Knowledge

Frequency comb

Source 📝

1462: 708:
modulation frequency or repetition rate is given by the external radio-frequency source. The advantage of this method is that it can reach much higher repetition rates (>10 GHz) than with mode-locked lasers and the two degrees of freedom of the comb can be set independently. The number of lines is lower than with a mode-locked laser (typically a few tens), but the bandwidth can be significantly broadened with nonlinear fibers. This type of optical frequency comb is usually called electrooptic frequency comb. The first schemes used a phase modulator inside an integrated Fabry–Perot cavity, but with advances in electro-optic modulators new arrangements are possible.
1413: 1404:
carrier–envelope offset-free since the two spectral parts contributing to the DFG share the same carrier–envelope offset frequency (CEO frequency). This was first proposed in 1999 and demonstrated in 2011 using an erbium fiber frequency comb at the telecom wavelength. This simple approach has the advantage that no electronic feedback loop is needed as in conventional stabilization techniques. It promises to be more robust and stable against environmental perturbations.
352: 1490:. These can be single pulses, so that no comb exists, and therefore it is not possible to define a carrier–envelope offset frequency, rather the carrier–envelope offset phase is important. A second photodiode can be added to the setup to gather phase and amplitude in a single shot, or difference-frequency generation can be used to even lock the offset on a single-shot basis, albeit with low power efficiency. 383: 2467: 773: 1494:
zero-frequency phase is zero. This phase at zero frequency is the carrier–envelope offset. The second harmonic not only has twice the frequency, but also twice the phase. Thus for a pulse with zero offset the second harmonic of the low-frequency tail is in phase with the fundamental of the high-frequency tail, and otherwise it is not.
1493:
Without an actual comb one can look at the phase vs frequency. Without a carrier–envelope offset all frequencies are cosines. This means that all frequencies have the phase zero. The time origin is arbitrary. If a pulse comes at later times, the phase increases linearly with frequency, but still the
1465:
Illustration showing how trace gases are detected in the field using a mobile dual-frequency comb laser spectrometer. The spectrometer sits in the center of a circle which is ringed with retroreflecting mirrors. Laser light from the spectrometer (yellow line) passes through a gas cloud, strikes the
1390:
is often used to control the offset frequency. The phase slip depends strongly on the Kerr effect, and by changing the pump power one changes the peak intensity of the laser pulse and thus the size of the Kerr phase shift. This shift is far smaller than 6 rad, so an additional device for coarse
707:
An optical frequency comb can be generated by modulating the amplitude and/or phase of a continuous-wave laser with an external modulator driven by a radio-frequency source. In this manner, the frequency comb is centered around the optical frequency provided by the continuous-wave laser and the
1520:
On the other hand, optical frequency combs have found new applications in remote sensing. Ranging lidars based on dual comb spectroscopy have been developed, enabling high-resolution range measurements at fast update rates. Optical frequency combs can also be utilized to measure greenhouse gas
788:
Measurement of the carrier–envelope offset frequency is usually done with a self-referencing technique, in which the phase of one part of the spectrum is compared to its harmonic. Different possible approaches for carrier–envelope offset phase control were proposed in 1999. The two simplest
784:
of an optical pulse can be seen on the right. Each line is displaced from a harmonic of the repetition rate by the carrier–envelope offset frequency. The carrier–envelope offset frequency is the rate at which the peak of the carrier frequency slips from the peak of the pulse envelope on a
1403:
An alternative to stabilizing the carrier–envelope offset frequency is to cancel it completely by use of difference frequency generation (DFG). If the difference frequency of light of opposite ends of a broadened spectrum is generated in a nonlinear crystal, the resulting frequency comb is
1359:, and not the frequency, it is possible to set the frequency to zero and additionally lock the phase, but because the intensity of the laser and this detector is not very stable, and because the whole spectrum beats in phase, one has to lock the phase on a fraction of the repetition rate. 1446:, where an optical frequency is overlapped with a single tooth of the comb on a photodiode, and a radio frequency is compared to the beat signal, the repetition rate, and the CEO-frequency (carrier–envelope offset). Applications for the frequency-comb technique include optical 2128:"In contrast to mode-locked lasers, microresonator-based frequency combs (also called Kerr combs) can exhibit complex phase relations between modes that do not correspond to the emission of single pulses while remaining highly coherent ." 1367:
In the absence of active stabilization, the repetition rate and carrier–envelope offset frequency would be free to drift. They vary with changes in the cavity length, refractive index of laser optics, and nonlinear effects such as the
680:. Nevertheless, the four-wave mixing effect above can create and stabilize a perfect frequency comb in such a structure. Basically, the system generates a perfect comb that overlaps the resonant modes as much as possible. In fact, 1436:
region of the spectrum, and the frequency comb brings the accuracy of such clocks into the optical part of the electromagnetic spectrum. A simple electronic feedback loop can lock the repetition rate to a frequency standard.
1512:
There are other applications that do not need to lock the carrier–envelope offset frequency to a radio-frequency signal. These include, among others, optical communications, the synthesis of optical arbitrary waveforms,
555:
Starting with intense light at two or more equally spaced frequencies, this process can generate light at more and more different equally spaced frequencies. For example, if there are a lot of photons at two frequencies
421:
The most common lasers used for frequency-comb generation are Ti:sapphire solid-state lasers or Er:fiber lasers with repetition rates typically between 100 MHz and 1 GHz or even going as high as 10 GHz.
1532:
The frequency comb was proposed in 2000. Before its introduction, the EM spectrum was divided between the electronic/radio frequency range and the optical/laser frequency range. The radio frequency range had accurate
2431: 752:
the second harmonic can be generated in a long crystal so that by consecutive sum frequency generation and difference frequency generation the spectrum of first and second harmonic widens until they overlap.
3103:
Gohle, Christoph; Udem, Thomas; Herrmann, Maximilian; Rauschenberger, Jens; Holzwarth, Ronald; Schuessler, Hans A.; Krausz, Ferenc; HĂ€nsch, Theodor W. (2005), "A frequency comb in the extreme ultraviolet",
691:
In the time domain, while mode-locked lasers almost always emit a series of short pulses, Kerr frequency combs generally do not. However, a special sub-type of Kerr frequency comb, in which a "cavity
1383:
for dispersion control, the carrier–envelope offset frequency can be controlled by tilting the high reflector mirror at the end of the prism pair. This can be done using piezoelectric transducers.
1466:
retroreflector and is returned directly to its point of origin. The data collected are used to identify leaking trace gases (including methane), as well leak locations and their emission rates.
2173:
Murata, H.; Morimoto, A.; Kobayashi, T.; Yamamoto, S. (2000-11-01). "Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators".
3217:
Cingöz, Arman; Yost, Dylan C.; Allison, Thomas K.; Ruehl, Axel; Fermann, Martin E.; Hartl, Ingmar; Ye, Jun (2 February 2012), "Direct frequency comb spectroscopy in the extreme ultraviolet",
1495: 1116:
Alternatively, difference-frequency generation (DFG) can be used. From light at opposite ends of the broadened spectrum the difference frequency is generated in a nonlinear crystal, and a
720:, but also used for frequency comparison of microwaves, because they reach up to 1 THz. Since they include 0 Hz, they do not need the tricks which make up the rest of this article. 939: 550: 1002: 1330: 142: 3374: 1270: 1064: 873: 1624:
in Physics for contributions to the development of laser-based precision spectroscopy, including the optical frequency-comb technique. The other half of the prize was awarded to
1570:
Before the frequency comb, the only way to bridge the gap were the harmonic frequency chains, which doubles radio frequency in 15 stages, reaching a frequency multiplication of
684:
effects can shift the resonant modes to improve the overlap with the perfect comb even more. (The resonant mode frequencies depend on refractive index, which is altered by the
642:
Therefore, a conceptually simple way to make an optical frequency comb is to take two high-power lasers of slightly different frequency and shine them simultaneously through a
484: 3039: 1608: 1565: 410:. Such lasers produce a series of optical pulses separated in time by the round-trip time of the laser cavity. The spectrum of such a pulse train approximates a series of 637: 2685:
Temprana, E.; Myslivets, E.; Kuo, B. P.-P.; Liu, L.; Ataie, V.; Alic, N.; Radic, S. (2015-06-26). "Overcoming Kerr-induced capacity limit in optical fiber transmission".
594: 1213: 1182: 1152: 1091: 552:. If the three frequencies are part of a perfectly spaced frequency comb, then the fourth frequency is mathematically required to be part of the same comb as well. 346: 319: 280: 246: 219: 192: 414:
separated by the repetition rate (the inverse of the round-trip time) of the laser. This series of sharp spectral lines is called a frequency comb or a frequency
1350: 1111: 165: 2527: 1498:(SPIDER) measures how the phase increases with frequency, but it cannot determine the offset, so the name “electric field reconstruction” is a bit misleading. 3156:
Kandula, Dominik Z.; Gohle, Christoph; Pinkert, Tjeerd J.; Ubachs, Wim; Eikema, Kjeld S.E. (2 August 2010). "Extreme ultraviolet frequency comb metrology".
348:) are stabilized generates a comb that is useful for mapping optical frequencies into the radio frequency for the direct measurement of optical frequency. 1631:
Also in 2005, the femtosecond comb technique was extended to the extreme ultraviolet range, enabling frequency metrology in that region of the spectrum.
2384:
Kobayashi, T.; Sueta, T.; Cho, Y.; Matsuo, Y. (1972-10-15). "High-repetition-rate optical pulse generator using a Fabry-Perot electro-optic modulator".
1537:, allowing highly accurate measurements of absolute frequency. The optical range has no such device. The two ranges are separated by a frequency gap of 1784:
Adler, Florian; Moutzouris, Konstantinos; Leitenstorfer, Alfred; Schnatz, Harald; Lipphardt, Burghard; Grosche, Gesine; Tauser, Florian (2004-11-29).
1521:
emissions with great precision. For instance, in 2019, scientists at NIST employed spectroscopy to quantify methane emissions from oil and gas fields
2023:; A. Schliesser; O. Arcizet; T. Wilken; R. Holzwarth; T. J. Kippenberg (2007). "Optical frequency comb generation from a monolithic microresonator". 1386:
In high repetition rate Ti:sapphire ring lasers, which often use double-chirped mirrors to control dispersion, modulation of the pump power using an
54:. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the 1400:
The breakthrough which led to a practical frequency comb was the development of technology for stabilizing the carrier–envelope offset frequency.
1120:
beat between this mixing product and light at the same wavelength of the original spectrum is measured. This beat frequency, detectable with a
3477: 2634: 811:
beat is generated between that and light at the same wavelength on the upper-energy side of the spectrum. This beat signal, detectable with a
1417: 639:. This new frequency would get gradually more intense, and light can subsequently cascade to more and more new frequencies on the same comb. 3456: 716:
A purely electronic device which generates a series of pulses, also generates a frequency comb. These are produced for electronic sampling
359:
of light in the time domain. The electric field is a sinusoid with a Gaussian envelope. The pulse length is on the order of a few 100 
1332:
This avoids the need for frequency doubling at the cost of a second optical mixing step. Again, practical implementation uses a range of
2227:
Torres-Company, Victor; Weiner, Andrew M. (May 2017). "Optical frequency comb technology for ultra-broadband radio-frequency photonics".
3395: 291: 46:
A number of mechanisms exist for obtaining an optical frequency comb, including periodic modulation (in amplitude and/or phase) of a
3080: 2432:"Carrier–envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation" 732:: that is, the highest frequency in the spectrum must be at least twice the lowest frequency. One of three techniques may be used: 3040:"Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity" 2536: 1842: 672:). This kind of structure naturally has a series of resonant modes with approximately equally spaced frequencies (similar to a 194:
is the comb tooth spacing (equal to the mode-locked laser's repetition rate or, alternatively, the modulation frequency), and
3507: 3424: 3389: 3467: 1391:
adjustment is needed. A pair of wedges, one moving in or out of the intra-cavity laser beam can be used for this purpose.
3461: 2602:"Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation" 1983:
Sefler, G.A.; Kitayama, K. (1998). "Frequency comb generation by four-wave mixing and the role of fiber dispersion".
1786:"Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies" 673: 1610:. However, those were large and expensive to operate. The frequency comb managed to bridge that gap in one stage. 1461: 3457:
Optical frequency comb for dimensional metrology, atomic and molecular spectroscopy, and precise time keeping
2632:
Optical frequency comb for dimensional metrology, atomic and molecular spectroscopy, and precise time keeping
878: 489: 3434: 944: 1275: 87: 28: 2929: 1218: 1007: 821: 1524:. More recently, a greenhouse gas lidar based on electro-optic combs has been successfully demonstrated. 2468:"Computational Study of Amplitude-to-Phase Conversion in a Modified Unitraveling Carrier Photodetector" 1964:
Boggio, J. C.; Moro, S.; Windmiller, J. R.; Zlatanovic, S.; Myslivets, E.; Alic, N.; Radic, S. (2009).
1475: 804: 436: 3492: 3414: 1573: 3356: 2631: 2430:
Telle, H. R.; Steinmeyer, G.; Dunlop, A. E.; Stenger, J.; Sutter, D. H.; Keller, U. (October 1999).
1925: 1737: 1540: 3446: 1760: 599: 1650: 1387: 669: 559: 255:
in frequency (i.e., a factor of two) can be used to directly measure (and correct for drifts in)
2601: 2584: 2567: 3497: 3351: 2585:"Self-stabilization of carrier–envelope offset phase by use of difference-frequency generation" 1920: 1732: 740: 643: 55: 3473: 2904: 2846:
NĂŒrnberg, Jacob; Willenberg, Benjamin; Phillips, Christopher R.; Keller, Ursula (2021-08-02).
1187: 789:
approaches, which require only one nonlinear optical process, are described in the following.
3502: 1985: 815:, includes a difference-frequency component, which is the carrier–envelope offset frequency. 747: 47: 1157: 3343: 3302: 3236: 3175: 3115: 3056: 2996: 2941: 2859: 2792: 2753: 2694: 2659: 2566:
G. Krauss, D. Fehrenbacher, D. Brida, C. Riek, A. Sell, R. Huber, A. Leitenstorfer (2011).
2492: 2393: 2342: 2285: 2182: 2103: 2042: 1994: 1912: 1857: 1797: 1724: 1687: 1655: 1505:
applications, extending the use of the technique as a spectrographic observational tool in
1130: 1069: 729: 411: 387: 324: 297: 258: 252: 224: 197: 170: 2848:"Dual-comb ranging with frequency combs from single cavity free-running laser oscillators" 1613: 1412: 63: 50:, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a 8: 2847: 1487: 685: 677: 665: 661: 655: 3347: 3306: 3240: 3179: 3119: 3060: 3000: 2945: 2863: 2796: 2757: 2698: 2663: 2496: 2397: 2346: 2289: 2186: 2107: 2046: 1998: 1916: 1861: 1801: 1728: 1691: 3318: 3292: 3260: 3226: 3199: 3165: 3139: 2823: 2744:
Cundiff, Steven T.; Weiner, Andrew M. (2010). "Optical arbitrary waveform generation".
2726: 2508: 2482: 2366: 2254: 2236: 2206: 2155: 2119: 2093: 2066: 2032: 2020: 1946: 1881: 1335: 1096: 150: 3280: 2984: 3420: 3385: 3322: 3252: 3191: 3131: 3072: 3020: 3012: 2959: 2885: 2877: 2828: 2810: 2718: 2710: 2409: 2358: 2330: 2311: 2303: 2198: 2159: 2123: 2058: 1938: 1873: 1823: 1815: 1534: 1395: 803:
technique, light at the lower-energy side of the broadened spectrum is doubled using
772: 395: 2730: 2618: 2512: 2370: 2272:
Wu, Rui; Torres-Company, Victor; Leaird, Daniel E.; Weiner, Andrew M. (2013-03-11).
2258: 2210: 1963: 1950: 1900: 1885: 3361: 3310: 3264: 3244: 3203: 3187: 3183: 3143: 3123: 3106: 3064: 3047: 3004: 2949: 2867: 2818: 2800: 2761: 2702: 2667: 2540: 2500: 2448: 2401: 2350: 2293: 2246: 2190: 2147: 2111: 2070: 2050: 2002: 1930: 1865: 1805: 1742: 1695: 1483: 1471: 692: 681: 430: 399: 356: 70: 3068: 2930:"Greenhouse gas monitoring using an IPDA lidar based on a dual-comb spectrometer" 2638: 1966:"Optical frequency comb generated by four-wave mixing in highly nonlinear fibers" 1425: 2650:
Newbury, Nathan R. (2011). "Searching for applications with a fine-tooth comb".
2504: 2354: 2329:
Metcalf, A. J.; Torres-Company, V.; Leaird, D. E.; Weiner, A. M. (2013-11-01).
2019: 1965: 1746: 1700: 1675: 1380: 1356: 781: 736: 660:
An alternative variation of four-wave-mixing-based frequency combs is known as
78: 32: 3365: 3314: 776:
Difference between group and phase velocity leading to carrier–envelope offset
3486: 3016: 2881: 2814: 2765: 2714: 2439: 2413: 2362: 2307: 2202: 2151: 2115: 1843:"Optical Frequency Synthesis and Comparison with Uncertainty at the 10 Level" 1819: 1451: 1442: 1429: 1373: 717: 287: 3038:
Jones, R. Jason; Moll, Kevin D.; Thorpe, Michael J.; Ye, Jun (20 May 2005),
3008: 2805: 2706: 2671: 1934: 1869: 702: 3256: 3195: 3135: 3076: 3024: 2963: 2889: 2832: 2722: 2315: 2274:"Supercontinuum-based 10-GHz flat-topped optical frequency comb generation" 2250: 2084:
JĂ©rĂŽme Faist; et al. (2016). "Quantum Cascade Laser Frequency Combs".
2062: 1942: 1877: 1827: 1810: 1785: 1645: 1617: 1514: 407: 377: 283: 59: 3451: 2985:"Optical frequency combs: Coherently uniting the electromagnetic spectrum" 2452: 1416:
Spectrum of the light from the two-laser frequency combs installed on the
676:). Unfortunately the resonant modes are not exactly equally spaced due to 2298: 2273: 2138:
Andrew M. Weiner (2017). "Frequency combs: Cavity solitons come of age".
1625: 1621: 1479: 1369: 360: 51: 3248: 3127: 2194: 2054: 646:. This creates a frequency comb by four-wave mixing as described above. 2605: 2588: 2571: 1640: 1502: 1428:
standards to optical frequencies. Current frequency standards such as
1121: 1117: 812: 808: 415: 351: 74: 2954: 2872: 2545: 2405: 2006: 1496:
Spectral phase interferometry for direct electric-field reconstruction
780:
An increasing offset between the optical phase and the maximum of the
1506: 1447: 1433: 2780: 2600:
M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, T.W. HĂ€nsch (2004).
1501:
In recent years, the frequency comb has been garnering interest for
3297: 2487: 2098: 1783: 1715:
HĂ€nsch, Theodor W. (2006). "Nobel Lecture: Passion for precision".
3372: 3231: 3170: 2331:"High-Power Broadly Tunable Electrooptic Frequency Comb Generator" 2241: 2037: 1841:
Ma, Long-Sheng; Bi, Zhiyi; Bartels, Albrecht; et al. (2004).
1517:(especially dual-comb spectroscopy) or radio-frequency photonics. 1440:
There are two distinct applications of this technique. One is the
2328: 2845: 3102: 2779:
Coddington, Ian; Newbury, Nathan; Swann, William (2016-04-20).
2172: 728:
For many applications, the comb must be widened to at least an
36: 2568:"All-passive phase locking of a compact Er:fiber laser system" 1376:
transducer, which moves a mirror to change the cavity length.
406:
The most popular way of generating a frequency comb is with a
3279: 2983:
Diddams, Scott A.; Vahala, Kerry; Udem, Thomas (2020-07-17).
596:, four-wave mixing could generate light at the new frequency 382: 40: 2429: 2271: 1676:"Nobel Lecture: Defining and measuring optical frequencies" 3462:
Rulers of Light: Using Lasers to Measure Distance and Time
2529:
Phase-stabilized Ultrashort Laser Systems for Spectroscopy
3155: 1455: 703:
Using electro-optic modulation of a continuous-wave laser
3283:; Theodor HĂ€nsch (2019). "Frequency comb spectroscopy". 1982: 739:
generation by strong self-phase modulation in nonlinear
711: 3329: 2902: 2684: 2383: 3216: 2778: 2335:
IEEE Journal of Selected Topics in Quantum Electronics
2175:
IEEE Journal of Selected Topics in Quantum Electronics
1066:
In practice, this is not done with a single frequency
767: 433:
is a process where intense light at three frequencies
16:
Laser source with equal intervals of spectral energies
1840: 1576: 1543: 1338: 1278: 1221: 1190: 1160: 1133: 1099: 1072: 1010: 947: 941:, and mixed with light at the very similar frequency 881: 824: 602: 562: 492: 439: 327: 300: 282:. Thus, octave-spanning combs can be used to steer a 261: 227: 200: 173: 153: 90: 73:
representation of a perfect frequency comb is like a
2226: 221:
is the carrier offset frequency, which is less than
398:of a time-domain Dirac comb is a Dirac comb in the 2927: 1602: 1559: 1362: 1344: 1324: 1264: 1207: 1176: 1146: 1105: 1085: 1058: 996: 933: 867: 631: 588: 544: 478: 340: 313: 274: 240: 213: 186: 159: 136: 3037: 2982: 1372:. The repetition rate can be stabilized using a 3484: 3412: 2137: 1454:, high-precision spectroscopy, and more precise 486:interact to produce light at a fourth frequency 2928:Patiño Rosas, William; CĂ©zard, Nicolas (2024). 1901:"10-GHz Self-Referenced Optical Frequency Comb" 39:, a frequency comb can be generated by certain 3468:On-chip, electronically tunable frequency comb 2525: 1215:. This is then mixed with light at frequency 2743: 2621:. European Southern Observatory. 22 May 2015. 1418:High Accuracy Radial Velocity Planet Searcher 2083: 1124:, is the carrier–envelope offset frequency. 371: 3373:John L Hall & Theodor W HĂ€nsch (2004). 1424:A frequency comb allows a direct link from 761: 668:(such as a microscopic glass disk that has 286:within a carrier–envelope phase-correcting 3470:, article by Leah Burrows | March 18, 2019 3355: 3296: 3230: 3169: 2953: 2871: 2822: 2804: 2619:"HARPS Laser Frequency Comb Commissioned" 2583:T. Fuji, A. Apolonski, F. Krausz (2004). 2544: 2486: 2297: 2240: 2097: 2036: 1924: 1809: 1736: 1699: 1295: 1251: 1194: 983: 920: 854: 756:These processes generate new frequencies 723: 664:. Here, a single laser is coupled into a 425: 120: 3464:by Steven Cundiff in Scientific American 3334:: Femtosecond optical frequency combs". 2425: 2423: 1460: 1411: 771: 381: 350: 290:. Any mechanism by which the combs' two 3447:Attosecond control of optical waveforms 2649: 1898: 1184:is mixed to produce light at frequency 1004:to produces a beat signal at frequency 934:{\displaystyle 2f_{n}=2f_{0}+2n\,f_{r}} 545:{\displaystyle f_{4}=f_{1}+f_{2}-f_{3}} 3485: 2903:robin.materese@nist.gov (2009-12-31). 2537:Ludwig Maximilian University of Munich 2526:Rauschenberger, Jens (24 April 2007). 2466:Hu, Yue; et al. (15 March 2017). 1714: 1450:, frequency-chain generation, optical 997:{\displaystyle f_{2n}=f_{0}+2n\,f_{r}} 746:a Ti:sapphire laser using intracavity 386:A Dirac comb is an infinite series of 31:made of discrete and regularly spaced 3380:. In Jun Ye, Steven T Cundiff (ed.). 3375:"History of optical comb development" 2420: 2222: 2220: 1325:{\displaystyle f_{n}-n\,f_{r}=f_{0}.} 712:Low-frequency combs using electronics 649: 137:{\displaystyle f_{n}=f_{0}+n\,f_{r},} 1673: 1470:The other is doing experiments with 1265:{\displaystyle f_{n}=f_{0}+n\,f_{r}} 1059:{\displaystyle 2f_{n}-f_{2n}=f_{0}.} 868:{\displaystyle f_{n}=f_{0}+n\,f_{r}} 807:(SHG) in a nonlinear crystal, and a 3330:Steven T. Cundiff; Jun Ye (2003). " 1113:values, but the effect is the same 768:Carrier–envelope offset measurement 13: 3382:Femtosecond optical frequency comb 3273: 2465: 2217: 1899:Bartels, Albrecht (14 July 2009). 14: 3519: 3440: 1761:"The Nobel Prize in Physics 2005" 818:Conceptually, light at frequency 760:for similar reasons as discussed 479:{\displaystyle f_{1},f_{2},f_{3}} 3433:Nobel prize for Physics (2005) 3210: 3149: 3096: 3031: 2976: 2921: 2896: 2839: 2772: 2737: 2678: 2643: 2625: 2611: 2594: 2577: 2560: 2519: 2459: 2377: 2322: 2265: 2166: 2131: 2077: 1986:Journal of Lightwave Technology 1603:{\displaystyle 2^{15}=10^{4.5}} 1407: 1363:Carrier–envelope offset control 1272:to produce a beat frequency of 695:" forms in the microresonator, 3188:10.1103/PhysRevLett.105.063001 2013: 1976: 1957: 1892: 1834: 1777: 1753: 1708: 1667: 1: 3069:10.1103/PhysRevLett.94.193201 2229:Laser & Photonics Reviews 1661: 1560:{\displaystyle 10^{5}\times } 366: 3508:Spectrum (physical sciences) 1379:In Ti:sapphire lasers using 632:{\displaystyle 2f_{1}-f_{2}} 7: 1634: 1127:Here, light at frequencies 589:{\displaystyle f_{1},f_{2}} 10: 3524: 2505:10.1109/JPHOT.2017.2682251 2355:10.1109/JSTQE.2013.2268384 1747:10.1103/revmodphys.78.1297 1701:10.1103/revmodphys.78.1279 1527: 1476:above-threshold ionization 1393: 1357:phase is measured directly 1352:values, not a single one. 805:second-harmonic generation 674:Fabry–PĂ©rot interferometer 653: 375: 3413:Andrew M. Weiner (2009). 3366:10.1103/RevModPhys.75.325 3336:Reviews of Modern Physics 3315:10.1038/s41566-018-0347-5 3114:(14 July 2005): 234–237, 2905:"Optical Frequency Combs" 1717:Reviews of Modern Physics 1680:Reviews of Modern Physics 1488:high-harmonics generation 699:emit a series of pulses. 372:Using a mode-locked laser 2781:"Dual-comb spectroscopy" 2766:10.1038/nphoton.2010.196 2152:10.1038/nphoton.2017.149 2116:10.1515/nanoph-2016-0015 1620:shared half of the 2005 1208:{\displaystyle n\,f_{r}} 670:whispering-gallery modes 3474:Optical Frequency Combs 3158:Physical Review Letters 3048:Physical Review Letters 3009:10.1126/science.aay3676 2806:10.1364/OPTICA.3.000414 2707:10.1126/science.aab1781 2672:10.1038/nphoton.2011.38 2386:Applied Physics Letters 1935:10.1126/science.1179112 1870:10.1126/science.1095092 1651:Bandwidth-limited pulse 1388:acousto-optic modulator 743:or integrated waveguide 390:spaced at intervals of 3452:Femtosecond laser comb 2475:IEEE Photonics Journal 2251:10.1002/lpor.201300126 1811:10.1364/OPEX.12.005872 1674:Hall, John L. (2006). 1604: 1561: 1467: 1421: 1346: 1326: 1266: 1209: 1178: 1177:{\displaystyle f_{2n}} 1148: 1107: 1087: 1060: 998: 935: 869: 785:pulse-to-pulse basis. 777: 741:photonic crystal fiber 724:Widening to one octave 644:photonic-crystal fiber 633: 590: 546: 480: 426:Using four-wave mixing 403: 363: 342: 315: 276: 242: 215: 188: 161: 138: 56:Nobel Prize in Physics 2453:10.1007/s003400050813 1605: 1562: 1464: 1415: 1347: 1327: 1267: 1210: 1179: 1149: 1147:{\displaystyle f_{n}} 1108: 1088: 1086:{\displaystyle f_{n}} 1061: 999: 936: 870: 775: 748:self-phase modulation 634: 591: 547: 481: 412:Dirac delta functions 388:Dirac delta functions 385: 354: 343: 341:{\displaystyle f_{0}} 316: 314:{\displaystyle f_{r}} 277: 275:{\displaystyle f_{0}} 243: 241:{\displaystyle f_{r}} 216: 214:{\displaystyle f_{0}} 189: 187:{\displaystyle f_{r}} 162: 139: 48:continuous-wave laser 2299:10.1364/OE.21.006045 1656:Magneto-optical trap 1574: 1541: 1336: 1276: 1219: 1188: 1158: 1131: 1097: 1093:but with a range of 1070: 1008: 945: 879: 822: 600: 560: 490: 437: 325: 298: 284:piezoelectric mirror 259: 225: 198: 171: 151: 88: 81:spaced according to 3348:2003RvMP...75..325C 3307:2019NaPho..13..146P 3249:10.1038/nature10711 3241:2012Natur.482...68C 3180:2010PhRvL.105f3001K 3128:10.1038/nature03851 3120:2005Natur.436..234G 3061:2005PhRvL..94s3201J 3001:2020Sci...369..367D 2946:2024OExpr..3213614P 2864:2021OExpr..2924910N 2797:2016Optic...3..414C 2758:2010NaPho...4..760C 2699:2015Sci...348.1445T 2693:(6242): 1445–1448. 2664:2011NaPho...5..186N 2497:2017IPhoJ...982251H 2398:1972ApPhL..21..341K 2347:2013IJSTQ..19..231M 2290:2013OExpr..21.6045W 2195:10.1109/2944.902186 2187:2000IJSTQ...6.1325M 2108:2016Nanop...5...15F 2055:10.1038/nature06401 2047:2007Natur.450.1214D 2031:(7173): 1214–1217. 1999:1998JLwT...16.1596S 1917:2009Sci...326..681B 1862:2004Sci...303.1843M 1856:(5665): 1843–1845. 1802:2004OExpr..12.5872A 1729:2006RvMP...78.1297H 1692:2006RvMP...78.1279H 1482:, highly efficient 686:optical Kerr effect 662:Kerr frequency comb 656:Kerr frequency comb 2637:2013-06-27 at the 1765:www.nobelprize.org 1600: 1557: 1535:frequency counters 1468: 1422: 1342: 1322: 1262: 1205: 1174: 1144: 1103: 1083: 1056: 994: 931: 865: 778: 650:In microresonators 629: 586: 542: 476: 404: 364: 338: 311: 292:degrees of freedom 272: 251:Combs spanning an 238: 211: 184: 157: 134: 3426:978-0-471-41539-8 3391:978-0-387-23790-9 2955:10.1364/oe.515543 2873:10.1364/OE.428051 2546:10.5282/edoc.7110 2406:10.1063/1.1654403 2007:10.1109/50.712242 1614:Theodor W. HĂ€nsch 1480:attosecond pulses 1396:phase-locked loop 1345:{\displaystyle n} 1106:{\displaystyle n} 408:mode-locked laser 396:Fourier transform 160:{\displaystyle n} 64:Theodor W. HĂ€nsch 52:mode-locked laser 3515: 3493:Nonlinear optics 3430: 3416:Ultrafast Optics 3409: 3407: 3406: 3400: 3394:. Archived from 3379: 3369: 3359: 3326: 3300: 3285:Nature Photonics 3268: 3267: 3234: 3214: 3208: 3207: 3173: 3153: 3147: 3146: 3100: 3094: 3093: 3092: 3091: 3085: 3079:, archived from 3044: 3035: 3029: 3028: 2980: 2974: 2973: 2971: 2970: 2957: 2925: 2919: 2918: 2916: 2915: 2900: 2894: 2893: 2875: 2843: 2837: 2836: 2826: 2808: 2776: 2770: 2769: 2746:Nature Photonics 2741: 2735: 2734: 2682: 2676: 2675: 2652:Nature Photonics 2647: 2641: 2629: 2623: 2622: 2615: 2609: 2598: 2592: 2581: 2575: 2564: 2558: 2557: 2555: 2553: 2548: 2534: 2523: 2517: 2516: 2490: 2472: 2463: 2457: 2456: 2436: 2427: 2418: 2417: 2381: 2375: 2374: 2326: 2320: 2319: 2301: 2284:(5): 6045–6052. 2269: 2263: 2262: 2244: 2224: 2215: 2214: 2181:(6): 1325–1331. 2170: 2164: 2163: 2140:Nature Photonics 2135: 2129: 2127: 2101: 2081: 2075: 2074: 2040: 2017: 2011: 2010: 1993:(9): 1596–1605. 1980: 1974: 1973: 1961: 1955: 1954: 1928: 1896: 1890: 1889: 1847: 1838: 1832: 1831: 1813: 1781: 1775: 1774: 1772: 1771: 1757: 1751: 1750: 1740: 1723:(4): 1297–1309. 1712: 1706: 1705: 1703: 1686:(4): 1279–1295. 1671: 1609: 1607: 1606: 1601: 1599: 1598: 1586: 1585: 1566: 1564: 1563: 1558: 1553: 1552: 1484:nonlinear optics 1472:few-cycle pulses 1351: 1349: 1348: 1343: 1331: 1329: 1328: 1323: 1318: 1317: 1305: 1304: 1288: 1287: 1271: 1269: 1268: 1263: 1261: 1260: 1244: 1243: 1231: 1230: 1214: 1212: 1211: 1206: 1204: 1203: 1183: 1181: 1180: 1175: 1173: 1172: 1153: 1151: 1150: 1145: 1143: 1142: 1112: 1110: 1109: 1104: 1092: 1090: 1089: 1084: 1082: 1081: 1065: 1063: 1062: 1057: 1052: 1051: 1039: 1038: 1023: 1022: 1003: 1001: 1000: 995: 993: 992: 973: 972: 960: 959: 940: 938: 937: 932: 930: 929: 910: 909: 894: 893: 874: 872: 871: 866: 864: 863: 847: 846: 834: 833: 802: 758:on the same comb 638: 636: 635: 630: 628: 627: 615: 614: 595: 593: 592: 587: 585: 584: 572: 571: 551: 549: 548: 543: 541: 540: 528: 527: 515: 514: 502: 501: 485: 483: 482: 477: 475: 474: 462: 461: 449: 448: 431:Four-wave mixing 400:frequency domain 357:ultrashort pulse 347: 345: 344: 339: 337: 336: 320: 318: 317: 312: 310: 309: 281: 279: 278: 273: 271: 270: 247: 245: 244: 239: 237: 236: 220: 218: 217: 212: 210: 209: 193: 191: 190: 185: 183: 182: 166: 164: 163: 158: 143: 141: 140: 135: 130: 129: 113: 112: 100: 99: 71:frequency domain 58:being shared by 3523: 3522: 3518: 3517: 3516: 3514: 3513: 3512: 3483: 3482: 3476:explanation by 3443: 3427: 3404: 3402: 3398: 3392: 3377: 3357:10.1.1.152.1154 3281:Nathalie PicquĂ© 3276: 3274:Further reading 3271: 3225:(7383): 68–71, 3215: 3211: 3154: 3150: 3101: 3097: 3089: 3087: 3083: 3042: 3036: 3032: 2981: 2977: 2968: 2966: 2926: 2922: 2913: 2911: 2901: 2897: 2844: 2840: 2777: 2773: 2752:(11): 760–766. 2742: 2738: 2683: 2679: 2648: 2644: 2639:Wayback Machine 2630: 2626: 2617: 2616: 2612: 2599: 2595: 2582: 2578: 2565: 2561: 2551: 2549: 2532: 2524: 2520: 2470: 2464: 2460: 2434: 2428: 2421: 2382: 2378: 2327: 2323: 2270: 2266: 2225: 2218: 2171: 2167: 2136: 2132: 2082: 2078: 2018: 2014: 1981: 1977: 1962: 1958: 1926:10.1.1.668.1986 1897: 1893: 1845: 1839: 1835: 1796:(24): 5872–80. 1782: 1778: 1769: 1767: 1759: 1758: 1754: 1738:10.1.1.208.7371 1713: 1709: 1672: 1668: 1664: 1637: 1594: 1590: 1581: 1577: 1575: 1572: 1571: 1548: 1544: 1542: 1539: 1538: 1530: 1432:operate in the 1426:radio frequency 1410: 1398: 1365: 1337: 1334: 1333: 1313: 1309: 1300: 1296: 1283: 1279: 1277: 1274: 1273: 1256: 1252: 1239: 1235: 1226: 1222: 1220: 1217: 1216: 1199: 1195: 1189: 1186: 1185: 1165: 1161: 1159: 1156: 1155: 1138: 1134: 1132: 1129: 1128: 1098: 1095: 1094: 1077: 1073: 1071: 1068: 1067: 1047: 1043: 1031: 1027: 1018: 1014: 1009: 1006: 1005: 988: 984: 968: 964: 952: 948: 946: 943: 942: 925: 921: 905: 901: 889: 885: 880: 877: 876: 859: 855: 842: 838: 829: 825: 823: 820: 819: 800: 770: 726: 714: 705: 658: 652: 623: 619: 610: 606: 601: 598: 597: 580: 576: 567: 563: 561: 558: 557: 536: 532: 523: 519: 510: 506: 497: 493: 491: 488: 487: 470: 466: 457: 453: 444: 440: 438: 435: 434: 428: 380: 374: 369: 332: 328: 326: 323: 322: 305: 301: 299: 296: 295: 266: 262: 260: 257: 256: 232: 228: 226: 223: 222: 205: 201: 199: 196: 195: 178: 174: 172: 169: 168: 167:is an integer, 152: 149: 148: 125: 121: 108: 104: 95: 91: 89: 86: 85: 79:delta functions 17: 12: 11: 5: 3521: 3511: 3510: 3505: 3500: 3495: 3481: 3480: 3471: 3465: 3459: 3454: 3449: 3442: 3441:External links 3439: 3438: 3437: 3431: 3425: 3410: 3390: 3370: 3327: 3291:(3): 146–157. 3275: 3272: 3270: 3269: 3209: 3148: 3095: 3055:(19): 193201, 3030: 2975: 2934:Optics Express 2920: 2895: 2852:Optics Express 2838: 2791:(4): 414–426. 2771: 2736: 2677: 2658:(4): 186–188. 2642: 2624: 2610: 2593: 2576: 2559: 2535:(PhD thesis). 2518: 2458: 2447:(4): 327–332. 2419: 2392:(8): 341–343. 2376: 2341:(6): 231–236. 2321: 2278:Optics Express 2264: 2235:(3): 368–393. 2216: 2165: 2146:(9): 533–535. 2130: 2076: 2012: 1975: 1970:Cleo/Qels 2009 1956: 1891: 1833: 1790:Optics Express 1776: 1752: 1707: 1665: 1663: 1660: 1659: 1658: 1653: 1648: 1643: 1636: 1633: 1597: 1593: 1589: 1584: 1580: 1556: 1551: 1547: 1529: 1526: 1409: 1406: 1364: 1361: 1341: 1321: 1316: 1312: 1308: 1303: 1299: 1294: 1291: 1286: 1282: 1259: 1255: 1250: 1247: 1242: 1238: 1234: 1229: 1225: 1202: 1198: 1193: 1171: 1168: 1164: 1141: 1137: 1102: 1080: 1076: 1055: 1050: 1046: 1042: 1037: 1034: 1030: 1026: 1021: 1017: 1013: 991: 987: 982: 979: 976: 971: 967: 963: 958: 955: 951: 928: 924: 919: 916: 913: 908: 904: 900: 897: 892: 888: 884: 875:is doubled to 862: 858: 853: 850: 845: 841: 837: 832: 828: 769: 766: 754: 753: 750: 744: 737:supercontinuum 725: 722: 713: 710: 704: 701: 666:microresonator 654:Main article: 651: 648: 626: 622: 618: 613: 609: 605: 583: 579: 575: 570: 566: 539: 535: 531: 526: 522: 518: 513: 509: 505: 500: 496: 473: 469: 465: 460: 456: 452: 447: 443: 427: 424: 376:Main article: 373: 370: 368: 365: 335: 331: 308: 304: 269: 265: 235: 231: 208: 204: 181: 177: 156: 145: 144: 133: 128: 124: 119: 116: 111: 107: 103: 98: 94: 77:, a series of 33:spectral lines 21:frequency comb 15: 9: 6: 4: 3: 2: 3520: 3509: 3506: 3504: 3501: 3499: 3498:Laser science 3496: 3494: 3491: 3490: 3488: 3479: 3475: 3472: 3469: 3466: 3463: 3460: 3458: 3455: 3453: 3450: 3448: 3445: 3444: 3436: 3435:Press Release 3432: 3428: 3422: 3418: 3417: 3411: 3401:on 2014-12-27 3397: 3393: 3387: 3383: 3376: 3371: 3367: 3363: 3358: 3353: 3349: 3345: 3341: 3337: 3333: 3328: 3324: 3320: 3316: 3312: 3308: 3304: 3299: 3294: 3290: 3286: 3282: 3278: 3277: 3266: 3262: 3258: 3254: 3250: 3246: 3242: 3238: 3233: 3228: 3224: 3220: 3213: 3205: 3201: 3197: 3193: 3189: 3185: 3181: 3177: 3172: 3167: 3164:(6): 063001. 3163: 3159: 3152: 3145: 3141: 3137: 3133: 3129: 3125: 3121: 3117: 3113: 3109: 3108: 3099: 3086:on 2014-08-12 3082: 3078: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3049: 3041: 3034: 3026: 3022: 3018: 3014: 3010: 3006: 3002: 2998: 2995:(6501): 367. 2994: 2990: 2986: 2979: 2965: 2961: 2956: 2951: 2947: 2943: 2939: 2935: 2931: 2924: 2910: 2906: 2899: 2891: 2887: 2883: 2879: 2874: 2869: 2865: 2861: 2858:(16): 24910. 2857: 2853: 2849: 2842: 2834: 2830: 2825: 2820: 2816: 2812: 2807: 2802: 2798: 2794: 2790: 2786: 2782: 2775: 2767: 2763: 2759: 2755: 2751: 2747: 2740: 2732: 2728: 2724: 2720: 2716: 2712: 2708: 2704: 2700: 2696: 2692: 2688: 2681: 2673: 2669: 2665: 2661: 2657: 2653: 2646: 2640: 2636: 2633: 2628: 2620: 2614: 2607: 2603: 2597: 2590: 2586: 2580: 2573: 2569: 2563: 2547: 2542: 2538: 2531: 2530: 2522: 2514: 2510: 2506: 2502: 2498: 2494: 2489: 2484: 2481:(2) 2682251. 2480: 2476: 2469: 2462: 2454: 2450: 2446: 2442: 2441: 2440:Appl. Phys. B 2433: 2426: 2424: 2415: 2411: 2407: 2403: 2399: 2395: 2391: 2387: 2380: 2372: 2368: 2364: 2360: 2356: 2352: 2348: 2344: 2340: 2336: 2332: 2325: 2317: 2313: 2309: 2305: 2300: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2260: 2256: 2252: 2248: 2243: 2238: 2234: 2230: 2223: 2221: 2212: 2208: 2204: 2200: 2196: 2192: 2188: 2184: 2180: 2176: 2169: 2161: 2157: 2153: 2149: 2145: 2141: 2134: 2125: 2121: 2117: 2113: 2109: 2105: 2100: 2095: 2091: 2087: 2086:Nanophotonics 2080: 2072: 2068: 2064: 2060: 2056: 2052: 2048: 2044: 2039: 2034: 2030: 2026: 2022: 2016: 2008: 2004: 2000: 1996: 1992: 1988: 1987: 1979: 1971: 1967: 1960: 1952: 1948: 1944: 1940: 1936: 1932: 1927: 1922: 1918: 1914: 1911:(5953): 681. 1910: 1906: 1902: 1895: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1851: 1844: 1837: 1829: 1825: 1821: 1817: 1812: 1807: 1803: 1799: 1795: 1791: 1787: 1780: 1766: 1762: 1756: 1748: 1744: 1739: 1734: 1730: 1726: 1722: 1718: 1711: 1702: 1697: 1693: 1689: 1685: 1681: 1677: 1670: 1666: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1638: 1632: 1629: 1627: 1623: 1619: 1615: 1611: 1595: 1591: 1587: 1582: 1578: 1568: 1554: 1549: 1545: 1536: 1525: 1523: 1518: 1516: 1510: 1508: 1504: 1499: 1497: 1491: 1489: 1485: 1481: 1477: 1473: 1463: 1459: 1457: 1453: 1452:atomic clocks 1449: 1445: 1444: 1443:optical clock 1438: 1435: 1431: 1430:atomic clocks 1427: 1419: 1414: 1405: 1401: 1397: 1392: 1389: 1384: 1382: 1377: 1375: 1374:piezoelectric 1371: 1360: 1358: 1353: 1339: 1319: 1314: 1310: 1306: 1301: 1297: 1292: 1289: 1284: 1280: 1257: 1253: 1248: 1245: 1240: 1236: 1232: 1227: 1223: 1200: 1196: 1191: 1169: 1166: 1162: 1139: 1135: 1125: 1123: 1119: 1114: 1100: 1078: 1074: 1053: 1048: 1044: 1040: 1035: 1032: 1028: 1024: 1019: 1015: 1011: 989: 985: 980: 977: 974: 969: 965: 961: 956: 953: 949: 926: 922: 917: 914: 911: 906: 902: 898: 895: 890: 886: 882: 860: 856: 851: 848: 843: 839: 835: 830: 826: 816: 814: 810: 806: 799: 795: 790: 786: 783: 782:wave envelope 774: 765: 763: 759: 751: 749: 745: 742: 738: 735: 734: 733: 731: 721: 719: 718:oscilloscopes 709: 700: 698: 694: 689: 687: 683: 679: 675: 671: 667: 663: 657: 647: 645: 640: 624: 620: 616: 611: 607: 603: 581: 577: 573: 568: 564: 553: 537: 533: 529: 524: 520: 516: 511: 507: 503: 498: 494: 471: 467: 463: 458: 454: 450: 445: 441: 432: 423: 419: 417: 413: 409: 401: 397: 393: 389: 384: 379: 362: 358: 353: 349: 333: 329: 306: 302: 293: 289: 288:feedback loop 285: 267: 263: 254: 249: 233: 229: 206: 202: 179: 175: 154: 131: 126: 122: 117: 114: 109: 105: 101: 96: 92: 84: 83: 82: 80: 76: 72: 67: 65: 61: 57: 53: 49: 44: 42: 38: 34: 30: 26: 25:spectral comb 22: 3503:Spectroscopy 3415: 3403:. Retrieved 3396:the original 3384:. Springer. 3381: 3339: 3335: 3331: 3288: 3284: 3222: 3218: 3212: 3161: 3157: 3151: 3111: 3105: 3098: 3088:, retrieved 3081:the original 3052: 3046: 3033: 2992: 2988: 2978: 2967:. Retrieved 2940:(8): 13614. 2937: 2933: 2923: 2912:. Retrieved 2908: 2898: 2855: 2851: 2841: 2788: 2784: 2774: 2749: 2745: 2739: 2690: 2686: 2680: 2655: 2651: 2645: 2627: 2613: 2596: 2579: 2562: 2550:. Retrieved 2528: 2521: 2478: 2474: 2461: 2444: 2438: 2389: 2385: 2379: 2338: 2334: 2324: 2281: 2277: 2267: 2232: 2228: 2178: 2174: 2168: 2143: 2139: 2133: 2089: 2085: 2079: 2028: 2024: 2015: 1990: 1984: 1978: 1969: 1959: 1908: 1904: 1894: 1853: 1849: 1836: 1793: 1789: 1779: 1768:. Retrieved 1764: 1755: 1720: 1716: 1710: 1683: 1679: 1669: 1646:Atomic clock 1630: 1618:John L. Hall 1612: 1569: 1531: 1522: 1519: 1515:spectroscopy 1511: 1500: 1492: 1469: 1458:technology. 1441: 1439: 1423: 1408:Applications 1402: 1399: 1385: 1378: 1366: 1355:Because the 1354: 1126: 1115: 817: 797: 793: 791: 787: 779: 757: 755: 727: 715: 706: 696: 690: 659: 641: 554: 429: 420: 405: 391: 378:Mode-locking 250: 146: 68: 60:John L. Hall 45: 24: 20: 18: 2021:P. Del'Haye 1626:Roy Glauber 1622:Nobel Prize 1370:Kerr effect 3487:Categories 3405:2013-01-20 3342:(1): 325. 3332:Colloquium 3298:1902.11249 3090:2014-07-31 2969:2024-04-02 2914:2022-02-16 2608:, 29, 310. 2606:Opt. Lett. 2591:, 29, 632. 2589:Opt. Lett. 2574:, 36, 540. 2572:Opt. Lett. 2488:1702.07732 2099:1510.09075 2092:(2): 272. 1770:2017-11-16 1662:References 1641:Astro-comb 1503:astro-comb 1394:See also: 1122:photodiode 1118:heterodyne 813:photodiode 809:heterodyne 678:dispersion 416:Dirac comb 367:Generation 75:Dirac comb 43:sources. 3419:. Wiley. 3352:CiteSeerX 3323:119189885 3232:1109.1871 3171:1004.5110 3017:0036-8075 2882:1094-4087 2815:2334-2536 2715:0036-8075 2414:0003-6951 2363:1077-260X 2308:1094-4087 2242:1403.2776 2203:1077-260X 2160:126121332 2124:119189132 2038:0708.0611 1921:CiteSeerX 1820:1094-4087 1733:CiteSeerX 1555:× 1507:astronomy 1448:metrology 1434:microwave 1290:− 1025:− 682:nonlinear 617:− 530:− 66:in 2005. 3257:22297971 3196:20867977 3136:16015324 3077:16090171 3025:32675346 2964:38859327 2890:34614835 2833:34131580 2731:41906650 2723:26113716 2635:Archived 2513:19450831 2371:37911312 2316:23482172 2259:33427587 2211:41791989 2063:18097405 1951:30199867 1943:19900924 1886:15978159 1878:15031498 1828:19488226 1635:See also 792:In the " 29:spectrum 3344:Bibcode 3303:Bibcode 3265:1630174 3237:Bibcode 3204:2499460 3176:Bibcode 3144:1029631 3116:Bibcode 3057:Bibcode 2997:Bibcode 2989:Science 2942:Bibcode 2860:Bibcode 2824:8201420 2793:Bibcode 2754:Bibcode 2695:Bibcode 2687:Science 2660:Bibcode 2493:Bibcode 2394:Bibcode 2343:Bibcode 2286:Bibcode 2183:Bibcode 2104:Bibcode 2071:4426096 2043:Bibcode 1995:Bibcode 1913:Bibcode 1905:Science 1858:Bibcode 1850:Science 1798:Bibcode 1725:Bibcode 1688:Bibcode 1528:History 1474:, like 693:soliton 3423:  3388:  3354:  3321:  3263:  3255:  3219:Nature 3202:  3194:  3142:  3134:  3107:Nature 3075:  3023:  3015:  2962:  2888:  2880:  2831:  2821:  2813:  2785:Optica 2729:  2721:  2713:  2552:7 July 2511:  2412:  2369:  2361:  2314:  2306:  2257:  2209:  2201:  2158:  2122:  2069:  2061:  2025:Nature 1972:: 1–2. 1949:  1941:  1923:  1884:  1876:  1826:  1818:  1735:  1381:prisms 730:octave 394:; the 253:octave 147:where 37:optics 3399:(PDF) 3378:(PDF) 3319:S2CID 3293:arXiv 3261:S2CID 3227:arXiv 3200:S2CID 3166:arXiv 3140:S2CID 3084:(PDF) 3043:(PDF) 2727:S2CID 2533:(PDF) 2509:S2CID 2483:arXiv 2471:(PDF) 2435:(PDF) 2367:S2CID 2255:S2CID 2237:arXiv 2207:S2CID 2156:S2CID 2120:S2CID 2094:arXiv 2067:S2CID 2033:arXiv 1947:S2CID 1882:S2CID 1846:(PDF) 762:above 41:laser 35:. In 27:is a 3478:NIST 3421:ISBN 3386:ISBN 3253:PMID 3192:PMID 3132:PMID 3073:PMID 3021:PMID 3013:ISSN 2960:PMID 2909:NIST 2886:PMID 2878:ISSN 2829:PMID 2811:ISSN 2719:PMID 2711:ISSN 2554:2024 2410:ISSN 2359:ISSN 2312:PMID 2304:ISSN 2199:ISSN 2059:PMID 1939:PMID 1874:PMID 1824:PMID 1816:ISSN 1616:and 1154:and 697:does 321:and 69:The 62:and 3362:doi 3311:doi 3245:doi 3223:482 3184:doi 3162:105 3124:doi 3112:436 3065:doi 3005:doi 2993:369 2950:doi 2868:doi 2819:PMC 2801:doi 2762:doi 2703:doi 2691:348 2668:doi 2541:doi 2501:doi 2449:doi 2402:doi 2351:doi 2294:doi 2247:doi 2191:doi 2148:doi 2112:doi 2051:doi 2029:450 2003:doi 1931:doi 1909:326 1866:doi 1854:303 1806:doi 1743:doi 1696:doi 1596:4.5 1486:or 1456:GPS 796:− 2 688:.) 355:An 23:or 3489:: 3360:. 3350:. 3340:75 3338:. 3317:. 3309:. 3301:. 3289:13 3287:. 3259:, 3251:, 3243:, 3235:, 3221:, 3198:. 3190:. 3182:. 3174:. 3160:. 3138:, 3130:, 3122:, 3110:, 3071:, 3063:, 3053:94 3051:, 3045:, 3019:. 3011:. 3003:. 2991:. 2987:. 2958:. 2948:. 2938:32 2936:. 2932:. 2907:. 2884:. 2876:. 2866:. 2856:29 2854:. 2850:. 2827:. 2817:. 2809:. 2799:. 2787:. 2783:. 2760:. 2748:. 2725:. 2717:. 2709:. 2701:. 2689:. 2666:. 2654:. 2604:, 2587:, 2570:, 2539:. 2507:. 2499:. 2491:. 2477:. 2473:. 2445:69 2443:. 2437:. 2422:^ 2408:. 2400:. 2390:21 2388:. 2365:. 2357:. 2349:. 2339:19 2337:. 2333:. 2310:. 2302:. 2292:. 2282:21 2280:. 2276:. 2253:. 2245:. 2231:. 2219:^ 2205:. 2197:. 2189:. 2177:. 2154:. 2144:11 2142:. 2118:. 2110:. 2102:. 2088:. 2065:. 2057:. 2049:. 2041:. 2027:. 2001:. 1991:16 1989:. 1968:. 1945:. 1937:. 1929:. 1919:. 1907:. 1903:. 1880:. 1872:. 1864:. 1852:. 1848:. 1822:. 1814:. 1804:. 1794:12 1792:. 1788:. 1763:. 1741:. 1731:. 1721:78 1719:. 1694:. 1684:78 1682:. 1678:. 1628:. 1592:10 1583:15 1567:. 1546:10 1509:. 1478:, 764:. 418:. 361:fs 248:. 19:A 3429:. 3408:. 3368:. 3364:: 3346:: 3325:. 3313:: 3305:: 3295:: 3247:: 3239:: 3229:: 3206:. 3186:: 3178:: 3168:: 3126:: 3118:: 3067:: 3059:: 3027:. 3007:: 2999:: 2972:. 2952:: 2944:: 2917:. 2892:. 2870:: 2862:: 2835:. 2803:: 2795:: 2789:3 2768:. 2764:: 2756:: 2750:4 2733:. 2705:: 2697:: 2674:. 2670:: 2662:: 2656:5 2556:. 2543:: 2515:. 2503:: 2495:: 2485:: 2479:9 2455:. 2451:: 2416:. 2404:: 2396:: 2373:. 2353:: 2345:: 2318:. 2296:: 2288:: 2261:. 2249:: 2239:: 2233:8 2213:. 2193:: 2185:: 2179:6 2162:. 2150:: 2126:. 2114:: 2106:: 2096:: 2090:5 2073:. 2053:: 2045:: 2035:: 2009:. 2005:: 1997:: 1953:. 1933:: 1915:: 1888:. 1868:: 1860:: 1830:. 1808:: 1800:: 1773:. 1749:. 1745:: 1727:: 1704:. 1698:: 1690:: 1588:= 1579:2 1550:5 1420:. 1340:n 1320:. 1315:0 1311:f 1307:= 1302:r 1298:f 1293:n 1285:n 1281:f 1258:r 1254:f 1249:n 1246:+ 1241:0 1237:f 1233:= 1228:n 1224:f 1201:r 1197:f 1192:n 1170:n 1167:2 1163:f 1140:n 1136:f 1101:n 1079:n 1075:f 1054:. 1049:0 1045:f 1041:= 1036:n 1033:2 1029:f 1020:n 1016:f 1012:2 990:r 986:f 981:n 978:2 975:+ 970:0 966:f 962:= 957:n 954:2 950:f 927:r 923:f 918:n 915:2 912:+ 907:0 903:f 899:2 896:= 891:n 887:f 883:2 861:r 857:f 852:n 849:+ 844:0 840:f 836:= 831:n 827:f 801:" 798:f 794:f 625:2 621:f 612:1 608:f 604:2 582:2 578:f 574:, 569:1 565:f 538:3 534:f 525:2 521:f 517:+ 512:1 508:f 504:= 499:4 495:f 472:3 468:f 464:, 459:2 455:f 451:, 446:1 442:f 402:. 392:T 334:0 330:f 307:r 303:f 294:( 268:0 264:f 234:r 230:f 207:0 203:f 180:r 176:f 155:n 132:, 127:r 123:f 118:n 115:+ 110:0 106:f 102:= 97:n 93:f

Index

spectrum
spectral lines
optics
laser
continuous-wave laser
mode-locked laser
Nobel Prize in Physics
John L. Hall
Theodor W. HĂ€nsch
frequency domain
Dirac comb
delta functions
octave
piezoelectric mirror
feedback loop
degrees of freedom

ultrashort pulse
fs
Mode-locking

Dirac delta functions
Fourier transform
frequency domain
mode-locked laser
Dirac delta functions
Dirac comb
Four-wave mixing
photonic-crystal fiber
Kerr frequency comb

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑