Knowledge

Flood forecasting

Source 📝

20:
empowering them to take appropriate actions to mitigate the potential consequences of flooding on human lives, property, and the environment. By accounting for the various dimensions of a flood event, such as occurrence, magnitude, duration, and spatial extent, flood forecasting models can offer a more holistic and detailed representation of the impending risks and facilitate more effective response strategies.
47:
in comparison to data-driven models, especially in the absence of inputs like rainfall. However, physically-based models are state-dependent and require accurate initial conditions for optimal performance. During the so-called "warming period" of the model, the performance might be lower due to the reliance on initial conditions.
31:
On the other hand, more comprehensive flood forecasting methods involve predicting the flood extent by utilizing hydrodynamic information from models. These approaches not only consider the exceedance of a threshold but also aim to estimate the spatial distribution, timing and extent of the flooding.
27:
When flood forecasting is limited to estimating the moment a threshold is exceeded, researchers often concentrate on predicting water levels or river discharge in a particular location. This approach provides valuable information about the potential onset of a flood event, enabling decision-makers to
23:
Flood forecasting is a multifaceted discipline that aims to predict various aspects of flood events, including their occurrence, magnitude, timing, duration, and spatial extent. However, the scope and definition of flood forecasting can differ across scientific publications and methodologies. In some
46:
simulate the underlying physical processes involved in flood generation and propagation, such as precipitation, infiltration, runoff, and routing. These models are typically more stable and reliable due to their inherent representation of the physics, making them less susceptible to forecast errors
35:
Incorporating hydrodynamic information into flood forecasting models allows for a more complete understanding of the potential impacts of flood events, accounting for factors such as the inundation of infrastructure, agricultural lands, and residential areas. By considering the spatial distribution
60:
combine the strengths of physically-based and data-driven models to enhance flood forecasting accuracy and reliability. Hybrid models can utilize the physical understanding from physically-based models while benefiting from the adaptive learning capabilities of data-driven models. An example of a
53:
focus on discovering patterns and relationships within historical data without explicitly representing the physical processes. They can learn complex, non-linear relationships and adapt to changing conditions, making them useful in situations where data is abundant and accurate representation of
19:
is the process of predicting the occurrence, magnitude, timing, and duration of floods in a specific area, often by analysing various hydrological, meteorological, and environmental factors. The primary goal of flood forecasting is to deliver timely and accurate information to decision-makers,
39:
Flood forecasting can be done using various methodologies, which can be broadly categorized into physically-based models, data-driven models, or a combination of both. The choice of the most suitable approach depends on factors such as data availability, catchment characteristics, and desired
437:, where the distinction between the two is that the outcome of flood forecasting is a set of forecast time-profiles of channel flows or river levels at various locations, while "flood warning" is the task of making use of these forecasts to tell decisions on warnings of floods. 32:
Hydrodynamic models, such as the Hydrologic Engineering Center's River Analysis System (HEC-RAS) or the MIKE suite of models, simulate water flow and its interaction with the surrounding environment, providing detailed predictions of flood extent, depth, and velocity.
479:
Nearing, Grey; Cohen, Deborah; Dube, Vusumuzi; Gauch, Martin; Gilon, Oren; Harrigan, Shaun; Hassidim, Avinatan; Klotz, Daniel; Kratzert, Frederik; Metzger, Asher; Nevo, Sella; Pappenberger, Florian; Prudhomme, Christel; Shalev, Guy; Shenzis, Shlomo (March 2024).
28:
initiate preventive measures and minimize potential damages. In this context, flood forecasting models are designed to predict when the water level or discharge will surpass a predefined threshold, usually based on historical data and established risk levels.
575:
Nevo, Sella; Morin, Efrat; Gerzi Rosenthal, Adi; Metzger, Asher; Barshai, Chen; Weitzner, Dana; Voloshin, Dafi; Kratzert, Frederik; Elidan, Gal; Dror, Gideon; Begelman, Gregory; Nearing, Grey; Shalev, Guy; Noga, Hila; Shavitt, Ira (2022-08-05).
24:
cases, flood forecasting is focused on estimating the moment when a specific threshold in a river system is exceeded, while in other cases, it involves predicting the flood extent and employing hydrodynamic information from models.
440:
Real-time flood forecasting at regional area can be done within seconds by using the technology of artificial neural network. Effective real-time flood forecasting models could be useful for early warning and disaster prevention.
61:
hybrid model is coupling a hydrological model with a machine learning algorithm to improve flood prediction accuracy. Hybrid models may also incorporate physical processes into the structure of the machine learning models.
54:
physical processes is challenging. Examples of data-driven models include regression techniques, Artificial Neural Networks (ANN), Support Vector Machines (SVM), and tree-based algorithms like Random Forest or XGBoost.
676:
Application of self-organising maps and multi-layer perceptron-artificial neural networks for streamflow and water level forecasting in data-poor catchments: the case of the Lower Shire floodplain, Malawi
156: 36:
of flooding, these models enable more effective flood management and response strategies, ensuring that resources are allocated appropriately and that vulnerable populations are adequately protected.
681:
Delft-FEWS, state of the art system for flood forecasting and operational water management (most advanced system available, used on national scale in Europe and the USA)
386: 337: 288: 239: 190: 408: 357: 308: 259: 210: 719: 423: 635:
Chang, Li-Chiu; Shen, Hung-Yu; Chang, Fi-John (2014-11-27). "Regional flood inundation nowcast using hybrid SOM and dynamic neural networks".
410:
is the flood forecasting model, which can be a physically-based model, a data-driven model or a hybrid model depending on the approach chosen.
426:
models to forecast flow rates and water levels for periods ranging from a few hours to days ahead, depending on the size of the watershed or
545: 712: 950: 69: 1318: 705: 430:. Flood forecasting can also make use of forecasts of precipitation in an attempt to extend the lead-time available. 1944: 1475: 1939: 1500: 1641: 1591: 1485: 1919: 415: 1145: 694:, an informal yet highly active group of researchers in the field of predictive hydrologic uncertainty. 1929: 1881: 1764: 1914: 1631: 1596: 1438: 450: 1924: 1616: 1381: 553: 1866: 1724: 1275: 1160: 1704: 1551: 1513: 962: 901: 1934: 1656: 1480: 1240: 1097: 1047: 841: 644: 599: 493: 364: 315: 266: 217: 166: 8: 1830: 1825: 1626: 1470: 1092: 945: 866: 773: 648: 603: 522: 497: 481: 290:
denotes a vector of proxy variables (e.g., soil moisture, land use, topography) at time
1965: 1856: 1769: 1734: 1586: 1102: 1007: 911: 803: 736: 589: 460: 393: 342: 293: 244: 195: 1576: 1835: 1674: 1666: 1606: 1566: 1270: 1032: 1022: 808: 617: 577: 527: 509: 1749: 1651: 1556: 1305: 1155: 1150: 1127: 1067: 896: 768: 652: 607: 517: 501: 656: 1754: 1714: 1709: 1313: 1200: 1195: 979: 916: 886: 851: 846: 813: 778: 749: 675: 1815: 1699: 1679: 1561: 1546: 1433: 1418: 1413: 1373: 1353: 1265: 1107: 1087: 1052: 984: 969: 876: 798: 758: 505: 427: 697: 612: 1959: 1896: 1891: 1876: 1861: 1810: 1805: 1571: 1536: 1490: 1450: 1445: 1205: 1077: 1037: 783: 763: 621: 513: 434: 578:"Flood forecasting with machine learning models in an operational framework" 1886: 1636: 1621: 1611: 1460: 1391: 1260: 1225: 1140: 1082: 957: 856: 818: 793: 531: 419: 1795: 1719: 1423: 1386: 1333: 1057: 1042: 1017: 891: 455: 685: 1901: 1581: 1465: 1405: 1363: 1235: 1072: 940: 881: 871: 788: 1871: 1820: 1790: 1759: 1689: 1601: 1358: 1245: 1230: 1170: 1117: 1112: 1012: 935: 925: 823: 1541: 1508: 1185: 1027: 994: 594: 1851: 1800: 1328: 1323: 1285: 1190: 1062: 999: 688:, a conceptual rainfall-runoff model using a nonlinear reservoir 388:
represents the initial conditions and catchment characteristics,
1646: 1518: 1343: 1338: 1290: 1280: 1250: 1175: 930: 861: 833: 732: 574: 1744: 1729: 1684: 1428: 1401: 1348: 1215: 1210: 1180: 1165: 974: 744: 728: 151:{\displaystyle \displaystyle F(t)=f(P_{t},X_{t},H_{t},C_{t})} 40:
prediction accuracy. Here is an overview of each approach:
680: 482:"Global prediction of extreme floods in ungauged watersheds" 1774: 1739: 1295: 1255: 1220: 1694: 1135: 64:
Flood forecasting can be mathematically represented as:
692:
hepex.org the Hydrologic Ensemble Prediction EXperiment
691: 478: 396: 367: 345: 318: 296: 269: 247: 220: 198: 169: 73: 72: 402: 380: 351: 331: 302: 282: 253: 233: 204: 184: 150: 1957: 727: 433:Flood forecasting is an important component of 634: 713: 666:Abhishek Tripathi Manju Devi Offcial Pradhan 241:represents the precipitation input at time 720: 706: 611: 593: 521: 1319:International scale of river difficulty 414:In many operational systems forecasted 1958: 701: 582:Hydrology and Earth System Sciences 13: 339:is the historical data up to time 14: 1977: 669: 1476:Flooded grasslands and savannas 628: 568: 538: 472: 192:is the flood forecast at time 179: 173: 144: 92: 83: 77: 1: 657:10.1016/j.jhydrol.2014.07.036 466: 1642:Universal Soil Loss Equation 1592:Hydrological transport model 1486:Storm Water Management Model 7: 444: 10: 1982: 1146:Antecedent drainage stream 506:10.1038/s41586-024-07145-1 1910: 1882:River valley civilization 1844: 1783: 1765:Riparian-zone restoration 1665: 1527: 1499: 1400: 1372: 1304: 1126: 993: 910: 832: 743: 613:10.5194/hess-26-4013-2022 1945:Countries without rivers 1920:Rivers by discharge rate 1632:Runoff model (reservoir) 1597:Infiltration (hydrology) 451:Runoff model (reservoir) 1617:River Continuum Concept 1382:Agricultural wastewater 44:Physically-based models 1940:River name etymologies 1867:Hydraulic civilization 1725:Floodplain restoration 1501:Point source pollution 1276:Sedimentary structures 404: 382: 353: 333: 304: 284: 255: 235: 206: 186: 152: 1552:Discharge (hydrology) 1514:Industrial wastewater 995:Sedimentary processes 405: 383: 381:{\displaystyle C_{t}} 354: 334: 332:{\displaystyle H_{t}} 305: 285: 283:{\displaystyle X_{t}} 256: 236: 234:{\displaystyle P_{t}} 207: 187: 153: 1657:Volumetric flow rate 1241:Riffle-pool sequence 637:Journal of Hydrology 394: 365: 343: 316: 294: 267: 245: 218: 196: 185:{\displaystyle F(t)} 167: 70: 1831:Whitewater kayaking 1826:Whitewater canoeing 1627:Runoff curve number 1471:Flood pulse concept 649:2014JHyd..519..476C 643:(Part A): 476–489. 604:2022HESS...26.4013N 498:2024Natur.627..559N 1857:Aquatic toxicology 1770:Stream restoration 1735:Infiltration basin 1587:Hydrological model 1103:Sediment transport 926:Estavelle/Inversac 804:Subterranean river 461:Flood Modeller Pro 424:streamflow routing 400: 378: 349: 329: 300: 280: 251: 231: 202: 182: 148: 147: 51:Data-driven models 1953: 1952: 1930:Whitewater rivers 1836:Whitewater slalom 1667:River engineering 1567:Groundwater model 1528:River measurement 1456:Flood forecasting 1271:Sedimentary basin 1128:Fluvial landforms 1033:Bed material load 809:River bifurcation 588:(15): 4013–4032. 492:(8004): 559–563. 403:{\displaystyle f} 352:{\displaystyle t} 303:{\displaystyle t} 254:{\displaystyle t} 205:{\displaystyle t} 17:Flood forecasting 1973: 1915:Rivers by length 1750:River morphology 1652:Wetted perimeter 1557:Drainage density 1068:Headward erosion 897:Perennial stream 769:Blackwater river 722: 715: 708: 699: 698: 661: 660: 632: 626: 625: 615: 597: 572: 566: 565: 563: 561: 552:. Archived from 542: 536: 535: 525: 476: 409: 407: 406: 401: 387: 385: 384: 379: 377: 376: 358: 356: 355: 350: 338: 336: 335: 330: 328: 327: 309: 307: 306: 301: 289: 287: 286: 281: 279: 278: 260: 258: 257: 252: 240: 238: 237: 232: 230: 229: 211: 209: 208: 203: 191: 189: 188: 183: 157: 155: 154: 149: 143: 142: 130: 129: 117: 116: 104: 103: 1981: 1980: 1976: 1975: 1974: 1972: 1971: 1970: 1956: 1955: 1954: 1949: 1925:Drainage basins 1906: 1840: 1779: 1755:Retention basin 1715:Erosion control 1710:Detention basin 1661: 1577:Hjulström curve 1529: 1523: 1495: 1439:Non-water flood 1396: 1368: 1314:Helicoidal flow 1300: 1201:Fluvial terrace 1196:Floating island 1122: 997: 989: 980:Rhythmic spring 914: 906: 887:Stream gradient 828: 814:River ecosystem 779:Channel pattern 747: 739: 726: 672: 664: 633: 629: 573: 569: 559: 557: 556:on 16 July 2012 544: 543: 539: 477: 473: 469: 447: 420:rainfall-runoff 395: 392: 391: 372: 368: 366: 363: 362: 344: 341: 340: 323: 319: 317: 314: 313: 295: 292: 291: 274: 270: 268: 265: 264: 246: 243: 242: 225: 221: 219: 216: 215: 197: 194: 193: 168: 165: 164: 138: 134: 125: 121: 112: 108: 99: 95: 71: 68: 67: 12: 11: 5: 1979: 1969: 1968: 1951: 1950: 1948: 1947: 1942: 1937: 1932: 1927: 1922: 1917: 1911: 1908: 1907: 1905: 1904: 1899: 1894: 1889: 1884: 1879: 1874: 1869: 1864: 1859: 1854: 1848: 1846: 1842: 1841: 1839: 1838: 1833: 1828: 1823: 1818: 1816:Stone skipping 1813: 1808: 1803: 1798: 1793: 1787: 1785: 1781: 1780: 1778: 1777: 1772: 1767: 1762: 1757: 1752: 1747: 1742: 1737: 1732: 1727: 1722: 1717: 1712: 1707: 1702: 1700:Drop structure 1697: 1692: 1687: 1682: 1680:Balancing lake 1677: 1671: 1669: 1663: 1662: 1660: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1607:Playfair's law 1604: 1599: 1594: 1589: 1584: 1579: 1574: 1569: 1564: 1562:Exner equation 1559: 1554: 1549: 1547:Bradshaw model 1544: 1539: 1533: 1531: 1525: 1524: 1522: 1521: 1516: 1511: 1505: 1503: 1497: 1496: 1494: 1493: 1488: 1483: 1478: 1473: 1468: 1463: 1458: 1453: 1448: 1443: 1442: 1441: 1436: 1434:Urban flooding 1426: 1421: 1419:Crevasse splay 1416: 1414:100-year flood 1410: 1408: 1398: 1397: 1395: 1394: 1389: 1384: 1378: 1376: 1374:Surface runoff 1370: 1369: 1367: 1366: 1361: 1356: 1354:Stream capture 1351: 1346: 1341: 1336: 1331: 1326: 1321: 1316: 1310: 1308: 1302: 1301: 1299: 1298: 1293: 1288: 1283: 1278: 1273: 1268: 1266:Rock-cut basin 1263: 1258: 1253: 1248: 1243: 1238: 1233: 1228: 1223: 1218: 1213: 1208: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1132: 1130: 1124: 1123: 1121: 1120: 1115: 1110: 1108:Suspended load 1105: 1100: 1098:Secondary flow 1095: 1090: 1088:Retrogradation 1085: 1080: 1075: 1070: 1065: 1060: 1055: 1053:Dissolved load 1050: 1045: 1040: 1035: 1030: 1025: 1020: 1015: 1010: 1004: 1002: 991: 990: 988: 987: 985:Spring horizon 982: 977: 972: 970:Mineral spring 967: 966: 965: 955: 954: 953: 951:list in the US 948: 938: 933: 928: 922: 920: 908: 907: 905: 904: 899: 894: 889: 884: 879: 877:Stream channel 874: 869: 864: 859: 854: 849: 844: 838: 836: 830: 829: 827: 826: 821: 816: 811: 806: 801: 799:Drainage basin 796: 791: 786: 781: 776: 771: 766: 761: 759:Alluvial river 755: 753: 741: 740: 725: 724: 717: 710: 702: 696: 695: 689: 683: 678: 671: 670:External links 668: 663: 662: 627: 567: 550:allenpress.com 546:"AMS Glossary" 537: 470: 468: 465: 464: 463: 458: 453: 446: 443: 412: 411: 399: 389: 375: 371: 360: 348: 326: 322: 311: 299: 277: 273: 262: 250: 228: 224: 213: 201: 181: 178: 175: 172: 146: 141: 137: 133: 128: 124: 120: 115: 111: 107: 102: 98: 94: 91: 88: 85: 82: 79: 76: 9: 6: 4: 3: 2: 1978: 1967: 1964: 1963: 1961: 1946: 1943: 1941: 1938: 1936: 1933: 1931: 1928: 1926: 1923: 1921: 1918: 1916: 1913: 1912: 1909: 1903: 1900: 1898: 1897:Surface water 1895: 1893: 1892:Sacred waters 1890: 1888: 1885: 1883: 1880: 1878: 1877:Riparian zone 1875: 1873: 1870: 1868: 1865: 1863: 1862:Body of water 1860: 1858: 1855: 1853: 1850: 1849: 1847: 1843: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1811:Riverboarding 1809: 1807: 1806:River surfing 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1788: 1786: 1782: 1776: 1773: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1751: 1748: 1746: 1743: 1741: 1738: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1706: 1703: 1701: 1698: 1696: 1693: 1691: 1688: 1686: 1683: 1681: 1678: 1676: 1673: 1672: 1670: 1668: 1664: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1534: 1532: 1530:and modelling 1526: 1520: 1517: 1515: 1512: 1510: 1507: 1506: 1504: 1502: 1498: 1492: 1491:Return period 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1451:Flood control 1449: 1447: 1446:Flood barrier 1444: 1440: 1437: 1435: 1432: 1431: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1411: 1409: 1407: 1403: 1399: 1393: 1390: 1388: 1385: 1383: 1380: 1379: 1377: 1375: 1371: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1340: 1337: 1335: 1332: 1330: 1327: 1325: 1322: 1320: 1317: 1315: 1312: 1311: 1309: 1307: 1303: 1297: 1294: 1292: 1289: 1287: 1284: 1282: 1279: 1277: 1274: 1272: 1269: 1267: 1264: 1262: 1259: 1257: 1254: 1252: 1249: 1247: 1244: 1242: 1239: 1237: 1234: 1232: 1229: 1227: 1224: 1222: 1219: 1217: 1214: 1212: 1209: 1207: 1204: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1133: 1131: 1129: 1125: 1119: 1116: 1114: 1111: 1109: 1106: 1104: 1101: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1079: 1078:Palaeochannel 1076: 1074: 1071: 1069: 1066: 1064: 1061: 1059: 1056: 1054: 1051: 1049: 1046: 1044: 1041: 1039: 1038:Granular flow 1036: 1034: 1031: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1005: 1003: 1001: 996: 992: 986: 983: 981: 978: 976: 973: 971: 968: 964: 961: 960: 959: 956: 952: 949: 947: 944: 943: 942: 939: 937: 934: 932: 929: 927: 924: 923: 921: 918: 913: 909: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 839: 837: 835: 831: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 800: 797: 795: 792: 790: 787: 785: 784:Channel types 782: 780: 777: 775: 772: 770: 767: 765: 764:Braided river 762: 760: 757: 756: 754: 751: 746: 742: 738: 734: 730: 723: 718: 716: 711: 709: 704: 703: 700: 693: 690: 687: 684: 682: 679: 677: 674: 673: 667: 658: 654: 650: 646: 642: 638: 631: 623: 619: 614: 609: 605: 601: 596: 591: 587: 583: 579: 571: 555: 551: 547: 541: 533: 529: 524: 519: 515: 511: 507: 503: 499: 495: 491: 487: 483: 475: 471: 462: 459: 457: 454: 452: 449: 448: 442: 438: 436: 435:flood warning 431: 429: 425: 421: 417: 416:precipitation 397: 390: 373: 369: 361: 346: 324: 320: 312: 297: 275: 271: 263: 248: 226: 222: 214: 199: 176: 170: 163: 162: 161: 158: 139: 135: 131: 126: 122: 118: 113: 109: 105: 100: 96: 89: 86: 80: 74: 65: 62: 59: 58:Hybrid models 55: 52: 48: 45: 41: 37: 33: 29: 25: 21: 18: 1935:Flash floods 1887:River cruise 1784:River sports 1637:Stream gauge 1622:Rouse number 1612:Relief ratio 1461:Flood-meadow 1455: 1392:Urban runoff 1306:Fluvial flow 1291:River valley 1261:River island 1226:Meander scar 1141:Alluvial fan 1083:Progradation 958:Karst spring 902:Winterbourne 857:Chalk stream 819:River source 794:Distributary 665: 640: 636: 630: 585: 581: 570: 558:. Retrieved 554:the original 549: 540: 489: 485: 474: 439: 432: 418:is fed into 413: 159: 66: 63: 57: 56: 50: 49: 43: 42: 38: 34: 30: 26: 22: 16: 15: 1796:Fly fishing 1720:Fish ladder 1705:Daylighting 1424:Flash flood 1387:First flush 1334:Plunge pool 1058:Downcutting 1043:Debris flow 1018:Aggradation 892:Stream pool 456:Flood alert 428:river basin 1902:Wild river 1582:Hydrograph 1572:Hack's law 1537:Baer's law 1481:Inundation 1466:Floodplain 1406:stormwater 1364:Whitewater 1236:Oxbow lake 1073:Knickpoint 1048:Deposition 941:Hot spring 882:Streamflow 872:Stream bed 789:Confluence 595:2111.02780 467:References 1966:Hydrology 1872:Limnology 1821:Triathlon 1791:Canyoning 1760:Revetment 1690:Check dam 1602:Main stem 1359:Waterfall 1246:Point bar 1231:Mouth bar 1171:Billabong 1118:Water gap 1113:Wash load 1093:Saltation 1013:Anabranch 936:Holy well 824:Tributary 622:1027-5606 514:1476-4687 1960:Category 1675:Aqueduct 1542:Baseflow 1509:Effluent 1186:Cut bank 1151:Avulsion 1028:Bed load 1008:Abrasion 532:38509278 523:10954541 445:See also 1852:Aquifer 1845:Related 1801:Rafting 1329:Meander 1324:Log jam 1286:Thalweg 1191:Estuary 1063:Erosion 1000:erosion 912:Springs 867:Current 834:Streams 774:Channel 737:springs 733:streams 686:RainOff 645:Bibcode 600:Bibcode 494:Bibcode 160:where: 1647:WAFLEX 1519:Sewage 1402:Floods 1344:Riffle 1339:Rapids 1281:Strath 1251:Ravine 1176:Canyon 931:Geyser 862:Coulee 847:Bourne 842:Arroyo 745:Rivers 729:Rivers 620:  560:9 July 530:  520:  512:  486:Nature 1745:Levee 1730:Flume 1685:Canal 1429:Flood 1349:Shoal 1216:Gully 1211:Gulch 1181:Chine 1166:Bayou 1023:Armor 975:Ponor 750:lists 590:arXiv 1775:Weir 1740:Leat 1404:and 1296:Wadi 1256:Rill 1221:Glen 1206:Gill 1156:Bank 998:and 963:list 946:list 917:list 852:Burn 735:and 618:ISSN 562:2015 528:PMID 510:ISSN 422:and 1695:Dam 1161:Bar 1136:Ait 653:doi 641:519 608:doi 518:PMC 502:doi 490:627 1962:: 731:, 651:. 639:. 616:. 606:. 598:. 586:26 584:. 580:. 548:. 526:. 516:. 508:. 500:. 488:. 484:. 919:) 915:( 752:) 748:( 721:e 714:t 707:v 659:. 655:: 647:: 624:. 610:: 602:: 592:: 564:. 534:. 504:: 496:: 398:f 374:t 370:C 359:, 347:t 325:t 321:H 310:, 298:t 276:t 272:X 261:, 249:t 227:t 223:P 212:, 200:t 180:) 177:t 174:( 171:F 145:) 140:t 136:C 132:, 127:t 123:H 119:, 114:t 110:X 106:, 101:t 97:P 93:( 90:f 87:= 84:) 81:t 78:( 75:F

Index

precipitation
rainfall-runoff
streamflow routing
river basin
flood warning
Runoff model (reservoir)
Flood alert
Flood Modeller Pro
"Global prediction of extreme floods in ungauged watersheds"
Bibcode
2024Natur.627..559N
doi
10.1038/s41586-024-07145-1
ISSN
1476-4687
PMC
10954541
PMID
38509278
"AMS Glossary"
the original
"Flood forecasting with machine learning models in an operational framework"
arXiv
2111.02780
Bibcode
2022HESS...26.4013N
doi
10.5194/hess-26-4013-2022
ISSN
1027-5606

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.