Knowledge

Genome instability

Source πŸ“

194:
chemically more unstable than double-stranded DNA. During elongation of transcription, supercoiling can occur behind an elongating RNA polymerase, leading to single-stranded breaks. When the coding strand is single-stranded, it can also hybridize with itself, creating DNA secondary structures that can compromise replication. In E. coli, when attempting to transcribe GAA triplets such as those found in Friedrich's ataxia, the resulting RNA and template strand can form mismatched loops between different repeats, leaving the complementary segment in the coding strand available to form its own loops which impede replication. Furthermore, replication of DNA and transcription of DNA are not temporally independent; they can occur at the same time and lead to collisions between the replication fork and RNA polymerase complex. In S. cerevisiae, Rrm3 helicase is found at highly transcribed genes in the yeast genome, which is recruited to stabilize a stalling replication fork as described above. This suggests that transcription is an obstacle to replication, which can lead to increased stress in the chromatin spanning the short distance between the unwound replication fork and transcription start site, potentially causing single-stranded DNA breaks. In yeast, proteins act as barriers at the 3' of the transcription unit to prevent further travel of the DNA replication fork.
181:
of mutations, such as DNA-repeat expansion. Rare fragile sites can lead to genetic disease such as fragile X mental retardation syndrome, myotonic dystrophy, Friedrich's ataxia, and Huntington's disease, most of which are caused by expansion of repeats at the DNA, RNA, or protein level. Although, seemingly harmful, these common fragile sites are conserved all the way to yeast and bacteria. These ubiquitous sites are characterized by trinucleotide repeats, most commonly CGG, CAG, GAA, and GCN. These trinucleotide repeats can form into hairpins, leading to difficulty of replication. Under
185:, such as defective machinery or further DNA damage, DNA breaks and gaps can form at these fragile sites. Using a sister chromatid as repair is not a fool-proof backup as the surrounding DNA information of the n and n+1 repeat is virtually the same, leading to copy number variation. For example, the 16th copy of CGG might be mapped to the 13th copy of CGG in the sister chromatid since the surrounding DNA is both CGGCGGCGG..., leading to 3 extra copies of CGG in the final DNA sequence. 470:. While a mutation or epimutation in a DNA repair gene itself would not confer a selective advantage, such a repair defect may be carried along as a passenger in a cell when the cell acquires an additional mutation/epimutation that does provide a proliferative advantage. Such cells, with both proliferative advantages and one or more DNA repair defects (causing a very high mutation rate), likely give rise to the 20,000 to 80,000 total genome mutations frequently seen in cancers. 203:
catalyzed by RAG1 and RAG2 recombinases. Activation-Induced Cytidine Deaminase (AID) then converts cytidine into uracil. Uracil normally does not exist in DNA, and thus the base is excised and the nick is converted into a double-stranded break which is repaired by non-homologous end joining (NHEJ). This procedure is very error-prone and leads to somatic hypermutation. This genomic instability is crucial in ensuring mammalian survival against infection.
2463: 167:
firing of late replication origins until the DNA breaks are fixed by phosphorylating CHK1 and CHK2, which results in a signaling cascade arresting the cell in S-phase. For single stranded breaks, replication occurs until the location of the break, then the other strand is nicked to form a double stranded break, which can then be repaired by Break Induced Replication or homologous recombination using the sister
2475: 172:
caused by radiation. The yeast cells with defective rad9 failed to arrest following irradiation, continued cell division, and died rapidly; the cells with wild-type rad9 successfully arrested in late S/G2 phase and remained viable. The cells that arrested were able to survive due to the increased time in S/G2 phase allowing for DNA repair enzymes to function fully.
568:, an oncogene encoding a transcription factor, is translocated to a position after the promoter of the immunoglobulin gene, leading to dysregulation of c-myc transcription. Since immunoglobulins are essential to a lymphocyte and highly expressed to increase detection of antigens, c-myc is then also highly expressed, leading to transcription of its 372:, constitutes only 1.5% of the total genome. As pointed out above, ordinarily there are only an average of 0.35 mutations in the exome per generation (parent to child) in humans. In the entire genome (including non-protein coding regions) there are only about 70 new mutations per generation in humans. 349:). Genetic instability can originate due to deficiencies in DNA repair, or due to loss or gain of chromosomes, or due to large scale chromosomal reorganizations. Losing genetic stability will favour tumor development, because it favours the generation of mutants that can be selected by the environment. 1933:
Berger MF; Hodis E; Heffernan TP; Deribe YL; Lawrence MS; Protopopov A; Ivanova E; Watson IR; Nickerson E; Ghosh P; Zhang H; Zeid R; Ren X; Cibulskis K; Sivachenko AY; Wagle N; Sucker A; Sougnez C; Onofrio R; Ambrogio L; Auclair D; Fennell T; Carter SL; Drier Y; Stojanov P; Singer MA; Voet D; Jing R;
584:
results from the translocation of the immunoglobulin promoter to the Bcl-2 gene, giving rise to high levels of Bcl-2 protein, which inhibits apoptosis. DNA-damaged B-cells no longer undergo apoptosis, leading to further mutations which could affect driver genes, leading to tumorigenesis. The location
324:
It is currently accepted that sporadic tumors (non-familial ones) are originated due to the accumulation of several genetic errors. An average cancer of the breast or colon can have about 60 to 70 protein altering mutations, of which about 3 or 4 may be "driver" mutations, and the remaining ones may
193:
In both E. coli and Saccharomyces pombe, transcription sites tend to have higher recombination and mutation rates. The coding or non-transcribed strand accumulates more mutations than the template strand. This is due to the fact that the coding strand is single-stranded during transcription, which is
478:
In somatic cells, deficiencies in DNA repair sometimes arise by mutations in DNA repair genes, but much more often are due to epigenetic reductions in expression of DNA repair genes. Thus, in a sequence of 113 colorectal cancers, only four had somatic missense mutations in the DNA repair gene MGMT,
279:
and Alzheimer's disease) are defective in genes involved in repairing DNA double-strand breaks. Overall, it seems that oxidative stress is a major cause of genomic instability in the brain. A particular neurological disease arises when a pathway that normally prevents oxidative stress is deficient,
180:
There are hotspots in the genome where DNA sequences are prone to gaps and breaks after inhibition of DNA synthesis such as in the aforementioned checkpoint arrest. These sites are called fragile sites, and can occur commonly as naturally present in most mammalian genomes or occur rarely as a result
157:
must perform its function well to result in a perfect copy of DNA. Mutations of proteins such as DNA polymerase or DNA ligase can lead to impairment of replication and lead to spontaneous chromosomal exchanges. Proteins such as Tel1 and Mec1 (ATR, ATM in humans) can detect single and double-stranded
563:
Cancers usually result from disruption of a tumor repressor or dysregulation of an oncogene. Knowing that B-cells experience DNA breaks during development can give insight to the genome of lymphomas. Many types of lymphoma are caused by chromosomal translocation, which can arise from breaks in DNA,
202:
In some portions of the genome, variability is essential to survival. One such locale is the Ig genes. In a pre-B cell, the region consists of all V, D, and J segments. During development of the B cell, a specific V, D, and J segment is chosen to be spliced together to form the final gene, which is
171:
as an error-free template. In addition to S-phase checkpoints, G1 and G2 checkpoints exist to check for transient DNA damage which could be caused by mutagens such as UV damage. An example is the Saccharomyces pombe gene rad9 which arrests the cells in late S/G2 phase in the presence of DNA damage
542:
located in cancers including breast, ovarian, colorectal and head and neck. Two or three epigenetic deficiencies in expression of ERCC1, XPF and/or PMS2 were found to occur simultaneously in the majority of the 49 colon cancers evaluated. Some of these DNA repair deficiencies can be caused by
166:
result in a significant increase of chromosomal recombination. ATR responds specifically to stalled replication forks and single-stranded breaks resulting from UV damage while ATM responds directly to double-stranded breaks. These proteins also prevent progression into mitosis by inhibiting the
486:
Similarly, for 119 cases of colorectal cancers classified as mismatch repair deficient and lacking DNA repair gene PMS2 expression, Pms2 was deficient in 6 due to mutations in the PMS2 gene, while in 103 cases PMS2 expression was deficient because its pairing partner MLH1 was repressed due to
316:
in DNA, the intercalation of foreign substances into the DNA double helix, or any abnormal changes in DNA tertiary structure that can cause either the loss of DNA, or the misexpression of genes. Situations of genome instability (as well as aneuploidy) are common in cancer cells, and they are
2279:
Valeri, N; Gasparini, P; Fabbri, M; Braconi, C; Veronese, A; Lovat, F; Adair, B; Vannini, I; Fanini, F; Bottoni, A; Costinean, S; Sandhu, SK; Nuovo, GJ; Alder, H; Gafa, R; Calore, F; Ferracin, M; Lanza, G; Volinia, S; Negrini, M; Mcllhatton, MA; Amadori, D; Fishel, R; Croce, CM (2010).
106:), although some species present a very high karyotypic variability. In humans, mutations that would change an amino acid within the protein coding region of the genome occur at an average of only 0.35 per generation (less than one mutated protein per generation). 443:
The high frequency of mutations in the total genome within cancers suggests that, often, an early carcinogenic alteration may be a deficiency in DNA repair. Mutation rates substantially increase (sometimes by 100-fold) in cells defective in
1934:
Saksena G; Barretina J; Ramos AH; Pugh TJ; Stransky N; Parkin M; Winckler W; Mahan S; Ardlie K; Baldwin J; Wargo J; Schadendorf D; Meyerson M; Gabriel SB; Golub TR; Wagner SN; Lander ES; Getz G; Chin L; Garraway LA (May 2012).
487:
promoter methylation (PMS2 protein is unstable in the absence of MLH1). The other 10 cases of loss of PMS2 expression were likely due to epigenetic overexpression of the microRNA, miR-155, which down-regulates MLH1.
152:
must be able to navigate obstacles such as tightly wound chromatin with bound proteins, single and double stranded breaks which can lead to the stalling of the replication fork. Each protein or enzyme in the
65:
The sources of genome instability have only recently begun to be elucidated. A high frequency of externally caused DNA damage can be one source of genome instability since DNA damage can cause inaccurate
215:
Of about 200 neurological and neuromuscular disorders, 15 have a clear link to an inherited or acquired defect in one of the DNA repair pathways or excessive genotoxic oxidative stress. Five of them (
802:
Aguilera, A; Klein, H. L. (Aug 1998). "Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations".
259:) seem to result from increased oxidative stress, and the inability of the base excision repair pathway to handle the damage to DNA that this causes. Four of them (Huntington's disease, various 2238:
Truninger, K; Menigatti, M; Luz, J; Russell, A; Haider, R; Gebbers, JO; Bannwart, F; Yurtsever, H; Neuweiler, J; Riehle, HM; Cattaruzza, MS; Heinimann, K; SchΓ€r, P; Jiricny, J; Marra, G (2005).
431:
of DNA. The average number of DNA sequence mutations in the entire genome of a breast cancer tissue sample is about 20,000. In an average melanoma tissue sample (where melanomas have a higher
483:(see section "DNA repair epigenetics in cancer") presented evidence that between 40% and 90% of colorectal cancers have reduced MGMT expression due to methylation of the MGMT promoter region. 1723:
Cuozzo, C; Porcellini, A; Angrisano, T; Morano, A; Lee, B; Di Pardo, A; Messina, S; Iuliano, R; Fusco, A; Santillo, MR; Muller, MT; Chiariotti, L; Gottesman, ME; Avvedimento, EV (2007).
427:
As noted above, about 3 or 4 driver mutations and 60 passenger mutations occur in the exome (protein coding region) of a cancer. However, a much larger number of mutations occur in the
1496:
Hui, T.; Zhen, G.; HuiZhong, L.; BaoFu, Z.; Gang, W.; Qing, Z.; DongSheng, P.; JunNian, Z. (2015), "DNA damage response – A double-edged sword in cancer prevention and cancer therapy",
109:
Sometimes, in a species with a stable karyotype, random variations that modify the normal number of chromosomes may be observed. In other cases, there are structural alterations (e.g.,
498:), there is a partial listing of epigenetic deficiencies found in DNA repair genes in sporadic cancers. These include frequencies of between 13–100% of epigenetic defects in genes 207:
can ensure millions of unique B-cell receptors; however, random repair by NHEJ introduces variation which can create a receptor that can bind with higher affinity to antigens.
86:
is very frequent, occurring on average more than 60,000 times a day in the genomes of human cells, any reduced DNA repair is likely an important source of genome instability.
2339:
Facista, A; Nguyen, H; Lewis, C; Prasad, AR; Ramsey, L; Zaitlin, B; Nfonsam, V; Krouse, RS; Bernstein, H; Payne, CM; Stern, S; Oatman, N; Banerjee, B; Bernstein, C (2012).
50:. Genome instability does occur in bacteria. In multicellular organisms genome instability is central to carcinogenesis, and in humans it is also a factor in some 1095:"Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair" 1688:
Cunningham, FH; Fiebelkorn, S; Johnson, M; Meredith, C (2011). "A novel application of the Margin of Exposure approach: segregation of tobacco smoke toxicants".
589:, suggesting that the oncogene was a potential target of AID, leading to a double-stranded break that was translocated to the immunoglobulin gene locus through 329:
rate will have as a consequence an increase in the acquisition of new mutations, increasing then the probability to develop a tumor. During the process of
2191:"O(6)-methylguanine methyltransferase in colorectal cancers: detection of mutations, loss of expression, and weak association with G:C>A:T transitions" 103: 479:
while the majority of these cancers had reduced MGMT expression due to methylation of the MGMT promoter region. Five reports, listed in the article
380:
The likely major underlying cause of mutations in cancer is DNA damage. For example, in the case of lung cancer, DNA damage is caused by agents in
292:, genome instability can occur prior to or as a consequence of transformation. Genome instability can refer to the accumulation of extra copies of 2431:
Ramiro, Almudena; San-Marin, Bernardo Reina; McBride, Kevin; Jankovic, Mila; Barreto, Vasco; Nussenzweig, Andre; Nussenzweig, Michel C. (2007).
117:) that modify the standard chromosomal complement. In these cases, it is indicated that the affected organism presents genome instability (also 823:"Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations" 1825:
Gottschalk, AJ; Timinszky, G; Kong, SE; Jin, J; Cai, Y; Swanson, SK; Washburn, MP; Florens, L; Ladurner, AG; Conaway, JW; Conaway, RC (2009).
1370:; Sengupta, A.; Jallepalli, P.V.; Shih, I.M.; Vogelstein, B.; Lengauer, C. (2002), "The role of chromosomal instability in tumor initiation", 1005:"A persistent RNA-DNA hybrid formed by transcription of the Friedreich ataxia triplet repeat in live bacteria, and by T7 RNAP in vitro" 495: 1884:
Yost SE; Smith EN; Schwab RB; Bao L; Jung H; Wang X; Voest E; Pierce JP; Messer K; Parker BA; Harismendy O; Frazer KA (August 2012).
466:
past some of those damages may give rise to mutations. In addition, faulty repair of these accumulated DNA damages may give rise to
1776:"Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island" 1530:
Lander ES; Linton LM; Birren B; Nusbaum C; Zody MC; Baldwin J; Devon K; Dewar K; Doyle M; FitzHugh W; et al. (February 2001).
515: 1460:
Cahill, D. P.; Kinzler, K. W.; Vogelstein, B.; Lengauer, C. (1999), "Genetic instability and darwinian selection in tumours",
2440: 586: 271:
types 1 and 2) often have an unusual expansion of repeat sequences in DNA, likely attributable to genome instability. Four (
129:, in which the cells present a chromosomic number that is either higher or lower than the normal complement for the species. 2052:"Differing patterns of genetic instability in mice deficient in the mismatch repair genes Pms2, Mlh1, Msh2, Msh3 and Msh6" 872:"Double-strand breaks arising from replication through a nick are repaired by cohesin-dependent sister-chromatid exchange" 360:
pathways contributing to genomic instability, which promotes tumor survival, proliferation, and malignant transformation.
415:
alterations during DNA repair. Both mutations and epigenetic alterations (epimutations) can contribute to progression to
1886:"Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens" 317:
considered a "hallmark" for these cells. The unpredictable nature of these events are also a main contributor to the
400: 396: 83: 1054:"RNA Polymerase Modulators and DNA Repair Activities Resolve Conflicts between DNA Replication and Transcription" 539: 256: 55: 399:
is also very frequent, occurring on average more than 60,000 times a day in the genomes of human cells (see
602: 1093:
Schrader, Carol E.; Guikema, Jeroen E. J.; Linehan, Erin K.; Selsing, Erik; Stavnezer, Janet (Nov 2007).
2101:"Disruption of Brca2 increases the spontaneous mutation rate in vivo: synergism with ionizing radiation" 1993:"Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2" 1531: 1424:
Kinzler, K. W.; Vogelstein, B. (April 1997), "Cancer-susceptibility genes. Gatekeepers and caretakers",
2453: 590: 408: 276: 1226:
Corcos, D. (2012), "Unbalanced replication as a major source of genetic instability in cancer cells",
162:
to stabilize the replication fork in order to prevent its collapse. Mutations in Tel1, Mec1, and Rmr3
301: 110: 43: 1827:"Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler" 1262:
Storchova, Z.; Pellman, D. (2004), "From polyploidy to aneuploidy, genome instability and cancer",
455:. Also, chromosomal rearrangements and aneuploidy increase in humans defective in DNA repair gene 449: 94:
Usually, all cells in an individual in a given species (plant or animal) show a constant number of
580:
to the immunoglobulin locus. Cyclin D1 inhibits Rb, a tumor suppressor, leading to tumorigenesis.
240: 1052:
Trautinger, Brigitte W.; Jaktaji, Razieh P.; Rusakova, Ekaterina; Lloyd, Robert G. (July 2005).
552: 726:
MΓΈller, P (2005). "Genotoxicity of environmental agents assessed by the alkaline comet assay".
456: 353: 264: 260: 248: 244: 236: 220: 280:
or a DNA repair pathway that normally repairs damage caused by oxidative stress is deficient.
2150:"Bloom's syndrome. I. Genetical and clinical observations in the first twenty-seven patients" 404: 403:). Externally and endogenously caused damages may be converted into mutations by inaccurate 305: 272: 216: 39: 2495: 2293: 2004: 1947: 1838: 1595: 1546: 1379: 1322: 1134:
Subba Rao, K (2007). "Mechanisms of disease: DNA repair defects and neurological disease".
981: 682: 573: 318: 2341:"Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer" 2240:"Immunohistochemical analysis reveals high frequency of PMS2 defects in colorectal cancer" 8: 581: 445: 313: 309: 224: 204: 114: 2297: 2008: 1951: 1842: 1599: 1550: 1383: 1326: 686: 2367: 2340: 2316: 2281: 2215: 2190: 2166: 2149: 2125: 2100: 2076: 2051: 1968: 1935: 1910: 1885: 1861: 1826: 1802: 1775: 1751: 1724: 1665: 1640: 1616: 1583: 1343: 1310: 1309:
Vogelstein B; Papadopoulos N; Velculescu VE; Zhou S; Diaz LA; Kinzler KW (March 2013).
1287: 1240: 1203: 1178: 1159: 1029: 1004: 945: 920: 896: 871: 847: 822: 779: 754: 703: 670: 646: 621: 585:
of translocation in the oncogene shares structural properties of the target regions of
491: 462:
A deficiency in DNA repair itself can allow DNA damages to accumulate, and error-prone
268: 252: 228: 182: 138: 59: 1474: 1402: 416: 2505: 2436: 2413: 2372: 2321: 2261: 2220: 2171: 2130: 2081: 2032: 2027: 1992: 1973: 1915: 1866: 1807: 1756: 1705: 1670: 1621: 1564: 1513: 1479: 1443: 1407: 1348: 1279: 1245: 1208: 1151: 1116: 1075: 1034: 985: 950: 901: 852: 784: 735: 708: 694: 651: 569: 232: 51: 1291: 1194: 1163: 2403: 2362: 2352: 2311: 2301: 2251: 2210: 2202: 2161: 2120: 2112: 2071: 2063: 2050:
Hegan DC; Narayanan L; Jirik FR; Edelmann W; Liskay RM; Glazer PM (December 2006).
2022: 2012: 1963: 1955: 1905: 1897: 1856: 1846: 1797: 1787: 1746: 1736: 1697: 1660: 1652: 1611: 1603: 1554: 1505: 1469: 1433: 1397: 1387: 1367: 1338: 1330: 1271: 1235: 1198: 1190: 1143: 1106: 1065: 1024: 1016: 977: 940: 932: 891: 883: 842: 834: 774: 766: 698: 690: 641: 633: 2116: 2500: 2479: 2256: 2239: 1792: 1741: 1509: 1070: 1053: 345: 1584:"Analysis of genetic inheritance in a family quartet by whole-genome sequencing" 1111: 1094: 936: 770: 435:
mutation frequency) the total number of DNA sequence mutations is about 80,000.
337:
cells acquire mutations in genes responsible for maintaining genome integrity (
2467: 1641:"Estimating the human mutation rate using autozygosity in a founder population" 339: 1701: 343:), as well as in genes that are directly controlling cellular proliferation ( 2489: 1308: 968:
Durkin, Sandra G.; Glover, Thomas W. (Dec 2007). "Chromosome Fragile Sites".
887: 428: 392: 330: 2306: 2206: 2067: 1851: 1607: 1334: 2417: 2376: 2325: 2265: 2224: 2134: 2085: 2017: 1977: 1919: 1870: 1811: 1760: 1709: 1674: 1625: 1568: 1517: 1483: 1411: 1392: 1352: 1283: 1249: 1212: 1155: 1120: 1079: 1038: 989: 905: 856: 788: 739: 712: 655: 384: 35: 2357: 2175: 2036: 1447: 954: 637: 148:
In the cell cycle, DNA is usually most vulnerable during replication. The
2408: 2391: 1901: 1147: 1020: 921:"Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint" 480: 467: 412: 325:
be "passenger" mutations Any genetic or epigenetic lesion increasing the
75: 67: 2099:
Tutt AN; van Oostrom CT; Ross GM; van Steeg H; Ashworth A (March 2002).
1959: 368:
The protein coding regions of the human genome, collectively called the
2098: 1991:
Narayanan L; Fritzell JA; Baker SM; Liskay RM; Glazer PM (April 1997).
1990: 838: 503: 463: 452: 357: 297: 126: 95: 47: 2049: 1932: 1559: 1438: 577: 235:) have a defect in the DNA nucleotide excision repair pathway. Six ( 168: 154: 149: 99: 1656: 1275: 2462: 1687: 1529: 558: 548: 544: 388: 326: 163: 159: 125:). The process of genome instability often leads to a situation of 79: 71: 31: 16:
High frequency of mutations within the genome of a cellular lineage
2189:
Halford S; Rowan A; Sawyer E; Talbot I; Tomlinson I (June 2005).
438: 381: 334: 2392:"Oncogenic chromosomal translocations and human cancer (Review)" 2282:"Modulation of mismatch repair and genomic stability by miR-155" 2188: 1722: 1459: 1365: 289: 2430: 1051: 70:
DNA synthesis past the damage or errors in repair, leading to
1936:"Melanoma genome sequencing reveals frequent PREX2 mutations" 1883: 1639:
Campbell CD; Chong JX; Malig M; et al. (November 2012).
1092: 565: 535: 531: 511: 507: 499: 432: 395:, 1,3-butadiene, acetaldehyde, ethylene oxide and isoprene). 369: 2278: 2237: 363: 1725:"DNA damage, homology-directed repair, and DNA methylation" 755:"Rates and fitness consequences of new mutations in humans" 527: 523: 519: 1824: 1638: 1773: 293: 2338: 1582:
Roach JC; Glusman G; Smit AF; et al. (April 2010).
1581: 210: 1003:
Grabczyk, E.; Mancuso, M.; Sammarco, M. C. (Aug 2007).
1002: 188: 869: 82:
reductions in expression of DNA repair genes. Because
2451: 1532:"Initial sequencing and analysis of the human genome" 1176: 870:
Cortes-Ledesma, Felipe; Aguilera, Andres (Sep 2006).
564:
leading to incorrect joining. In Burkitt's lymphoma,
1495: 422: 411:). In addition, DNA damages can also give rise to 668: 473: 104:List of number of chromosomes of various organisms 1423: 671:"Implications of genetic heterogeneity in cancer" 2487: 1261: 559:Lymphomas as a consequence of genome instability 918: 496:Frequencies of epimutations in DNA repair genes 375: 197: 132: 1774:O'Hagan, HM; Mohammad, HP; Baylin, SB (2008). 439:Cause of high frequency of mutations in cancer 74:. Another source of genome instability may be 1304: 1302: 1300: 1177:Jeppesen, DK; Bohr, VA; Stevnsner, T (2011). 801: 2182: 1926: 1877: 1523: 1179:"DNA repair deficiency in neurodegeneration" 967: 919:Weinert, T. A.; Hartwell, L. H. (May 1993). 752: 572:, which are involved in cell proliferation. 397:Endogenous (metabolically-caused) DNA damage 84:endogenous (metabolically-caused) DNA damage 669:Schmitt, MW; Prindle, MJ; Loeb, LA (2012). 619: 1297: 603:Hallmarks of aging > Genome instability 143: 2407: 2366: 2356: 2315: 2305: 2255: 2214: 2165: 2124: 2075: 2026: 2016: 1984: 1967: 1909: 1860: 1850: 1801: 1791: 1750: 1740: 1664: 1615: 1558: 1473: 1437: 1401: 1391: 1342: 1239: 1202: 1133: 1110: 1069: 1028: 944: 895: 846: 778: 702: 645: 364:Low frequency of mutations without cancer 89: 38:. These mutations can include changes in 158:breaks and recruit factors such as Rmr3 98:, which constitute what is known as the 275:, ataxia-telangiectasia-like disorder, 2488: 2147: 1225: 982:10.1146/annurev.genet.41.042007.165900 725: 662: 468:epigenetic alterations or epimutations 2389: 2043: 613: 211:In neuronal and neuromuscular disease 2092: 820: 189:Transcription-associated instability 13: 1228:American Journal of Blood Research 407:or inaccurate DNA repair (e.g. by 14: 2517: 423:Very frequent mutations in cancer 2473: 2461: 695:10.1111/j.1749-6632.2012.06590.x 401:DNA damage (naturally occurring) 175: 102:defining this species (see also 30:) refers to a high frequency of 2424: 2383: 2332: 2272: 2231: 2141: 1818: 1767: 1716: 1681: 1632: 1575: 1489: 1453: 1417: 1359: 1255: 1219: 1195:10.1016/j.pneurobio.2011.04.013 1170: 1127: 1086: 1045: 996: 474:DNA repair deficiency in cancer 312:, single-strand breaks in DNA, 961: 912: 863: 814: 795: 753:Keightley PD (February 2012). 746: 719: 622:"Bacterial Genome Instability" 620:Darmon, E; Leach, DRF (2014). 576:is characterized by fusion of 1: 2435:. Elsevier. pp. 75–107. 1475:10.1016/S0168-9525(99)01874-0 607: 321:observed among tumour cells. 257:amyotrophic lateral sclerosis 58:or the neuromuscular disease 56:amyotrophic lateral sclerosis 2257:10.1053/j.gastro.2005.01.056 1997:Proc. Natl. Acad. Sci. U.S.A 1793:10.1371/journal.pgen.1000155 1742:10.1371/journal.pgen.0030110 1510:10.1016/j.canlet.2014.12.038 1071:10.1016/j.molcel.2005.06.004 728:Basic Clin Pharmacol Toxicol 553:miRNA, DNA repair and cancer 376:Cause of mutations in cancer 356:has an inhibitory effect on 283: 198:Increase Genetic Variability 133:Causes of genome instability 7: 2117:10.1093/embo-reports/kvf037 1112:10.4049/jimmunol.179.9.6064 771:10.1534/genetics.111.134668 596: 10: 2522: 1372:Proc. Natl. Acad. Sci. USA 1311:"Cancer genome landscapes" 600: 450:homologous recombinational 429:non-protein-coding regions 409:non-homologous end joining 302:chromosomal translocations 277:Nijmegen breakage syndrome 239:with axonal neuropathy-1, 136: 111:chromosomal translocations 44:chromosomal rearrangements 1702:10.1016/j.fct.2011.07.019 970:Annual Review of Genetics 937:10.1093/genetics/134.1.63 626:Microbiol. Mol. Biol. Rev 1831:Proc Natl Acad Sci U S A 888:10.1038/sj.embor.7400774 821:Cobb, J. A. (Dec 2005). 2390:Zheng, Jie (Nov 2013). 2307:10.1073/pnas.1002472107 2207:10.1136/gut.2004.059535 1852:10.1073/pnas.0906920106 1608:10.1126/science.1186802 1335:10.1126/science.1235122 827:Genes & Development 551:article section titled 261:spinocerebellar ataxias 144:DNA Replication Defects 123:chromosomic instability 34:within the genome of a 2433:Advances in Immunology 2286:Proc Natl Acad Sci USA 2148:German, J (Mar 1969). 2018:10.1073/pnas.94.7.3122 1393:10.1073/pnas.202617399 1009:Nucleic Acids Research 354:tumor microenvironment 306:chromosomal inversions 237:spinocerebellar ataxia 90:Usual genome situation 40:nucleic acid sequences 2358:10.1186/2041-9414-3-3 2068:10.1093/carcin/bgl079 1264:Nat Rev Mol Cell Biol 1136:Nat Clin Pract Neurol 1099:Journal of Immunology 638:10.1128/MMBR.00035-13 547:as summarized in the 464:translesion synthesis 405:translesion synthesis 273:ataxia-telangiectasia 217:xeroderma pigmentosum 205:V, D, J recombination 2409:10.3892/or.2013.2677 1148:10.1038/ncpneuro0448 574:Mantle cell lymphoma 387:tobacco smoke (e.g. 314:double-strand breaks 241:Huntington's disease 2298:2010PNAS..107.6982V 2009:1997PNAS...94.3122N 1960:10.1038/nature11071 1952:2012Natur.485..502B 1843:2009PNAS..10613770G 1600:2010Sci...328..636R 1551:2001Natur.409..860L 1384:2002PNAS...9916226N 1327:2013Sci...339.1546V 687:2012NYASA1267..110S 582:Follicular lymphoma 446:DNA mismatch repair 333:, it is known that 265:Friedreich's ataxia 249:Parkinson's disease 245:Alzheimer's disease 225:trichothiodystrophy 221:Cockayne's syndrome 119:genetic instability 28:genomic instability 24:genetic instability 1902:10.1093/nar/gks299 1021:10.1093/nar/gkm589 839:10.1101/gad.361805 492:cancer epigenetics 269:myotonic dystrophy 183:replication stress 139:Replication stress 60:myotonic dystrophy 20:Genome instability 2442:978-0-12-373706-9 2292:(15): 6982–6987. 1890:Nucleic Acids Res 1696:(11): 2921–2933. 1690:Food Chem Toxicol 1545:(6822): 860–921. 1462:Trends Cell Biol. 1321:(6127): 1546–58. 1015:(16): 5351–5359. 833:(24): 3055–3069. 734:(Suppl 1): 1–42. 233:triple-A syndrome 54:diseases such as 52:neurodegenerative 2513: 2478: 2477: 2476: 2466: 2465: 2457: 2447: 2446: 2428: 2422: 2421: 2411: 2402:(5): 2011–2019. 2396:Oncology Reports 2387: 2381: 2380: 2370: 2360: 2336: 2330: 2329: 2319: 2309: 2276: 2270: 2269: 2259: 2250:(5): 1160–1171. 2244:Gastroenterology 2235: 2229: 2228: 2218: 2186: 2180: 2179: 2169: 2145: 2139: 2138: 2128: 2096: 2090: 2089: 2079: 2047: 2041: 2040: 2030: 2020: 1988: 1982: 1981: 1971: 1930: 1924: 1923: 1913: 1881: 1875: 1874: 1864: 1854: 1822: 1816: 1815: 1805: 1795: 1771: 1765: 1764: 1754: 1744: 1720: 1714: 1713: 1685: 1679: 1678: 1668: 1636: 1630: 1629: 1619: 1579: 1573: 1572: 1562: 1560:10.1038/35057062 1536: 1527: 1521: 1520: 1493: 1487: 1486: 1477: 1457: 1451: 1450: 1441: 1439:10.1038/386761a0 1421: 1415: 1414: 1405: 1395: 1378:(25): 16226–31, 1363: 1357: 1356: 1346: 1306: 1295: 1294: 1259: 1253: 1252: 1243: 1223: 1217: 1216: 1206: 1174: 1168: 1167: 1131: 1125: 1124: 1114: 1105:(9): 6064–6071. 1090: 1084: 1083: 1073: 1049: 1043: 1042: 1032: 1000: 994: 993: 965: 959: 958: 948: 916: 910: 909: 899: 867: 861: 860: 850: 818: 812: 811: 799: 793: 792: 782: 750: 744: 743: 723: 717: 716: 706: 675:Ann N Y Acad Sci 666: 660: 659: 649: 617: 543:epimutations in 391:, formaldehyde, 346:gatekeeper genes 36:cellular lineage 2521: 2520: 2516: 2515: 2514: 2512: 2511: 2510: 2486: 2485: 2484: 2474: 2472: 2460: 2452: 2450: 2443: 2429: 2425: 2388: 2384: 2337: 2333: 2277: 2273: 2236: 2232: 2187: 2183: 2146: 2142: 2097: 2093: 2048: 2044: 1989: 1985: 1946:(7399): 502–6. 1931: 1927: 1882: 1878: 1837:(33): 13770–4. 1823: 1819: 1786:(8): e1000155. 1772: 1768: 1721: 1717: 1686: 1682: 1657:10.1038/ng.2418 1651:(11): 1277–81. 1637: 1633: 1594:(5978): 636–9. 1580: 1576: 1534: 1528: 1524: 1494: 1490: 1468:(12): M57–M60, 1458: 1454: 1432:(6627): 761–3, 1422: 1418: 1368:Komarova, N. L. 1364: 1360: 1307: 1298: 1276:10.1038/nrm1276 1260: 1256: 1224: 1220: 1175: 1171: 1132: 1128: 1091: 1087: 1050: 1046: 1001: 997: 966: 962: 917: 913: 868: 864: 819: 815: 800: 796: 751: 747: 724: 720: 667: 663: 618: 614: 610: 605: 599: 561: 476: 441: 425: 378: 366: 340:caretaker genes 286: 253:Down's syndrome 229:Down's syndrome 213: 200: 191: 178: 146: 141: 135: 92: 17: 12: 11: 5: 2519: 2509: 2508: 2503: 2498: 2483: 2482: 2470: 2449: 2448: 2441: 2423: 2382: 2331: 2271: 2230: 2201:(6): 797–802. 2181: 2160:(2): 196–227. 2154:Am J Hum Genet 2140: 2091: 2062:(12): 2402–8. 2056:Carcinogenesis 2042: 1983: 1925: 1876: 1817: 1766: 1715: 1680: 1631: 1574: 1522: 1498:Cancer Letters 1488: 1452: 1416: 1366:Nowak, M. A.; 1358: 1296: 1254: 1218: 1189:(2): 166–200. 1183:Prog Neurobiol 1169: 1126: 1085: 1064:(2): 247–258. 1058:Molecular Cell 1044: 995: 976:(1): 169–192. 960: 911: 882:(9): 919–926. 862: 813: 794: 765:(2): 295–304. 745: 718: 681:(1): 110–116. 661: 611: 609: 606: 598: 595: 560: 557: 475: 472: 440: 437: 424: 421: 377: 374: 365: 362: 285: 282: 212: 209: 199: 196: 190: 187: 177: 174: 145: 142: 137:Main article: 134: 131: 91: 88: 15: 9: 6: 4: 3: 2: 2518: 2507: 2504: 2502: 2499: 2497: 2494: 2493: 2491: 2481: 2471: 2469: 2464: 2459: 2458: 2455: 2444: 2438: 2434: 2427: 2419: 2415: 2410: 2405: 2401: 2397: 2393: 2386: 2378: 2374: 2369: 2364: 2359: 2354: 2350: 2346: 2345:Genome Integr 2342: 2335: 2327: 2323: 2318: 2313: 2308: 2303: 2299: 2295: 2291: 2287: 2283: 2275: 2267: 2263: 2258: 2253: 2249: 2245: 2241: 2234: 2226: 2222: 2217: 2212: 2208: 2204: 2200: 2196: 2192: 2185: 2177: 2173: 2168: 2163: 2159: 2155: 2151: 2144: 2136: 2132: 2127: 2122: 2118: 2114: 2111:(3): 255–60. 2110: 2106: 2102: 2095: 2087: 2083: 2078: 2073: 2069: 2065: 2061: 2057: 2053: 2046: 2038: 2034: 2029: 2024: 2019: 2014: 2010: 2006: 2003:(7): 3122–7. 2002: 1998: 1994: 1987: 1979: 1975: 1970: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1937: 1929: 1921: 1917: 1912: 1907: 1903: 1899: 1895: 1891: 1887: 1880: 1872: 1868: 1863: 1858: 1853: 1848: 1844: 1840: 1836: 1832: 1828: 1821: 1813: 1809: 1804: 1799: 1794: 1789: 1785: 1781: 1777: 1770: 1762: 1758: 1753: 1748: 1743: 1738: 1734: 1730: 1726: 1719: 1711: 1707: 1703: 1699: 1695: 1691: 1684: 1676: 1672: 1667: 1662: 1658: 1654: 1650: 1646: 1642: 1635: 1627: 1623: 1618: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1561: 1556: 1552: 1548: 1544: 1540: 1533: 1526: 1519: 1515: 1511: 1507: 1503: 1499: 1492: 1485: 1481: 1476: 1471: 1467: 1463: 1456: 1449: 1445: 1440: 1435: 1431: 1427: 1420: 1413: 1409: 1404: 1399: 1394: 1389: 1385: 1381: 1377: 1373: 1369: 1362: 1354: 1350: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1303: 1301: 1293: 1289: 1285: 1281: 1277: 1273: 1269: 1265: 1258: 1251: 1247: 1242: 1237: 1233: 1229: 1222: 1214: 1210: 1205: 1200: 1196: 1192: 1188: 1184: 1180: 1173: 1165: 1161: 1157: 1153: 1149: 1145: 1142:(3): 162–72. 1141: 1137: 1130: 1122: 1118: 1113: 1108: 1104: 1100: 1096: 1089: 1081: 1077: 1072: 1067: 1063: 1059: 1055: 1048: 1040: 1036: 1031: 1026: 1022: 1018: 1014: 1010: 1006: 999: 991: 987: 983: 979: 975: 971: 964: 956: 952: 947: 942: 938: 934: 930: 926: 922: 915: 907: 903: 898: 893: 889: 885: 881: 877: 873: 866: 858: 854: 849: 844: 840: 836: 832: 828: 824: 817: 810:(4): 779–790. 809: 805: 798: 790: 786: 781: 776: 772: 768: 764: 760: 756: 749: 741: 737: 733: 729: 722: 714: 710: 705: 700: 696: 692: 688: 684: 680: 676: 672: 665: 657: 653: 648: 643: 639: 635: 631: 627: 623: 616: 612: 604: 594: 592: 588: 583: 579: 575: 571: 567: 556: 554: 550: 546: 541: 537: 533: 529: 525: 521: 517: 513: 509: 505: 501: 497: 494:(see section 493: 488: 484: 482: 471: 469: 465: 460: 458: 454: 451: 447: 436: 434: 430: 420: 418: 414: 410: 406: 402: 398: 394: 393:acrylonitrile 390: 386: 383: 373: 371: 361: 359: 355: 350: 348: 347: 342: 341: 336: 332: 331:tumorogenesis 328: 322: 320: 319:heterogeneity 315: 311: 308:, chromosome 307: 303: 299: 295: 291: 281: 278: 274: 270: 266: 262: 258: 254: 250: 246: 242: 238: 234: 230: 226: 222: 218: 208: 206: 195: 186: 184: 176:Fragile Sites 173: 170: 165: 161: 156: 151: 140: 130: 128: 124: 120: 116: 112: 107: 105: 101: 97: 87: 85: 81: 77: 73: 69: 63: 61: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 2432: 2426: 2399: 2395: 2385: 2348: 2344: 2334: 2289: 2285: 2274: 2247: 2243: 2233: 2198: 2194: 2184: 2157: 2153: 2143: 2108: 2104: 2094: 2059: 2055: 2045: 2000: 1996: 1986: 1943: 1939: 1928: 1896:(14): e107. 1893: 1889: 1879: 1834: 1830: 1820: 1783: 1779: 1769: 1732: 1728: 1718: 1693: 1689: 1683: 1648: 1644: 1634: 1591: 1587: 1577: 1542: 1538: 1525: 1501: 1497: 1491: 1465: 1461: 1455: 1429: 1425: 1419: 1375: 1371: 1361: 1318: 1314: 1270:(1): 45–54, 1267: 1263: 1257: 1234:(3): 160–9, 1231: 1227: 1221: 1186: 1182: 1172: 1139: 1135: 1129: 1102: 1098: 1088: 1061: 1057: 1047: 1012: 1008: 998: 973: 969: 963: 931:(1): 63–80. 928: 924: 914: 879: 876:EMBO Reports 875: 865: 830: 826: 816: 807: 803: 797: 762: 758: 748: 731: 727: 721: 678: 674: 664: 629: 625: 615: 562: 489: 485: 477: 461: 442: 426: 379: 367: 351: 344: 338: 323: 287: 214: 201: 192: 179: 147: 122: 118: 108: 93: 64: 27: 23: 19: 18: 2496:Chromosomes 1735:(7): e110. 1504:(1): 8–16, 632:(1): 1–39. 481:Epigenetics 298:chromosomes 96:chromosomes 68:translesion 2490:Categories 1780:PLOS Genet 1729:PLOS Genet 1645:Nat. Genet 608:References 601:See also: 453:DNA repair 413:epigenetic 358:DNA repair 127:aneuploidy 121:, or even 80:mutational 76:epigenetic 48:aneuploidy 578:cyclin D1 545:microRNAs 385:genotoxic 382:exogenous 310:deletions 284:In cancer 169:chromatid 155:replisome 150:replisome 115:deletions 100:karyotype 32:mutations 2506:Mutation 2480:Medicine 2418:23970180 2377:22494821 2351:(1): 3. 2326:20351277 2266:15887099 2225:15888787 2135:11850397 2105:EMBO Rep 2086:16728433 1978:22622578 1920:22492626 1871:19666485 1812:18704159 1761:17616978 1710:21802474 1675:23001126 1626:20220176 1569:11237011 1518:25528631 1484:10611684 1412:12446840 1353:23539594 1292:11985415 1284:14708009 1250:23119227 1213:21550379 1164:12930631 1156:17342192 1121:17947680 1080:16039593 1039:17693431 990:17608616 925:Genetics 906:16888651 857:16357221 804:Genetics 789:22345605 759:Genetics 740:15859009 713:22954224 656:24600039 597:In aging 593:repair. 549:MicroRNA 389:acrolein 327:mutation 164:helicase 160:helicase 72:mutation 2468:Biology 2454:Portals 2368:3351028 2317:2872463 2294:Bibcode 2216:1774551 2176:5770175 2167:1706430 2126:1084010 2077:2612936 2037:9096356 2005:Bibcode 1969:3367798 1948:Bibcode 1911:3413110 1862:2722505 1839:Bibcode 1803:2491723 1752:1913100 1666:3483378 1617:3037280 1596:Bibcode 1588:Science 1547:Bibcode 1448:9126728 1380:Bibcode 1344:3749880 1323:Bibcode 1315:Science 1241:3484411 1204:3123739 1030:2018641 955:8514150 946:1205445 897:1559660 848:1315408 780:3276617 704:3674777 683:Bibcode 647:3957733 570:targets 534:, XPF, 335:diploid 2501:Cancer 2439:  2416:  2375:  2365:  2324:  2314:  2264:  2223:  2213:  2174:  2164:  2133:  2123:  2084:  2074:  2035:  2025:  1976:  1966:  1940:Nature 1918:  1908:  1869:  1859:  1810:  1800:  1759:  1749:  1708:  1673:  1663:  1624:  1614:  1567:  1539:Nature 1516:  1482:  1446:  1426:Nature 1410:  1403:138593 1400:  1351:  1341:  1290:  1282:  1248:  1238:  1211:  1201:  1162:  1154:  1119:  1078:  1037:  1027:  988:  953:  943:  904:  894:  855:  845:  787:  777:  738:  711:  701:  654:  644:  448:or in 417:cancer 290:cancer 231:, and 22:(also 2028:20332 1535:(PDF) 1288:S2CID 1160:S2CID 566:c-myc 536:NEIL1 532:ERCC1 512:FANCF 508:FANCB 500:BRCA1 433:exome 370:exome 2437:ISBN 2414:PMID 2373:PMID 2322:PMID 2262:PMID 2221:PMID 2172:PMID 2131:PMID 2082:PMID 2033:PMID 1974:PMID 1916:PMID 1867:PMID 1808:PMID 1757:PMID 1706:PMID 1671:PMID 1622:PMID 1565:PMID 1514:PMID 1480:PMID 1444:PMID 1408:PMID 1349:PMID 1280:PMID 1246:PMID 1209:PMID 1152:PMID 1117:PMID 1076:PMID 1035:PMID 986:PMID 951:PMID 902:PMID 853:PMID 785:PMID 736:PMID 709:PMID 679:1267 652:PMID 591:NHEJ 538:and 528:MSH4 524:MSH2 520:MLH1 516:MGMT 352:The 267:and 255:and 2404:doi 2363:PMC 2353:doi 2312:PMC 2302:doi 2290:107 2252:doi 2248:128 2211:PMC 2203:doi 2195:Gut 2162:PMC 2121:PMC 2113:doi 2072:PMC 2064:doi 2023:PMC 2013:doi 1964:PMC 1956:doi 1944:485 1906:PMC 1898:doi 1857:PMC 1847:doi 1835:106 1798:PMC 1788:doi 1747:PMC 1737:doi 1698:doi 1661:PMC 1653:doi 1612:PMC 1604:doi 1592:328 1555:doi 1543:409 1506:doi 1502:358 1470:doi 1434:doi 1430:386 1398:PMC 1388:doi 1339:PMC 1331:doi 1319:339 1272:doi 1236:PMC 1199:PMC 1191:doi 1144:doi 1107:doi 1103:179 1066:doi 1025:PMC 1017:doi 978:doi 941:PMC 933:doi 929:134 892:PMC 884:doi 843:PMC 835:doi 775:PMC 767:doi 763:190 699:PMC 691:doi 642:PMC 634:doi 587:AID 540:ATM 504:WRN 490:In 457:BLM 296:or 294:DNA 288:In 78:or 46:or 26:or 2492:: 2412:. 2400:30 2398:. 2394:. 2371:. 2361:. 2347:. 2343:. 2320:. 2310:. 2300:. 2288:. 2284:. 2260:. 2246:. 2242:. 2219:. 2209:. 2199:54 2197:. 2193:. 2170:. 2158:21 2156:. 2152:. 2129:. 2119:. 2107:. 2103:. 2080:. 2070:. 2060:27 2058:. 2054:. 2031:. 2021:. 2011:. 2001:94 1999:. 1995:. 1972:. 1962:. 1954:. 1942:. 1938:. 1914:. 1904:. 1894:40 1892:. 1888:. 1865:. 1855:. 1845:. 1833:. 1829:. 1806:. 1796:. 1782:. 1778:. 1755:. 1745:. 1731:. 1727:. 1704:. 1694:49 1692:. 1669:. 1659:. 1649:44 1647:. 1643:. 1620:. 1610:. 1602:. 1590:. 1586:. 1563:. 1553:. 1541:. 1537:. 1512:, 1500:, 1478:, 1464:, 1442:, 1428:, 1406:, 1396:, 1386:, 1376:99 1374:, 1347:. 1337:. 1329:. 1317:. 1313:. 1299:^ 1286:, 1278:, 1266:, 1244:, 1230:, 1207:. 1197:. 1187:94 1185:. 1181:. 1158:. 1150:. 1138:. 1115:. 1101:. 1097:. 1074:. 1062:19 1060:. 1056:. 1033:. 1023:. 1013:35 1011:. 1007:. 984:. 974:41 972:. 949:. 939:. 927:. 923:. 900:. 890:. 878:. 874:. 851:. 841:. 831:19 829:. 825:. 806:. 783:. 773:. 761:. 757:. 732:96 730:. 707:. 697:. 689:. 677:. 673:. 650:. 640:. 630:78 628:. 624:. 555:. 530:, 526:, 522:, 518:, 514:, 510:, 506:, 502:, 459:. 419:. 304:, 300:, 263:, 251:, 247:, 243:, 227:, 223:, 219:, 113:, 62:. 42:, 2456:: 2445:. 2420:. 2406:: 2379:. 2355:: 2349:3 2328:. 2304:: 2296:: 2268:. 2254:: 2227:. 2205:: 2178:. 2137:. 2115:: 2109:3 2088:. 2066:: 2039:. 2015:: 2007:: 1980:. 1958:: 1950:: 1922:. 1900:: 1873:. 1849:: 1841:: 1814:. 1790:: 1784:4 1763:. 1739:: 1733:3 1712:. 1700:: 1677:. 1655:: 1628:. 1606:: 1598:: 1571:. 1557:: 1549:: 1508:: 1472:: 1466:9 1436:: 1390:: 1382:: 1355:. 1333:: 1325:: 1274:: 1268:5 1232:2 1215:. 1193:: 1166:. 1146:: 1140:3 1123:. 1109:: 1082:. 1068:: 1041:. 1019:: 992:. 980:: 957:. 935:: 908:. 886:: 880:7 859:. 837:: 808:4 791:. 769:: 742:. 715:. 693:: 685:: 658:. 636::

Index

mutations
cellular lineage
nucleic acid sequences
chromosomal rearrangements
aneuploidy
neurodegenerative
amyotrophic lateral sclerosis
myotonic dystrophy
translesion
mutation
epigenetic
mutational
endogenous (metabolically-caused) DNA damage
chromosomes
karyotype
List of number of chromosomes of various organisms
chromosomal translocations
deletions
aneuploidy
Replication stress
replisome
replisome
helicase
helicase
chromatid
replication stress
V, D, J recombination
xeroderma pigmentosum
Cockayne's syndrome
trichothiodystrophy

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑