Knowledge

Field-effect transistor

Source 📝

291:. Bardeen then decided to make use of an inversion layer instead of the very thin layer of semiconductor which Shockley had envisioned in his FET designs. Based on his theory, in 1948 Bardeen patented the progenitor of MOSFET, an insulated-gate FET (IGFET) with an inversion layer. The inversion layer confines the flow of minority carriers, increasing modulation and conductivity, although its electron transport depends on the gate's insulator or quality of oxide if used as an insulator, deposited above the inversion layer. Bardeen's patent as well as the concept of an inversion layer forms the basis of CMOS technology today. In 1976 Shockley described Bardeen's surface state hypothesis "as one of the most significant research ideas in the semiconductor program". 419: 149: 678:
the source terminal towards the drain terminal is influenced by an applied voltage. The body simply refers to the bulk of the semiconductor in which the gate, source and drain lie. Usually the body terminal is connected to the highest or lowest voltage within the circuit, depending on the type of the FET. The body terminal and the source terminal are sometimes connected together since the source is often connected to the highest or lowest voltage within the circuit, although there are several uses of FETs which do not have such a configuration, such as
3778: 3814: 707: 826:. Any increase of the drain-to-source voltage will increase the distance from drain to the pinch-off point, increasing the resistance of the depletion region in proportion to the drain-to-source voltage applied. This proportional change causes the drain-to-source current to remain relatively fixed, independent of changes to the drain-to-source voltage, quite unlike its ohmic behavior in the linear mode of operation. Thus, in saturation mode, the FET behaves as a 699: 40: 1319: 599: 896: 726: 1289:
stray inductances and generate significant voltages that can couple to the gate and cause unintentional switching. FET circuits can therefore require very careful layout and can involve trades between switching speed and power dissipation. There is also a trade-off between voltage rating and "on" resistance, so high-voltage FETs have a relatively high "on" resistance and hence conduction losses.
741:) from the source to drain by affecting the size and shape of a "conductive channel" created and influenced by voltage (or lack of voltage) applied across the gate and source terminals. (For simplicity, this discussion assumes that the body and source are connected.) This conductive channel is the "stream" through which electrons flow from source to drain. 295:
poor. Bardeen went further and suggested to rather focus on the conductivity of the inversion layer. Further experiments led them to replace electrolyte with a solid oxide layer in the hope of getting better results. Their goal was to penetrate the oxide layer and get to the inversion layer. However, Bardeen suggested they switch from
810:, for a better analogy with bipolar transistor operating regions. The saturation mode, or the region between ohmic and saturation, is used when amplification is needed. The in-between region is sometimes considered to be part of the ohmic or linear region, even where drain current is not approximately linear with drain voltage. 758:
very small current). This is called "pinch-off", and the voltage at which it occurs is called the "pinch-off voltage". Conversely, a positive gate-to-source voltage increases the channel size and allows electrons to flow easily (see right figure, when there is a conduction channel and current is large).
677:
The names of the terminals refer to their functions. The gate terminal may be thought of as controlling the opening and closing of a physical gate. This gate permits electrons to flow through or blocks their passage by creating or eliminating a channel between the source and drain. Electron-flow from
1288:
FETs often have a very low "on" resistance and have a high "off" resistance. However, the intermediate resistances are significant, and so FETs can dissipate large amounts of power while switching. Thus, efficiency can put a premium on switching quickly, but this can cause transients that can excite
942:
or a p-type semiconductor. The drain and source may be doped of opposite type to the channel, in the case of enhancement mode FETs, or doped of similar type to the channel as in depletion mode FETs. Field-effect transistors are also distinguished by the method of insulation between channel and gate.
821:
exists in the p-type body, surrounding the conductive channel and drain and source regions. The electrons which comprise the channel are free to move out of the channel through the depletion region if attracted to the drain by drain-to-source voltage. The depletion region is free of carriers and has
551:
FETs can be majority-charge-carrier devices, in which the current is carried predominantly by majority carriers, or minority-charge-carrier devices, in which the current is mainly due to a flow of minority carriers. The device consists of an active channel through which charge carriers, electrons or
350:
on the semiconductor surface. Their further work demonstrated how to etch small openings in the oxide layer to diffuse dopants into selected areas of the silicon wafer. In 1957, they published a research paper and patented their technique summarizing their work. The technique they developed is known
1401:
In FETs, electrons can flow in either direction through the channel when operated in the linear mode. The naming convention of drain terminal and source terminal is somewhat arbitrary, as the devices are typically (but not always) built symmetrical from source to drain. This makes FETs suitable for
761:
In an n-channel "enhancement-mode" device, a conductive channel does not exist naturally within the transistor, and a positive gate-to-source voltage is necessary to create one. The positive voltage attracts free-floating electrons within the body towards the gate, forming a conductive channel. But
453:
proposed a silicon MOS transistor in 1959 and successfully demonstrated a working MOS device with their Bell Labs team in 1960. Their team included E. E. LaBate and E. I. Povilonis who fabricated the device; M. O. Thurston, L. A. D’Asaro, and J. R. Ligenza who developed the diffusion processes, and
757:
to expand in width and encroach on the channel from the sides, narrowing the channel. If the active region expands to completely close the channel, the resistance of the channel from source to drain becomes large, and the FET is effectively turned off like a switch (see right figure, when there is
689:
Unlike BJTs, the vast majority of FETs are electrically symmetrical. The source and drain terminals can thus be interchanged in practical circuits with no change in operating characteristics or function. This can be confusing when FET's appear to be connected "backwards" in schematic diagrams and
434:
effects. By 1957 Frosch and Derrick, using masking and predeposition, were able to manufacture silicon dioxide transistors and showed that silicon dioxide insulated, protected silicon wafers and prevented dopants from diffusing into the wafer. J.R. Ligenza and W.G. Spitzer studied the mechanism of
801:
If drain-to-source voltage is increased, this creates a significant asymmetrical change in the shape of the channel due to a gradient of voltage potential from source to drain. The shape of the inversion region becomes "pinched-off" near the drain end of the channel. If drain-to-source voltage is
797:
For either enhancement- or depletion-mode devices, at drain-to-source voltages much less than gate-to-source voltages, changing the gate voltage will alter the channel resistance, and drain current will be proportional to drain voltage (referenced to source voltage). In this mode the FET operates
465:
integrated circuits. The MOSFET is also capable of handling higher power than the JFET. The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. The MOSFET thus became the most common type of transistor in computers, electronics, and
294:
After Bardeen's surface state theory the trio tried to overcome the effect of surface states. In late 1947, Robert Gibney and Brattain suggested the use of electrolyte placed between metal and semiconductor to overcome the effects of surface states. Their FET device worked, but amplification was
673:
is the extension of the transistor, in the direction perpendicular to the cross section in the diagram (i.e., into/out of the screen). Typically the width is much larger than the length of the gate. A gate length of 1 μm limits the upper frequency to about 5 GHz, 0.2 μm to about
254:
basis, which limited them to a number of specialised applications. The insulated-gate field-effect transistor (IGFET) was theorized as a potential alternative to junction transistors, but researchers were unable to build working IGFETs, largely due to the troublesome surface state barrier that
314:
By the end of the first half of the 1950s, following theoretical and experimental work of Bardeen, Brattain, Kingston, Morrison and others, it became more clear that there were two types of surface states. Fast surface states were found to be associated with the bulk and a semiconductor/oxide
1020:
technology which are utilized to detect charged molecules; when a charged molecule is present, changes in the electrostatic field at the BioFET surface result in a measurable change in current through the transistor. These include enzyme modified FETs (EnFETs), immunologically modified FETs
1244:
Field-effect transistors have high gate-to-drain current resistance, of the order of 100 MΩ or more, providing a high degree of isolation between control and flow. Because base current noise will increase with shaping time, a FET typically produces less noise than a
286:
in 1932) and realized that the external field was blocked at the surface because of extra electrons which are drawn to the semiconductor surface. Electrons become trapped in those localized states forming an inversion layer. Bardeen's hypothesis marked the birth of
2098: 1843: 876:; often, OFET gate insulators and electrodes are made of organic materials, as well. Such FETs are manufactured using a variety of materials such as silicon carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN), and indium gallium arsenide (InGaAs). 1280:
compared to a bipolar junction transistor. MOSFETs are very susceptible to overload voltages, thus requiring special handling during installation. The fragile insulating layer of the MOSFET between the gate and the channel makes it vulnerable to
1305:. If the characteristics of the body diode are not taken into consideration, the FET can experience slow body diode behavior, where a parasitic transistor will turn on and allow high current to be drawn from drain to source when the FET is off. 786:"depletion-mode" device, a positive voltage from gate to body widens the depletion layer by forcing electrons to the gate-insulator/semiconductor interface, leaving exposed a carrier-free region of immobile, positively charged acceptor ions. 1169:
The VeSFET (vertical-slit field-effect transistor) is a square-shaped junctionless FET with a narrow slit connecting the source and drain at opposite corners. Two gates occupy the other corners, and control the current through the
481:
In 1948, Bardeen and Brattain patented the progenitor of MOSFET, an insulated-gate FET (IGFET) with an inversion layer. Their patent and the concept of an inversion layer, forms the basis of CMOS technology today.
375:
or MFSFET. Its structure was like that of a modern inversion channel MOSFET, but ferroelectric material was used as a dielectric/insulator instead of oxide. He envisioned it as a form of memory, years before the
976:) is a device for power control. It has a structure akin to a MOSFET coupled with a bipolar-like main conduction channel. These are commonly used for the 200–3000 V drain-to-source voltage range of operation. 355:
of MOSFET devices. At Bell Labs, the importance of Frosch's technique was immediately realized. Results of their work circulated around Bell Labs in the form of BTL memos before being published in 1957. At
1228: 1268:
in some states. This allows extremely low-power switching, which in turn allows greater miniaturization of circuits because heat dissipation needs are reduced compared to other types of switches.
770:
of the FET. Further gate-to-source voltage increase will attract even more electrons towards the gate which are able to create an active channel from source to drain; this process is called
1070:
The FREDFET (fast-reverse or fast-recovery epitaxial diode FET) is a specialized FET designed to provide a very fast recovery (turn-off) of the body diode, making it convenient for driving
1209:. Due to the 2 dimensional structure of graphene, along with its physical properties, GFETs offer increased sensitivity, and reduced instances of 'false positives' in sensing applications 3053:
Lin, Y.-M.; Valdes-Garcia, A.; Han, S.-J.; Farmer, D. B.; Sun, Y.; Wu, Y.; Dimitrakopoulos, C.; Grill, A; Avouris, P; Jenkins, K. A. (2011). "Wafer-Scale Graphene Integrated Circuit".
3537: 830:
rather than as a resistor, and can effectively be used as a voltage amplifier. In this case, the gate-to-source voltage determines the level of constant current through the channel.
211:
compound materials. In the course of trying to understand the mysterious reasons behind their failure to build a working FET, it led to Bardeen and Brattain instead inventing the
1425:
Source-gated transistors are more robust to manufacturing and environmental issues in large-area electronics such as display screens, but are slower in operation than FETs.
1257:
and satellite receivers. It exhibits no offset voltage at zero drain current and makes an excellent signal chopper. It typically has better thermal stability than a BJT.
710:
Simulation result for right side: formation of inversion channel (electron density) and left side: current-gate voltage curve (transfer characteristics) in an n-channel
1067:
The DEPFET is a FET formed in a fully depleted substrate and acts as a sensor, amplifier and memory node at the same time. It can be used as an image (photon) sensor.
762:
first, enough electrons must be attracted near the gate to counter the dopant ions added to the body of the FET; this forms a region with no mobile carriers called a
1398:
uses an arrangement where the (usually "enhancement-mode") p-channel MOSFET and n-channel MOSFET are connected in series such that when one is on, the other is off.
1191:) takes advantage of quantum tunneling to greatly increase the speed of transistor operation by eliminating the traditional transistor's area of electron conduction. 991: 278:. Shockley independently envisioned the FET concept in 1945, but he was unable to build a working device. The next year Bardeen explained his failure in terms of 1297:
Field-effect transistors are relatively robust, especially when operated within the temperature and electrical limitations defined by the manufacturer (proper
1410:, for example. FET is commonly used as an amplifier. For example, due to its large input resistance and low output resistance, it is effective as a buffer in 2712:
Sekigawa, Toshihiro; Hayashi, Yutaka (1 August 1984). "Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate".
789:
Conversely, in a p-channel "enhancement-mode" device, a conductive region does not exist and negative voltage must be used to generate a conduction channel.
657:
the transistor into operation; it is rare to make non-trivial use of the body terminal in circuit designs, but its presence is important when setting up the
311:
argues that "had Brattain and Bardeen been working with silicon instead of germanium they would have stumbled across a successful field effect transistor".
2543: 1508: 3696: 2765: 2791: 1285:
or changes to threshold voltage during handling. This is not usually a problem after the device has been installed in a properly designed circuit.
1194:
The SB-FET (Schottky-barrier field-effect transistor) is a field-effect transistor with metallic source and drain contact electrodes, which create
191:
in 1947, shortly after the 17-year patent expired. Shockley initially attempted to build a working FET by trying to modulate the conductivity of a
3706: 3304:
Sarvari H.; Ghayour, R.; Dastjerdy, E. (2011). "Frequency analysis of graphene nanoribbon FET by Non-Equilibrium Green's Function in mode space".
3905: 3755: 2096:, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13 1841:, Lincoln, Derick & Frosch, Carl J., "Oxidation of semiconductive surfaces for controlled diffusion", issued 1957-08-13 1417:
IGBTs are used in switching internal combustion engine ignition coils, where fast switching and voltage blocking capabilities are important.
1260:
Because the FETs are controlled by gate charge, once the gate is closed or open, there is no additional power draw, as there would be with a
1005:(ion-sensitive field-effect transistor) can be used to measure ion concentrations in a solution; when the ion concentration (such as H, see 3589: 2755: 126:
in their operation, but not both. Many different types of field effect transistors exist. Field effect transistors generally display very
2293: 802:
increased further, the pinch-off point of the channel begins to move away from the drain towards the source. The FET is said to be in
4779: 3105: 2596: 2548: 1340: 690:
circuits because the physical orientation of the FET was decided for other reasons, such as printed circuit layout considerations.
319:
of atoms, molecules and ions by the oxide from the ambient. The latter were found to be much more numerous and to have much longer
282:. Bardeen applied the theory of surface states on semiconductors (previous work on surface states was done by Shockley in 1939 and 259:
from penetrating into the material. By the mid-1950s, researchers had largely given up on the FET concept, and instead focused on
4420: 1174: 342:. They showed that oxide layer prevented certain dopants into the silicon wafer, while allowing for others, thus discovering the 104: 17: 813:
Even though the conductive channel formed by gate-to-source voltage no longer connects source to drain during saturation mode,
238:
and Y. Watanabe in 1950. Following Shockley's theoretical treatment on the JFET in 1952, a working practical JFET was built by
567:
source (S), through which the carriers enter the channel. Conventionally, current entering the channel at S is designated by I
461:, and much lower power consumption and higher density than bipolar junction transistors, the MOSFET made it possible to build 3572: 3350: 3009: 2984: 2951: 2926: 2901: 2864: 2836: 2696: 2497: 2367: 2342: 2255: 2035: 2008: 1983: 1958: 1933: 1902: 1822: 1767: 1666: 1628: 1595: 1570: 1525: 3612: 1220:
between the gate, allowing the transistor to retain its state in the absence of bias - such devices may have application as
574:
drain (D), through which the carriers leave the channel. Conventionally, current leaving the channel at D is designated by I
4337: 3250: 1487: 987:) is a type of Field-effect transistor (FET) which channel is one or multiple nanowires and does not present any junction. 4118: 3898: 3748: 2224: 2199: 303:
and in the process their oxide got inadvertently washed off. They stumbled upon a completely different transistor, the
899:
Depletion-type FETs under typical voltages: JFET, poly-silicon MOSFET, double-gate MOSFET, metal-gate MOSFET, MESFET.
4948: 4101: 3997: 1366: 1118: 1089: 973: 556:, flow from the source to the drain. Source and drain terminal conductors are connected to the semiconductor through 392:
was used as a gate dielectric, but he didn't pursue the idea. In his other patent filed the same year he described a
357: 1348: 4978: 4241: 3968: 3513: 1434: 1395: 984: 352: 223: 4289: 4088: 2518: 1188: 1181: 887:. These transistors are capable of about 2.23 GHz cutoff frequency, much higher than standard silicon FETs. 869: 430:
and Lincoln Derrick accidentally grew a layer of silicon dioxide over the silicon wafer, for which they observed
3872: 3891: 3741: 2247: 1344: 1100: 560:. The conductivity of the channel is a function of the potential applied across the gate and source terminals. 475: 1531: 546: 4968: 3551: 3539:
IBM Research Unveils 'VTFET': A Revolutionary New Chip Architecture Which is Two Times the Performance finFET
1025:, cell-based BioFETs (CPFETs), beetle/chip FETs (BeetleFETs), and FETs based on ion-channels/protein binding. 418: 400:, conceived of a device similar to the later proposed MOSFET, although Labate's device didn't explicitly use 88: 360:, Shockley had circulated the preprint of their article in December 1956 to all his senior staff, including 4973: 4963: 4958: 4320: 4072: 1449: 930:
Top: source, bottom: drain, left: gate, right: bulk. Voltages that lead to channel formation are not shown.
585:
gate (G), the terminal that modulates the channel conductivity. By applying voltage to G, one can control I
1055:(junction field-effect transistor) uses a reverse biased p–n junction to separate the gate from the body. 4124: 4061: 3862: 3784: 2191: 1925: 1261: 1246: 1079: 1059: 1029: 631: 522: 260: 231: 216: 159:
The concept of a field-effect transistor (FET) was first patented by the Austro-Hungarian born physicist
103:. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the 3627:"Source-gated transistors for order-of-magnitude performance improvements in thin-film digital circuits" 4784: 4331: 2760: 1611:
Nishizawa, Jun-Ichi (1982). "Junction Field-Effect Devices". In Sittig, Roland; Roggwiller, P. (eds.).
1517: 1277: 250:
in general. Junction transistors were relatively bulky devices that were difficult to manufacture on a
2426: 4943: 4538: 4252: 4095: 3980: 2454: 843: 658: 467: 143: 3428: 1106:
The TQFET (topological quantum field-effect transistor) switches a 2D material from dissipationless
4953: 4547: 4405: 4257: 4113: 2976: 1329: 1085:
The HIGFET (heterostructure insulated-gate field-effect transistor) is now used mainly in research.
304: 212: 1786:(1994). "Research on crystal rectifiers during World War II and the invention of the transistor". 4558: 4278: 3276: 2650:
Farrah, H. R.; Steinberg, R. F. (February 1967). "Analysis of double-gate thin-film transistor".
2601: 2459: 2301: 1686: 1333: 1282: 861: 847: 648: 495: 462: 343: 160: 152: 3711: 3026: 2144: 4727: 4294: 4159: 4135: 3685: 2893: 2769: 935: 180: 3340: 2483: 2183: 1652: 486:(complementary MOS), a semiconductor device fabrication process for MOSFETs, was developed by 327:
and others came up with various methods of producing atomically clean semiconductor surfaces.
4796: 4748: 4569: 4385: 4300: 4231: 4067: 3857: 2686: 2241: 2025: 1919: 1892: 1556: 1107: 995: 952: 873: 798:
like a variable resistor and the FET is said to be operating in a linear mode or ohmic mode.
654: 2968: 2881: 4870: 4614: 4509: 4283: 4176: 4030: 3991: 3922: 3914: 3638: 3452: 3379: 3313: 3207: 3146: 3062: 2721: 2659: 1658: 1562: 1163: 1122: 1016:(Biologically sensitive field-effect transistor) is a class of sensors/biosensors based on 865: 510: 499: 385: 377: 320: 315:
interface. Slow surface states were found to be associated with the oxide layer because of
168: 119: 28: 3131: 478:
calls it a "groundbreaking invention that transformed life and culture around the world".
8: 4590: 4498: 4390: 4226: 4203: 2969: 1250: 1221: 1145: 850: 431: 335: 288: 247: 3642: 3456: 3383: 3317: 3211: 3150: 3066: 2725: 2663: 2055: 817:
are not blocked from flowing. Considering again an n-channel enhancement-mode device, a
396:
FET. In March 1957, in his laboratory notebook, Ernesto Labate, a research scientist at
4895: 4755: 4463: 4430: 4246: 4130: 4108: 3701: 3659: 3626: 3489: 3442: 3430: 3411: 3231: 3086: 2408: 2113: 1861: 1391: 884: 662: 514: 389: 381: 235: 2544:"Remarks by Director Iancu at the 2019 International Intellectual Property Conference" 1555:
Puers, Robert; Baldi, Livio; Voorde, Marcel Van de; Nooten, Sebastiaan E. van (2017).
1129:. The fully depleted wide-band-gap material forms the isolation between gate and body. 148: 4890: 4811: 4702: 4654: 4483: 4410: 4372: 3664: 3568: 3494: 3476: 3468: 3403: 3395: 3346: 3223: 3162: 3078: 3005: 2980: 2947: 2922: 2897: 2882: 2860: 2832: 2737: 2733: 2692: 2493: 2400: 2363: 2338: 2251: 2243:
To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology
2220: 2195: 2164: 2160: 2075: 2031: 2027:
To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology
2004: 1979: 1954: 1929: 1898: 1818: 1763: 1662: 1624: 1591: 1566: 1521: 1387:(complementary metal oxide semiconductor) process technology is the basis for modern 1110:('on' state) to conventional insulator ('off' state) using an applied electric field. 1036:, by using a gate made of single-strand DNA molecules to detect matching DNA strands. 857: 767: 718: 679: 347: 3690: 2412: 4606: 4553: 4380: 4019: 3798: 3654: 3646: 3484: 3460: 3429:
Prakash, Abhijith; Ilatikhameneh, Hesameddin; Wu, Peng; Appenzeller, Joerg (2017).
3387: 3321: 3235: 3215: 3198: 3196:(2011). "Tunnel field-effect transistors as energy-efficient electronic switches". 3154: 3090: 3070: 2889: 2729: 2667: 2576: 2392: 2330: 2156: 2125: 2067: 1873: 1795: 1783: 1716: 1616: 1464: 1195: 1141: 1137: 966: 818: 763: 754: 530: 393: 324: 308: 267: 184: 76: 4415: 3777: 3415: 3052: 706: 4883: 4816: 4669: 4400: 4310: 4154: 3624: 3179: 2636:
D. Kahng and S. M. Sze, "A floating gate and its application to memory devices",
1976:
Development of HfO2-Based Ferroelectric Memories for Future CMOS Technology Nodes
1757: 1620: 1494:
US Patent no. 1,745,175 (filed: 8 October 1926 ; issued: 28 January 1930).
1491: 956: 814: 436: 401: 339: 275: 251: 239: 227: 4041: 3325: 4858: 4639: 4629: 4395: 4198: 3793: 3464: 3431:"Understanding contact gating in Schottky barrier transistors from 2D channels" 2513: 2396: 2334: 2271: 2093: 1838: 1736: 1484: 1206: 1075: 827: 458: 446: 368: 279: 256: 243: 234:(SIT), a type of JFET with a short channel, was invented by Japanese engineers 196: 127: 123: 72: 3722: 3480: 3277:"Organic transistor paves way for new generations of neuro-inspired computers" 3132:"Recent advances in biologically sensitive field-effect transistors (BioFETs)" 2623: 1799: 1682: 1201:
The GFET is a highly sensitive graphene-based field effect transistor used as
422:
1957, Diagram of one of the SiO2 transistor devices made by Frosch and Derrick
4937: 4920: 4743: 4659: 4478: 4305: 4273: 3831: 3813: 3472: 3407: 3399: 3391: 2828: 2820: 2741: 2404: 2322: 2168: 2079: 1654:
Advanced Materials Innovation: Managing Global Technology in the 21st century
1444: 1217: 962:) between the gate and the body. This is by far the most common type of FET. 939: 738: 557: 553: 491: 487: 200: 192: 80: 3716: 3074: 2671: 1683:"The Foundation of Today's Digital World: The Triumph of the MOS Transistor" 4801: 4789: 4677: 4644: 4473: 4458: 4025: 3836: 3668: 3498: 3367: 3281: 3227: 3166: 3082: 1411: 1407: 1403: 1388: 1156: 1093: 1006: 977: 271: 176: 114:
since they involve single-carrier-type operation. That is, FETs use either
84: 980:
are still the device of choice for drain-to-source voltages of 1 to 200 V.
842:
is by far the most common. Most FETs are made by using conventional bulk
4843: 4585: 4534: 4440: 4425: 4208: 4170: 3841: 3803: 3613:
Slow Body Diode Failures of Field Effect Transistors (FETs): A Case Study
2275: 1894:
Makers of the Microchip: A Documentary History of Fairchild Semiconductor
518: 507: 471: 450: 427: 361: 331: 3883: 3733: 3219: 1921:
ULSI Process Integration III: Proceedings of the International Symposium
1890: 130:
at low frequencies. The most widely used field-effect transistor is the
4915: 4905: 4838: 4712: 4682: 4649: 4624: 4619: 4596: 4468: 4448: 4326: 4188: 4165: 4051: 3953: 3948: 3943: 3764: 3193: 2946:. Upper Saddle River NJ: Pearson Education/Prentice-Hall. p. 102. 2071: 1740: 1302: 316: 172: 164: 68: 3650: 3129: 2581: 2362:. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. p. 321. 2129: 2114:"Surface Protection and Selective Masking during Diffusion in Silicon" 1877: 1862:"Surface Protection and Selective Masking during Diffusion in Silicon" 1721: 1249:(BJT), and is found in noise-sensitive electronics such as tuners and 1009:) changes, the current through the transistor will change accordingly. 533:
MOSFET, originated from the research of Digh Hisamoto and his team at
4878: 4722: 4717: 4707: 4634: 4514: 4348: 4343: 4268: 4193: 3767: 3158: 1202: 1033: 503: 397: 300: 283: 204: 188: 1318: 753:"depletion-mode" device, a negative gate-to-source voltage causes a 698: 39: 4900: 4848: 4828: 4806: 4692: 4687: 4575: 4564: 4493: 4263: 3590:"Origins of SiC FETs and Their Evolution Toward the Perfect Switch" 3447: 3031: 2489: 1298: 1071: 880: 734: 711: 266:
The foundations of MOSFET technology were laid down by the work of
115: 3303: 838:
FETs can be constructed from various semiconductors, out of which
702:
I–V characteristics and output plot of a JFET n-channel transistor
4760: 4697: 4519: 4504: 4358: 4315: 3963: 3867: 3726: 2431: 2278:(1960). "Silicon-silicon dioxide field induced surface devices". 1459: 895: 839: 823: 683: 598: 534: 296: 3625:
Sporea, R.A.; Trainor, M.J.; Young, N.D.; Silva, S.R.P. (2014).
2879: 2294:"1960 – Metal Oxide Semiconductor (MOS) Transistor Demonstrated" 1162:
The GNRFET (graphene nanoribbon field-effect transistor) uses a
951:(metal–oxide–semiconductor field-effect transistor) utilizes an 334:
and Lincoln Derrick accidentally covered the surface of silicon
155:, who proposed the concept of a field-effect transistor in 1925. 4833: 4524: 4488: 4453: 4013: 3985: 3958: 3933: 2999: 2792:"The Breakthrough Advantage for FPGAs with Tri-Gate Technology" 1812: 1454: 1380: 1232: 1213: 1152: 1133: 1126: 1121:), also called a HFET (heterostructure FET), can be made using 1043: 1039: 1022: 1013: 948: 792: 714: 526: 413: 208: 131: 3342:
Semiconductor Glossary: A Resource for Semiconductor Community
2571:
Howard R. Duff (2001). "John Bardeen and transistor physics".
1711:
Howard R. Duff (2001). "John Bardeen and transistor physics".
1136:(metal–semiconductor field-effect transistor) substitutes the 725: 669:
in the diagram, is the distance between source and drain. The
4910: 4821: 4580: 4353: 4146: 4008: 4003: 3251:"Topological off-on switch could make new type of transistor" 2975:(Fifth ed.). New York: Oxford University Press. p.  2798: 1265: 1017: 1002: 766:, and the voltage at which this occurs is referred to as the 372: 351:
as oxide diffusion masking, which would later be used in the
3717:
The Field Effect Transistor as a Voltage Controlled Resistor
1558:
Nanoelectronics: Materials, Devices, Applications, 2 Volumes
1046:
or gate-all-around FET, used on high density processor chips
4853: 4236: 4182: 4083: 4036: 3974: 3725:. rolinychupetin (L.R.Linares). March 30, 2013 – via 3004:(Fourth ed.). New York: Wiley. pp. §1.5.2 p. 45. 2597:"1963: Complementary MOS Circuit Configuration is Invented" 1439: 1384: 1114: 1088:
The MODFET (modulation-doped field-effect transistor) is a
1052: 483: 167:
in 1934, but they were unable to build a working practical
43:
Cross-sectional view of a field-effect transistor, showing
3707:
Winning the Battle Against Latchup in CMOS Analog Switches
2145:"The mechanisms for silicon oxidation in steam and oxygen" 879:
In June 2011, IBM announced that it had successfully used
454:
H. K. Gummel and R. Lindner who characterized the device.
2941: 2921:. Englewood Cliffs, NJ: Prentice Hall. pp. 315–316. 1254: 407: 1198:
at both the source-channel and drain-channel interfaces.
435:
thermally grown oxides and fabricated a high quality Si/
195:, but was unsuccessful, mainly due to problems with the 2966: 1973: 1485:"Method and apparatus for controlling electric current" 1301:). However, modern FET devices can often incorporate a 1096:
structure formed by graded doping of the active region.
529:(fin field-effect transistor), a type of 3D non-planar 3191: 2219:. Springer Science & Business Media. p. 322. 1953:. Springer Science & Business Media. p. 324. 1554: 1510:
The Design of CMOS Radio-Frequency Integrated Circuits
1406:). With this concept, one can construct a solid-state 246:
in 1953. However, the JFET still had issues affecting
222:
The first FET device to be successfully built was the
3514:"What Are Graphene Field Effect Transistors (GFETs)?" 3306:
Physica E: Low-dimensional Systems and Nanostructures
3027:"IBM creates first graphene based integrated circuit" 2919:
Electronic circuits: analysis, simulation, and design
2691:. Springer Science & Business Media. p. 11. 1891:
Christophe Lécuyer; David C. Brook; Jay Last (2010).
134:(metal–oxide–semiconductor field-effect transistor). 2184:"Highlights Of Silicon Thermal Oxidation Technology" 693: 547:
Charge carrier § Majority and minority carriers
2589: 2383:Motoyoshi, M. (2009). "Through-Silicon Via (TSV)". 1998: 525:researchers Toshihiro Sekigawa and Yutaka Hayashi. 3691:How Semiconductors and Transistors Work (MOSFETs) 3562: 3130:Schöning, Michael J.; Poghossian, Arshak (2002). 3002:Analysis and design of analog integrated circuits 2766:Institute of Electrical and Electronics Engineers 2056:"Frosch and Derick: Fifty Years Later (Foreword)" 1585: 4935: 1782: 3712:Field Effect Transistors in Theory and Practice 3106:"Flexible graphene transistor sets new records" 2916: 2884:MOSFET modeling for circuit analysis and design 2711: 2649: 2643: 2280:IRE-AIEE Solid State Device Research Conference 1276:A field-effect transistor has a relatively low 1184:) uses an organic semiconductor in its channel. 3000:PR Gray; PJ Hurst; SH Lewis; RG Meyer (2001). 2570: 2142: 2030:. Johns Hopkins University Press. p. 22. 1815:Crystal Fire: The Birth of the Information Age 1735: 1710: 969:) or DGMOS, a MOSFET with two insulated gates. 634:. Most FETs have a fourth terminal called the 3899: 3749: 3338: 2854: 2819: 2143:Ligenza, J. R.; Spitzer, W. G. (1960-07-01). 2092: 2054:Huff, Howard; Riordan, Michael (2007-09-01). 1837: 1062:(SIT) is a type of JFET with a short channel. 3366:Appenzeller J, et al. (November 2008). 2859:. Singapore: McGraw-Hill. pp. 384–385. 2111: 1859: 1613:Semiconductor Devices for Power Conditioning 1021:(ImmunoFETs), gene-modified FETs (GenFETs), 992:metal–nitride–oxide–semiconductor transistor 793:Effect of drain-to-source voltage on channel 3365: 2880:Galup-Montoro, C.; Schneider, M.C. (2007). 2270: 2053: 1762:. The Electrochemical Society. p. 43. 1646: 1644: 1642: 1640: 1347:. Unsourced material may be challenged and 175:effect was later observed and explained by 3906: 3892: 3756: 3742: 3103: 2993: 2850: 2848: 2233: 2149:Journal of Physics and Chemistry of Solids 1813:Michael Riordan; Lillian Hoddeson (1997). 1420: 1229:Vertical-Transport Field-Effect Transistor 856:Among the more unusual body materials are 215:in 1947, which was followed by Shockley's 27:"FET" redirects here. For other uses, see 3913: 3763: 3658: 3511: 3488: 3446: 3024: 2580: 2549:United States Patent and Trademark Office 2382: 2327:Technical Memorandum of Bell Laboratories 2017: 1720: 1650: 1610: 1367:Learn how and when to remove this message 618:terminals that correspond roughly to the 521:MOSFET was first demonstrated in 1984 by 2813: 2688:FinFETs and Other Multi-Gate Transistors 2538: 2536: 2323:"Silicon-Silicon Dioxide Surface Device" 2188:Silicon materials science and technology 1637: 1402:switching analog signals between paths ( 1235:to allow higher density and lower power. 894: 724: 721:for this device lies around 0.45 V. 705: 697: 597: 417: 147: 38: 2845: 2756:"IEEE Andrew S. Grove Award Recipients" 2684: 2485:High Performance Audio Power Amplifiers 2239: 2023: 1755: 1729: 1175:carbon nanotube field-effect transistor 1159:organic memory field-effect transistor. 806:; although some authors refer to it as 593: 14: 4936: 3587: 2481: 2118:Journal of the Electrochemical Society 1917: 1866:Journal of the Electrochemical Society 1675: 1032:) is a specialized FET that acts as a 408:Metal-oxide-semiconductor FET (MOSFET) 3887: 3737: 3567:. New Delhi: Prentice-Hall of India. 3565:Electronic devices and siraj circuits 3372:IEEE Transactions on Electron Devices 2652:IEEE Transactions on Electron Devices 2640:, vol. 46, no. 4, 1967, pp. 1288–1295 2533: 2506: 2357: 2320: 2214: 2060:The Electrochemical Society Interface 2049: 2047: 1948: 1855: 1853: 1502: 1500: 1103:) is based on band-to-band tunneling. 864:or other amorphous semiconductors in 226:(JFET). A JFET was first patented by 91:(MOSFET). FETs have three terminals: 4338:Three-dimensional integrated circuit 3248: 2942:Spencer, R.R.; Ghausi, M.S. (2001). 2427:"Transistors Keep Moore's Law Alive" 2360:History of Semiconductor Engineering 2217:History of Semiconductor Engineering 2181: 2175: 1951:History of Semiconductor Engineering 1706: 1704: 1548: 1345:adding citations to reliable sources 1312: 540: 513:(TFT) was proposed by H. R. Farrah ( 4119:Programmable unijunction transistor 3723:"The FET (field effect transistor)" 3249:Dumé, Isabelle (12 December 2018). 1506: 1125:in a ternary semiconductor such as 844:semiconductor processing techniques 535:Hitachi Central Research Laboratory 24: 4020:Multi-gate field-effect transistor 2967:Sedra, A. S.; Smith, K.C. (2004). 2044: 1850: 1604: 1497: 1379:The most commonly used FET is the 853:as the active region, or channel. 25: 4990: 3998:Insulated-gate bipolar transistor 3679: 3345:. World Scientific. p. 244. 2638:The Bell System Technical Journal 2112:Frosch, C. J.; Derick, L (1957). 1860:Frosch, C. J.; Derick, L (1957). 1701: 1414:(source follower) configuration. 1119:high-electron-mobility transistor 1090:high-electron-mobility transistor 994:) utilizes a nitride-oxide layer 974:insulated-gate bipolar transistor 694:Effect of gate voltage on current 602:Cross section of an n-type MOSFET 517:) and R. F. Steinberg in 1967. A 4242:Heterostructure barrier varactor 3969:Chemical field-effect transistor 3812: 3776: 3697:Junction Field Effect Transistor 2575:. Vol. 550. pp. 3–32. 1974:Stefan Ferdinand Müller (2016). 1759:ULSI Science and Technology/1997 1715:. Vol. 550. pp. 3–32. 1435:Chemical field-effect transistor 1317: 1292: 1271: 1144:; and is used in GaAs and other 985:Junctionless nanowire transistor 870:organic field-effect transistors 777: 744: 665:. The size of the gate, length 224:junction field-effect transistor 4290:Mixed-signal integrated circuit 3686:PBS The Field Effect Transistor 3618: 3606: 3581: 3556: 3545: 3531: 3505: 3422: 3359: 3332: 3297: 3269: 3242: 3185: 3182:, HIGFET and method - Motorola] 3173: 3123: 3104:Belle Dumé (10 December 2012). 3097: 3046: 3018: 2960: 2935: 2910: 2873: 2857:Electronic devices and circuits 2825:Electronic devices and circuits 2784: 2748: 2705: 2678: 2630: 2627:, filed in 1960, issued in 1963 2616: 2564: 2519:National Inventors Hall of Fame 2475: 2447: 2419: 2376: 2351: 2314: 2286: 2264: 2208: 2136: 2105: 2086: 1992: 1967: 1942: 1911: 1884: 1831: 1806: 1776: 1749: 1189:quantum field effect transistor 1182:organic field-effect transistor 653:This fourth terminal serves to 563:The FET's three terminals are: 498:in 1963. The first report of a 2455:"Who Invented the Transistor?" 2248:Johns Hopkins University Press 1999:B.G Lowe; R.A. Sareen (2013). 1817:. W. W. Norton & Company. 1651:Moskowitz, Sanford L. (2016). 1615:. Springer. pp. 241–272. 1579: 1477: 1101:tunnel field-effect transistor 998:between the gate and the body. 833: 578:. Drain-to-source voltage is V 476:US Patent and Trademark Office 107:between the drain and source. 13: 1: 3368:"Toward Nanowire Electronics" 3025:Bob Yirka (10 January 2011). 2001:Semiconductor X-Ray Detectors 1897:. MIT Press. pp. 62–63. 1588:The Physics of Semiconductors 1470: 1239: 1231:, IBM's 2021 modification of 733:The FET controls the flow of 729:FET conventional symbol types 89:metal-oxide-semiconductor FET 4321:Silicon controlled rectifier 4183:Organic light-emitting diode 4073:Diffused junction transistor 3552:VIII.5. Noise in Transistors 2734:10.1016/0038-1101(84)90036-4 2161:10.1016/0022-3697(60)90219-5 1621:10.1007/978-1-4684-7263-9_11 1450:Field effect (semiconductor) 1078:, especially medium-powered 938:to produce either an n-type 848:single crystal semiconductor 502:was made by Dawon Kahng and 7: 4125:Static induction transistor 4062:Bipolar junction transistor 4014:MOS field-effect transistor 3986:Fin field-effect transistor 3863:Complementary feedback pair 3785:Bipolar junction transistor 3588:Bhalla, Anup (2021-09-17). 3326:10.1016/j.physe.2011.04.018 2240:Bassett, Ross Knox (2007). 2192:The Electrochemical Society 2024:Bassett, Ross Knox (2007). 1926:The Electrochemical Society 1756:Massoud, Hisham Z. (1997). 1428: 1262:bipolar junction transistor 1247:bipolar junction transistor 1060:static induction transistor 1030:DNA field-effect transistor 523:Electrotechnical Laboratory 261:bipolar junction transistor 232:static induction transistor 217:bipolar junction transistor 10: 4995: 4332:Static induction thyristor 3563:Allen Mottershead (2004). 3465:10.1038/s41598-017-12816-3 2761:IEEE Andrew S. Grove Award 2573:AIP Conference Proceedings 2397:10.1109/JPROC.2008.2007462 2335:10.1142/9789814503464_0076 1713:AIP Conference Proceedings 1586:Grundmann, Marius (2010). 1518:Cambridge University Press 872:(OFETs) that are based on 544: 506:in 1967. The concept of a 411: 171:based on the concept. The 141: 137: 83:. It comes in two types: 26: 4869: 4769: 4736: 4668: 4605: 4533: 4501:(Hexode, Heptode, Octode) 4439: 4371: 4253:Hybrid integrated circuit 4217: 4145: 4096:Light-emitting transistor 4050: 3932: 3921: 3850: 3821: 3810: 3783: 3774: 2829:McGraw-Hill International 1978:. BoD – Books on Demand. 1800:10.1080/07341519408581858 468:communications technology 445:Following this research, 144:History of the transistor 4949:Field-effect transistors 4548:Backward-wave oscillator 4258:Light emitting capacitor 4114:Point-contact transistor 4084:Junction Gate FET (JFET) 3392:10.1109/ted.2008.2008011 2971:Microelectronic circuits 2944:Microelectronic circuits 2917:Norbert R Malik (1995). 934:The channel of a FET is 890: 822:a resistance similar to 305:point-contact transistor 213:point-contact transistor 4979:South Korean inventions 4559:Crossed-field amplifier 4078:Field-effect transistor 3823:Field-effect transistor 3075:10.1126/science.1204428 2714:Solid-State Electronics 2672:10.1109/T-ED.1967.15901 2602:Computer History Museum 2460:Computer History Museum 2385:Proceedings of the IEEE 2302:Computer History Museum 2182:Deal, Bruce E. (1998). 1918:Claeys, Cor L. (2003). 1687:Computer History Museum 1507:Lee, Thomas H. (2003). 1421:Source-gated transistor 1308: 1283:electrostatic discharge 943:Types of FETs include: 862:polycrystalline silicon 828:constant-current source 496:Fairchild Semiconductor 255:prevented the external 161:Julius Edgar Lilienfeld 153:Julius Edgar Lilienfeld 110:FETs are also known as 75:to control the flow of 61:field-effect transistor 18:Field effect transistor 4728:Voltage-regulator tube 4295:MOS integrated circuit 4160:Constant-current diode 4136:Unijunction transistor 3693:WeCanFigureThisOut.org 3594:Power Electronics News 3339:Jerzy Ruzyllo (2016). 2855:Jacob Millman (1985). 2685:Colinge, J.P. (2008). 1788:History and Technology 1742:Designing Analog Chips 1278:gain–bandwidth product 931: 874:organic semiconductors 730: 722: 703: 603: 423: 358:Shockley Semiconductor 181:Walter Houser Brattain 156: 56: 4797:Electrolytic detector 4570:Inductive output tube 4386:Low-dropout regulator 4301:Organic semiconductor 4232:Printed circuit board 4068:Darlington transistor 3915:Electronic components 3858:Darlington transistor 3851:Multiple transistors: 3180:freepatentsonline.com 2624:U.S. patent 3,102,230 1659:John Wiley & Sons 1563:John Wiley & Sons 1264:or with non-latching 1108:topological insulator 898: 866:thin-film transistors 728: 709: 701: 601: 421: 371:filed a patent for a 169:semiconducting device 151: 142:Further information: 42: 4969:Hungarian inventions 4615:Beam deflection tube 4284:Metal-oxide varistor 4177:Light-emitting diode 4031:Thin-film transistor 3992:Floating-gate MOSFET 2888:. London/Singapore: 2772:on September 9, 2018 2482:Duncan, Ben (1996). 1341:improve this section 1251:low-noise amplifiers 594:More about terminals 511:thin-film transistor 500:floating-gate MOSFET 380:. In February 1957, 378:floating gate MOSFET 248:junction transistors 183:while working under 128:high input impedance 112:unipolar transistors 29:FET (disambiguation) 4974:Japanese inventions 4964:Egyptian inventions 4959:Austrian inventions 4591:Traveling-wave tube 4391:Switching regulator 4227:Printed electronics 4204:Step recovery diode 3981:Depletion-load NMOS 3702:CMOS gate circuitry 3643:2014NatSR...4E4295S 3457:2017NatSR...712596P 3384:2008ITED...55.2827A 3318:2011PhyE...43.1509S 3220:10.1038/nature10679 3212:2011Natur.479..329I 3151:2002Ana...127.1137S 3067:2011Sci...332.1294L 3061:(6035): 1294–1297. 2726:1984SSEle..27..827S 2664:1967ITED...14...69F 1590:. Springer-Verlag. 1392:integrated circuits 1222:non-volatile memory 1164:graphene nanoribbon 1146:III-V semiconductor 1140:of the JFET with a 1123:bandgap engineering 1080:brushless DC motors 432:surface passivation 384:filed a patent for 4896:Crystal oscillator 4756:Variable capacitor 4431:Switched capacitor 4373:Voltage regulators 4247:Integrated circuit 4131:Tetrode transistor 4109:Pentode transistor 4102:Organic LET (OLET) 4089:Organic FET (OFET) 3631:Scientific Reports 3435:Scientific Reports 3285:. January 29, 2010 2435:. 12 December 2018 2358:Lojek, Bo (2007). 2321:KAHNG, D. (1961). 2298:The Silicon Engine 2250:. pp. 22–23. 2215:Lojek, Bo (2007). 2072:10.1149/2.F02073IF 1949:Lojek, Bo (2007). 1928:. pp. 27–30. 1490:2022-04-09 at the 1396:process technology 932: 885:integrated circuit 883:-based FETs in an 731: 723: 704: 680:transmission gates 663:integrated circuit 604: 515:Bendix Corporation 424: 390:germanium monoxide 263:(BJT) technology. 236:Jun-ichi Nishizawa 157: 57: 36:Type of transistor 4931: 4930: 4891:Ceramic resonator 4703:Mercury-arc valve 4655:Video camera tube 4607:Cathode-ray tubes 4367: 4366: 3975:Complementary MOS 3881: 3880: 3651:10.1038/srep04295 3574:978-81-203-0124-5 3378:(11): 2827–2845. 3352:978-981-4749-56-5 3206:(7373): 329–337. 3011:978-0-471-32168-2 2986:978-0-19-514251-8 2953:978-0-201-36183-4 2928:978-0-02-374910-0 2903:978-981-256-810-6 2866:978-0-07-085505-2 2838:978-0-07-085505-2 2698:978-0-387-71751-7 2582:10.1063/1.1354371 2499:978-0-08-050804-7 2463:. 4 December 2013 2369:978-3-540-34258-8 2344:978-981-02-0209-5 2257:978-0-8018-8639-3 2130:10.1149/1.2428650 2037:978-0-8018-8639-3 2010:978-1-4665-5401-6 1985:978-3-7392-4894-3 1960:978-3-540-34258-8 1935:978-1-56677-376-8 1904:978-0-262-01424-3 1878:10.1149/1.2428650 1824:978-0-393-04124-8 1769:978-1-56677-130-6 1722:10.1063/1.1354371 1668:978-0-470-50892-3 1630:978-1-4684-7265-3 1597:978-3-642-13884-3 1572:978-3-527-34053-8 1527:978-1-139-64377-1 1483:Lilienfeld, J.E. 1377: 1376: 1369: 1196:Schottky barriers 858:amorphous silicon 768:threshold voltage 719:threshold voltage 541:Basic information 404:as an insulator. 16:(Redirected from 4986: 4944:Transistor types 4785:electrical power 4670:Gas-filled tubes 4554:Cavity magnetron 4381:Linear regulator 3930: 3929: 3908: 3901: 3894: 3885: 3884: 3873:Long-tailed pair 3816: 3799:Common collector 3780: 3758: 3751: 3744: 3735: 3734: 3730: 3673: 3672: 3662: 3622: 3616: 3610: 3604: 3603: 3601: 3600: 3585: 3579: 3578: 3560: 3554: 3549: 3543: 3535: 3529: 3528: 3526: 3524: 3509: 3503: 3502: 3492: 3450: 3426: 3420: 3419: 3363: 3357: 3356: 3336: 3330: 3329: 3312:(8): 1509–1513. 3301: 3295: 3294: 3292: 3290: 3273: 3267: 3266: 3264: 3262: 3257:. IOP Publishing 3246: 3240: 3239: 3192:Ionescu, A. M.; 3189: 3183: 3177: 3171: 3170: 3159:10.1039/B204444G 3145:(9): 1137–1151. 3136: 3127: 3121: 3120: 3118: 3116: 3101: 3095: 3094: 3050: 3044: 3043: 3041: 3039: 3022: 3016: 3015: 2997: 2991: 2990: 2974: 2964: 2958: 2957: 2939: 2933: 2932: 2914: 2908: 2907: 2890:World Scientific 2887: 2877: 2871: 2870: 2852: 2843: 2842: 2817: 2811: 2810: 2808: 2806: 2796: 2788: 2782: 2781: 2779: 2777: 2768:. Archived from 2752: 2746: 2745: 2709: 2703: 2702: 2682: 2676: 2675: 2647: 2641: 2634: 2628: 2626: 2620: 2614: 2613: 2611: 2609: 2593: 2587: 2586: 2584: 2568: 2562: 2561: 2559: 2557: 2540: 2531: 2530: 2528: 2526: 2510: 2504: 2503: 2479: 2473: 2472: 2470: 2468: 2451: 2445: 2444: 2442: 2440: 2423: 2417: 2416: 2380: 2374: 2373: 2355: 2349: 2348: 2318: 2312: 2311: 2309: 2308: 2290: 2284: 2283: 2268: 2262: 2261: 2237: 2231: 2230: 2212: 2206: 2205: 2179: 2173: 2172: 2140: 2134: 2133: 2109: 2103: 2102: 2101: 2097: 2090: 2084: 2083: 2051: 2042: 2041: 2021: 2015: 2014: 1996: 1990: 1989: 1971: 1965: 1964: 1946: 1940: 1939: 1915: 1909: 1908: 1888: 1882: 1881: 1857: 1848: 1847: 1846: 1842: 1835: 1829: 1828: 1810: 1804: 1803: 1784:Lillian Hoddeson 1780: 1774: 1773: 1753: 1747: 1746: 1733: 1727: 1726: 1724: 1708: 1699: 1698: 1696: 1694: 1679: 1673: 1672: 1648: 1635: 1634: 1608: 1602: 1601: 1583: 1577: 1576: 1552: 1546: 1545: 1543: 1542: 1536: 1530:. Archived from 1515: 1504: 1495: 1481: 1465:Multigate device 1372: 1365: 1361: 1358: 1352: 1321: 1313: 1207:chemical sensors 1166:for its channel. 1142:Schottky barrier 967:dual-gate MOSFET 927: 921: 915: 909: 903: 819:depletion region 764:depletion region 755:depletion region 717:. Note that the 459:high scalability 338:with a layer of 325:Philo Farnsworth 321:relaxation times 309:Lillian Hoddeson 268:William Shockley 185:William Shockley 21: 4994: 4993: 4989: 4988: 4987: 4985: 4984: 4983: 4954:Arab inventions 4934: 4933: 4932: 4927: 4865: 4780:audio and video 4765: 4732: 4664: 4601: 4529: 4510:Photomultiplier 4435: 4363: 4311:Quantum circuit 4219: 4213: 4155:Avalanche diode 4141: 4053: 4046: 3935: 3924: 3917: 3912: 3882: 3877: 3846: 3817: 3808: 3781: 3770: 3762: 3721: 3682: 3677: 3676: 3623: 3619: 3611: 3607: 3598: 3596: 3586: 3582: 3575: 3561: 3557: 3550: 3546: 3536: 3532: 3522: 3520: 3512:Miklos, Bolza. 3510: 3506: 3427: 3423: 3364: 3360: 3353: 3337: 3333: 3302: 3298: 3288: 3286: 3275: 3274: 3270: 3260: 3258: 3247: 3243: 3190: 3186: 3178: 3174: 3134: 3128: 3124: 3114: 3112: 3102: 3098: 3051: 3047: 3037: 3035: 3023: 3019: 3012: 2998: 2994: 2987: 2965: 2961: 2954: 2940: 2936: 2929: 2915: 2911: 2904: 2878: 2874: 2867: 2853: 2846: 2839: 2831:. p. 397. 2818: 2814: 2804: 2802: 2794: 2790: 2789: 2785: 2775: 2773: 2754: 2753: 2749: 2710: 2706: 2699: 2683: 2679: 2648: 2644: 2635: 2631: 2622: 2621: 2617: 2607: 2605: 2595: 2594: 2590: 2569: 2565: 2555: 2553: 2552:. June 10, 2019 2542: 2541: 2534: 2524: 2522: 2512: 2511: 2507: 2500: 2492:. p. 177. 2480: 2476: 2466: 2464: 2453: 2452: 2448: 2438: 2436: 2425: 2424: 2420: 2381: 2377: 2370: 2356: 2352: 2345: 2319: 2315: 2306: 2304: 2292: 2291: 2287: 2269: 2265: 2258: 2238: 2234: 2227: 2213: 2209: 2202: 2194:. p. 183. 2180: 2176: 2141: 2137: 2110: 2106: 2099: 2091: 2087: 2052: 2045: 2038: 2022: 2018: 2011: 1997: 1993: 1986: 1972: 1968: 1961: 1947: 1943: 1936: 1916: 1912: 1905: 1889: 1885: 1858: 1851: 1844: 1836: 1832: 1825: 1811: 1807: 1781: 1777: 1770: 1754: 1750: 1734: 1730: 1709: 1702: 1692: 1690: 1681: 1680: 1676: 1669: 1661:. p. 168. 1649: 1638: 1631: 1609: 1605: 1598: 1584: 1580: 1573: 1553: 1549: 1540: 1538: 1534: 1528: 1513: 1505: 1498: 1492:Wayback Machine 1482: 1478: 1473: 1431: 1423: 1373: 1362: 1356: 1353: 1338: 1322: 1311: 1295: 1274: 1242: 1076:electric motors 960: 929: 928: Insulator 925: 923: 919: 917: 913: 911: 910: Electrons 907: 905: 904: Depletion 901: 893: 836: 804:saturation mode 795: 780: 747: 696: 659:physical layout 596: 588: 581: 577: 570: 549: 543: 442:stack in 1960. 440: 416: 410: 402:silicon dioxide 340:silicon dioxide 289:surface physics 276:Walter Brattain 252:mass-production 240:George C. Dacey 228:Heinrich Welker 163:in 1925 and by 146: 140: 124:charge carriers 122:(p-channel) as 118:(n-channel) or 67:) is a type of 37: 32: 23: 22: 15: 12: 11: 5: 4992: 4982: 4981: 4976: 4971: 4966: 4961: 4956: 4951: 4946: 4929: 4928: 4926: 4925: 4924: 4923: 4918: 4908: 4903: 4898: 4893: 4888: 4887: 4886: 4875: 4873: 4867: 4866: 4864: 4863: 4862: 4861: 4859:Wollaston wire 4851: 4846: 4841: 4836: 4831: 4826: 4825: 4824: 4819: 4809: 4804: 4799: 4794: 4793: 4792: 4787: 4782: 4773: 4771: 4767: 4766: 4764: 4763: 4758: 4753: 4752: 4751: 4740: 4738: 4734: 4733: 4731: 4730: 4725: 4720: 4715: 4710: 4705: 4700: 4695: 4690: 4685: 4680: 4674: 4672: 4666: 4665: 4663: 4662: 4657: 4652: 4647: 4642: 4640:Selectron tube 4637: 4632: 4630:Magic eye tube 4627: 4622: 4617: 4611: 4609: 4603: 4602: 4600: 4599: 4594: 4588: 4583: 4578: 4573: 4567: 4562: 4556: 4551: 4544: 4542: 4531: 4530: 4528: 4527: 4522: 4517: 4512: 4507: 4502: 4496: 4491: 4486: 4481: 4476: 4471: 4466: 4461: 4456: 4451: 4445: 4443: 4437: 4436: 4434: 4433: 4428: 4423: 4418: 4413: 4408: 4403: 4398: 4393: 4388: 4383: 4377: 4375: 4369: 4368: 4365: 4364: 4362: 4361: 4356: 4351: 4346: 4341: 4335: 4329: 4324: 4318: 4313: 4308: 4303: 4298: 4292: 4287: 4281: 4276: 4271: 4266: 4261: 4255: 4250: 4244: 4239: 4234: 4229: 4223: 4221: 4215: 4214: 4212: 4211: 4206: 4201: 4199:Schottky diode 4196: 4191: 4186: 4180: 4174: 4168: 4163: 4157: 4151: 4149: 4143: 4142: 4140: 4139: 4133: 4128: 4122: 4116: 4111: 4106: 4105: 4104: 4093: 4092: 4091: 4086: 4075: 4070: 4065: 4058: 4056: 4048: 4047: 4045: 4044: 4039: 4034: 4028: 4023: 4017: 4011: 4006: 4001: 3995: 3989: 3983: 3978: 3972: 3966: 3961: 3956: 3951: 3946: 3940: 3938: 3927: 3919: 3918: 3911: 3910: 3903: 3896: 3888: 3879: 3878: 3876: 3875: 3870: 3865: 3860: 3854: 3852: 3848: 3847: 3845: 3844: 3839: 3834: 3828: 3826: 3819: 3818: 3811: 3809: 3807: 3806: 3801: 3796: 3794:Common emitter 3790: 3788: 3782: 3775: 3772: 3771: 3761: 3760: 3753: 3746: 3738: 3732: 3731: 3719: 3714: 3709: 3704: 3699: 3694: 3688: 3681: 3680:External links 3678: 3675: 3674: 3617: 3605: 3580: 3573: 3555: 3544: 3530: 3504: 3421: 3358: 3351: 3331: 3296: 3268: 3241: 3184: 3172: 3122: 3096: 3045: 3017: 3010: 2992: 2985: 2959: 2952: 2934: 2927: 2909: 2902: 2872: 2865: 2844: 2837: 2812: 2783: 2747: 2720:(8): 827–828. 2704: 2697: 2677: 2642: 2629: 2615: 2588: 2563: 2532: 2505: 2498: 2474: 2446: 2418: 2375: 2368: 2350: 2343: 2313: 2285: 2263: 2256: 2232: 2226:978-3540342588 2225: 2207: 2201:978-1566771931 2200: 2174: 2135: 2104: 2085: 2043: 2036: 2016: 2009: 1991: 1984: 1966: 1959: 1941: 1934: 1910: 1903: 1883: 1849: 1830: 1823: 1805: 1794:(2): 121–130. 1775: 1768: 1748: 1737:Hans Camenzind 1728: 1700: 1689:. 13 July 2010 1674: 1667: 1636: 1629: 1603: 1596: 1578: 1571: 1565:. p. 14. 1547: 1526: 1496: 1475: 1474: 1472: 1469: 1468: 1467: 1462: 1457: 1452: 1447: 1442: 1437: 1430: 1427: 1422: 1419: 1375: 1374: 1357:September 2018 1325: 1323: 1316: 1310: 1307: 1294: 1291: 1273: 1270: 1241: 1238: 1237: 1236: 1225: 1210: 1199: 1192: 1185: 1178: 1171: 1167: 1160: 1149: 1130: 1111: 1104: 1097: 1086: 1083: 1074:loads such as 1068: 1065: 1064: 1063: 1049: 1048: 1047: 1037: 1026: 1010: 999: 988: 981: 970: 965:The DGMOSFET ( 958: 924: 918: 912: 906: 900: 892: 889: 835: 832: 794: 791: 779: 776: 746: 743: 739:electron holes 695: 692: 606:All FETs have 595: 592: 591: 590: 586: 583: 579: 575: 572: 568: 558:ohmic contacts 542: 539: 447:Mohamed Atalla 438: 412:Main article: 409: 406: 369:Ian Munro Ross 323:. At the time 280:surface states 257:electric field 197:surface states 139: 136: 73:electric field 35: 9: 6: 4: 3: 2: 4991: 4980: 4977: 4975: 4972: 4970: 4967: 4965: 4962: 4960: 4957: 4955: 4952: 4950: 4947: 4945: 4942: 4941: 4939: 4922: 4921:mercury relay 4919: 4917: 4914: 4913: 4912: 4909: 4907: 4904: 4902: 4899: 4897: 4894: 4892: 4889: 4885: 4882: 4881: 4880: 4877: 4876: 4874: 4872: 4868: 4860: 4857: 4856: 4855: 4852: 4850: 4847: 4845: 4842: 4840: 4837: 4835: 4832: 4830: 4827: 4823: 4820: 4818: 4815: 4814: 4813: 4810: 4808: 4805: 4803: 4800: 4798: 4795: 4791: 4788: 4786: 4783: 4781: 4778: 4777: 4775: 4774: 4772: 4768: 4762: 4759: 4757: 4754: 4750: 4747: 4746: 4745: 4744:Potentiometer 4742: 4741: 4739: 4735: 4729: 4726: 4724: 4721: 4719: 4716: 4714: 4711: 4709: 4706: 4704: 4701: 4699: 4696: 4694: 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4675: 4673: 4671: 4667: 4661: 4660:Williams tube 4658: 4656: 4653: 4651: 4648: 4646: 4643: 4641: 4638: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4612: 4610: 4608: 4604: 4598: 4595: 4592: 4589: 4587: 4584: 4582: 4579: 4577: 4574: 4571: 4568: 4566: 4563: 4560: 4557: 4555: 4552: 4549: 4546: 4545: 4543: 4540: 4536: 4532: 4526: 4523: 4521: 4518: 4516: 4513: 4511: 4508: 4506: 4503: 4500: 4497: 4495: 4492: 4490: 4487: 4485: 4482: 4480: 4479:Fleming valve 4477: 4475: 4472: 4470: 4467: 4465: 4462: 4460: 4457: 4455: 4452: 4450: 4447: 4446: 4444: 4442: 4438: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4402: 4399: 4397: 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4378: 4376: 4374: 4370: 4360: 4357: 4355: 4352: 4350: 4347: 4345: 4342: 4339: 4336: 4333: 4330: 4328: 4325: 4322: 4319: 4317: 4314: 4312: 4309: 4307: 4306:Photodetector 4304: 4302: 4299: 4296: 4293: 4291: 4288: 4285: 4282: 4280: 4277: 4275: 4274:Memtransistor 4272: 4270: 4267: 4265: 4262: 4259: 4256: 4254: 4251: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4224: 4222: 4216: 4210: 4207: 4205: 4202: 4200: 4197: 4195: 4192: 4190: 4187: 4184: 4181: 4178: 4175: 4172: 4169: 4167: 4164: 4161: 4158: 4156: 4153: 4152: 4150: 4148: 4144: 4137: 4134: 4132: 4129: 4126: 4123: 4120: 4117: 4115: 4112: 4110: 4107: 4103: 4100: 4099: 4097: 4094: 4090: 4087: 4085: 4082: 4081: 4079: 4076: 4074: 4071: 4069: 4066: 4063: 4060: 4059: 4057: 4055: 4049: 4043: 4040: 4038: 4035: 4032: 4029: 4027: 4024: 4021: 4018: 4015: 4012: 4010: 4007: 4005: 4002: 3999: 3996: 3993: 3990: 3987: 3984: 3982: 3979: 3976: 3973: 3970: 3967: 3965: 3962: 3960: 3957: 3955: 3952: 3950: 3947: 3945: 3942: 3941: 3939: 3937: 3931: 3928: 3926: 3923:Semiconductor 3920: 3916: 3909: 3904: 3902: 3897: 3895: 3890: 3889: 3886: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3855: 3853: 3849: 3843: 3840: 3838: 3835: 3833: 3832:Common source 3830: 3829: 3827: 3824: 3820: 3815: 3805: 3802: 3800: 3797: 3795: 3792: 3791: 3789: 3786: 3779: 3773: 3769: 3766: 3759: 3754: 3752: 3747: 3745: 3740: 3739: 3736: 3728: 3724: 3720: 3718: 3715: 3713: 3710: 3708: 3705: 3703: 3700: 3698: 3695: 3692: 3689: 3687: 3684: 3683: 3670: 3666: 3661: 3656: 3652: 3648: 3644: 3640: 3636: 3632: 3628: 3621: 3614: 3609: 3595: 3591: 3584: 3576: 3570: 3566: 3559: 3553: 3548: 3542: 3540: 3534: 3519: 3515: 3508: 3500: 3496: 3491: 3486: 3482: 3478: 3474: 3470: 3466: 3462: 3458: 3454: 3449: 3444: 3440: 3436: 3432: 3425: 3417: 3413: 3409: 3405: 3401: 3397: 3393: 3389: 3385: 3381: 3377: 3373: 3369: 3362: 3354: 3348: 3344: 3343: 3335: 3327: 3323: 3319: 3315: 3311: 3307: 3300: 3284: 3283: 3278: 3272: 3256: 3255:Physics World 3252: 3245: 3237: 3233: 3229: 3225: 3221: 3217: 3213: 3209: 3205: 3201: 3200: 3195: 3188: 3181: 3176: 3168: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3133: 3126: 3111: 3110:Physics World 3107: 3100: 3092: 3088: 3084: 3080: 3076: 3072: 3068: 3064: 3060: 3056: 3049: 3034: 3033: 3028: 3021: 3013: 3007: 3003: 2996: 2988: 2982: 2978: 2973: 2972: 2963: 2955: 2949: 2945: 2938: 2930: 2924: 2920: 2913: 2905: 2899: 2895: 2891: 2886: 2885: 2876: 2868: 2862: 2858: 2851: 2849: 2840: 2834: 2830: 2827:. Singapore: 2826: 2822: 2821:Jacob Millman 2816: 2800: 2793: 2787: 2771: 2767: 2763: 2762: 2757: 2751: 2743: 2739: 2735: 2731: 2727: 2723: 2719: 2715: 2708: 2700: 2694: 2690: 2689: 2681: 2673: 2669: 2665: 2661: 2657: 2653: 2646: 2639: 2633: 2625: 2619: 2604: 2603: 2598: 2592: 2583: 2578: 2574: 2567: 2551: 2550: 2545: 2539: 2537: 2521: 2520: 2515: 2514:"Dawon Kahng" 2509: 2501: 2495: 2491: 2487: 2486: 2478: 2462: 2461: 2456: 2450: 2434: 2433: 2428: 2422: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2371: 2365: 2361: 2354: 2346: 2340: 2336: 2332: 2328: 2324: 2317: 2303: 2299: 2295: 2289: 2281: 2277: 2273: 2267: 2259: 2253: 2249: 2245: 2244: 2236: 2228: 2222: 2218: 2211: 2203: 2197: 2193: 2189: 2185: 2178: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2139: 2131: 2127: 2123: 2119: 2115: 2108: 2095: 2089: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2050: 2048: 2039: 2033: 2029: 2028: 2020: 2012: 2006: 2003:. CRC Press. 2002: 1995: 1987: 1981: 1977: 1970: 1962: 1956: 1952: 1945: 1937: 1931: 1927: 1923: 1922: 1914: 1906: 1900: 1896: 1895: 1887: 1879: 1875: 1871: 1867: 1863: 1856: 1854: 1840: 1834: 1826: 1820: 1816: 1809: 1801: 1797: 1793: 1789: 1785: 1779: 1771: 1765: 1761: 1760: 1752: 1744: 1743: 1738: 1732: 1723: 1718: 1714: 1707: 1705: 1688: 1684: 1678: 1670: 1664: 1660: 1656: 1655: 1647: 1645: 1643: 1641: 1632: 1626: 1622: 1618: 1614: 1607: 1599: 1593: 1589: 1582: 1574: 1568: 1564: 1560: 1559: 1551: 1537:on 2019-12-09 1533: 1529: 1523: 1519: 1512: 1511: 1503: 1501: 1493: 1489: 1486: 1480: 1476: 1466: 1463: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1445:FET amplifier 1443: 1441: 1438: 1436: 1433: 1432: 1426: 1418: 1415: 1413: 1409: 1405: 1399: 1397: 1393: 1390: 1386: 1382: 1371: 1368: 1360: 1350: 1346: 1342: 1336: 1335: 1331: 1326:This section 1324: 1320: 1315: 1314: 1306: 1304: 1300: 1293:Failure modes 1290: 1286: 1284: 1279: 1272:Disadvantages 1269: 1267: 1263: 1258: 1256: 1252: 1248: 1234: 1230: 1226: 1223: 1219: 1218:ferroelectric 1215: 1211: 1208: 1204: 1200: 1197: 1193: 1190: 1186: 1183: 1179: 1176: 1172: 1168: 1165: 1161: 1158: 1154: 1150: 1147: 1143: 1139: 1135: 1131: 1128: 1124: 1120: 1116: 1112: 1109: 1105: 1102: 1098: 1095: 1091: 1087: 1084: 1081: 1077: 1073: 1069: 1066: 1061: 1057: 1056: 1054: 1050: 1045: 1041: 1038: 1035: 1031: 1027: 1024: 1019: 1015: 1011: 1008: 1004: 1000: 997: 993: 989: 986: 982: 979: 978:Power MOSFETs 975: 971: 968: 964: 963: 961: 954: 950: 946: 945: 944: 941: 940:semiconductor 937: 897: 888: 886: 882: 877: 875: 871: 867: 863: 859: 854: 852: 849: 845: 841: 831: 829: 825: 820: 816: 811: 809: 805: 799: 790: 787: 785: 778:p-channel FET 775: 773: 769: 765: 759: 756: 752: 745:n-channel FET 742: 740: 736: 727: 720: 716: 713: 708: 700: 691: 687: 685: 681: 675: 674:30 GHz. 672: 668: 664: 660: 656: 652: 650: 645: 641: 637: 633: 629: 625: 621: 617: 613: 609: 600: 584: 573: 566: 565: 564: 561: 559: 555: 548: 538: 536: 532: 528: 524: 520: 516: 512: 509: 505: 501: 497: 493: 492:Frank Wanlass 489: 488:Chih-Tang Sah 485: 479: 477: 473: 469: 464: 460: 455: 452: 448: 443: 441: 433: 429: 420: 415: 405: 403: 399: 395: 391: 387: 383: 382:John Wallmark 379: 374: 370: 365: 363: 359: 354: 349: 345: 341: 337: 333: 328: 326: 322: 318: 312: 310: 306: 302: 298: 292: 290: 285: 281: 277: 273: 269: 264: 262: 258: 253: 249: 245: 241: 237: 233: 230:in 1945. The 229: 225: 220: 218: 214: 210: 206: 202: 201:dangling bond 198: 194: 193:semiconductor 190: 186: 182: 178: 174: 170: 166: 162: 154: 150: 145: 135: 133: 129: 125: 121: 117: 113: 108: 106: 102: 98: 94: 90: 86: 82: 81:semiconductor 78: 74: 71:that uses an 70: 66: 62: 54: 50: 46: 41: 34: 30: 19: 4678:Cold cathode 4645:Storage tube 4535:Vacuum tubes 4484:Neutron tube 4459:Beam tetrode 4441:Vacuum tubes 4077: 4026:Power MOSFET 3837:Common drain 3822: 3634: 3630: 3620: 3608: 3597:. Retrieved 3593: 3583: 3564: 3558: 3547: 3538: 3533: 3521:. Retrieved 3517: 3507: 3441:(1): 12596. 3438: 3434: 3424: 3375: 3371: 3361: 3341: 3334: 3309: 3305: 3299: 3287:. Retrieved 3282:ScienceDaily 3280: 3271: 3259:. Retrieved 3254: 3244: 3203: 3197: 3187: 3175: 3142: 3138: 3125: 3113:. Retrieved 3109: 3099: 3058: 3054: 3048: 3036:. Retrieved 3030: 3020: 3001: 2995: 2970: 2962: 2943: 2937: 2918: 2912: 2883: 2875: 2856: 2824: 2815: 2803:. Retrieved 2786: 2774:. Retrieved 2770:the original 2759: 2750: 2717: 2713: 2707: 2687: 2680: 2658:(2): 69–74. 2655: 2651: 2645: 2637: 2632: 2618: 2606:. Retrieved 2600: 2591: 2572: 2566: 2554:. Retrieved 2547: 2523:. Retrieved 2517: 2508: 2484: 2477: 2465:. Retrieved 2458: 2449: 2437:. Retrieved 2430: 2421: 2391:(1): 43–48. 2388: 2384: 2378: 2359: 2353: 2326: 2316: 2305:. Retrieved 2297: 2288: 2279: 2266: 2242: 2235: 2216: 2210: 2187: 2177: 2152: 2148: 2138: 2121: 2117: 2107: 2088: 2063: 2059: 2026: 2019: 2000: 1994: 1975: 1969: 1950: 1944: 1920: 1913: 1893: 1886: 1869: 1865: 1833: 1814: 1808: 1791: 1787: 1778: 1758: 1751: 1741: 1731: 1712: 1691:. Retrieved 1677: 1653: 1612: 1606: 1587: 1581: 1557: 1550: 1539:. Retrieved 1532:the original 1509: 1479: 1424: 1416: 1412:common-drain 1408:mixing board 1404:multiplexing 1400: 1378: 1363: 1354: 1339:Please help 1327: 1296: 1287: 1275: 1259: 1243: 1173:The CNTFET ( 1157:nanoparticle 1138:p–n junction 1094:quantum well 1042:, including 1028:The DNAFET ( 1007:pH electrode 933: 878: 855: 837: 812: 807: 803: 800: 796: 788: 783: 781: 771: 760: 750: 748: 732: 688: 676: 670: 666: 647: 643: 639: 635: 627: 623: 619: 615: 611: 607: 605: 562: 550: 480: 463:high-density 456: 444: 425: 366: 329: 313: 293: 272:John Bardeen 265: 221: 177:John Bardeen 158: 111: 109: 105:conductivity 100: 96: 92: 85:junction FET 64: 60: 58: 52: 48: 44: 33: 4844:Transformer 4586:Sutton tube 4426:Charge pump 4279:Memory cell 4209:Zener diode 4171:Laser diode 4054:transistors 3936:transistors 3842:Common gate 3804:Common base 3289:January 14, 2329:: 583–596. 2155:: 131–136. 955:(typically 922: Metal 916: Holes 834:Composition 808:active mode 519:double-gate 508:double-gate 472:smartphones 451:Dawon Kahng 428:Carl Frosch 394:double gate 362:Jean Hoerni 353:fabrication 344:passivating 332:Carl Frosch 244:Ian M. Ross 87:(JFET) and 4938:Categories 4916:reed relay 4906:Parametron 4839:Thermistor 4817:resettable 4776:Connector 4737:Adjustable 4713:Nixie tube 4683:Crossatron 4650:Trochotron 4625:Iconoscope 4620:Charactron 4597:X-ray tube 4469:Compactron 4449:Acorn tube 4406:Buck–boost 4327:Solaristor 4189:Photodiode 4166:Gunn diode 4162:(CLD, CRD) 3944:Transistor 3768:amplifiers 3765:Transistor 3599:2022-01-21 3523:14 January 3481:1010581463 3448:1707.01459 3261:16 January 3115:14 January 3038:14 January 2892:. p.  2307:2023-01-16 2272:Atalla, M. 2124:(9): 547. 2094:US2802760A 1872:(9): 547. 1839:US2802760A 1541:2019-07-20 1471:References 1303:body diode 1240:Advantages 1227:VTFET, or 1203:biosensors 1187:The QFET ( 1180:The OFET ( 1148:materials. 1099:The TFET ( 990:The MNOS ( 983:The JLNT ( 972:The IGBT ( 846:, using a 686:circuits. 545:See also: 531:multi-gate 346:effect of 317:adsorption 203:, and the 173:transistor 165:Oskar Heil 69:transistor 4879:Capacitor 4723:Trigatron 4718:Thyratron 4708:Neon lamp 4635:Monoscope 4515:Phototube 4499:Pentagrid 4464:Barretter 4349:Trancitor 4344:Thyristor 4269:Memristor 4194:PIN diode 3971:(ChemFET) 3518:Graphenea 3473:2045-2322 3408:755663637 3400:0018-9383 2742:0038-1101 2405:0018-9219 2276:Kahng, D. 2169:0022-3697 2080:1064-8208 2066:(3): 29. 1328:does not 1072:inductive 1034:biosensor 996:insulator 953:insulator 784:p-channel 772:inversion 751:n-channel 735:electrons 649:substrate 624:collector 537:in 1989. 504:Simon Sze 470:(such as 457:With its 426:In 1955, 398:Bell Labs 388:in which 367:In 1955, 348:oxidation 330:In 1955, 301:germanium 284:Igor Tamm 219:in 1948. 205:germanium 189:Bell Labs 116:electrons 55:terminals 4901:Inductor 4871:Reactive 4849:Varistor 4829:Resistor 4807:Antifuse 4693:Ignitron 4688:Dekatron 4576:Klystron 4565:Gyrotron 4494:Nuvistor 4411:Split-pi 4297:(MOS IC) 4264:Memistor 4022:(MuGFET) 4016:(MOSFET) 3988:(FinFET) 3669:24599023 3637:: 4295. 3541:Dec 2021 3499:28974712 3228:22094693 3194:Riel, H. 3167:12375833 3083:21659599 3032:Phys.org 2823:(1985). 2490:Elsevier 2413:29105721 1739:(2005). 1488:Archived 1429:See also 1299:derating 1092:using a 881:graphene 815:carriers 712:nanowire 4802:Ferrite 4770:Passive 4761:Varicap 4749:digital 4698:Krytron 4520:Tetrode 4505:Pentode 4359:Varicap 4340:(3D IC) 4316:RF CMOS 4220:devices 3994:(FGMOS) 3925:devices 3868:Cascode 3727:YouTube 3660:3944386 3639:Bibcode 3490:5626721 3453:Bibcode 3380:Bibcode 3314:Bibcode 3236:4322368 3208:Bibcode 3147:Bibcode 3139:Analyst 3091:3020496 3063:Bibcode 3055:Science 2722:Bibcode 2660:Bibcode 2556:20 July 2525:27 June 2467:20 July 2439:18 July 2432:EETimes 1693:21 July 1460:FlowFET 1394:. This 1389:digital 1349:removed 1334:sources 1216:uses a 1023:DNAFETs 840:silicon 824:silicon 684:cascode 620:emitter 474:). The 297:silicon 138:History 77:current 4834:Switch 4525:Triode 4489:Nonode 4454:Audion 4334:(SITh) 4218:Other 4185:(OLED) 4147:Diodes 4098:(LET) 4080:(FET) 4052:Other 4000:(IGBT) 3977:(CMOS) 3964:BioFET 3959:BiCMOS 3667:  3657:  3571:  3497:  3487:  3479:  3471:  3416:703393 3414:  3406:  3398:  3349:  3234:  3226:  3199:Nature 3165:  3089:  3081:  3008:  2983:  2950:  2925:  2900:  2863:  2835:  2805:4 July 2801:. 2014 2776:4 July 2740:  2695:  2608:6 July 2496:  2411:  2403:  2366:  2341:  2254:  2223:  2198:  2167:  2100:  2078:  2034:  2007:  1982:  1957:  1932:  1901:  1845:  1821:  1766:  1665:  1627:  1594:  1569:  1524:  1455:FinFET 1383:. The 1381:MOSFET 1266:relays 1233:finFET 1214:Fe FET 1153:NOMFET 1134:MESFET 1127:AlGaAs 1044:GAAFET 1040:finFET 1014:BioFET 949:MOSFET 926:  920:  914:  908:  902:  749:In an 715:MOSFET 661:of an 626:, and 614:, and 608:source 527:FinFET 414:MOSFET 209:copper 199:, the 132:MOSFET 99:, and 93:source 45:source 4911:Relay 4884:types 4822:eFUSE 4593:(TWT) 4581:Maser 4572:(IOT) 4561:(CFA) 4550:(BWO) 4474:Diode 4421:SEPIC 4401:Boost 4354:TRIAC 4323:(SCR) 4286:(MOV) 4260:(LEC) 4179:(LED) 4138:(UJT) 4127:(SIT) 4121:(PUT) 4064:(BJT) 4033:(TFT) 4009:LDMOS 4004:ISFET 3443:arXiv 3412:S2CID 3232:S2CID 3135:(PDF) 3087:S2CID 2799:Intel 2795:(PDF) 2409:S2CID 1535:(PDF) 1514:(PDF) 1170:slit. 1155:is a 1018:ISFET 1003:ISFET 936:doped 891:Types 851:wafer 782:In a 671:width 646:, or 612:drain 554:holes 373:FeFET 336:wafer 120:holes 101:drain 79:in a 53:drain 4854:Wire 4812:Fuse 4396:Buck 4249:(IC) 4237:DIAC 4173:(LD) 4042:UMOS 4037:VMOS 3954:PMOS 3949:NMOS 3934:MOS 3665:PMID 3569:ISBN 3525:2019 3495:PMID 3477:OCLC 3469:ISSN 3404:OCLC 3396:ISSN 3347:ISBN 3291:2019 3263:2022 3224:PMID 3163:PMID 3117:2019 3079:PMID 3040:2019 3006:ISBN 2981:ISBN 2948:ISBN 2923:ISBN 2898:ISBN 2861:ISBN 2833:ISBN 2807:2019 2778:2019 2738:ISSN 2693:ISBN 2610:2019 2558:2019 2527:2019 2494:ISBN 2469:2019 2441:2019 2401:ISSN 2364:ISBN 2339:ISBN 2252:ISBN 2221:ISBN 2196:ISBN 2165:ISSN 2076:ISSN 2032:ISBN 2005:ISBN 1980:ISBN 1955:ISBN 1930:ISBN 1899:ISBN 1819:ISBN 1764:ISBN 1695:2019 1663:ISBN 1625:ISBN 1592:ISBN 1567:ISBN 1522:ISBN 1440:CMOS 1385:CMOS 1332:any 1330:cite 1309:Uses 1253:for 1212:The 1205:and 1151:The 1132:The 1115:HEMT 1113:The 1058:The 1053:JFET 1051:The 1012:The 1001:The 947:The 737:(or 682:and 655:bias 644:bulk 640:base 636:body 632:BJTs 628:base 616:gate 490:and 484:CMOS 449:and 274:and 242:and 207:and 179:and 97:gate 59:The 51:and 49:gate 4416:Ćuk 3655:PMC 3647:doi 3485:PMC 3461:doi 3388:doi 3322:doi 3216:doi 3204:479 3155:doi 3143:127 3071:doi 3059:332 2977:552 2730:doi 2668:doi 2577:doi 2393:doi 2331:doi 2157:doi 2126:doi 2122:104 2068:doi 1874:doi 1870:104 1796:doi 1717:doi 1617:doi 1343:by 1255:VHF 957:SiO 868:or 630:of 494:at 437:SiO 386:FET 299:to 187:at 65:FET 4940:: 4790:RF 4539:RF 3663:. 3653:. 3645:. 3633:. 3629:. 3592:. 3516:. 3493:. 3483:. 3475:. 3467:. 3459:. 3451:. 3437:. 3433:. 3410:. 3402:. 3394:. 3386:. 3376:55 3374:. 3370:. 3320:. 3310:43 3308:. 3279:. 3253:. 3230:. 3222:. 3214:. 3202:. 3161:. 3153:. 3141:. 3137:. 3108:. 3085:. 3077:. 3069:. 3057:. 3029:. 2979:. 2896:. 2894:83 2847:^ 2797:. 2764:. 2758:. 2736:. 2728:. 2718:27 2716:. 2666:. 2656:14 2654:. 2599:. 2546:. 2535:^ 2516:. 2488:. 2457:. 2429:. 2407:. 2399:. 2389:97 2387:. 2337:. 2325:. 2300:. 2296:. 2274:; 2246:. 2190:. 2186:. 2163:. 2153:14 2151:. 2147:. 2120:. 2116:. 2074:. 2064:16 2062:. 2058:. 2046:^ 1924:. 1868:. 1864:. 1852:^ 1792:11 1790:. 1703:^ 1685:. 1657:. 1639:^ 1623:. 1561:. 1520:. 1516:. 1499:^ 1177:). 860:, 774:. 642:, 638:, 622:, 610:, 580:DS 364:. 307:. 270:, 95:, 47:, 4541:) 4537:( 3907:e 3900:t 3893:v 3825:: 3787:: 3757:e 3750:t 3743:v 3729:. 3671:. 3649:: 3641:: 3635:4 3615:. 3602:. 3577:. 3527:. 3501:. 3463:: 3455:: 3445:: 3439:7 3418:. 3390:: 3382:: 3355:. 3328:. 3324:: 3316:: 3293:. 3265:. 3238:. 3218:: 3210:: 3169:. 3157:: 3149:: 3119:. 3093:. 3073:: 3065:: 3042:. 3014:. 2989:. 2956:. 2931:. 2906:. 2869:. 2841:. 2809:. 2780:. 2744:. 2732:: 2724:: 2701:. 2674:. 2670:: 2662:: 2612:. 2585:. 2579:: 2560:. 2529:. 2502:. 2471:. 2443:. 2415:. 2395:: 2372:. 2347:. 2333:: 2310:. 2282:. 2260:. 2229:. 2204:. 2171:. 2159:: 2132:. 2128:: 2082:. 2070:: 2040:. 2013:. 1988:. 1963:. 1938:. 1907:. 1880:. 1876:: 1827:. 1802:. 1798:: 1772:. 1745:. 1725:. 1719:: 1697:. 1671:. 1633:. 1619:: 1600:. 1575:. 1544:. 1370:) 1364:( 1359:) 1355:( 1351:. 1337:. 1224:. 1117:( 1082:. 959:2 667:L 651:. 589:. 587:D 582:. 576:D 571:. 569:S 439:2 63:( 31:. 20:)

Index

Field effect transistor
FET (disambiguation)

transistor
electric field
current
semiconductor
junction FET
metal-oxide-semiconductor FET
conductivity
electrons
holes
charge carriers
high input impedance
MOSFET
History of the transistor

Julius Edgar Lilienfeld
Julius Edgar Lilienfeld
Oskar Heil
semiconducting device
transistor
John Bardeen
Walter Houser Brattain
William Shockley
Bell Labs
semiconductor
surface states
dangling bond
germanium

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.