Knowledge

Geological history of oxygen

Source 📝

1238:, when the oxygen concentration in the atmosphere reached 35%, has been attributed to the limiting role of diffusion in these organisms' metabolism. But J.B.S. Haldane's essay points out that it would only apply to insects. However, the biological basis for this correlation is not firm, and many lines of evidence show that oxygen concentration is not size-limiting in modern insects. Ecological constraints can better explain the diminutive size of post-Carboniferous dragonflies – for instance, the appearance of flying competitors such as 19: 1254:, biologically-available nitrogen compounds were in limited supply and periodic "nitrogen crises" could render the ocean inhospitable to life. Significant concentrations of oxygen were just one of the prerequisites for the evolution of complex life. Models based on uniformitarian principles (i.e. extrapolating present-day ocean dynamics into deep time) suggest that such a concentration was only reached immediately before 1205:
period, atmospheric oxygen concentrations have fluctuated between 15% and 35% of atmospheric volume. 430-million-year-old fossilized charcoal produced by wildfires show that the atmospheric oxygen levels in the Silurian must have been equivalent to, or possibly above, present day levels. The maximum
1258:
first appeared in the fossil record. Further, anoxic or otherwise chemically "inhospitable" oceanic conditions that resemble those supposed to inhibit macroscopic life re-occur at intervals through the early Cambrian, and also in the late Cretaceous – with no apparent effect on lifeforms at
1245:
Rising oxygen concentrations have been cited as one of several drivers for evolutionary diversification, although the physiological arguments behind such arguments are questionable, and a consistent pattern between oxygen concentrations and the rate of evolution is not clearly evident. The most
1221:
The Great Oxygenation Event had the first major effect on the course of evolution. Due to the rapid buildup of oxygen in the atmosphere, many organisms not reliant on oxygen to live died. The concentration of oxygen in the atmosphere is often cited as a possible contributor to large-scale
129:
as a waste product lived long before the first build-up of free oxygen in the atmosphere, perhaps as early as 3.5 billion years ago. The oxygen they produced would have been rapidly removed from the oceans by weathering of reducing minerals, most notably
1233:
Data show an increase in biovolume soon after the Great Oxygenation Event by more than 100-fold and a moderate correlation between atmospheric oxygen and maximum body size later in the geological record. The large size of many arthropods in the
104:
The increase in oxygen concentrations had wide ranging and significant impacts on life. Most significantly, the rise of oxygen caused a mass extinction of anaerobic microbes and paved the way for multicellular life.
1259:
these times. This might suggest that the geochemical signatures found in ocean sediments reflect the atmosphere in a different way before the Cambrian – perhaps as a result of the fundamentally different mode of
1266:
An oxygen-rich atmosphere can release phosphorus and iron from rock, by weathering, and these elements then become available for sustenance of new species whose metabolisms require these elements as oxides.
1201:
provided life with new opportunities. Aerobic metabolism is more efficient than anaerobic pathways, and the presence of oxygen created new possibilities for life to explore. Since the start of the
1505:
Dutkiewicz, A.; Volk, H.; George, S. C.; Ridley, J.; Buick, R. (2006). "Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event".
1540:
Anbar, A.; Duan, Y.; Lyons, T.; Arnold, G.; Kendall, B.; Creaser, R.; Kaufman, A.; Gordon, G.; Scott, C.; Garvin, J.; Buick, R. (2007). "A whiff of oxygen before the great oxidation event?".
1863:
Payne, J. L.; McClain, C. R.; Boyer, A. G; Brown, J. H.; Finnegan, S.; et al. (2011). "The evolutionary consequences of oxygenic photosynthesis: a body size perspective".
78:). Small quantities of oxygen were released by geological and biological processes, but did not build up in the atmosphere due to reactions with reducing minerals. 2016: 138:. Thus, the oceans rusted and turned red. Oxygen only began to persist in the atmosphere in small quantities about 50 million years before the start of the 891: 2000: 1250:
glaciations, where complex multicellular life is first found in the fossil record. Under low oxygen concentrations and before the evolution of
154: 1364: 1286: 1929: 184: 1218:, affect relative carbon dioxide concentrations, their effect on the much larger concentration of oxygen is less significant. 1845: 1660: 2048: 2078: 2039: 1281: 1816: 951: 749: 90: 30:. Red and green lines represent the range of the estimates while time is measured in billions of years ago ( 1210:
period (about 300 million years ago), a peak which may have contributed to the large size of various
425: 177: 513: 1052: 769: 2073: 729: 393: 1276: 139: 1837: 1829: 52:
starts to gas out of the oceans, but is absorbed by land surfaces and formation of ozone layer.
1214:, including insects, millipedes and scorpions. Whilst human activities, such as the burning of 1163: 789: 457: 170: 135: 1652: 1645: 1882:"The Biggest Bugs: An investigation into the factors controlling the maximum size of insects" 1817:
Earliest record of wildfires provides insights into Earth's past vegetation and oxygen levels
1138: 850: 27: 1930:"A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning" 1944: 1763: 1708: 1699:
Butterfield, N. J. (2009). "Oxygen, animals and oceanic ventilation: An alternative view".
1607: 1549: 1514: 1404: 1235: 409: 114: 8: 911: 870: 81:
Oxygen began building up in the atmosphere at approximately 1.85 Ga. At current rates of
67: 1948: 1767: 1712: 1611: 1553: 1518: 1408: 2021: 1978: 1732: 1625: 1573: 1482: 1457: 1433: 1392: 1334: 1309: 1227: 1032: 931: 829: 82: 2035: 1970: 1841: 1799: 1794: 1781: 1751: 1724: 1720: 1656: 1620: 1595: 1565: 1487: 1438: 1420: 1339: 1251: 1736: 1629: 1577: 1982: 1960: 1952: 1928:
Navarro-González, Rafaell; McKay, Christopher P.; Nna Mvondo, Delphine (Jul 2001).
1893: 1789: 1771: 1716: 1615: 1557: 1522: 1477: 1469: 1428: 1412: 1329: 1321: 1260: 1223: 1246:
celebrated link between oxygen and evolution occurs at the end of the last of the
1174:
Early fluctuations in oxygen concentration had little direct effect on life, with
2083: 1175: 1012: 1756:
Proceedings of the National Academy of Sciences of the United States of America
1416: 1369: 1247: 1230:, trends in animal body size, and other diversification and extinction events. 134:. This rusting led to the deposition of iron oxide on the ocean floor, forming 119: 86: 63: 2067: 1785: 1776: 1424: 1207: 1093: 1561: 1974: 1803: 1728: 1569: 1442: 1391:
Stone, Jordan; Edgar, John O.; Gould, Jamie A.; Telling, Jon (2022-08-08).
1343: 1325: 971: 709: 1491: 1898: 1881: 1360: 1215: 655: 617: 122: 94: 101:
attained were less than 10% of today's and probably fluctuated greatly.
1473: 1211: 1184: 991: 1965: 1314:
Philosophical Transactions of the Royal Society B: Biological Sciences
1956: 1526: 1239: 501: 441: 31: 93:, the rate of oxygen production by photosynthesis was slower in the 18: 1202: 1179: 1073: 522: 504: 2032:
Out of Thin Air; dinosaurs, birds, and Earth's ancient atmosphere
1255: 589: 556: 1927: 566: 538: 71: 1393:"Tectonically-driven oxidant production in the hot biosphere" 1118: 473: 1651:. Upper Saddle River, NJ: Pearson – Prentice Hall. pp.  547: 131: 1504: 1836:. Oxford, England, UK: Oxford University Press. pp.  1155: 1114: 2001:"First breath: Earth's billion-year struggle for oxygen" 85:, today's concentration of oxygen could be produced by 1834:
Nature's Building Blocks: An A-Z Guide to the Elements
1390: 1539: 1365:"Earth's Oxygen: A Mystery Easy to Take for Granted" 1596:"Macroevolution and macroecology through deep time" 149: 108: 1694: 1692: 1644: 46:produced, but absorbed in oceans and seabed rock. 1690: 1688: 1686: 1684: 1682: 1680: 1678: 1676: 1674: 1672: 1589: 1587: 2065: 1921: 1669: 1584: 1355: 1353: 1310:"The oxygenation of the atmosphere and oceans" 1303: 1301: 178: 1859: 1857: 1698: 1593: 1350: 1178:not observed until around the start of the 1821: 1752:"Atmospheric oxygen over Phanerozoic time" 1743: 1298: 1206:of 35% was reached towards the end of the 185: 171: 1964: 1897: 1854: 1793: 1775: 1619: 1533: 1481: 1432: 1333: 1287:Silurian-Devonian Terrestrial Revolution 36:Stage 1 (3.85–2.45 Ga): Practically no O 17: 1870:: 37-57. DOI 10.1007/s11120-010-9593-1 1642: 1449: 1307: 2066: 2014: 1827: 1749: 1636: 1359: 1151: 1879: 163: 2029: 1998: 1455: 1222:evolutionary phenomena, such as the 1127: 1103: 1082: 1062: 1041: 1021: 1001: 980: 960: 940: 920: 900: 880: 859: 839: 818: 798: 778: 758: 738: 718: 698: 152: 1912: 54:Stages 4 and 5 (0.85 Ga–present): O 13: 145: 58:sinks filled, the gas accumulates. 14: 2095: 1992: 1462:The Journal of General Physiology 89:organisms in 2,000 years. In the 1721:10.1111/j.1472-4669.2009.00188.x 1621:10.1111/j.1475-4983.2006.00613.x 1282:Neoproterozoic oxygenation event 109:Before the Great Oxidation Event 2017:"The mystery of Earth's oxygen" 2015:Zimmer, Carl (3 October 2013). 1906: 1873: 1810: 1458:"The Natural History of Oxygen" 1263:in the absence of planktivory. 1999:Lane, Nick (5 February 2010). 1498: 1384: 697: 1: 1292: 97:, and the concentrations of O 7: 2079:Geological history of Earth 1594:Butterfield, N. J. (2007). 1270: 1152: 912:Earliest multicellular life 382: 10: 2100: 1750:Berner, R. A. (Sep 1999). 1417:10.1038/s41467-022-32129-y 112: 125:organisms that produced O 48:Stage 3 (1.85–0.85 Ga): O 42:Stage 2 (2.45–1.85 Ga): O 1777:10.1073/pnas.96.20.10955 338:−1000 — 318:−1500 — 298:−2000 — 278:−2500 — 258:−3000 — 238:−3500 — 218:−4000 — 198:−4500 — 195: 2030:Ward, Peter D. (2006). 2010:(subscription required) 1915:On being the right size 1647:Biological Science, 2nd 1643:Freeman, Scott (2005). 1562:10.1126/science.1140325 1308:Holland, H. D. (2006). 1277:Great oxygenation event 1187: million years ago 358:−500 — 140:Great Oxygenation Event 2034:. Joseph Henry Press. 1943:(5 July 2001): 61–64. 1880:Polet, Delyle (2011). 1326:10.1098/rstb.2006.1838 136:banded iron formations 59: 1828:Emsley, John (2001). 1468:(1): Suppl:Supp5–27. 1397:Nature Communications 70:had no free diatomic 21: 1899:10.29173/eureka10299 1236:Carboniferous period 115:Prebiotic atmosphere 1949:2001Natur.412...61N 1768:1999PNAS...9610955B 1762:(20): 10955–10957. 1713:2009Gbio....7....1B 1612:2007Palgy..50...41B 1554:2007Sci...317.1903A 1548:(5846): 1903–1906. 1519:2006Geo....34..437D 1409:2022NatCo..13.4529S 1242:, birds and bats. 892:Sexual reproduction 871:Huronian glaciation 40:in the atmosphere. 2022:The New York Times 1917:, paragraph 7 1474:10.1085/jgp.49.1.5 1363:(3 October 2013). 1228:Cambrian explosion 1189:. The presence of 1139:Quaternary ice age 1074:Earliest tetrapods 1033:Cambrian explosion 992:Cryogenian ice age 851:Atmospheric oxygen 830:Pongola glaciation 458:Multicellular life 410:Single-celled life 83:primary production 68:Earth's atmosphere 60: 28:Earth's atmosphere 1913:Haldane, J.B.S., 1847:978-0-19-850340-8 1662:978-0-13-140941-5 1456:Dole, M. (1965). 1320:(1470): 903–915. 1252:nitrogen fixation 1172: 1171: 1156:million years ago 1147: 1146: 1126: 1125: 1102: 1101: 1081: 1080: 1061: 1060: 1053:Andean glaciation 1040: 1039: 1020: 1019: 1000: 999: 979: 978: 959: 958: 939: 938: 919: 918: 899: 898: 879: 878: 858: 857: 838: 837: 817: 816: 797: 796: 777: 776: 757: 756: 737: 736: 717: 716: 91:absence of plants 2091: 2060: 2045: 2026: 2011: 2008: 2007:. No. 2746. 1987: 1986: 1968: 1957:10.1038/35083537 1934: 1925: 1919: 1918: 1910: 1904: 1903: 1901: 1877: 1871: 1865:Photosynth. Res. 1861: 1852: 1851: 1825: 1819: 1814: 1808: 1807: 1797: 1779: 1747: 1741: 1740: 1696: 1667: 1666: 1650: 1640: 1634: 1633: 1623: 1591: 1582: 1581: 1537: 1531: 1530: 1527:10.1130/G22360.1 1502: 1496: 1495: 1485: 1453: 1447: 1446: 1436: 1388: 1382: 1381: 1379: 1377: 1357: 1348: 1347: 1337: 1305: 1261:nutrient cycling 1224:Avalon explosion 1200: 1199: 1198: 1188: 1176:mass extinctions 1133: 1128: 1109: 1104: 1088: 1083: 1068: 1063: 1047: 1042: 1027: 1022: 1007: 1002: 986: 981: 972:Earliest animals 966: 961: 946: 941: 926: 921: 906: 901: 886: 881: 865: 860: 845: 840: 824: 819: 804: 799: 784: 779: 770:Earliest fossils 764: 759: 744: 739: 724: 719: 704: 699: 678: 647: 609: 607: 581: 579: 486: 379: 374: 369: 364: 359: 354: 349: 344: 339: 334: 329: 324: 319: 314: 309: 304: 299: 294: 289: 284: 279: 274: 269: 264: 259: 254: 249: 244: 239: 234: 229: 224: 219: 214: 209: 204: 199: 187: 180: 173: 167: 157: 150: 26:build-up in the 2099: 2098: 2094: 2093: 2092: 2090: 2089: 2088: 2074:Biogeochemistry 2064: 2063: 2051:Out of Thin Air 2047: 2042: 2009: 1995: 1990: 1932: 1926: 1922: 1911: 1907: 1878: 1874: 1862: 1855: 1848: 1826: 1822: 1815: 1811: 1748: 1744: 1697: 1670: 1663: 1641: 1637: 1592: 1585: 1538: 1534: 1503: 1499: 1454: 1450: 1389: 1385: 1375: 1373: 1358: 1351: 1306: 1299: 1295: 1273: 1197: 1194: 1193: 1192: 1190: 1183: 1168: 1167: 1159: 1143: 1142: 1131: 1122: 1121: 1107: 1098: 1097: 1086: 1077: 1076: 1066: 1057: 1056: 1045: 1036: 1035: 1025: 1016: 1015: 1013:Ediacaran biota 1005: 996: 995: 984: 975: 974: 964: 955: 954: 952:Earliest plants 944: 935: 934: 924: 915: 914: 904: 895: 894: 884: 875: 874: 863: 854: 853: 843: 834: 833: 822: 813: 812: 810:Earliest oxygen 802: 793: 792: 782: 773: 772: 762: 753: 752: 742: 733: 732: 722: 713: 712: 702: 695: 694: 693: 688: 687: 686: 681: 680: 679: 675: 673: 671: 669: 667: 665: 663: 661: 659: 657: 654: 650: 649: 648: 644: 642: 640: 638: 636: 634: 632: 630: 628: 626: 624: 623: 622: 621: 620: 619: 618: 616: 612: 611: 610: 605: 603: 601: 599: 597: 595: 593: 592: 591: 590: 588: 584: 583: 582: 577: 575: 573: 571: 569: 567: 565: 561: 560: 559: 552: 551: 550: 543: 542: 541: 534: 533: 532: 527: 526: 525: 518: 517: 516: 509: 508: 507: 497: 496: 495: 490: 489: 488: 484: 482: 480: 478: 476: 474: 469: 468: 467: 462: 461: 460: 453: 452: 451: 446: 445: 444: 437: 436: 435: 430: 429: 428: 421: 420: 419: 414: 413: 412: 405: 404: 403: 398: 397: 396: 389: 388: 387: 380: 377: 375: 372: 370: 367: 365: 362: 360: 357: 355: 352: 350: 347: 345: 342: 340: 337: 335: 332: 330: 327: 325: 322: 320: 317: 315: 312: 310: 307: 305: 302: 300: 297: 295: 292: 290: 287: 285: 282: 280: 277: 275: 272: 270: 267: 265: 262: 260: 257: 255: 252: 250: 247: 245: 242: 240: 237: 235: 232: 230: 227: 225: 222: 220: 217: 215: 212: 210: 207: 205: 202: 200: 197: 191: 165: 159: 155: 148: 146:Effects on life 128: 117: 111: 100: 77: 57: 53: 51: 47: 45: 41: 39: 35: 25: 12: 11: 5: 2097: 2087: 2086: 2081: 2076: 2062: 2061: 2053:by Peter Ward" 2040: 2027: 2012: 1994: 1993:External links 1991: 1989: 1988: 1920: 1905: 1872: 1853: 1846: 1820: 1809: 1742: 1668: 1661: 1635: 1583: 1532: 1497: 1448: 1383: 1370:New York Times 1349: 1296: 1294: 1291: 1290: 1289: 1284: 1279: 1272: 1269: 1248:Snowball Earth 1195: 1170: 1169: 1160: 1153: 1149: 1148: 1145: 1144: 1137: 1136: 1134: 1124: 1123: 1113: 1112: 1110: 1100: 1099: 1092: 1091: 1089: 1079: 1078: 1072: 1071: 1069: 1059: 1058: 1051: 1050: 1048: 1038: 1037: 1031: 1030: 1028: 1018: 1017: 1011: 1010: 1008: 998: 997: 990: 989: 987: 977: 976: 970: 969: 967: 957: 956: 950: 949: 947: 937: 936: 932:Earliest fungi 930: 929: 927: 917: 916: 910: 909: 907: 897: 896: 890: 889: 887: 877: 876: 869: 868: 866: 856: 855: 849: 848: 846: 836: 835: 828: 827: 825: 815: 814: 808: 807: 805: 795: 794: 790:LHB meteorites 788: 787: 785: 775: 774: 768: 767: 765: 755: 754: 748: 747: 745: 735: 734: 730:Earliest water 728: 727: 725: 715: 714: 708: 707: 705: 696: 691: 690: 689: 684: 683: 682: 653: 652: 651: 615: 614: 613: 587: 586: 585: 564: 563: 562: 555: 554: 553: 546: 545: 544: 537: 536: 535: 530: 529: 528: 521: 520: 519: 512: 511: 510: 500: 499: 498: 493: 492: 491: 472: 471: 470: 465: 464: 463: 456: 455: 454: 449: 448: 447: 440: 439: 438: 433: 432: 431: 426:Photosynthesis 424: 423: 422: 417: 416: 415: 408: 407: 406: 401: 400: 399: 392: 391: 390: 385: 384: 383: 381: 378:0 — 376: 371: 366: 361: 356: 351: 346: 341: 336: 331: 326: 321: 316: 311: 306: 301: 296: 291: 286: 281: 276: 271: 266: 261: 256: 251: 246: 241: 236: 231: 226: 221: 216: 211: 206: 201: 196: 193: 192: 190: 189: 182: 175: 164: 161: 160: 153: 147: 144: 126: 120:Photosynthetic 113:Main article: 110: 107: 98: 87:photosynthetic 75: 64:photosynthesis 55: 49: 43: 37: 23: 9: 6: 4: 3: 2: 2096: 2085: 2082: 2080: 2077: 2075: 2072: 2071: 2069: 2058: 2057:New Scientist 2054: 2052: 2043: 2041:0-309-10061-5 2037: 2033: 2028: 2024: 2023: 2018: 2013: 2006: 2005:New Scientist 2002: 1997: 1996: 1984: 1980: 1976: 1972: 1967: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1931: 1924: 1916: 1909: 1900: 1895: 1891: 1887: 1883: 1876: 1869: 1866: 1860: 1858: 1849: 1843: 1839: 1835: 1831: 1824: 1818: 1813: 1805: 1801: 1796: 1791: 1787: 1783: 1778: 1773: 1769: 1765: 1761: 1757: 1753: 1746: 1738: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1693: 1691: 1689: 1687: 1685: 1683: 1681: 1679: 1677: 1675: 1673: 1664: 1658: 1654: 1649: 1648: 1639: 1631: 1627: 1622: 1617: 1613: 1609: 1605: 1601: 1600:Palaeontology 1597: 1590: 1588: 1579: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1536: 1528: 1524: 1520: 1516: 1512: 1508: 1501: 1493: 1489: 1484: 1479: 1475: 1471: 1467: 1463: 1459: 1452: 1444: 1440: 1435: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1387: 1372: 1371: 1366: 1362: 1356: 1354: 1345: 1341: 1336: 1331: 1327: 1323: 1319: 1315: 1311: 1304: 1302: 1297: 1288: 1285: 1283: 1280: 1278: 1275: 1274: 1268: 1264: 1262: 1257: 1253: 1249: 1243: 1241: 1237: 1231: 1229: 1225: 1219: 1217: 1213: 1209: 1208:Carboniferous 1204: 1186: 1181: 1177: 1166: 1165: 1157: 1150: 1140: 1135: 1130: 1129: 1120: 1116: 1115:Earliest apes 1111: 1106: 1105: 1095: 1094:Karoo ice age 1090: 1085: 1084: 1075: 1070: 1065: 1064: 1054: 1049: 1044: 1043: 1034: 1029: 1024: 1023: 1014: 1009: 1004: 1003: 993: 988: 983: 982: 973: 968: 963: 962: 953: 948: 943: 942: 933: 928: 923: 922: 913: 908: 903: 902: 893: 888: 883: 882: 872: 867: 862: 861: 852: 847: 842: 841: 831: 826: 821: 820: 811: 806: 801: 800: 791: 786: 781: 780: 771: 766: 761: 760: 751: 746: 741: 740: 731: 726: 721: 720: 711: 706: 701: 700: 677: 646: 608: 580: 558: 549: 540: 524: 515: 506: 503: 487: 459: 443: 427: 411: 395: 194: 188: 183: 181: 176: 174: 169: 168: 162: 158: 156:Life timeline 151: 143: 141: 137: 133: 124: 121: 116: 106: 102: 96: 92: 88: 84: 79: 73: 69: 65: 33: 29: 20: 16: 2056: 2050: 2031: 2020: 2004: 1940: 1936: 1923: 1914: 1908: 1892:(1): 43–46. 1889: 1885: 1875: 1867: 1864: 1833: 1823: 1812: 1759: 1755: 1745: 1704: 1700: 1646: 1638: 1606:(1): 41–55. 1603: 1599: 1545: 1541: 1535: 1510: 1506: 1500: 1465: 1461: 1451: 1400: 1396: 1386: 1374:. Retrieved 1368: 1361:Zimmer, Carl 1317: 1313: 1265: 1244: 1232: 1220: 1216:fossil fuels 1173: 1162: 809: 710:Earth formed 118: 103: 80: 61: 15: 2049:"Review of 1403:(1): 4529. 166:This box: 123:prokaryotic 95:Precambrian 2068:Categories 1966:10261/8224 1707:(1): 1–7. 1701:Geobiology 1513:(6): 437. 1293:References 1240:pterosaurs 1212:arthropods 502:Arthropods 442:Eukaryotes 1786:0027-8424 1425:2041-1723 1376:3 October 523:Dinosaurs 66:evolved, 1975:11452304 1830:"Oxygen" 1804:10500106 1737:31074331 1729:19200141 1653:214, 586 1630:59436643 1578:25260892 1570:17901330 1443:35941147 1344:16754606 1271:See Also 1203:Cambrian 1182:period, 1180:Cambrian 1164:Ice Ages 557:Primates 505:Molluscs 1983:4405370 1945:Bibcode 1838:297–304 1764:Bibcode 1709:Bibcode 1608:Bibcode 1550:Bibcode 1542:Science 1515:Bibcode 1507:Geology 1492:5859927 1483:2195461 1434:9360021 1405:Bibcode 1335:1578726 1256:metazoa 1132:← 1108:← 1087:← 1067:← 1046:← 1026:← 1006:← 985:← 965:← 945:← 925:← 905:← 885:← 864:← 844:← 823:← 803:← 783:← 763:← 743:← 723:← 703:← 539:Mammals 514:Flowers 373:– 368:— 363:– 353:– 348:— 343:– 333:– 328:— 323:– 313:– 308:— 303:– 293:– 288:— 283:– 273:– 268:— 263:– 253:– 248:— 243:– 233:– 228:— 223:– 213:– 208:— 203:– 62:Before 2084:Oxygen 2038:  1981:  1973:  1937:Nature 1886:Eureka 1844:  1802:  1792:  1784:  1735:  1727:  1659:  1628:  1576:  1568:  1490:  1480:  1441:  1431:  1423:  1342:  1332:  1226:, the 1119:humans 692:  685:  531:  494:  466:  450:  434:  418:  402:  386:  72:oxygen 1979:S2CID 1933:(PDF) 1795:34224 1733:S2CID 1626:S2CID 1574:S2CID 1185:538.8 548:Birds 394:Water 2036:ISBN 1971:PMID 1868:1007 1842:ISBN 1800:PMID 1782:ISSN 1725:PMID 1657:ISBN 1566:PMID 1488:PMID 1439:PMID 1421:ISSN 1378:2013 1340:PMID 750:LUCA 186:edit 179:talk 172:view 132:iron 1961:hdl 1953:doi 1941:412 1894:doi 1790:PMC 1772:doi 1717:doi 1616:doi 1558:doi 1546:317 1523:doi 1478:PMC 1470:doi 1429:PMC 1413:doi 1330:PMC 1322:doi 1318:361 34:). 2070:: 2055:. 2046:; 2019:. 2003:. 1977:. 1969:. 1959:. 1951:. 1939:. 1935:. 1888:. 1884:. 1856:^ 1840:. 1832:. 1798:. 1788:. 1780:. 1770:. 1760:96 1758:. 1754:. 1731:. 1723:. 1715:. 1703:. 1671:^ 1655:. 1624:. 1614:. 1604:50 1602:. 1598:. 1586:^ 1572:. 1564:. 1556:. 1544:. 1521:. 1511:34 1509:. 1486:. 1476:. 1466:49 1464:. 1460:. 1437:. 1427:. 1419:. 1411:. 1401:13 1399:. 1395:. 1367:. 1352:^ 1338:. 1328:. 1316:. 1312:. 1300:^ 1117:/ 142:. 74:(O 32:Ga 2059:. 2044:. 2025:. 1985:. 1963:: 1955:: 1947:: 1902:. 1896:: 1890:2 1850:. 1806:. 1774:: 1766:: 1739:. 1719:: 1711:: 1705:7 1665:. 1632:. 1618:: 1610:: 1580:. 1560:: 1552:: 1529:. 1525:: 1517:: 1494:. 1472:: 1445:. 1415:: 1407:: 1380:. 1346:. 1324:: 1196:2 1191:O 1161:* 1158:) 1154:( 1141:* 1096:* 1055:* 994:* 873:* 832:* 676:c 674:i 672:o 670:z 668:o 666:r 664:e 662:n 660:a 658:h 656:P 645:c 643:i 641:o 639:z 637:o 635:r 633:e 631:t 629:o 627:r 625:P 606:n 604:a 602:e 600:h 598:c 596:r 594:A 578:n 576:a 574:e 572:d 570:a 568:H 485:s 483:t 481:n 479:a 477:l 475:P 127:2 99:2 76:2 56:2 50:2 44:2 38:2 24:2 22:O

Index


Earth's atmosphere
Ga
photosynthesis
Earth's atmosphere
oxygen
primary production
photosynthetic
absence of plants
Precambrian
Prebiotic atmosphere
Photosynthetic
prokaryotic
iron
banded iron formations
Great Oxygenation Event
Life timeline
view
talk
edit
Water
Single-celled life
Photosynthesis
Eukaryotes
Multicellular life
P
l
a
n
t
s

Arthropods
Molluscs
Flowers
Dinosaurs

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.