: 1327: 1322: 1317: 1312: 1307: 1302: 1297: 1292: 1287: 1282: 1277: 1272: 1267: 1262: 1257: 1251: 1250: 1247: 1246: 1243: 1242: 1239: 1238: 1233: 1228: 1223: 1218: 1212: 1209: 1208: 1205: 1204: 1201: 1200: 1195: 1190: 1185: 1179: 1176:Standard Model 1174: 1173: 1170: 1169: 1166: 1165: 1160: 1155: 1150: 1145: 1140: 1135: 1133:Dirac equation 1129: 1126: 1125: 1122: 1121: 1118: 1117: 1112: 1110:Wick's theorem 1107: 1102: 1097: 1095:Regularization 1092: 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1016: 1013: 1012: 1009: 1008: 1005: 1004: 999: 997:Noether charge 994: 989: 984: 982:Gauge symmetry 979: 974: 969: 964: 959: 954: 948: 943: 942: 939: 938: 935: 934: 929: 924: 919: 914: 909: 904: 899: 894: 888: 885: 884: 881: 880: 874: 873: 868: 860: 859: 849: 848: 846: 845: 838: 831: 823: 820: 819: 816: 815: 810: 805: 800: 795: 790: 785: 780: 775: 770: 765: 760: 755: 750: 745: 740: 735: 730: 725: 720: 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 665: 660: 655: 650: 645: 640: 634: 631: 630: 627: 626: 623: 622: 617: 612: 607: 602: 600:Four-potential 597: 592: 587: 581: 576: 575: 572: 571: 568: 567: 562: 557: 552: 547: 542: 537: 532: 527: 522: 517: 515:Electric motor 512: 507: 502: 496: 491: 490: 487: 486: 483: 482: 477: 472: 470:Series circuit 467: 462: 457: 452: 447: 442: 440:Kirchhoff laws 437: 432: 427: 422: 417: 412: 407: 405:Direct current 402: 397: 392: 386: 381: 380: 377: 376: 373: 372: 367: 362: 360:Maxwell tensor 357: 352: 347: 342: 337: 332: 330:Larmor formula 327: 322: 317: 312: 307: 302: 297: 292: 287: 282: 280:Bremsstrahlung 276: 271: 270: 267: 266: 263: 262: 257: 252: 247: 242: 237: 232: 230:Magnetic field 227: 222: 217: 212: 206: 203:Magnetostatics 201: 200: 197: 196: 193: 192: 187: 182: 177: 172: 167: 162: 157: 152: 147: 142: 137: 135:Electric field 132: 127: 122: 117: 112: 107: 105:Charge density 101: 98:Electrostatics 96: 95: 92: 91: 90: 89: 84: 79: 74: 69: 64: 59: 51: 50: 42: 41: 35: 34: 33:Articles about 26: 9: 6: 4: 3: 2: 7426: 7415: 7412: 7410: 7407: 7405: 7402: 7400: 7397: 7396: 7394: 7378: 7370: 7367: 7366: 7362: 7356: 7353: 7351: 7348: 7346: 7343: 7341: 7338: 7336: 7333: 7331: 7328: 7326: 7323: 7321: 7318: 7316: 7313: 7312: 7310: 7306: 7300: 7297: 7295: 7292: 7290: 7287: 7285: 7282: 7280: 7277: 7275: 7272: 7270: 7267: 7265: 7262: 7260: 7257: 7255: 7252: 7250: 7247: 7246: 7244: 7240: 7234: 7231: 7229: 7226: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7206: 7204: 7201: 7200: 7198: 7194: 7188: 7185: 7183: 7180: 7178: 7175: 7173: 7170: 7169: 7167: 7163: 7159: 7152: 7147: 7145: 7140: 7138: 7133: 7132: 7129: 7121: 7119:0-471-30932-X 7115: 7111: 7106: 7102: 7096: 7092: 7088: 7084: 7080: 7079: 7066: 7060: 7056: 7049: 7041: 7037: 7033: 7029: 7025: 7021: 7017: 7013: 7009: 7005: 6998: 6990: 6986: 6982: 6978: 6974: 6970: 6966: 6962: 6957: 6952: 6948: 6945: 6944: 6936: 6928: 6924: 6920: 6916: 6912: 6908: 6903: 6898: 6894: 6890: 6889: 6881: 6879: 6870: 6866: 6862: 6858: 6854: 6850: 6846: 6842: 6841: 6833: 6829: 6821: 6806: 6802: 6798: 6793: 6789: 6783: 6779: 6770: 6760: 6758: 6754: 6738: 6735: 6730: 6726: 6720: 6716: 6707: 6703: 6699: 6698:Vladimir Fock 6696:(named after 6695: 6685: 6672: 6669: 6666: 6660: 6657: 6649: 6636: 6631: 6627: 6623: 6615: 6612: 6606: 6603: 6592: 6573: 6570: 6566: 6560: 6557: 6549: 6536: 6531: 6527: 6523: 6515: 6512: 6506: 6503: 6481: 6468: 6465: 6457: 6444: 6441:(named after 6440: 6436: 6432: 6428: 6418: 6416: 6412: 6408: 6403: 6390: 6387: 6384: 6376: 6372: 6368: 6364: 6354: 6346: 6327: 6323: 6317: 6312: 6308: 6304: 6299: 6270: 6265: 6259: 6254: 6249: 6244: 6240: 6236: 6231: 6226: 6221: 6216: 6211: 6207: 6203: 6198: 6193: 6188: 6183: 6178: 6174: 6170: 6165: 6160: 6155: 6150: 6145: 6141: 6137: 6132: 6127: 6122: 6117: 6112: 6108: 6104: 6099: 6094: 6089: 6084: 6079: 6075: 6071: 6065: 6061: 6056: 6052: 6048: 6037: 6030: 6027: 6023: 6019: 6005: 5999: 5995: 5989: 5984: 5980: 5976: 5971: 5942: 5937: 5931: 5926: 5921: 5916: 5912: 5908: 5903: 5898: 5893: 5888: 5883: 5879: 5875: 5869: 5865: 5860: 5856: 5852: 5841: 5838: 5834: 5830: 5829: 5828: 5826: 5822: 5818: 5814: 5804: 5802: 5798: 5794: 5790: 5786: 5782: 5778: 5774: 5767: 5763: 5758: 5756: 5752: 5748: 5744: 5743:Freeman Dyson 5740: 5736: 5732: 5728: 5726: 5719: 5715: 5711: 5707: 5703: 5696: 5692: 5687: 5685: 5681: 5677: 5673: 5672:Feynman rules 5669: 5665: 5661: 5660:normalization 5656: 5652: 5648: 5644: 5640: 5633: 5629: 5625: 5618: 5613: 5611: 5607: 5603: 5598: 5583: 5579: 5573: 5570: 5565: 5560: 5556: 5550: 5541: 5538: 5528: 5520: 5516: 5509: 5504: 5500: 5496: 5494: 5486: 5480: 5475: 5471: 5467: 5463: 5458: 5453: 5448: 5432: 5429: 5423: 5418: 5412: 5408: 5402: 5393: 5386: 5383: 5373: 5365: 5361: 5358: 5331: 5327: 5323: 5320: 5316: 5306: 5302: 5297: 5295: 5290: 5277: 5274: 5269: 5265: 5259: 5247: 5243: 5238: 5234: 5218: 5215: 5210: 5206: 5200: 5190: 5176: 5174: 5157: 5146: 5143: 5139: 5134: 5130: 5125: 5121: 5098: 5094: 5088: 5084: 5080: 5075: 5071: 5065: 5055: 5041: 5039: 5034: 5021: 5016: 5006: 5002: 4998: 4990: 4986: 4977: 4972: 4957: 4956:wave equation 4953: 4948: 4945: 4925: 4921: 4917: 4905: 4897: 4889: 4885: 4869: 4854: 4850: 4846: 4821: 4817: 4813: 4808: 4804: 4798: 4790: 4782: 4778: 4769: 4764: 4749: 4745: 4741: 4730: 4728: 4724: 4720: 4719:Ludvig Lorenz 4716: 4711: 4709: 4703: 4696: 4679: 4668: 4665: 4659: 4656: 4648: 4644: 4639: 4635: 4614: 4611: 4606: 4602: 4596: 4582: 4569: 4566: 4560: 4552: 4541: 4538: 4533: 4523: 4512: 4496: 4493: 4487: 4479: 4466: 4462: 4458: 4453: 4443: 4432: 4426: 4420: 4403: 4399: 4395: 4375: 4372: 4361: 4355: 4351: 4340: 4328: 4325: 4322: 4314: 4311: 4307: 4287: 4284: 4278: 4272: 4269: 4234: 4222: 4219: 4208: 4198: 4194: 4183: 4171: 4168: 4165: 4157: 4154: 4150: 4131: 4127: 4117: 4114: 4108: 4105: 4094: 4086: 4065: 4059: 4050: 4044: 4035: 4012: 4003: 3988: 3982: 3971: 3968: 3937: 3931: 3928: 3912: 3908: 3903: 3899: 3878: 3868: 3865: 3860: 3857: 3851: 3848: 3825: 3821: 3817: 3814: 3810: 3805: 3800: 3797: 3793: 3789: 3775: 3771: 3760: 3756: 3744: 3740: 3733: 3730: 3727: 3719: 3716: 3712: 3695: 3689: 3686: 3667: 3664: 3654: 3650: 3643: 3640: 3627: 3617: 3609: 3605: 3600: 3596: 3592: 3585: 3582: 3577: 3563: 3559: 3548: 3544: 3539: 3535: 3532: 3524: 3520: 3508: 3501: 3498: 3495: 3492: 3488: 3466: 3461: 3457: 3453: 3448: 3444: 3439: 3435: 3432: 3420: 3416: 3412: 3409: 3405: 3400: 3394: 3391: 3371: 3367: 3363: 3359: 3353: 3351: 3346: 3344: 3340: 3336: 3333: 3329: 3305: 3301: 3284: 3276: 3272: 3269: 3248: 3239: 3231: 3216: 3212: 3208: 3190: 3179: 3175: 3168: 3165: 3162: 3154: 3151: 3147: 3127: 3124: 3118: 3112: 3109: 3076: 3065: 3061: 3055: 3048: 3045: 3041: 3028: 3021: 3013: 3009: 3005: 3002: 2998: 2993: 2987: 2984: 2973: 2964: 2960: 2959: 2957: 2954: 2952: 2947: 2934: 2930: 2927: 2921: 2918: 2900: 2889: 2885: 2882:) is used in 2881: 2877: 2876:Coulomb gauge 2870:Coulomb gauge 2867: 2865: 2861: 2860:gauge freedom 2857: 2853: 2849: 2840: 2836: 2831: 2822: 2820: 2816: 2812: 2808: 2804: 2800: 2795: 2782: 2778: 2772: 2751: 2747: 2746:line integral 2743: 2737: 2735: 2734:gauge freedom 2732: 2726: 2722: 2718: 2713: 2709: 2705: 2701: 2696: 2694: 2693: 2688: 2687: 2682: 2678: 2672: 2668: 2664: 2659: 2655: 2651: 2648:is made then 2642: 2635: 2633: 2616: 2607: 2597: 2594: 2588: 2581: 2580: 2577: 2574: 2561: 2555: 2534: 2530: 2523: 2514: 2504: 2501: 2497: 2490: 2487: 2481: 2472: 2459: 2453: 2432: 2429: 2423: 2420: 2408:according to 2407: 2402: 2389: 2379: 2373: 2367: 2361: 2348: 2342: 2315: 2312: 2309: 2303: 2292: 2283: 2276: 2274: 2260: 2254: 2234: 2233: 2230: 2227: 2214: 2204: 2198: 2187: 2180: 2159: 2156: 2150: 2147: 2132: 2129: 2113: 2106: 2101: 2097: 2093: 2090: 2086: 2083: 2079: 2075: 2071: 2067: 2060:Gauge freedom 2057: 2055: 2051: 2047: 2043: 2039: 2034: 2028: 2025: 2021: 2017: 2013: 2009: 2006:(also called 2005: 2001: 1997: 1985: 1980: 1978: 1973: 1971: 1966: 1965: 1963: 1962: 1956: 1951: 1948: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1925:Zamolodchikov 1923: 1921: 1920:Zamolodchikov 1918: 1916: 1913: 1911: 1908: 1906: 1903: 1901: 1898: 1896: 1893: 1891: 1888: 1886: 1883: 1881: 1878: 1876: 1873: 1871: 1868: 1866: 1863: 1861: 1858: 1856: 1853: 1851: 1848: 1846: 1843: 1841: 1838: 1836: 1833: 1831: 1828: 1826: 1823: 1821: 1818: 1816: 1813: 1811: 1808: 1806: 1803: 1801: 1798: 1796: 1793: 1791: 1788: 1786: 1783: 1781: 1778: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1576: 1573: 1571: 1568: 1566: 1563: 1561: 1558: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1533: 1531: 1528: 1526: 1523: 1521: 1518: 1516: 1513: 1511: 1508: 1506: 1503: 1501: 1498: 1496: 1493: 1491: 1488: 1486: 1483: 1481: 1478: 1476: 1473: 1471: 1468: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1376: 1373: 1371: 1368: 1366: 1363: 1361: 1358: 1356: 1353: 1351: 1348: 1346: 1343: 1341: 1338: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1296: 1293: 1291: 1288: 1286: 1283: 1281: 1278: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1252: 1245: 1244: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1221:Supersymmetry 1219: 1217: 1216:String theory 1214: 1213: 1207: 1206: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1180: 1177: 1172: 1171: 1164: 1161: 1159: 1156: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1130: 1124: 1123: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1017: 1011: 1010: 1003: 1000: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 949: 946: 941: 940: 933: 930: 928: 925: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 889: 883: 882: 879: 876: 875: 871: 866: 862: 861: 858: 855: 854: 844: 839: 837: 832: 830: 825: 824: 822: 821: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 639: 636: 635: 629: 628: 621: 618: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 582: 579: 574: 573: 566: 563: 561: 558: 556: 553: 551: 548: 546: 543: 541: 538: 536: 533: 531: 528: 526: 523: 521: 518: 516: 513: 511: 508: 506: 503: 501: 498: 497: 494: 489: 488: 481: 478: 476: 473: 471: 468: 466: 463: 461: 458: 456: 453: 451: 448: 446: 443: 441: 438: 436: 435:Joule heating 433: 431: 428: 426: 423: 421: 418: 416: 413: 411: 408: 406: 403: 401: 398: 396: 393: 391: 388: 387: 384: 379: 378: 371: 368: 366: 363: 361: 358: 356: 353: 351: 350:Lorentz force 348: 346: 343: 341: 338: 336: 333: 331: 328: 326: 323: 321: 318: 316: 313: 311: 308: 306: 303: 301: 298: 296: 293: 291: 288: 286: 283: 281: 278: 277: 274: 269: 268: 261: 258: 256: 253: 251: 250:Magnetization 248: 246: 243: 241: 238: 236: 235:Magnetic flux 233: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 207: 204: 199: 198: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 161: 158: 156: 153: 151: 148: 146: 143: 141: 140:Electric flux 138: 136: 133: 131: 128: 126: 123: 121: 118: 116: 113: 111: 108: 106: 103: 102: 99: 94: 93: 88: 85: 83: 80: 78: 77:Computational 75: 73: 70: 68: 65: 63: 60: 58: 55: 54: 53: 52: 48: 44: 43: 40: 37: 36: 32: 31: 19: 18:Feynman gauge 7368: 7109: 7090: 7054: 7048: 7007: 7003: 6997: 6946: 6941: 6935: 6892: 6886: 6844: 6838: 6832: 6766: 6752: 6705: 6693: 6691: 6482: 6438: 6434: 6430: 6426: 6424: 6407:Hermann Weyl 6404: 6374: 6370: 6366: 6362: 6360: 6352: 6344: 6035: 6028: 5839: 5837:Pauli matrix 5820: 5816: 5810: 5769: 5759: 5729: 5717: 5694: 5688: 5684:polarization 5650: 5642: 5635: 5616: 5614: 5599: 5518: 5507: 5505: 5498: 5491: 5484: 5478: 5473: 5465: 5462:Landau gauge 5456: 5455: 5451: 5449: 5363: 5359: 5318: 5314: 5313: 5311: 5304: 5300: 5291: 5177: 5173:four-current 5042: 5035: 4951: 4949: 4946: 4731: 4712: 4701: 4583: 4428: 4413:Lorenz gauge 4401: 4397: 4393: 3910: 3907:Landau gauge 3906: 3901: 3897: 3823: 3819: 3791: 3607: 3598: 3594: 3590: 3583: 3580: 3365: 3361: 3357: 3354: 3347: 3342: 3334: 3331: 3327: 3326:operates on 3303: 3299: 3214: 3210: 3206: 2966: 2955: 2948: 2875: 2873: 2863: 2859: 2855: 2848:gauge fixing 2847: 2844: 2838: 2834: 2819:frame bundle 2796: 2749: 2738: 2733: 2724: 2720: 2716: 2711: 2707: 2703: 2699: 2697: 2690: 2684: 2680: 2676: 2670: 2666: 2662: 2657: 2653: 2649: 2647: 2636: 2575: 2405: 2403: 2290: 2288: 2277: 2228: 2130: 2100:mathematical 2099: 2091: 2084: 2063: 2032: 2029: 2007: 2004:gauge fixing 2003: 1993: 1954: 1800:Stueckelberg 1530:Jona-Lasinio 1105:Vacuum state 1090:Quantization 927:Gauge theory 907:Strong force 892:Field theory 595:Four-current 530:Linear motor 415:Electrolysis 295:Eddy current 255:Permeability 175:Polarization 170:Permittivity 7274:Self-energy 7264:Landau pole 7228:Positronium 7203:Dual photon 7083:Landau, Lev 6763:Dirac gauge 6435:point gauge 6367:Hamiltonian 5811:In any non- 5777:non-abelian 5476:, in which 5357:gauge field 4433:units, by: 2799:non-abelian 1940:Zinn-Justin 1790:Sommerfield 1715:Pomeranchuk 1680:Osterwalder 1675:Oppenheimer 1605:ƁopuszaƄski 1425:Fredenhagen 1226:Technicolor 565:Transformer 395:Capacitance 320:Faraday law 115:Coulomb law 57:Electricity 7393:Categories 7340:Lamb shift 7269:QED vacuum 7064:0201360799 6824:References 6769:Paul Dirac 6431:line gauge 6375:incomplete 6363:Weyl gauge 6357:Weyl gauge 5821:incomplete 5038:light cone 4952:incomplete 4708:4-gradient 4423:See also: 2033:particular 1935:Zimmermann 1830:Vainshtein 1705:Polchinski 1565:Kontsevich 1510:Iliopoulos 1485:Heisenberg 1310:Bogoliubov 1248:Scientists 1085:Propagator 967:T-symmetry 962:P-symmetry 957:C-symmetry 945:Symmetries 902:Weak force 886:Background 632:Scientists 480:Waveguides 460:Resistance 430:Inductance 210:AmpĂšre law 7369:See also: 7308:Processes 7196:Particles 7165:Formalism 7032:0556-2821 6927:119652556 6869:250880504 6794:μ 6784:μ 6731:μ 6721:μ 6628:∫ 6624:⋅ 6616:− 6593:φ 6528:∫ 6524:× 6516:− 6458:⋅ 6385:φ 6324:λ 6313:μ 6300:μ 6245:μ 6212:μ 6179:μ 6146:μ 6113:μ 6080:μ 6049:∫ 5996:σ 5985:μ 5972:μ 5917:μ 5884:μ 5853:∫ 5571:ξ 5561:μ 5551:μ 5547:∂ 5529:δ 5433:ξ 5413:μ 5403:μ 5399:∂ 5387:− 5374:δ 5270:μ 5260:μ 5256:∂ 5237:polarized 5211:ν 5201:μ 5197:∂ 5191:μ 5187:∂ 5144:ρ 5126:ν 5099:ν 5085:μ 5076:ν 5066:μ 5062:∂ 5056:μ 5052:∂ 5022:ψ 5013:∇ 4983:∂ 4978:ψ 4969:∂ 4922:μ 4902:∇ 4898:− 4882:∂ 4866:∂ 4818:ε 4814:ρ 4805:φ 4795:∇ 4791:− 4775:∂ 4770:φ 4761:∂ 4666:φ 4640:μ 4607:μ 4597:μ 4593:∂ 4558:∂ 4553:φ 4550:∂ 4524:⋅ 4521:∇ 4485:∂ 4480:φ 4477:∂ 4444:⋅ 4441:∇ 4362:ψ 4359:∇ 4326:π 4288:∫ 4285:× 4282:∇ 4232:∂ 4209:ψ 4205:∂ 4199:− 4169:π 4132:⋅ 4125:∇ 4118:∫ 4095:φ 4069:^ 4054:^ 4039:^ 4007:^ 3992:^ 3983:⋅ 3941:^ 3879:× 3861:− 3731:π 3696:⋅ 3668:∬ 3618:∫ 3536:τ 3509:× 3502:τ 3499:− 3467:τ 3445:∫ 3436:∫ 3433:× 3430:∇ 3417:ε 3413:π 3350:causality 3314:∇ 3240:− 3166:π 3128:∫ 3125:× 3122:∇ 3029:ρ 3022:∫ 3010:ε 3006:π 2974:φ 2951:quantized 2901:⋅ 2898:∇ 2779:ψ 2776:∇ 2765:→ 2614:∂ 2608:ψ 2604:∂ 2598:− 2595:φ 2592:→ 2589:φ 2553:∂ 2541:∂ 2535:− 2521:∂ 2515:ψ 2511:∂ 2502:φ 2494:∇ 2491:− 2479:∂ 2473:ψ 2469:∂ 2463:∇ 2460:− 2451:∂ 2439:∂ 2433:− 2430:φ 2427:∇ 2424:− 2380:× 2377:∇ 2368:ψ 2365:∇ 2349:× 2346:∇ 2310:ψ 2307:∇ 2304:× 2301:∇ 2261:ψ 2258:∇ 2247:→ 2205:× 2202:∇ 2178:∂ 2166:∂ 2160:− 2157:φ 2154:∇ 2151:− 2114:φ 2066:Heaviside 1870:Wetterich 1855:Weisskopf 1805:Sudarshan 1755:Schwinger 1665:Nishijima 1630:Maldacena 1595:Leutwyler 1555:Kinoshita 1455:Goldstone 1445:Gell-Mann 1360:Doplicher 1127:Equations 788:Steinmetz 718:Kirchhoff 703:Jefimenko 698:Hopkinson 683:Helmholtz 678:Heaviside 540:Permeance 425:Impedance 165:Insulator 160:Gauss law 110:Conductor 87:Phenomena 82:Textbooks 62:Magnetism 7242:Concepts 7223:Positron 7208:Electron 7089:(2007). 6989:45172403 6981:11289894 6373:) is an 5789:Jacobian 5725:spin sum 5706:linearly 5668:extremum 5364:breaking 5360:a priori 4352:′ 4308:′ 4195:′ 4151:′ 4128:′ 3811:such as 3772:′ 3713:′ 3560:′ 3489:′ 3249:′ 3191:′ 3148:′ 3077:′ 3042:′ 2126:and the 1885:Wightman 1850:Weinberg 1840:Virasoro 1820:Tomonaga 1815:Thirring 1810:Symanzik 1770:Semenoff 1745:Schrader 1710:Polyakov 1625:Majorana 1560:Klebanov 1515:Ivanenko 1505:'t Hooft 1475:Guralnik 1420:Fröhlich 1415:Fritzsch 1410:Frampton 1325:Buchholz 1270:Bargmann 1260:Anderson 1040:Crossing 813:Wiechert 768:Poynting 658:Einstein 505:DC motor 500:AC motor 335:Lenz law 120:Electret 7040:9958379 7012:Bibcode 6961:Bibcode 6907:Bibcode 6849:Bibcode 6755:is the 6445:)) is: 5662:of the 5171:is the 4693:is the 4509:and in 3337:is the 3298:(where 2839:surface 2835:twisted 2689:) and ( 1996:physics 1994:In the 1895:Wilczek 1860:Wentzel 1835:Veltman 1780:Shirkov 1775:Shifman 1765:Seiberg 1750:Schwarz 1730:Rubakov 1650:Naimark 1600:Lipatov 1590:Lehmann 1570:Kreimer 1550:Kendall 1440:Gelfand 1435:Glashow 1395:Feynman 1375:Faddeev 1370:Englert 1340:Coleman 1330:Cachazo 1315:Brodsky 1300:Bjorken 1290:Berezin 1280:Belavin 1020:Anomaly 878:History 798:Thomson 773:Ritchie 763:Poisson 748:Neumann 743:Maxwell 738:Lorentz 733:LiĂ©nard 663:Faraday 648:Coulomb 475:Voltage 450:Ohm law 72:History 7218:Photon 7116:  7097:  7061:  7038:  7030:  6987:  6979:  6925:  6867:  6771:) is: 6751:where 6708:) is: 6283:where 5955:where 5819:is an 5815:, any 5634:, the 5493:Yennie 5322:gauges 5308:gauges 5113:where 4627:where 4391:where 4025:where 3204:where 2817:, and 2046:orders 1950:Zumino 1915:Yukawa 1905:Witten 1900:Wilson 1890:Wigner 1825:Tyutin 1785:Skyrme 1735:Ruelle 1700:Plefka 1695:Peskin 1685:Parisi 1645:MĂžller 1635:Migdal 1620:Maiani 1615:LĂŒders 1580:Landau 1575:Kuraev 1545:KĂ€llĂ©n 1535:Jordan 1520:Jackiw 1460:Gribov 1350:DeWitt 1345:Dashen 1335:Callan 1305:Bleuer 1275:Becchi 1265:Anselm 783:Singer 778:Savart 758:Ørsted 723:Larmor 713:Kelvin 668:Fizeau 638:AmpĂšre 560:Stator 67:Optics 6985:S2CID 6951:arXiv 6923:S2CID 6897:arXiv 6865:S2CID 6411:ghost 6022:SU(3) 5833:SU(2) 5781:SU(3) 5495:gauge 5328:with 3956:and 3601:) = 0 2700:gauge 2070:Gibbs 2024:shear 2016:field 1945:Zuber 1795:Stora 1760:Segal 1740:Salam 1725:Proca 1720:Popov 1690:Pauli 1670:Oehme 1660:Neveu 1655:Nambu 1640:Mills 1525:Jaffe 1500:Hagen 1495:Higgs 1470:Gupta 1465:Gross 1450:Glimm 1430:Furry 1400:Fierz 1390:Fermi 1385:Fayet 1380:Fadin 1365:Dyson 1355:Dirac 1320:Brout 1295:Bethe 1255:Adler 1014:Tools 808:Weber 803:Volta 793:Tesla 708:Joule 693:Hertz 688:Henry 673:Gauss 555:Rotor 7114:ISBN 7095:ISBN 7059:ISBN 7036:PMID 7028:ISSN 6977:PMID 6700:and 6361:The 6034:and 6020:For 5831:For 5749:and 5312:The 4706:the 4513:by: 3330:and 3262:and 2886:and 2874:The 2852:U(1) 2805:and 2731:U(1) 2679:and 2656:and 2087:and 1910:Yang 1880:Wick 1875:Weyl 1865:Wess 1845:Ward 1540:Jost 1490:Hepp 1480:Haag 1405:Fock 1285:Bell 728:Lenz 653:Davy 643:Biot 7020:doi 6969:doi 6915:doi 6857:doi 6437:or 6369:or 5785:QCD 5783:of 5708:or 5501:= 3 5481:= 1 4729:.) 3826:as 3586:= 0 3341:at 2748:of 2695:). 2094:of 2014:in 1998:of 1930:Zee 1610:Low 1585:Lee 753:Ohm 7395:: 7085:; 7034:. 7026:. 7018:. 7008:36 7006:. 6983:. 6975:. 6967:. 6959:. 6947:86 6921:. 6913:. 6905:. 6893:70 6891:. 6877:^ 6863:. 6855:. 6845:24 6843:. 6759:. 6469:0. 6433:, 5757:. 5721:ΌΜ 5698:ΌΜ 5686:. 5503:. 5278:0. 5219:0. 5175:. 4710:. 4697:, 4615:0. 4570:0. 4431:SI 4400:, 3794:. 3597:, 3364:, 3345:. 3213:, 2965:) 2866:. 2821:. 2813:, 2723:, 2669:, 2328:) 2002:, 7150:e 7143:t 7136:v 7122:. 7103:. 7067:. 7042:. 7022:: 7014:: 6991:. 6971:: 6963:: 6953:: 6929:. 6917:: 6909:: 6899:: 6871:. 6859:: 6851:: 6807:2 6803:k 6799:= 6790:A 6780:A 6753:x 6739:0 6736:= 6727:A 6717:x 6673:. 6670:u 6667:d 6664:) 6661:t 6658:, 6654:r 6650:u 6647:( 6643:E 6637:1 6632:0 6620:r 6613:= 6610:) 6607:t 6604:, 6600:r 6596:( 6574:u 6571:d 6567:u 6564:) 6561:t 6558:, 6554:r 6550:u 6547:( 6543:B 6537:1 6532:0 6520:r 6513:= 6510:) 6507:t 6504:, 6500:r 6496:( 6492:A 6466:= 6462:A 6454:r 6391:0 6388:= 6328:a 6318:a 6309:A 6305:= 6294:A 6271:, 6266:] 6260:2 6255:) 6250:7 6241:A 6237:( 6232:+ 6227:2 6222:) 6217:6 6208:A 6204:( 6199:+ 6194:2 6189:) 6184:5 6175:A 6171:( 6166:+ 6161:2 6156:) 6151:4 6142:A 6138:( 6133:+ 6128:2 6123:) 6118:2 6109:A 6105:( 6100:+ 6095:2 6090:) 6085:1 6076:A 6072:( 6066:[ 6062:x 6057:D 6053:d 6039:8 6036:λ 6032:3 6029:λ 6006:. 6000:a 5990:a 5981:A 5977:= 5966:A 5943:, 5938:] 5932:2 5927:) 5922:2 5913:A 5909:( 5904:+ 5899:2 5894:) 5889:1 5880:A 5876:( 5870:[ 5866:x 5861:D 5857:d 5843:3 5840:σ 5772:Ο 5770:R 5718:g 5695:g 5638:Ο 5636:R 5620:Ο 5617:R 5584:2 5580:B 5574:2 5566:+ 5557:A 5542:B 5539:= 5534:L 5519:B 5511:Ο 5508:R 5499:Ο 5488:Ο 5485:R 5479:Ο 5466:Ο 5460:Ο 5457:R 5452:Ο 5430:2 5424:2 5419:) 5409:A 5394:( 5384:= 5379:L 5341:L 5319:Ο 5315:R 5305:Ο 5301:R 5275:= 5266:j 5216:= 5207:A 5158:] 5152:j 5147:, 5140:c 5135:[ 5131:= 5122:j 5095:j 5089:0 5081:= 5072:A 5017:2 5007:2 5003:c 4999:= 4991:2 4987:t 4973:2 4932:J 4926:0 4918:= 4913:A 4906:2 4890:2 4886:t 4876:A 4870:2 4855:2 4851:c 4847:1 4822:0 4809:= 4799:2 4783:2 4779:t 4765:2 4750:2 4746:c 4742:1 4702:ÎŒ 4699:∂ 4680:] 4674:A 4669:, 4660:c 4657:1 4649:[ 4645:= 4636:A 4612:= 4603:A 4567:= 4561:t 4542:c 4539:1 4534:+ 4529:A 4497:0 4494:= 4488:t 4467:2 4463:c 4459:1 4454:+ 4449:A 4404:) 4402:t 4398:r 4396:( 4394:ψ 4379:) 4376:t 4373:, 4369:r 4365:( 4356:+ 4348:r 4341:3 4335:d 4329:R 4323:4 4318:) 4315:t 4312:, 4304:r 4299:( 4295:B 4279:= 4276:) 4273:t 4270:, 4266:r 4262:( 4258:A 4235:t 4226:) 4223:t 4220:, 4216:r 4212:( 4191:r 4184:3 4178:d 4172:R 4166:4 4161:) 4158:t 4155:, 4147:r 4142:( 4137:E 4115:= 4112:) 4109:t 4106:, 4102:r 4098:( 4066:z 4060:, 4051:y 4045:, 4036:x 4013:, 4004:y 3998:) 3989:x 3979:r 3975:( 3972:B 3969:= 3965:A 3938:z 3932:B 3929:= 3925:B 3914:Ο 3911:R 3902:A 3898:A 3883:B 3875:r 3869:2 3866:1 3858:= 3855:) 3852:t 3849:, 3845:r 3841:( 3836:A 3820:B 3776:. 3768:r 3761:3 3757:d 3751:r 3745:3 3741:d 3734:R 3728:4 3723:) 3720:t 3717:, 3709:r 3704:( 3700:B 3693:) 3690:t 3687:, 3683:r 3679:( 3675:B 3665:= 3661:r 3655:3 3651:d 3647:) 3644:t 3641:, 3637:r 3633:( 3628:2 3623:A 3608:A 3599:t 3595:r 3593:( 3591:ψ 3584:ψ 3581:∇ 3564:. 3556:r 3549:3 3545:d 3540:] 3533:d 3525:3 3521:R 3514:R 3505:) 3496:t 3493:, 3485:r 3480:( 3476:J 3462:c 3458:/ 3454:R 3449:0 3440:[ 3421:0 3410:4 3406:1 3401:= 3398:) 3395:t 3392:, 3388:r 3384:( 3380:A 3368:) 3366:t 3362:r 3360:( 3358:J 3343:r 3335:r 3332:d 3328:r 3304:r 3300:r 3285:| 3281:R 3277:| 3273:= 3270:R 3245:r 3236:r 3232:= 3228:R 3217:) 3215:t 3211:r 3209:( 3207:ρ 3187:r 3180:3 3176:d 3169:R 3163:4 3158:) 3155:t 3152:, 3144:r 3139:( 3135:B 3119:= 3116:) 3113:t 3110:, 3106:r 3102:( 3098:A 3073:r 3066:3 3062:d 3056:R 3052:) 3049:t 3046:, 3038:r 3033:( 3014:0 3003:4 2999:1 2994:= 2991:) 2988:t 2985:, 2981:r 2977:( 2935:. 2931:0 2928:= 2925:) 2922:t 2919:, 2915:r 2911:( 2906:A 2783:. 2773:+ 2769:A 2761:A 2750:A 2727:) 2725:t 2721:r 2719:( 2717:ψ 2708:ψ 2692:2 2686:1 2681:φ 2677:A 2673:) 2671:t 2667:r 2665:( 2663:ψ 2658:B 2654:E 2650:E 2641:) 2639:2 2637:( 2617:t 2562:. 2556:t 2546:A 2531:) 2524:t 2505:+ 2498:( 2488:= 2482:t 2454:t 2444:A 2421:= 2417:E 2406:E 2390:. 2385:A 2374:= 2371:) 2362:+ 2357:A 2352:( 2343:= 2338:B 2316:0 2313:= 2291:B 2282:) 2280:1 2278:( 2255:+ 2251:A 2243:A 2215:. 2210:A 2199:= 2194:B 2188:, 2181:t 2171:A 2148:= 2143:E 2131:A 2092:B 2085:E 2068:– 1983:e 1976:t 1969:v 842:e 835:t 828:v 20:)

Index

Feynman gauge
Electromagnetism
Solenoid
Electricity
Magnetism
Optics
History
Computational
Textbooks
Phenomena
Electrostatics
Charge density
Conductor
Coulomb law
Electret
Electric charge
Electric dipole
Electric field
Electric flux
Electric potential
Electrostatic discharge
Electrostatic induction
Gauss law
Insulator
Permittivity
Polarization
Potential energy
Static electricity
Triboelectricity
Magnetostatics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑