Knowledge

Fundamental matrix (computer vision)

Source đź“ť

2485: 820: 177:
satisfies a similar relationship, the essential matrix is a metric object pertaining to calibrated cameras, while the fundamental matrix describes the correspondence in more general and fundamental terms of projective geometry. This is captured mathematically by the relationship between a fundamental
346:
The fundamental matrix is a relationship between any two images of the same scene that constrains where the projection of points from the scene can occur in both images. Given the projection of a scene point into one of the images the corresponding point in the other image is constrained to a line,
934: 595: 138:
Being of rank two and determined only up to scale, the fundamental matrix can be estimated given at least seven point correspondences. Its seven parameters represent the only geometric information about cameras that can be obtained through point correspondences alone.
999:). Therefore, there are multiple projection centers for one image scene and the epipolar line is formed as an epipolar curve. However, in special conditions such as small image tiles, the satellite images could be rectified using the fundamental matrix. 285: 698: 828: 509: 501: 428: 687: 133: 703: 514: 639: 968: 336: 452: 309: 220: 198: 46: 1534: 815:{\displaystyle {\begin{aligned}{\textbf {P}}_{0}&={\textbf {P}}{\textbf {H}}^{-1}\\{\textbf {P}}_{0}'&={\textbf {P}}'{\textbf {H}}^{-1}\end{aligned}}} 228: 383:
to world points with the help of camera matrices derived directly from this fundamental matrix. The scene composed of these world points is within a
2143: 929:{\displaystyle {\textbf {P}}_{0}{\textbf {X}}_{0}={\textbf {P}}{\textbf {H}}^{-1}{\textbf {H}}{\textbf {X}}={\textbf {P}}{\textbf {X}}=\mathbf {x} } 1326:, Reinhard Koch and Luc van Gool (1999). "Self-Calibration and Metric Reconstruction in spite of Varying and Unknown Intrinsic Camera Parameters". 590:{\displaystyle {\begin{aligned}\mathbf {x} &={\textbf {P}}{\textbf {X}}\\\mathbf {x'} &={\textbf {P}}'{\textbf {X}}\end{aligned}}} 1079: 2357: 1576: 1502: 644: 2448: 457: 398: 1430: 1311: 1221: 1182: 2521: 2133: 1388:
Philip H. S. Torr and A. Zisserman (2000). "MLESAC: A New Robust Estimator with Application to Estimating Image Geometry".
1254:
Nurollah Tatar (2019). "Stereo rectification of pushbroom satellite images by robustly estimating the fundamental matrix".
90: 1496: 1357:
Philip H. S. Torr (1997). "The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix".
1077:"Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images" 2168: 1142:
Q.T. Luong and Olivier D. Faugeras (1996). "The Fundamental Matrix: Theory, Algorithms, and Stability Analysis".
1063: 1715: 1016: 607: 170: 1499:) fundamental matrix estimation from matched point pairs and various objective functions (Manolis Lourakis). 1932: 1569: 1121:
Olivier D. Faugeras; Q.T. Luong; Steven Maybank (1992). "Camera self-calibration: Theory and experiments".
601: 2007: 1542: 166: 939: 2163: 1685: 2267: 2138: 2052: 1195: 1100:
Olivier D. Faugeras (1992). "What can be seen in three dimensions with an uncalibrated stereo rig?".
384: 1402: 1110: 2372: 2262: 1970: 1650: 1484: 433: 347:
helping the search, and allowing for the detection of wrong correspondences. The relation between
314: 292: 203: 181: 29: 2407: 2336: 2218: 2078: 1675: 1562: 61: 1524: 2277: 1860: 1665: 1397: 1105: 376: 1529: 2223: 1960: 1810: 1805: 1640: 1615: 1610: 1043: 1008: 2417: 1775: 1605: 1585: 348: 49: 1442:
Zhengyou Zhang (1998). "Determining the epipolar geometry and its uncertainty: A review".
8: 2438: 2412: 1990: 1795: 1785: 1076: 84:′ on the other image must lie. That means, for all pairs of corresponding points holds 2489: 2443: 2433: 2387: 2382: 2311: 2247: 2113: 1850: 1845: 1780: 1770: 1635: 1459: 1374: 1343: 1159: 161:
The above relation which defines the fundamental matrix was published in 1992 by both
2500: 2484: 2287: 2282: 2272: 2252: 2213: 2208: 2037: 2032: 2017: 2012: 2003: 1998: 1945: 1840: 1790: 1735: 1705: 1700: 1680: 1670: 1630: 1492: 1426: 1307: 1299: 1295: 1217: 1178: 1028: 988: 57: 1378: 2495: 2463: 2392: 2331: 2326: 2306: 2242: 2148: 2118: 2103: 2083: 2022: 1975: 1950: 1940: 1911: 1830: 1825: 1800: 1730: 1710: 1620: 1600: 1525:
Epipolar Geometry and the Fundamental Matrix (chapter from Hartley & Zisserman)
1463: 1451: 1407: 1366: 1335: 1263: 1242: 1163: 1151: 1126: 1033: 996: 992: 974: 174: 162: 151: 2088: 1347: 1267: 280:{\displaystyle \mathbf {E} =({\mathbf {K} '})^{\top }\;\mathbf {F} \;\mathbf {K} } 2193: 2128: 2108: 2093: 2073: 2057: 1955: 1886: 1876: 1835: 1720: 1690: 1083: 1038: 1012: 991:
in images taken with perspective cameras appears as straight lines. However, in
20: 1530:
Determining the epipolar geometry and its uncertainty: A review (Zhengyou Zhang)
1289: 2453: 2397: 2377: 2362: 2321: 2198: 2158: 2123: 2047: 1986: 1965: 1906: 1896: 1881: 1815: 1760: 1750: 1745: 1655: 1477: 1323: 1291: 1455: 1370: 1339: 1322: 2515: 2458: 2316: 2257: 2188: 2178: 2173: 2098: 2027: 1901: 1891: 1820: 1740: 1725: 1660: 1131: 987:
The fundamental matrix expresses the epipolar geometry in stereo images. The
979:
The fundamental matrix can also be derived using the coplanarity condition.
155: 77: 2341: 2298: 2203: 1916: 1855: 1765: 1645: 1507: 1411: 1120: 2183: 2153: 1921: 1755: 1625: 53: 146:
in his influential PhD thesis. It is sometimes also referred to as the "
2234: 1695: 1155: 1246: 1233:
Richard I. Hartley (1997). "In Defense of the Eight-Point Algorithm".
2468: 2042: 1278: 338:
being the intrinsic calibration matrices of the two images involved.
1211: 2402: 143: 1548: 1387: 1196:"Estimation of relative camera positions for uncalibrated cameras" 1141: 995:, the image is formed during the sensor movement along its orbit ( 1554: 1280:
Matrice fondamentale et auto-calibration en vision par ordinateur
975:
Derivation of the fundamental matrix using coplanarity condition
1172: 1235:
IEEE Transactions on Pattern Analysis and Machine Intelligence
1538: 1488: 351:, which the fundamental matrix represents, is referred to as 682:{\displaystyle {\textbf {X}}_{0}={\textbf {H}}{\textbf {X}}} 1512: 1503:
Structure and Motion Toolkit in MATLAB (Philip H. S. Torr)
1423:
Epipolar geometry in Stereo, Motion and Object Recognition
1420: 1481: 496:{\displaystyle \left({\textbf {P}},{\textbf {P}}'\right)} 423:{\displaystyle \mathbf {x} \leftrightarrow \mathbf {x'} } 379:. Additionally, these corresponding image points may be 1508:
Fundamental Matrix Estimation Toolbox (Joaquim Salvi)
1203:
Proceedings of European Conference on Computer Vision
1123:
Proceedings of European Conference on Computer Vision
1102:
Proceedings of European Conference on Computer Vision
942: 831: 701: 647: 610: 512: 460: 436: 401: 375:
The fundamental matrix can be determined by a set of
317: 295: 231: 206: 184: 128:{\displaystyle \mathbf {x} '^{\top }\mathbf {Fx} =0.} 93: 32: 370: 1099: 72:′, of corresponding points in a stereo image pair, 1232: 1193: 962: 928: 814: 681: 633: 589: 495: 446: 422: 330: 303: 279: 214: 192: 127: 40: 1356: 2513: 158:relating points in distinct coordinate systems. 1551:Video demonstrating laws of epipolar geometry. 1441: 1253: 1570: 1212:Richard Hartley and Andrew Zisserman (2003). 142:The term "fundamental matrix" was coined by 2144:Fundamental (linear differential equation) 1577: 1563: 1276: 271: 265: 1401: 1283:. PhD Thesis, University of Paris, Orsay. 1214:Multiple View Geometry in Computer Vision 1130: 1109: 1064:Multiple View Geometry in Computer Vision 634:{\displaystyle {\textbf {H}}_{4\times 4}} 1444:International Journal of Computer Vision 1359:International Journal of Computer Vision 1328:International Journal of Computer Vision 1173:Olivier Faugeras and Q.T. Luong (2001). 1144:International Journal of Computer Vision 395:Say that the image point correspondence 2449:Matrix representation of conic sections 1390:Computer Vision and Image Understanding 1256:International Journal of Remote Sensing 982: 200:and its corresponding essential matrix 2514: 1086:, 2011, pp. 22–29 accessed 2011-08-05. 1062:Richard Hartley and Andrew Zisserman " 52:which relates corresponding points in 1558: 600:Say we transform space by a general 1537:(originally by Sylvain Bougnoux of 1513:The Epipolar Geometry Toolbox (EGT) 1421:Gang Xu and Zhengyou Zhang (1996). 970:still get us the same image points. 946: 913: 906: 896: 889: 873: 865: 849: 835: 794: 782: 758: 737: 729: 709: 674: 667: 651: 614: 578: 567: 538: 531: 479: 468: 439: 80:) on which the corresponding point 13: 1584: 1535:Visualization of epipolar geometry 963:{\displaystyle {\textbf {P}}_{0}'} 260: 105: 14: 2533: 1518: 371:Projective reconstruction theorem 2483: 922: 549: 518: 412: 403: 320: 297: 273: 267: 246: 233: 208: 186: 115: 112: 96: 34: 2351:Used in science and engineering 1175:The Geometry of Multiple Images 341: 1594:Explicitly constrained entries 1425:. Kluwer Academic Publishers. 1216:. Cambridge University Press. 1069: 1056: 692:The cameras then transform as 407: 256: 240: 171:H. Christopher Longuet-Higgins 1: 2368:Fundamental (computer vision) 1497:Levenberg–Marquardt algorithm 1268:10.1080/01431161.2019.1624862 1093: 1007:The fundamental matrix is of 1002: 447:{\displaystyle {\textbf {X}}} 430:derives from the world point 331:{\displaystyle \mathbf {K} '} 62:homogeneous image coordinates 1471: 361:discrete matching constraint 304:{\displaystyle \mathbf {K} } 215:{\displaystyle \mathbf {E} } 193:{\displaystyle \mathbf {F} } 41:{\displaystyle \mathbf {F} } 7: 2522:Geometry in computer vision 2134:Duplication and elimination 1933:eigenvalues or eigenvectors 1549:The Fundamental Matrix Song 1495:, non-linear (based on the 1304:An Invitation to 3-D Vision 1194:Richard I. Hartley (1992). 1022: 10: 2538: 2067:With specific applications 1696:Discrete Fourier Transform 454:under the camera matrices 16:Matrix in computer version 2477: 2426: 2358:Cabibbo–Kobayashi–Maskawa 2350: 2296: 2232: 2066: 1985:Satisfying conditions on 1984: 1930: 1869: 1593: 385:projective transformation 1132:10.1007/3-540-55426-2_37 1049: 390: 1716:Generalized permutation 1456:10.1023/A:1007941100561 1371:10.1023/A:1007927408552 1340:10.1023/A:1008109111715 150:". As a tensor it is a 2490:Mathematics portal 1412:10.1006/cviu.1999.0832 964: 930: 816: 683: 635: 591: 497: 448: 424: 332: 305: 281: 216: 194: 129: 42: 1044:Eight-point algorithm 965: 931: 817: 684: 636: 592: 498: 449: 425: 377:point correspondences 333: 306: 282: 217: 195: 130: 76:describes a line (an 43: 983:For satellite images 940: 829: 699: 645: 608: 510: 458: 434: 399: 349:corresponding points 315: 293: 229: 204: 182: 91: 30: 2439:Linear independence 1686:Diagonally dominant 1541:Robotvis, requires 1277:Q.T. Luong (1992). 1066:" 2003, pp. 266–267 959: 771: 387:of the true scene. 357:matching constraint 353:epipolar constraint 2444:Matrix exponential 2434:Jordan normal form 2268:Fisher information 2139:Euclidean distance 2053:Totally unimodular 1156:10.1007/BF00127818 1082:2012-03-31 at the 960: 943: 936:and likewise with 926: 812: 810: 755: 679: 631: 587: 585: 493: 444: 420: 365:incidence relation 328: 301: 277: 212: 190: 125: 38: 25:fundamental matrix 2509: 2508: 2501:Category:Matrices 2373:Fuzzy associative 2263:Doubly stochastic 1971:Positive-definite 1651:Block tridiagonal 1432:978-0-7923-4199-4 1313:978-0-387-00893-6 1300:S. Shankar Sastry 1247:10.1109/34.601246 1223:978-0-521-54051-3 1184:978-0-262-06220-6 1029:Epipolar geometry 989:epipolar geometry 948: 915: 908: 898: 891: 875: 867: 851: 837: 796: 784: 760: 739: 731: 711: 676: 669: 653: 616: 580: 569: 540: 533: 481: 470: 441: 58:epipolar geometry 2529: 2496:List of matrices 2488: 2487: 2464:Row echelon form 2408:State transition 2337:Seidel adjacency 2219:Totally positive 2079:Alternating sign 1676:Complex Hadamard 1579: 1572: 1565: 1556: 1555: 1467: 1436: 1415: 1405: 1382: 1351: 1317: 1284: 1271: 1250: 1227: 1206: 1200: 1188: 1167: 1136: 1134: 1115: 1113: 1087: 1073: 1067: 1060: 1034:Essential matrix 997:pushbroom sensor 993:satellite images 969: 967: 966: 961: 955: 950: 949: 935: 933: 932: 927: 925: 917: 916: 910: 909: 900: 899: 893: 892: 886: 885: 877: 876: 869: 868: 859: 858: 853: 852: 845: 844: 839: 838: 821: 819: 818: 813: 811: 807: 806: 798: 797: 790: 786: 785: 767: 762: 761: 750: 749: 741: 740: 733: 732: 719: 718: 713: 712: 688: 686: 685: 680: 678: 677: 671: 670: 661: 660: 655: 654: 640: 638: 637: 632: 630: 629: 618: 617: 596: 594: 593: 588: 586: 582: 581: 575: 571: 570: 556: 555: 542: 541: 535: 534: 521: 502: 500: 499: 494: 492: 488: 487: 483: 482: 472: 471: 453: 451: 450: 445: 443: 442: 429: 427: 426: 421: 419: 418: 406: 337: 335: 334: 329: 327: 323: 310: 308: 307: 302: 300: 286: 284: 283: 278: 276: 270: 264: 263: 254: 253: 249: 236: 221: 219: 218: 213: 211: 199: 197: 196: 191: 189: 175:essential matrix 163:Olivier Faugeras 154:in that it is a 152:two-point tensor 134: 132: 131: 126: 118: 110: 109: 108: 99: 47: 45: 44: 39: 37: 2537: 2536: 2532: 2531: 2530: 2528: 2527: 2526: 2512: 2511: 2510: 2505: 2482: 2473: 2422: 2346: 2292: 2228: 2062: 1980: 1926: 1865: 1666:Centrosymmetric 1589: 1583: 1521: 1474: 1433: 1403:10.1.1.110.5740 1314: 1224: 1198: 1185: 1111:10.1.1.462.4708 1096: 1091: 1090: 1084:Wayback Machine 1074: 1070: 1061: 1057: 1052: 1039:Trifocal tensor 1025: 1005: 985: 977: 951: 945: 944: 941: 938: 937: 921: 912: 911: 905: 904: 895: 894: 888: 887: 878: 872: 871: 870: 864: 863: 854: 848: 847: 846: 840: 834: 833: 832: 830: 827: 826: 809: 808: 799: 793: 792: 791: 781: 780: 779: 772: 763: 757: 756: 752: 751: 742: 736: 735: 734: 728: 727: 720: 714: 708: 707: 706: 702: 700: 697: 696: 673: 672: 666: 665: 656: 650: 649: 648: 646: 643: 642: 619: 613: 612: 611: 609: 606: 605: 584: 583: 577: 576: 566: 565: 564: 557: 548: 547: 544: 543: 537: 536: 530: 529: 522: 517: 513: 511: 508: 507: 478: 477: 476: 467: 466: 465: 461: 459: 456: 455: 438: 437: 435: 432: 431: 411: 410: 402: 400: 397: 396: 393: 373: 344: 319: 318: 316: 313: 312: 296: 294: 291: 290: 272: 266: 259: 255: 245: 244: 243: 232: 230: 227: 226: 207: 205: 202: 201: 185: 183: 180: 179: 167:Richard Hartley 111: 104: 100: 95: 94: 92: 89: 88: 33: 31: 28: 27: 21:computer vision 17: 12: 11: 5: 2535: 2525: 2524: 2507: 2506: 2504: 2503: 2498: 2493: 2478: 2475: 2474: 2472: 2471: 2466: 2461: 2456: 2454:Perfect matrix 2451: 2446: 2441: 2436: 2430: 2428: 2424: 2423: 2421: 2420: 2415: 2410: 2405: 2400: 2395: 2390: 2385: 2380: 2375: 2370: 2365: 2360: 2354: 2352: 2348: 2347: 2345: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2309: 2303: 2301: 2294: 2293: 2291: 2290: 2285: 2280: 2275: 2270: 2265: 2260: 2255: 2250: 2245: 2239: 2237: 2230: 2229: 2227: 2226: 2224:Transformation 2221: 2216: 2211: 2206: 2201: 2196: 2191: 2186: 2181: 2176: 2171: 2166: 2161: 2156: 2151: 2146: 2141: 2136: 2131: 2126: 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2076: 2070: 2068: 2064: 2063: 2061: 2060: 2055: 2050: 2045: 2040: 2035: 2030: 2025: 2020: 2015: 2010: 2001: 1995: 1993: 1982: 1981: 1979: 1978: 1973: 1968: 1963: 1961:Diagonalizable 1958: 1953: 1948: 1943: 1937: 1935: 1931:Conditions on 1928: 1927: 1925: 1924: 1919: 1914: 1909: 1904: 1899: 1894: 1889: 1884: 1879: 1873: 1871: 1867: 1866: 1864: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1813: 1811:Skew-symmetric 1808: 1806:Skew-Hermitian 1803: 1798: 1793: 1788: 1783: 1778: 1773: 1768: 1763: 1758: 1753: 1748: 1743: 1738: 1733: 1728: 1723: 1718: 1713: 1708: 1703: 1698: 1693: 1688: 1683: 1678: 1673: 1668: 1663: 1658: 1653: 1648: 1643: 1641:Block-diagonal 1638: 1633: 1628: 1623: 1618: 1616:Anti-symmetric 1613: 1611:Anti-Hermitian 1608: 1603: 1597: 1595: 1591: 1590: 1582: 1581: 1574: 1567: 1559: 1553: 1552: 1546: 1532: 1527: 1520: 1519:External links 1517: 1516: 1515: 1510: 1505: 1500: 1473: 1470: 1469: 1468: 1450:(2): 161–195. 1438: 1437: 1431: 1417: 1416: 1396:(1): 138–156. 1384: 1383: 1365:(3): 271–300. 1353: 1352: 1324:Marc Pollefeys 1319: 1318: 1312: 1292:Stefano Soatto 1286: 1285: 1273: 1272: 1251: 1241:(6): 580–593. 1229: 1228: 1222: 1208: 1207: 1190: 1189: 1183: 1169: 1168: 1138: 1137: 1117: 1116: 1095: 1092: 1089: 1088: 1068: 1054: 1053: 1051: 1048: 1047: 1046: 1041: 1036: 1031: 1024: 1021: 1004: 1001: 984: 981: 976: 973: 972: 971: 958: 954: 924: 920: 903: 884: 881: 862: 857: 843: 823: 822: 805: 802: 789: 778: 775: 773: 770: 766: 754: 753: 748: 745: 726: 723: 721: 717: 705: 704: 664: 659: 628: 625: 622: 598: 597: 574: 563: 560: 558: 554: 551: 546: 545: 528: 525: 523: 520: 516: 515: 491: 486: 475: 464: 417: 414: 409: 405: 392: 389: 372: 369: 343: 340: 326: 322: 299: 288: 287: 275: 269: 262: 258: 252: 248: 242: 239: 235: 210: 188: 148:bifocal tensor 136: 135: 124: 121: 117: 114: 107: 103: 98: 36: 15: 9: 6: 4: 3: 2: 2534: 2523: 2520: 2519: 2517: 2502: 2499: 2497: 2494: 2492: 2491: 2486: 2480: 2479: 2476: 2470: 2467: 2465: 2462: 2460: 2459:Pseudoinverse 2457: 2455: 2452: 2450: 2447: 2445: 2442: 2440: 2437: 2435: 2432: 2431: 2429: 2427:Related terms 2425: 2419: 2418:Z (chemistry) 2416: 2414: 2411: 2409: 2406: 2404: 2401: 2399: 2396: 2394: 2391: 2389: 2386: 2384: 2381: 2379: 2376: 2374: 2371: 2369: 2366: 2364: 2361: 2359: 2356: 2355: 2353: 2349: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2304: 2302: 2300: 2295: 2289: 2286: 2284: 2281: 2279: 2276: 2274: 2271: 2269: 2266: 2264: 2261: 2259: 2256: 2254: 2251: 2249: 2246: 2244: 2241: 2240: 2238: 2236: 2231: 2225: 2222: 2220: 2217: 2215: 2212: 2210: 2207: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2165: 2162: 2160: 2157: 2155: 2152: 2150: 2147: 2145: 2142: 2140: 2137: 2135: 2132: 2130: 2127: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2082: 2080: 2077: 2075: 2072: 2071: 2069: 2065: 2059: 2056: 2054: 2051: 2049: 2046: 2044: 2041: 2039: 2036: 2034: 2031: 2029: 2026: 2024: 2021: 2019: 2016: 2014: 2011: 2009: 2005: 2002: 2000: 1997: 1996: 1994: 1992: 1988: 1983: 1977: 1974: 1972: 1969: 1967: 1964: 1962: 1959: 1957: 1954: 1952: 1949: 1947: 1944: 1942: 1939: 1938: 1936: 1934: 1929: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1875: 1874: 1872: 1868: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1817: 1814: 1812: 1809: 1807: 1804: 1802: 1799: 1797: 1794: 1792: 1789: 1787: 1784: 1782: 1779: 1777: 1776:Pentadiagonal 1774: 1772: 1769: 1767: 1764: 1762: 1759: 1757: 1754: 1752: 1749: 1747: 1744: 1742: 1739: 1737: 1734: 1732: 1729: 1727: 1724: 1722: 1719: 1717: 1714: 1712: 1709: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1606:Anti-diagonal 1604: 1602: 1599: 1598: 1596: 1592: 1587: 1580: 1575: 1573: 1568: 1566: 1561: 1560: 1557: 1550: 1547: 1544: 1540: 1536: 1533: 1531: 1528: 1526: 1523: 1522: 1514: 1511: 1509: 1506: 1504: 1501: 1498: 1494: 1490: 1486: 1483: 1479: 1476: 1475: 1465: 1461: 1457: 1453: 1449: 1445: 1440: 1439: 1434: 1428: 1424: 1419: 1418: 1413: 1409: 1404: 1399: 1395: 1391: 1386: 1385: 1380: 1376: 1372: 1368: 1364: 1360: 1355: 1354: 1349: 1345: 1341: 1337: 1333: 1329: 1325: 1321: 1320: 1315: 1309: 1305: 1301: 1297: 1293: 1288: 1287: 1282: 1281: 1275: 1274: 1269: 1265: 1261: 1257: 1252: 1248: 1244: 1240: 1236: 1231: 1230: 1225: 1219: 1215: 1210: 1209: 1204: 1197: 1192: 1191: 1186: 1180: 1177:. MIT Press. 1176: 1171: 1170: 1165: 1161: 1157: 1153: 1149: 1145: 1140: 1139: 1133: 1128: 1124: 1119: 1118: 1112: 1107: 1103: 1098: 1097: 1085: 1081: 1078: 1072: 1065: 1059: 1055: 1045: 1042: 1040: 1037: 1035: 1032: 1030: 1027: 1026: 1020: 1018: 1014: 1010: 1000: 998: 994: 990: 980: 956: 952: 918: 901: 882: 879: 860: 855: 841: 825: 824: 803: 800: 787: 776: 774: 768: 764: 746: 743: 724: 722: 715: 695: 694: 693: 690: 662: 657: 626: 623: 620: 603: 572: 561: 559: 552: 526: 524: 506: 505: 504: 489: 484: 473: 462: 415: 388: 386: 382: 378: 368: 366: 362: 358: 354: 350: 339: 324: 250: 237: 225: 224: 223: 176: 172: 168: 164: 159: 157: 156:bilinear form 153: 149: 145: 140: 122: 119: 101: 87: 86: 85: 83: 79: 78:epipolar line 75: 71: 67: 63: 59: 55: 54:stereo images 51: 26: 22: 2481: 2413:Substitution 2367: 2299:graph theory 1796:Quaternionic 1786:Persymmetric 1491:library for 1447: 1443: 1422: 1393: 1389: 1362: 1358: 1331: 1327: 1306:. Springer. 1303: 1296:Jana Košecká 1279: 1262:(20): 1–19. 1259: 1255: 1238: 1234: 1213: 1202: 1174: 1150:(1): 43–75. 1147: 1143: 1122: 1101: 1075:Jaehong Oh. 1071: 1058: 1015:defines the 1006: 986: 978: 691: 599: 394: 381:triangulated 380: 374: 364: 360: 356: 352: 345: 342:Introduction 289: 160: 147: 141: 137: 81: 73: 69: 65: 24: 18: 2388:Hamiltonian 2312:Biadjacency 2248:Correlation 2164:Householder 2114:Commutation 1851:Vandermonde 1846:Tridiagonal 1781:Permutation 1771:Nonnegative 1756:Matrix unit 1636:Bisymmetric 1334:(1): 7–25. 222:, which is 169:. Although 2288:Transition 2283:Stochastic 2253:Covariance 2235:statistics 2214:Symplectic 2209:Similarity 2038:Unimodular 2033:Orthogonal 2018:Involutory 2013:Invertible 2008:Projection 2004:Idempotent 1946:Convergent 1841:Triangular 1791:Polynomial 1736:Hessenberg 1706:Equivalent 1701:Elementary 1681:Copositive 1671:Conference 1631:Bidiagonal 1094:References 1003:Properties 641:such that 602:homography 2469:Wronskian 2393:Irregular 2383:Gell-Mann 2332:Laplacian 2327:Incidence 2307:Adjacency 2278:Precision 2243:Centering 2149:Generator 2119:Confusion 2104:Circulant 2084:Augmented 2043:Unipotent 2023:Nilpotent 1999:Congruent 1976:Stieltjes 1951:Defective 1941:Companion 1912:Redheffer 1831:Symmetric 1826:Sylvester 1801:Signature 1731:Hermitian 1711:Frobenius 1621:Arrowhead 1601:Alternant 1472:Toolboxes 1398:CiteSeerX 1106:CiteSeerX 880:− 801:− 744:− 624:× 408:↔ 261:⊤ 106:⊤ 48:is a 3Ă—3 2516:Category 2297:Used in 2233:Used in 2194:Rotation 2169:Jacobian 2129:Distance 2109:Cofactor 2094:Carleman 2074:Adjugate 2058:Weighing 1991:inverses 1987:products 1956:Definite 1887:Identity 1877:Exchange 1870:Constant 1836:Toeplitz 1721:Hadamard 1691:Diagonal 1379:12031059 1302:(2004). 1080:Archived 1023:See also 957:′ 788:′ 769:′ 573:′ 553:′ 485:′ 416:′ 325:′ 251:′ 144:QT Luong 102:′ 2398:Overlap 2363:Density 2322:Edmonds 2199:Seifert 2159:Hessian 2124:Coxeter 2048:Unitary 1966:Hurwitz 1897:Of ones 1882:Hilbert 1816:Skyline 1761:Metzler 1751:Logical 1746:Integer 1656:Boolean 1588:classes 1478:fundest 1464:3190498 1290:Yi Ma; 1164:2582003 1017:epipole 1011:2. Its 604:matrix 178:matrix 60:, with 2317:Degree 2258:Design 2189:Random 2179:Payoff 2174:Moment 2099:Cartan 2089:BĂ©zout 2028:Normal 1902:Pascal 1892:Lehmer 1821:Sparse 1741:Hollow 1726:Hankel 1661:Cauchy 1586:Matrix 1493:robust 1462:  1429:  1400:  1377:  1348:306722 1346:  1310:  1220:  1181:  1162:  1108:  1013:kernel 56:. In 50:matrix 23:, the 2378:Gamma 2342:Tutte 2204:Shear 1917:Shift 1907:Pauli 1856:Walsh 1766:Moore 1646:Block 1539:INRIA 1480:is a 1460:S2CID 1375:S2CID 1344:S2CID 1199:(PDF) 1160:S2CID 1050:Notes 391:Proof 363:, or 2184:Pick 2154:Gram 1922:Zero 1626:Band 1543:Java 1427:ISBN 1308:ISBN 1218:ISBN 1179:ISBN 1009:rank 311:and 165:and 68:and 2273:Hat 2006:or 1989:or 1489:C++ 1482:GPL 1452:doi 1408:doi 1367:doi 1336:doi 1264:doi 1243:doi 1152:doi 1127:doi 503:as 19:In 2518:: 1458:. 1448:27 1446:. 1406:. 1394:78 1392:. 1373:. 1363:24 1361:. 1342:. 1332:32 1330:. 1298:; 1294:; 1260:40 1258:. 1239:19 1237:. 1201:. 1158:. 1148:17 1146:. 1125:. 1104:. 1019:. 689:. 367:. 359:, 355:, 173:' 123:0. 74:Fx 64:, 2403:S 1861:Z 1578:e 1571:t 1564:v 1545:) 1487:/ 1485:C 1466:. 1454:: 1435:. 1414:. 1410:: 1381:. 1369:: 1350:. 1338:: 1316:. 1270:. 1266:: 1249:. 1245:: 1226:. 1205:. 1187:. 1166:. 1154:: 1135:. 1129:: 1114:. 953:0 947:P 923:x 919:= 914:X 907:P 902:= 897:X 890:H 883:1 874:H 866:P 861:= 856:0 850:X 842:0 836:P 804:1 795:H 783:P 777:= 765:0 759:P 747:1 738:H 730:P 725:= 716:0 710:P 675:X 668:H 663:= 658:0 652:X 627:4 621:4 615:H 579:X 568:P 562:= 550:x 539:X 532:P 527:= 519:x 490:) 480:P 474:, 469:P 463:( 440:X 413:x 404:x 321:K 298:K 274:K 268:F 257:) 247:K 241:( 238:= 234:E 209:E 187:F 120:= 116:x 113:F 97:x 82:x 70:x 66:x 35:F

Index

computer vision
matrix
stereo images
epipolar geometry
homogeneous image coordinates
epipolar line
QT Luong
two-point tensor
bilinear form
Olivier Faugeras
Richard Hartley
H. Christopher Longuet-Higgins
essential matrix
corresponding points
point correspondences
projective transformation
homography
epipolar geometry
satellite images
pushbroom sensor
rank
kernel
epipole
Epipolar geometry
Essential matrix
Trifocal tensor
Eight-point algorithm
Multiple View Geometry in Computer Vision
"Novel Approach to Epipolar Resampling of HRSI and Satellite Stereo Imagery-based Georeferencing of Aerial Images"
Archived

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑