Knowledge

Fixed-point subring

Source đź“ť

807: 246: 700: 518: 146: 1006: 873: 912: 845: 536: 48: 414: 631: 734: 175: 1043: 663: 323: 441: 82: 957: 546: 521: 848: 725: 1035: 561: 346: 854: 525: 69: 882: 815: 553:
is a reductive algebraic group by Nagata's theorem.) The finite generation is easily seen for a
915: 549:
asks whether the ring of invariants is finitely generated or not (the answer is affirmative if
649: 341:. Geometrically, the rings of invariants are the coordinate rings of (affine or projective) 1078: 1053: 721: 580: 330: 26: 8: 358: 307: 156: 616: 58: 1039: 927: 638: 572: 338: 1049: 588: 425: 417: 315: 1072: 299: 802:{\displaystyle \mathbb {C} ^{G}\to \operatorname {H} ^{2*}(M;\mathbb {C} )} 554: 342: 288: 159: 51: 718: 703: 634: 657: 711: 603: 587:
is a finitely generated algebra. The answer is negative for some
65: 17: 283:. In particular, the fixed-point subring of an automorphism 1034:, Cambridge Studies in Advanced Mathematics, vol. 81, 279:
form the ring of invariants under the group generated by
438:
by permuting the variables. Then the ring of invariants
345:
and they play fundamental roles in the constructions in
241:{\displaystyle R^{G}=\{r\in R\mid g\cdot r=r,\,g\in G\}} 1064:, Lecture Notes in Mathematics, vol. 585, Springer 695:{\displaystyle {\mathfrak {g}}=\operatorname {Lie} (G)} 314:
is a group of field automorphisms, the fixed ring is a
960: 885: 857: 818: 737: 666: 619: 444: 361: 178: 85: 29: 1030:Mukai, Shigeru; Oxbury, W. M. (8 September 2003) , 1000: 906: 867: 839: 801: 694: 625: 512: 408: 240: 140: 42: 602:be the symmetric algebra of a finite-dimensional 1070: 513:{\displaystyle R^{G}=k^{\operatorname {S} _{n}}} 235: 192: 141:{\displaystyle R^{f}=\{r\in R\mid f(r)=r\}.} 132: 99: 1029: 1001:{\displaystyle \prod _{g\in G}(t-g\cdot r)} 887: 820: 792: 739: 225: 1059: 1032:An Introduction to Invariants and Moduli 537:fundamental theorem of invariant theory 1071: 613:is a reflection group if and only if 324:Fundamental theorem of Galois theory 896: 860: 829: 748: 669: 13: 767: 499: 275:that are fixed by the elements of 14: 1090: 287:is the ring of invariants of the 337:is a central object of study in 868:{\displaystyle {\mathfrak {g}}} 322:of the automorphism group; see 995: 977: 940: 901: 891: 834: 824: 796: 782: 763: 754: 743: 689: 683: 494: 461: 403: 371: 123: 117: 1: 1023: 522:ring of symmetric polynomials 267:is a set of automorphisms of 907:{\displaystyle \mathbb {C} } 849:ring of polynomial functions 840:{\displaystyle \mathbb {C} } 547:Hilbert's fourteenth problem 539:describes the generators of 255:or, more traditionally, the 7: 1060:Springer, Tonny A. (1977), 1008:is a monic polynomial over 921: 10: 1095: 1036:Cambridge University Press 562:finitely generated algebra 347:geometric invariant theory 526:reductive algebraic group 933: 726:Chern–Weil homomorphism 645:(Chevalley's theorem). 598:be a finite group. Let 1002: 916:adjoint representation 908: 869: 841: 803: 706:, then each principal 696: 627: 514: 410: 242: 166:, then the subring of 142: 44: 1003: 909: 870: 842: 804: 697: 650:differential geometry 628: 515: 411: 243: 143: 45: 43:{\displaystyle R^{f}} 1016:as one of its roots. 958: 883: 855: 816: 735: 722:algebra homomorphism 664: 617: 442: 359: 331:module of covariants 176: 83: 27: 409:{\displaystyle R=k} 151:More generally, if 22:fixed-point subring 998: 976: 904: 865: 837: 799: 692: 623: 510: 406: 335:ring of invariants 271:, the elements of 257:ring of invariants 238: 138: 40: 1045:978-0-521-80906-1 961: 954:, the polynomial 928:Character variety 626:{\displaystyle S} 1086: 1065: 1062:Invariant theory 1056: 1017: 1007: 1005: 1004: 999: 975: 944: 913: 911: 910: 905: 900: 899: 890: 874: 872: 871: 866: 864: 863: 846: 844: 843: 838: 833: 832: 823: 808: 806: 805: 800: 795: 778: 777: 762: 761: 752: 751: 742: 701: 699: 698: 693: 673: 672: 632: 630: 629: 624: 589:unipotent groups 581:Artin–Tate lemma 519: 517: 516: 511: 509: 508: 507: 506: 492: 491: 473: 472: 454: 453: 415: 413: 412: 407: 402: 401: 383: 382: 339:invariant theory 262: 247: 245: 244: 239: 188: 187: 147: 145: 144: 139: 95: 94: 49: 47: 46: 41: 39: 38: 1094: 1093: 1089: 1088: 1087: 1085: 1084: 1083: 1069: 1068: 1046: 1026: 1021: 1020: 965: 959: 956: 955: 945: 941: 936: 924: 895: 894: 886: 884: 881: 880: 859: 858: 856: 853: 852: 828: 827: 819: 817: 814: 813: 791: 770: 766: 757: 753: 747: 746: 738: 736: 733: 732: 668: 667: 665: 662: 661: 618: 615: 614: 502: 498: 497: 493: 487: 483: 468: 464: 449: 445: 443: 440: 439: 433: 426:symmetric group 424:variables. The 418:polynomial ring 397: 393: 378: 374: 360: 357: 356: 260: 183: 179: 177: 174: 173: 90: 86: 84: 81: 80: 34: 30: 28: 25: 24: 12: 11: 5: 1092: 1082: 1081: 1067: 1066: 1057: 1044: 1025: 1022: 1019: 1018: 997: 994: 991: 988: 985: 982: 979: 974: 971: 968: 964: 938: 937: 935: 932: 931: 930: 923: 920: 903: 898: 893: 889: 862: 836: 831: 826: 822: 810: 809: 798: 794: 790: 787: 784: 781: 776: 773: 769: 765: 760: 756: 750: 745: 741: 691: 688: 685: 682: 679: 676: 671: 622: 505: 501: 496: 490: 486: 482: 479: 476: 471: 467: 463: 460: 457: 452: 448: 429: 405: 400: 396: 392: 389: 386: 381: 377: 373: 370: 367: 364: 251:is called the 249: 248: 237: 234: 231: 228: 224: 221: 218: 215: 212: 209: 206: 203: 200: 197: 194: 191: 186: 182: 149: 148: 137: 134: 131: 128: 125: 122: 119: 116: 113: 110: 107: 104: 101: 98: 93: 89: 37: 33: 9: 6: 4: 3: 2: 1091: 1080: 1077: 1076: 1074: 1063: 1058: 1055: 1051: 1047: 1041: 1037: 1033: 1028: 1027: 1015: 1011: 992: 989: 986: 983: 980: 972: 969: 966: 962: 953: 949: 943: 939: 929: 926: 925: 919: 917: 878: 850: 788: 785: 779: 774: 771: 758: 731: 730: 729: 727: 723: 720: 717:determines a 716: 713: 710:-bundle on a 709: 705: 686: 680: 677: 674: 659: 655: 651: 646: 644: 640: 636: 620: 612: 608: 606: 601: 597: 592: 590: 586: 582: 578: 574: 570: 566: 563: 559: 556: 552: 548: 544: 542: 538: 534: 530: 527: 523: 503: 488: 484: 480: 477: 474: 469: 465: 458: 455: 450: 446: 437: 432: 427: 423: 419: 398: 394: 390: 387: 384: 379: 375: 368: 365: 362: 354: 350: 348: 344: 343:GIT quotients 340: 336: 332: 329:Along with a 327: 325: 321: 317: 313: 309: 305: 301: 300:Galois theory 296: 294: 291:generated by 290: 286: 282: 278: 274: 270: 266: 258: 254: 253:fixed subring 232: 229: 226: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 189: 184: 180: 172: 171: 170: 169: 165: 161: 158: 154: 135: 129: 126: 120: 114: 111: 108: 105: 102: 96: 91: 87: 79: 78: 77: 75: 71: 67: 63: 60: 56: 53: 35: 31: 23: 19: 1061: 1031: 1013: 1009: 951: 947: 942: 876: 811: 724:(called the 714: 707: 653: 647: 642: 610: 604: 599: 595: 593: 584: 576: 568: 564: 560:acting on a 557: 555:finite group 550: 545: 540: 532: 528: 435: 430: 421: 352: 351: 334: 328: 319: 311: 303: 297: 292: 289:cyclic group 284: 280: 276: 272: 268: 264: 256: 252: 250: 167: 163: 152: 150: 73: 70:fixed points 61: 54: 52:automorphism 21: 15: 1079:Ring theory 704:Lie algebra 637:(of finite 635:free module 535:, then the 320:fixed field 318:called the 76:, that is, 1024:References 990:⋅ 984:− 970:∈ 963:∏ 780:⁡ 775:∗ 764:→ 681:⁡ 658:Lie group 478:… 388:… 230:∈ 211:⋅ 205:∣ 199:∈ 112:∣ 106:∈ 1073:Category 1012:and has 922:See also 879:acts on 712:manifold 583:implies 573:integral 567:: since 531:acts on 434:acts on 316:subfield 1054:2004218 847:is the 641:) over 609:. Then 607:-module 524:. If a 520:is the 353:Example 302:, when 68:of the 66:subring 64:is the 18:algebra 1052:  1042:  946:Given 812:where 719:graded 579:, the 355:: Let 333:, the 259:under 160:acting 50:of an 20:, the 934:Notes 656:is a 652:, if 633:is a 575:over 416:be a 308:field 306:is a 263:. If 157:group 155:is a 57:of a 1040:ISBN 875:and 702:its 660:and 639:rank 594:Let 310:and 59:ring 950:in 914:by 851:on 678:Lie 648:In 571:is 420:in 298:In 162:on 72:of 16:In 1075:: 1050:MR 1048:, 1038:, 918:. 728:) 591:. 543:. 349:. 326:. 295:. 1014:r 1010:R 996:) 993:r 987:g 981:t 978:( 973:G 967:g 952:R 948:r 902:] 897:g 892:[ 888:C 877:G 861:g 835:] 830:g 825:[ 821:C 797:) 793:C 789:; 786:M 783:( 772:2 768:H 759:G 755:] 749:g 744:[ 740:C 715:M 708:G 690:) 687:G 684:( 675:= 670:g 654:G 643:S 621:S 611:G 605:G 600:S 596:G 585:R 577:R 569:R 565:R 558:G 551:G 541:R 533:R 529:G 504:n 500:S 495:] 489:n 485:x 481:, 475:, 470:1 466:x 462:[ 459:k 456:= 451:G 447:R 436:R 431:n 428:S 422:n 404:] 399:n 395:x 391:, 385:, 380:1 376:x 372:[ 369:k 366:= 363:R 312:G 304:R 293:f 285:f 281:S 277:S 273:R 269:R 265:S 261:G 236:} 233:G 227:g 223:, 220:r 217:= 214:r 208:g 202:R 196:r 193:{ 190:= 185:G 181:R 168:R 164:R 153:G 136:. 133:} 130:r 127:= 124:) 121:r 118:( 115:f 109:R 103:r 100:{ 97:= 92:f 88:R 74:f 62:R 55:f 36:f 32:R

Index

algebra
automorphism
ring
subring
fixed points
group
acting
cyclic group
Galois theory
field
subfield
Fundamental theorem of Galois theory
module of covariants
invariant theory
GIT quotients
geometric invariant theory
polynomial ring
symmetric group
ring of symmetric polynomials
reductive algebraic group
fundamental theorem of invariant theory
Hilbert's fourteenth problem
finite group
finitely generated algebra
integral
Artin–Tate lemma
unipotent groups
G-module
free module
rank

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑