Knowledge

Frost line (astrophysics)

Source 📝

209:, and approximately equals 5 AU. The reason for the difference is that during the formation of the Solar System, the solar nebula was an opaque cloud where temperatures were lower close to the Sun, and the Sun itself was less energetic. After formation, the ice got buried by infalling dust and it has remained stable a few meters below the surface. If ice within 5 AU is exposed, e.g. by a crater, then it 221:, located between Mars and Jupiter, suggest that the water snow line during formation of the Solar System was located within this region. The outer asteroids are icy C-class objects (e.g. Abe et al. 2000; Morbidelli et al. 2000) whereas the inner asteroid belt is largely devoid of water. This implies that when planetesimal formation occurred the snow line was located at around 2.7 AU from the Sun. 265:
inwards to their current positions. Earth, which lies less than a quarter of the distance to the frost line but is not a giant planet, has adequate gravitation for keeping methane, ammonia, and water vapor from escaping it. Methane and ammonia are rare in the Earth's atmosphere only because of their
396:
Dartois, E.; Engrand, C.; Brunetto, R.; Duprat, J.; Pino, T.; Quirico, E.; Remusat, L.; Bardin, N.; Briani, G.; Mostefaoui, S.; Morinaud, G.; Crane, B.; Szwec, N.; Delauche, L.; Jamme, F.; Sandt, Ch.; Dumas, P. (2013). "UltraCarbonaceous Antarctic micrometeorites, probing the Solar System beyond the
289:
have proposed that asteroid belts may tend to form in the vicinity of the frost line, due to nearby giant planets disrupting planet formation inside their orbit. By analysing the temperature of warm dust found around some 90 stars, they concluded that the dust (and therefore possible asteroid belts)
163:
Different volatile compounds have different condensation temperatures at different partial pressures (thus different densities) in the protostar nebula, so their frost lines will differ. The actual temperature and distance for the snow line of water ice depend on the physical model used to calculate
213:
on short timescales. However, out of direct sunlight ice can remain stable on the surface of asteroids (and the Moon and Mercury) if it is located in permanently shadowed polar craters, where temperature may remain very low over the age of the Solar System (e.g. 30–40 K on the Moon).
334:
Qi, Chunhua; Oberg, Karin I.; Wilner, David J.; d'Alessio, Paola; Bergin, Edwin; Andrews, Sean M.; Blake, Geoffrey A.; Hogerheijde, Michiel R.; van Dishoeck, Ewine F. (2013). "Imaging of the CO Snow Line in a Solar Nebula Analog by Chunhua Qi, Karin I. Oberg, et al".
290:
was typically found close to the frost line. The underlying mechanism may be the thermal instability of snow line on the timescales of 1,000 - 10,000 years, resulting in periodic deposition of dust material in relatively narrow circumstellar rings.
232:
of 2.77 AU lies almost exactly on the lower estimation for water snow line during the formation of the Solar System. Ceres appears to have an icy mantle and may even have a water ocean below the surface.
972:
The thermal structure and the location of the snow line in the protosolar nebula: axisymmetric models with full 3-D radiative transfer by M. Min, C.P. Dullemond, M. Kama, C. Dominik
314: 846:
Chambers, John (2007-07-01). "Planet Formation with Type I and Type II Migration". 38. AAS/Division of Dynamical Astronomy Meeting. Bibcode 2007DDA....38.0604C.
484:"Structure of the Solar Nebula, Growth and Decay of Magnetic Fields and Effects of Magnetic and Turbulent Viscosities on the Nebula by Chushiro Hayashi" 147:), so it is important to always specify which material's frost line is referred to, though omission is common, especially for the water frost line. A 777:
O'Brien, D. P.; Travis, B. J.; Feldman, W. C.; Sykes, M. V.; Schenk, P. M.; Marchi, S.; Russell, C. T.; Raymond, C. A. (March 2015).
787: 883: 831: 720: 856:
D'Angelo, Gennaro; Durisen, Richard H.; Lissauer, Jack J. (December 2010). "Giant Planet Formation". In Seager, Sara (ed.).
193:
The radial position of the condensation/evaporation front varies over time, as the nebula evolves. Occasionally, the term
257:
in the Solar System. However, giant planets have been found inside the frost line around several other stars (so-called
991: 483: 197:
is also used to represent the present distance at which water ice can be stable (even under direct sunlight). This
229: 210: 299: 899: 779:"The Potential for Volcanism on Ceres due to Crustal Thickening and Pressurization of a Subsurface Ocean" 712: 17: 1001: 701: 555:"On the Evolution of the Snow Line in Protoplanetary Discs by Rebecca G. Martin, Mario Livio (STScI)" 241:
The lower temperature in the nebula beyond the frost line makes many more solid grains available for
819: 242: 164:
it and on the theoretical solar nebula model: this tells us nothing for the temperature in degrees
91: 612:
D'Angelo, G.; Podolak, M. (2015). "Capture and Evolution of Planetesimals in Circumjovian Disks".
59: 665:
Zhang, Yu; Jin, Liping (March 2015). "The Evolution of the Snow Line in a Protoplanetary Disk".
823: 812: 113:; while within it, only heavier compounds can be accreted to form the typically much smaller 102:
compounds (which are much more abundant) can be quite easily condensed to allow formation of
518: 871: 749: 674: 631: 576: 514: 503:"A note on the snow line in protostellar accretion disks by M. PODOLAK and S. ZUCKER, 2010" 406: 354: 225: 181:
The location of the frost line changes over time, potentially reaching a maximum radius of
976: 8: 778: 262: 51: 875: 753: 678: 635: 580: 410: 358: 282:, which are chemically stable in such an atmosphere, form much of the surface of Earth. 938: 861: 647: 621: 594: 566: 532: 527: 502: 465: 445: 378: 344: 309: 304: 643: 879: 827: 716: 686: 651: 589: 554: 469: 370: 274:
whose biochemistry suggests plentiful methane and ammonia at one time, but of course
31: 598: 536: 382: 177:≈150 K for μm-size grains and ≈200 K for km-size bodies (D'Angelo and Podolak, 2015) 948: 757: 682: 639: 584: 522: 455: 414: 362: 434:"Jupiter's Composition Suggests its Core Assembled Exterior to the N_{2} Snowline" 418: 79: 487: 460: 433: 271: 75: 151:
may be used for materials that are otherwise difficult to detect; for example
996: 985: 977:
On the Snow Line in Dusty Protoplanetary Disks by D. D. Sasselov and M. Lecar
953: 926: 246: 218: 699: 366: 374: 254: 206: 129: 114: 110: 95: 762: 737: 286: 258: 152: 133: 55: 148: 125: 139:
Each volatile substance has its own frost line (e.g. carbon monoxide,
279: 261:). They are thought to have formed outside the frost line, and later 107: 103: 47: 27: 943: 626: 450: 140: 121: 83: 971: 866: 571: 349: 250: 71: 67: 267: 188: 253:. The frost line therefore separates terrestrial planets from 776: 275: 144: 87: 63: 900:"Asteroid Belts of Just the Right Size are Friendly to Life" 395: 903: 855: 700:
Jewitt, D.; Chizmadia, L.; Grimm, R.; Prialnik, D. (2007).
171:
143 K at 3.2 AU to 150 K at 3 AU (Podolak and Zucker, 2010)
559:
Monthly Notices of the Royal Astronomical Society: Letters
333: 132:, which describes the maximum depth from the surface that 99: 611: 185:
for a solar-mass star before decreasing after that.
605: 811: 931:Monthly Notices of the Royal Astronomical Society 860:. University of Arizona Press. pp. 319–346. 983: 707:. In Reipurth, B.; Jewitt, D.; Keil, K. (eds.). 770: 702:"Water in the Small Bodies of the Solar System" 431: 425: 272:results from life forms (largely green plants) 500: 189:Current snow line versus formation snow line 735: 552: 46:, is the minimum distance from the central 729: 397:nitrogen snow-line by E. Dartois, et al". 23:Distance from a young star where ice forms 952: 942: 865: 761: 693: 625: 588: 570: 553:Martin, Rebecca G.; Livio, Mario (2012). 526: 459: 449: 348: 809: 742:Journal of Geophysical Research: Planets 664: 849: 736:McCord, T. B.; Sotin, C. (2005-05-21). 548: 546: 984: 927:"Snow-lines can be thermally unstable" 788:Lunar and Planetary Science Conference 205:distance during the formation of the 924: 738:"Ceres: Evolution and current state" 543: 432:Öberg, K.I.; Wordsworth, R. (2019). 507:Meteoritics & Planetary Science 236: 13: 528:10.1111/j.1945-5100.2004.tb00081.x 14: 1013: 965: 590:10.1111/j.1745-3933.2012.01290.x 501:Podolak, M.; Zucker, S. (2004). 918: 892: 840: 803: 285:Researchers Rebecca Martin and 201:distance is different from the 174:3.1 AU (Martin and Livio, 2012) 168:170 K at 2.7 AU (Hayashi, 1981) 90:grains, which will allow their 658: 494: 476: 389: 327: 1: 810:Kaufmann, William J. (1987). 320: 98:. Beyond the line, otherwise 419:10.1016/j.icarus.2013.03.002 300:Circumstellar habitable zone 7: 713:University of Arizona Press 644:10.1088/0004-637X/806/2/203 293: 158: 18:Frost line (disambiguation) 10: 1018: 687:10.1088/0004-637X/802/1/58 15: 667:The Astrophysical Journal 614:The Astrophysical Journal 992:Concepts in astrophysics 820:W.H. Freeman and Company 814:Discovering the Universe 709:Protostars and Planets V 461:10.3847/1538-3881/ab46a8 438:The Astronomical Journal 925:Owen, James E. (2020). 519:2004M&PS...39.1859P 367:10.1126/science.1239560 954:10.1093/mnras/staa1309 270:-rich atmosphere that 155:for carbon monoxide. 763:10.1029/2004JE002244 715:. pp. 863–878. 217:Observations of the 124:from the notion of " 38:, also known as the 16:For other uses, see 876:2010exop.book..319D 754:2005JGRE..110.5009M 679:2015ApJ...802...58Z 636:2015ApJ...806..203D 581:2012MNRAS.425L...6M 411:2013Icar..224..243D 359:2013Sci...341..630Q 203:formation snow line 120:The term itself is 310:Solar System belts 305:Nebular hypothesis 266:instability in an 226:dwarf planet Ceres 62:compounds such as 58:is low enough for 1002:Planetary science 906:. 1 November 2012 885:978-0-8165-2945-2 833:978-0-7167-1784-3 722:978-0-8165-2654-3 224:For example, the 199:current snow line 32:planetary science 1009: 959: 958: 956: 946: 937:(3): 3160–3174. 922: 916: 915: 913: 911: 896: 890: 889: 869: 853: 847: 844: 838: 837: 817: 807: 801: 800: 798: 796: 783: 774: 768: 767: 765: 733: 727: 726: 706: 697: 691: 690: 662: 656: 655: 629: 609: 603: 602: 592: 574: 550: 541: 540: 530: 498: 492: 491: 486:. Archived from 480: 474: 473: 463: 453: 429: 423: 422: 393: 387: 386: 352: 331: 237:Planet formation 184: 1017: 1016: 1012: 1011: 1010: 1008: 1007: 1006: 982: 981: 968: 963: 962: 923: 919: 909: 907: 898: 897: 893: 886: 854: 850: 845: 841: 834: 808: 804: 794: 792: 781: 775: 771: 734: 730: 723: 704: 698: 694: 663: 659: 610: 606: 551: 544: 499: 495: 482: 481: 477: 430: 426: 394: 390: 343:(6146): 630–2. 332: 328: 323: 296: 249:and eventually 239: 230:semi-major axis 191: 182: 161: 80:carbon monoxide 24: 21: 12: 11: 5: 1015: 1005: 1004: 999: 994: 980: 979: 974: 967: 966:External links 964: 961: 960: 917: 891: 884: 848: 839: 832: 802: 791:. p. 2831 769: 748:(E5): E05009. 728: 721: 692: 657: 604: 542: 493: 490:on 2015-02-19. 475: 424: 405:(1): 243–252. 388: 325: 324: 322: 319: 318: 317: 312: 307: 302: 295: 292: 238: 235: 190: 187: 179: 178: 175: 172: 169: 160: 157: 76:carbon dioxide 22: 9: 6: 4: 3: 2: 1014: 1003: 1000: 998: 995: 993: 990: 989: 987: 978: 975: 973: 970: 969: 955: 950: 945: 940: 936: 932: 928: 921: 905: 901: 895: 887: 881: 877: 873: 868: 863: 859: 852: 843: 835: 829: 825: 821: 816: 815: 806: 790: 789: 780: 773: 764: 759: 755: 751: 747: 743: 739: 732: 724: 718: 714: 710: 703: 696: 688: 684: 680: 676: 673:(1). id. 58. 672: 668: 661: 653: 649: 645: 641: 637: 633: 628: 623: 619: 615: 608: 600: 596: 591: 586: 582: 578: 573: 568: 564: 560: 556: 549: 547: 538: 534: 529: 524: 520: 516: 512: 508: 504: 497: 489: 485: 479: 471: 467: 462: 457: 452: 447: 443: 439: 435: 428: 420: 416: 412: 408: 404: 400: 392: 384: 380: 376: 372: 368: 364: 360: 356: 351: 346: 342: 338: 330: 326: 316: 313: 311: 308: 306: 303: 301: 298: 297: 291: 288: 283: 281: 277: 273: 269: 264: 260: 256: 255:giant planets 252: 248: 247:planetesimals 244: 234: 231: 227: 222: 220: 219:asteroid belt 215: 212: 208: 204: 200: 196: 186: 176: 173: 170: 167: 166: 165: 156: 154: 150: 146: 142: 137: 135: 131: 127: 123: 118: 116: 115:rocky planets 112: 109: 105: 101: 97: 96:planetesimals 93: 89: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 19: 934: 930: 920: 908:. Retrieved 894: 857: 851: 842: 813: 805: 793:. Retrieved 785: 772: 745: 741: 731: 708: 695: 670: 666: 660: 617: 613: 607: 562: 558: 513:(11): 1859. 510: 506: 496: 488:the original 478: 441: 437: 427: 402: 398: 391: 340: 336: 329: 315:Solar nebula 284: 276:liquid water 259:hot Jupiters 240: 223: 216: 207:Solar System 202: 198: 194: 192: 183:17.4 AU 180: 162: 138: 136:can freeze. 130:soil science 119: 52:solar nebula 43: 39: 35: 25: 620:(1): 29pp. 287:Mario Livio 153:diazenylium 134:groundwater 56:temperature 986:Categories 944:2005.03665 910:3 November 858:Exoplanets 822:. p.  627:1504.04364 451:1909.11246 321:References 211:sublimates 149:tracer gas 126:frost line 54:where the 36:frost line 867:1006.5486 652:119216797 572:1207.4284 565:(1): L6. 470:202749962 350:1307.7439 243:accretion 195:snow line 92:accretion 48:protostar 40:snow line 28:astronomy 599:54691025 537:55193644 383:23271440 375:23868917 294:See also 263:migrated 159:Location 141:nitrogen 122:borrowed 84:condense 60:volatile 44:ice line 872:Bibcode 795:1 March 750:Bibcode 675:Bibcode 632:Bibcode 577:Bibcode 515:Bibcode 407:Bibcode 355:Bibcode 337:Science 251:planets 100:gaseous 72:methane 68:ammonia 882:  830:  719:  650:  597:  535:  468:  399:Icarus 381:  373:  268:oxygen 143:, and 111:giants 34:, the 939:arXiv 862:arXiv 786:46th 782:(PDF) 705:(PDF) 648:S2CID 622:arXiv 595:S2CID 567:arXiv 533:S2CID 466:S2CID 446:arXiv 444:(5). 379:S2CID 345:arXiv 245:into 228:with 145:argon 128:" in 94:into 88:solid 86:into 64:water 50:of a 997:Cold 912:2012 904:NASA 880:ISBN 828:ISBN 797:2015 717:ISBN 371:PMID 278:and 106:and 78:and 949:doi 935:495 758:doi 746:110 683:doi 671:802 640:doi 618:806 585:doi 563:425 523:doi 456:doi 442:158 415:doi 403:224 363:doi 341:341 280:ice 108:ice 104:gas 82:to 42:or 30:or 26:In 988:: 947:. 933:. 929:. 902:. 878:. 870:. 826:. 824:94 818:. 784:. 756:. 744:. 740:. 711:. 681:. 669:. 646:. 638:. 630:. 616:. 593:. 583:. 575:. 561:. 557:. 545:^ 531:. 521:. 511:39 509:. 505:. 464:. 454:. 440:. 436:. 413:. 401:. 377:. 369:. 361:. 353:. 339:. 117:. 74:, 70:, 66:, 957:. 951:: 941:: 914:. 888:. 874:: 864:: 836:. 799:. 766:. 760:: 752:: 725:. 689:. 685:: 677:: 654:. 642:: 634:: 624:: 601:. 587:: 579:: 569:: 539:. 525:: 517:: 472:. 458:: 448:: 421:. 417:: 409:: 385:. 365:: 357:: 347:: 20:.

Index

Frost line (disambiguation)
astronomy
planetary science
protostar
solar nebula
temperature
volatile
water
ammonia
methane
carbon dioxide
carbon monoxide
condense
solid
accretion
planetesimals
gaseous
gas
ice
giants
rocky planets
borrowed
frost line
soil science
groundwater
nitrogen
argon
tracer gas
diazenylium
Solar System

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.