Knowledge

Glen–Nye flow law

Source 📝

1979:
between grain structure and internal stress results in high variations in strain across the same length-scale as the crystals themselves. Additionally, individual ice crystals are not isotropic, and typically are not randomly oriented within the material fabric which undergoes dynamic recrystallization. Grain size and fabric orientation are known to influence the creep of glacial ice, but are dynamic properties which also evolve with the stress regime and are not simple to capture in a model.
1978:
In particular, treatment of the ice as a fluid with bulk properties does not represent and may struggle to capture the cascade of mechanisms which allow the ice to deform at the grain scale in solid state. Glacial ice crystals grow on scales of millimeters up to 10 cm, and constant readjustment
1974:
The use of the word "law" in referring to the Glen-Nye model of ice rheology may obscure the complexity of factors which determine the range of viscous ice flow parameter values even within a single glacier, as well as the significant assumptions and simplifications made by the model itself.
903: 1229: 398:
Under the application of sustained force ice will flow as a fluid, and changes to the force applied will result in non-linear changes to the resulting flow. This fluid behavior of ice, which the Glen–Nye flow law is intended to represent, is accommodated within the solid ice by
1107: 1463: 769: 1137: 988: 470: 787: 677:
With these assumptions, the stress and strain rate tensors here are symmetric and have a trace of zero, properties that allow their invariants and squares to be simplified from the general definitions.
663: 999: 143: 544: 393: 665:. Theoretically, this assumption results from ignoring the third principle invariant of the tensors; physically, this means that the strain rate can only change along the same axes as the 2309:
Larour, E.; Rignot, E.; Joughin, I.; Aubry, D. (2005). "Rheology of the Ronne Ice Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse control method".
673:
While incompressibility is an accurate assumption for glacial ice, glacial ice can be anisotropic and in general the strain rate may respond perpendicularly to the principal stress.
1294: 181: 589: 515: 361: 1689: 1329: 2415: 1915: 1510: 1258: 212: 1883: 1544: 1838: 1791: 1314: 1130: 493: 328: 1941: 1961: 1811: 1760: 1736: 1712: 1615: 1592: 1572: 304: 284: 264: 244: 687: 914: 2451:
Paterson, W. S. B. (1983). "Deformation within polar ice sheets: an analysis of the Byrd Station and Camp Century borehole-tilting measurements".
432: 2119:
Nye, J. F. (1953). "The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment".
2272:
Van Der Veen, Cornelis J.; Whillans, I. M. (1990). "Flow laws for glacier ice: comparison of numerical predictions and field measurements".
898:{\displaystyle {\dot {\epsilon }}_{e}^{2}=II_{\boldsymbol {\dot {\epsilon }}}={\frac {1}{2}}{\dot {\epsilon }}_{ij}{\dot {\epsilon }}_{ij}} 91: 1224:{\displaystyle \mu ={\frac {\boldsymbol {\tau }}{2{\dot {\boldsymbol {\epsilon }}}}}={\frac {1}{2}}\tau _{e}{\dot {\epsilon }}_{e}^{-1}} 666: 2404: 1963:
is also stress dependent, and can reflect different microstructural mechanisms facilitating creep at different stress regimes.
1102:{\displaystyle {\boldsymbol {\dot {\epsilon }}}^{2}={\dot {\epsilon }}_{ij}{\dot {\epsilon }}_{ij}=2{\dot {\epsilon }}_{e}^{2}} 613: 2229:"The flow law of ice: A discussion of the assumptions made in glacier theory, their experimental foundations and consequences" 2533: 2366:
Millstein, J.D.; Minchew, B.M.; Pegler, S.S. (2022). "Ice viscosity is more sensitive to stress than commonly assumed".
17: 1885:. Review of research using a variety of methods and field sites have found the range of plausible values to be around 520: 369: 2243: 2052: 339: 1622: 266:
are scalar constants which have been estimated through a combination of theory and measurements. The exponent
1263: 150: 2623: 2567: 549: 498: 344: 1458:{\displaystyle \mu ={\frac {A^{-1/n}}{2{\dot {\epsilon }}_{e}^{(n-1)/n}}}={\frac {\tau _{e}^{(1-n)}}{2A}}} 416: 1631: 1793:
may be dependent on crystal structure, impurities, damage, or other qualities of the ice. Estimates of
2339:
Goldsby, D.; Kohlstedt, D. L. (2001). "Superplastic deformation of ice: Experimental observations".
1849: 681:
The deviatoric stress tensor is related to an effective stress by its second principal invariant:
1888: 1840:, or by comparing measurements of multiple real world glaciers and experiments, or treated as a 1471: 610:
That corresponding components of the two tensors are directly proportional to one another, i.e.
1982:
The Glen-Nye flow law also does not render the full range of ice response to stress, including
1739: 1236: 190: 1966:
Methods to improve estimations of these viscous parameters are an ongoing field of research.
1813:
vary by orders of magnitude and can be derived as a single value from an estimated value for
307: 219: 47: 1862: 1515: 1112:
The viscosity is scalar and cannot be negative (a fluid cannot gain energy as it flows), so
1816: 1769: 1763: 1299: 1115: 478: 313: 8: 2618: 1983: 1920: 764:{\displaystyle \tau _{e}^{2}=II_{\boldsymbol {\tau }}={\frac {1}{2}}\tau _{ij}\tau _{ij}} 604: 400: 75: 71: 35: 2008: 1987: 1946: 1796: 1745: 1721: 1697: 1618: 1600: 1577: 1557: 1316:
can be defined in terms of either the effective strain rate or effective stress alone:
1132:
can be expressed in terms of the invariant effective stress and effective strain rate.
364: 289: 269: 249: 229: 83: 2405:"Discovering the rheology of Antarctic Ice Shelves via physics-informed deep learning" 2464: 2048: 1715: 775: 335: 331: 419:, where the deviatoric stress and strain tensors are related by a viscosity scalar: 2582: 2548: 2511: 2460: 2383: 2375: 2348: 2318: 2289: 2281: 2189: 2162: 2128: 2084: 424: 2180:
Forbes, James D. (1846). "Illustrations of the viscous theory of glacier motion".
2018: 1845: 1617:
has been found empirically to vary with temperature and is often modeled with an
2515: 2379: 2285: 1856: 184: 63: 2552: 2089: 2072: 2612: 983:{\displaystyle {\boldsymbol {\tau }}^{2}=\tau _{ij}\tau _{ij}=2\tau _{e}^{2}} 607:, as volumetric stress is ignored and only the deviatoric stress can do work. 601:, as the single proportionality scalar is the same for all tensor components. 215: 27:
Technical explanation of a rheology model describing the flow of glacial ice
2193: 2166: 2132: 1841: 465:{\displaystyle {\boldsymbol {\tau }}=2\mu {\dot {\boldsymbol {\epsilon }}}} 67: 2586: 2228: 2352: 2322: 79: 55: 2003: 31: 2388: 2294: 1991: 1321: 2013: 598: 404: 51: 223: 59: 2593: 1233:
Here, the Glen–Nye flow law allows us to substitute for either
2502:
Seligman, Gerald (1949). "The growth of the glacier crystal".
2205: 2203: 306:
takes on the units Pa s. The Glen–Nye flow law simplifies the
2534:"The microstructure of polar ice. Part II: State of the art" 2483: 2471: 2432: 2403:
Wang, Yongji; Lai, Ching-Yao; Cowen-Breen, Charlie (2022).
2200: 2532:
Faria, Sérgio H.; Weikusat, Ilka; Azuma, Nobuhiko (2014).
658:{\displaystyle \tau _{ij}\propto {\dot {\epsilon }}_{ij}} 2308: 2153:
Glen, J. W. (1955). "The creep of polycrystalline ice".
1917:
with the most commonly used assumption to be a constant
2568:"Dynamic Recrystallization of Ice in Polar Ice Sheets" 2565: 2365: 2038: 2036: 2034: 1949: 1923: 1891: 1865: 1819: 1799: 1772: 1748: 1724: 1700: 1634: 1603: 1580: 1560: 1518: 1474: 1332: 1302: 1266: 1239: 1140: 1118: 1002: 917: 790: 690: 616: 552: 523: 501: 481: 435: 372: 347: 316: 292: 272: 252: 232: 193: 153: 138:{\displaystyle {\dot {\epsilon }}_{e}=A\tau _{e}^{n}} 94: 2271: 1554:
The Glen–Nye rheology model defines two parameters,
2531: 2402: 2031: 1955: 1935: 1909: 1877: 1832: 1805: 1785: 1754: 1730: 1706: 1683: 1609: 1586: 1566: 1538: 1504: 1457: 1308: 1288: 1252: 1223: 1124: 1101: 982: 897: 781:The same is defined for an effective strain rate: 763: 657: 583: 538: 509: 487: 464: 387: 355: 322: 298: 278: 258: 238: 206: 175: 137: 2610: 2338: 2267: 2265: 2263: 546:is the strain rate tensor. In some derivations, 539:{\displaystyle {\boldsymbol {\dot {\epsilon }}}} 388:{\displaystyle {\boldsymbol {\dot {\epsilon }}}} 2182:Philosophical Transactions of the Royal Society 58:. The Glen–Nye flow law treats ice as a purely 2599: 2489: 2477: 2438: 2334: 2332: 2209: 2042: 2359: 2260: 594:This construction makes several assumptions: 2527: 2525: 2495: 2444: 2341:Journal of Geophysical Research: Solid Earth 415:The constitutive relation is developed as a 2329: 2148: 2146: 2144: 2142: 2066: 2064: 2559: 2222: 2220: 2218: 778:implies summation over repeated indices. 2522: 2387: 2302: 2293: 2173: 2114: 2112: 2110: 2108: 2106: 2104: 2102: 2100: 2088: 2501: 2450: 2396: 2139: 2061: 2047:(4 ed.). Elsevier. p. 55, 60. 2215: 2073:"Experiments on the deformation of ice" 2043:Cuffey, K.; Paterson, W. S. B. (2010). 1159: 1149: 1007: 920: 908:From this form, we can recognize that: 828: 717: 527: 503: 453: 437: 410: 376: 349: 14: 2611: 2236:IUGG/IAHS Symp. Of Chamonix, IAHS Publ 2179: 2097: 1289:{\displaystyle {\dot {\epsilon }}_{e}} 286:is dimensionless, and the rate factor 176:{\displaystyle {\dot {\epsilon }}_{e}} 1852:for ice flow at a specific location. 584:{\displaystyle \lambda =(2\mu )^{-1}} 517:is the deviatoric stress tensor, and 510:{\displaystyle {\boldsymbol {\tau }}} 356:{\displaystyle {\boldsymbol {\tau }}} 2368:Communications Earth and Environment 2226: 2152: 2070: 403:, and is a dominant mode of glacial 2453:Cold Regions Science and Technology 2118: 1549: 74:, with a viscosity determined by a 24: 2155:Proceedings of the Royal Society A 2121:Proceedings of the Royal Society A 1994:), and transient phases of creep. 1855:Viscous ice flow is an example of 1684:{\displaystyle A=A_{0}e^{(-Q/RT)}} 495:is the viscosity (units of Pa s), 25: 2635: 1844:inferred from observations by a 1010: 831: 591:(units of Pa s) is substituted. 530: 379: 2566:P. Duval, O. Castelnau (1995). 2421:from the original on 2023-06-15 2249:from the original on 2024-01-27 1623:temperature dependence of creep 50:widely used as a model for the 1969: 1676: 1656: 1440: 1428: 1397: 1385: 569: 559: 13: 1: 2541:Journal of Structural Geology 2024: 2465:10.1016/0165-232X(83)90007-1 2311:Geophysical Research Letters 1546:) is sometimes substituted. 218:) are related to the second 46:, is an empirically derived 7: 1997: 1910:{\displaystyle 2<n<4} 417:generalized Newtonian fluid 10: 2640: 2600:Cuffey & Paterson 2010 2516:10.3189/002214349793702601 2490:Cuffey & Paterson 2010 2478:Cuffey & Paterson 2010 2439:Cuffey & Paterson 2010 2380:10.1038/s43247-022-00385-x 2286:10.3189/002214390793701372 2210:Cuffey & Paterson 2010 1505:{\displaystyle B=A^{-1/n}} 147:The effective strain rate 2553:10.1016/j.jsg.2013.11.003 2090:10.3189/S0022143000034067 1253:{\displaystyle \tau _{e}} 334:, which is determined by 310:to a single scalar value 207:{\displaystyle \tau _{e}} 1943:. However, the value of 340:deviatoric stress tensor 2045:The Physics of Glaciers 1859:, which corresponds to 187:) and effective stress 2575:Journal de Physique IV 2194:10.1098/rstl.1846.0013 2167:10.1098/rspa.1955.0066 2133:10.1098/rspa.1953.0161 1957: 1937: 1911: 1879: 1878:{\displaystyle n>1} 1834: 1807: 1787: 1756: 1740:universal gas constant 1732: 1708: 1685: 1611: 1588: 1568: 1540: 1539:{\displaystyle ^{1/n}} 1506: 1459: 1310: 1290: 1254: 1225: 1126: 1103: 984: 899: 765: 659: 585: 540: 511: 489: 466: 389: 357: 324: 300: 280: 260: 240: 208: 177: 139: 42:, also referred to as 2504:Journal of Glaciology 2274:Journal of Glaciology 2077:Journal of Glaciology 1958: 1938: 1912: 1880: 1835: 1833:{\displaystyle A_{0}} 1808: 1788: 1786:{\displaystyle A_{0}} 1757: 1733: 1709: 1686: 1612: 1589: 1569: 1541: 1507: 1460: 1311: 1291: 1255: 1226: 1127: 1104: 985: 900: 766: 660: 586: 541: 512: 490: 467: 390: 358: 325: 308:viscous stress tensor 301: 281: 261: 241: 209: 178: 140: 48:constitutive relation 2353:10.1029/2000JB900336 2323:10.1029/2004GL021693 2227:Glen, J. W. (1958). 2071:Glen, J. W. (1952). 1947: 1921: 1889: 1863: 1817: 1797: 1770: 1764:absolute temperature 1746: 1722: 1698: 1632: 1601: 1578: 1558: 1516: 1472: 1330: 1309:{\displaystyle \mu } 1300: 1264: 1237: 1138: 1125:{\displaystyle \mu } 1116: 1000: 915: 788: 688: 614: 550: 521: 499: 488:{\displaystyle \mu } 479: 433: 411:Viscosity definition 370: 345: 323:{\displaystyle \mu } 314: 290: 270: 250: 230: 222:of their respective 220:principle invariants 191: 151: 92: 18:Glen's flow law 2624:Continuum mechanics 2587:10.1051/jp4:1995317 1984:elastic deformation 1936:{\displaystyle n=3} 1846:numerical inversion 1444: 1409: 1220: 1098: 979: 814: 705: 134: 72:non-Newtonian fluid 36:continuum mechanics 2009:Ice sheet dynamics 1988:fracture mechanics 1953: 1933: 1907: 1875: 1830: 1803: 1783: 1752: 1728: 1704: 1681: 1619:Arrhenius relation 1607: 1584: 1564: 1536: 1502: 1455: 1418: 1366: 1306: 1286: 1250: 1221: 1194: 1122: 1099: 1075: 980: 965: 895: 791: 761: 691: 667:principal stresses 655: 581: 536: 507: 485: 462: 385: 365:strain rate tensor 353: 320: 296: 276: 256: 236: 204: 173: 135: 120: 2602:, p. 66, 72. 2161:(1175): 519–538. 2127:(1139): 477–489. 1956:{\displaystyle n} 1850:momentum equation 1806:{\displaystyle A} 1755:{\displaystyle T} 1731:{\displaystyle R} 1716:activation energy 1707:{\displaystyle Q} 1610:{\displaystyle A} 1587:{\displaystyle n} 1567:{\displaystyle A} 1453: 1411: 1376: 1277: 1204: 1182: 1169: 1165: 1085: 1057: 1035: 1013: 883: 861: 849: 834: 801: 776:Einstein notation 733: 643: 605:Incompressibility 533: 459: 382: 336:tensor invariants 332:dynamic viscosity 299:{\displaystyle A} 279:{\displaystyle n} 259:{\displaystyle n} 239:{\displaystyle A} 226:. The parameters 164: 105: 78:relation between 40:Glen–Nye flow law 16:(Redirected from 2631: 2603: 2597: 2591: 2590: 2572: 2563: 2557: 2556: 2538: 2529: 2520: 2519: 2499: 2493: 2487: 2481: 2475: 2469: 2468: 2448: 2442: 2436: 2430: 2429: 2427: 2426: 2420: 2409: 2400: 2394: 2393: 2391: 2363: 2357: 2356: 2336: 2327: 2326: 2306: 2300: 2299: 2297: 2280:(124): 324–339. 2269: 2258: 2257: 2255: 2254: 2248: 2233: 2224: 2213: 2207: 2198: 2197: 2177: 2171: 2170: 2150: 2137: 2136: 2116: 2095: 2094: 2092: 2068: 2059: 2058: 2040: 1962: 1960: 1959: 1954: 1942: 1940: 1939: 1934: 1916: 1914: 1913: 1908: 1884: 1882: 1881: 1876: 1839: 1837: 1836: 1831: 1829: 1828: 1812: 1810: 1809: 1804: 1792: 1790: 1789: 1784: 1782: 1781: 1766:. The prefactor 1761: 1759: 1758: 1753: 1737: 1735: 1734: 1729: 1713: 1711: 1710: 1705: 1690: 1688: 1687: 1682: 1680: 1679: 1669: 1650: 1649: 1616: 1614: 1613: 1608: 1597:The rate factor 1593: 1591: 1590: 1585: 1573: 1571: 1570: 1565: 1550:Parameter values 1545: 1543: 1542: 1537: 1535: 1534: 1530: 1511: 1509: 1508: 1503: 1501: 1500: 1496: 1464: 1462: 1461: 1456: 1454: 1452: 1443: 1426: 1417: 1412: 1410: 1408: 1404: 1383: 1378: 1377: 1369: 1361: 1360: 1356: 1340: 1315: 1313: 1312: 1307: 1295: 1293: 1292: 1287: 1285: 1284: 1279: 1278: 1270: 1259: 1257: 1256: 1251: 1249: 1248: 1230: 1228: 1227: 1222: 1219: 1211: 1206: 1205: 1197: 1193: 1192: 1183: 1175: 1170: 1168: 1167: 1166: 1158: 1148: 1131: 1129: 1128: 1123: 1108: 1106: 1105: 1100: 1097: 1092: 1087: 1086: 1078: 1068: 1067: 1059: 1058: 1050: 1046: 1045: 1037: 1036: 1028: 1021: 1020: 1015: 1014: 1006: 989: 987: 986: 981: 978: 973: 958: 957: 945: 944: 929: 928: 923: 904: 902: 901: 896: 894: 893: 885: 884: 876: 872: 871: 863: 862: 854: 850: 842: 837: 836: 835: 827: 813: 808: 803: 802: 794: 770: 768: 767: 762: 760: 759: 747: 746: 734: 726: 721: 720: 704: 699: 664: 662: 661: 656: 654: 653: 645: 644: 636: 629: 628: 590: 588: 587: 582: 580: 579: 545: 543: 542: 537: 535: 534: 526: 516: 514: 513: 508: 506: 494: 492: 491: 486: 471: 469: 468: 463: 461: 460: 452: 440: 425:constitutive law 394: 392: 391: 386: 384: 383: 375: 362: 360: 359: 354: 352: 329: 327: 326: 321: 305: 303: 302: 297: 285: 283: 282: 277: 265: 263: 262: 257: 245: 243: 242: 237: 213: 211: 210: 205: 203: 202: 182: 180: 179: 174: 172: 171: 166: 165: 157: 144: 142: 141: 136: 133: 128: 113: 112: 107: 106: 98: 21: 2639: 2638: 2634: 2633: 2632: 2630: 2629: 2628: 2609: 2608: 2607: 2606: 2598: 2594: 2581:(C3): 197–205. 2570: 2564: 2560: 2536: 2530: 2523: 2500: 2496: 2488: 2484: 2476: 2472: 2449: 2445: 2437: 2433: 2424: 2422: 2418: 2407: 2401: 2397: 2364: 2360: 2347:: 11017–11030. 2337: 2330: 2307: 2303: 2270: 2261: 2252: 2250: 2246: 2231: 2225: 2216: 2208: 2201: 2178: 2174: 2151: 2140: 2117: 2098: 2083:(12): 111–114. 2069: 2062: 2055: 2041: 2032: 2027: 2019:Ice-sheet model 2000: 1972: 1948: 1945: 1944: 1922: 1919: 1918: 1890: 1887: 1886: 1864: 1861: 1860: 1824: 1820: 1818: 1815: 1814: 1798: 1795: 1794: 1777: 1773: 1771: 1768: 1767: 1747: 1744: 1743: 1723: 1720: 1719: 1699: 1696: 1695: 1665: 1655: 1651: 1645: 1641: 1633: 1630: 1629: 1621:describing the 1602: 1599: 1598: 1579: 1576: 1575: 1559: 1556: 1555: 1552: 1526: 1522: 1519: 1517: 1514: 1513: 1492: 1485: 1481: 1473: 1470: 1469: 1466: 1445: 1427: 1422: 1416: 1400: 1384: 1379: 1368: 1367: 1362: 1352: 1345: 1341: 1339: 1331: 1328: 1327: 1301: 1298: 1297: 1280: 1269: 1268: 1267: 1265: 1262: 1261: 1244: 1240: 1238: 1235: 1234: 1212: 1207: 1196: 1195: 1188: 1184: 1174: 1157: 1156: 1152: 1147: 1139: 1136: 1135: 1117: 1114: 1113: 1093: 1088: 1077: 1076: 1060: 1049: 1048: 1047: 1038: 1027: 1026: 1025: 1016: 1005: 1004: 1003: 1001: 998: 997: 974: 969: 950: 946: 937: 933: 924: 919: 918: 916: 913: 912: 886: 875: 874: 873: 864: 853: 852: 851: 841: 826: 825: 821: 809: 804: 793: 792: 789: 786: 785: 752: 748: 739: 735: 725: 716: 712: 700: 695: 689: 686: 685: 646: 635: 634: 633: 621: 617: 615: 612: 611: 572: 568: 551: 548: 547: 525: 524: 522: 519: 518: 502: 500: 497: 496: 480: 477: 476: 473: 451: 450: 436: 434: 431: 430: 413: 374: 373: 371: 368: 367: 348: 346: 343: 342: 315: 312: 311: 291: 288: 287: 271: 268: 267: 251: 248: 247: 231: 228: 227: 198: 194: 192: 189: 188: 167: 156: 155: 154: 152: 149: 148: 129: 124: 108: 97: 96: 95: 93: 90: 89: 44:Glen's flow law 30:In theoretical 28: 23: 22: 15: 12: 11: 5: 2637: 2627: 2626: 2621: 2605: 2604: 2592: 2558: 2521: 2510:(5): 254–268. 2494: 2482: 2470: 2459:(2): 165–179. 2443: 2431: 2395: 2358: 2328: 2301: 2259: 2214: 2199: 2172: 2138: 2096: 2060: 2053: 2029: 2028: 2026: 2023: 2022: 2021: 2016: 2011: 2006: 1999: 1996: 1971: 1968: 1952: 1932: 1929: 1926: 1906: 1903: 1900: 1897: 1894: 1874: 1871: 1868: 1857:shear thinning 1827: 1823: 1802: 1780: 1776: 1751: 1727: 1703: 1692: 1691: 1678: 1675: 1672: 1668: 1664: 1661: 1658: 1654: 1648: 1644: 1640: 1637: 1606: 1583: 1563: 1551: 1548: 1533: 1529: 1525: 1521: 1512:(units of Pa s 1499: 1495: 1491: 1488: 1484: 1480: 1477: 1451: 1448: 1442: 1439: 1436: 1433: 1430: 1425: 1421: 1415: 1407: 1403: 1399: 1396: 1393: 1390: 1387: 1382: 1375: 1372: 1365: 1359: 1355: 1351: 1348: 1344: 1338: 1335: 1318: 1305: 1283: 1276: 1273: 1247: 1243: 1218: 1215: 1210: 1203: 1200: 1191: 1187: 1181: 1178: 1173: 1164: 1161: 1155: 1151: 1146: 1143: 1121: 1110: 1109: 1096: 1091: 1084: 1081: 1074: 1071: 1066: 1063: 1056: 1053: 1044: 1041: 1034: 1031: 1024: 1019: 1012: 1009: 991: 990: 977: 972: 968: 964: 961: 956: 953: 949: 943: 940: 936: 932: 927: 922: 906: 905: 892: 889: 882: 879: 870: 867: 860: 857: 848: 845: 840: 833: 830: 824: 820: 817: 812: 807: 800: 797: 772: 771: 758: 755: 751: 745: 742: 738: 732: 729: 724: 719: 715: 711: 708: 703: 698: 694: 671: 670: 652: 649: 642: 639: 632: 627: 624: 620: 608: 602: 578: 575: 571: 567: 564: 561: 558: 555: 532: 529: 505: 484: 458: 455: 449: 446: 443: 439: 421: 412: 409: 381: 378: 351: 319: 295: 275: 255: 235: 201: 197: 170: 163: 160: 132: 127: 123: 119: 116: 111: 104: 101: 64:incompressible 26: 9: 6: 4: 3: 2: 2636: 2625: 2622: 2620: 2617: 2616: 2614: 2601: 2596: 2588: 2584: 2580: 2576: 2569: 2562: 2554: 2550: 2546: 2542: 2535: 2528: 2526: 2517: 2513: 2509: 2505: 2498: 2492:, p. 69. 2491: 2486: 2480:, p. 51. 2479: 2474: 2466: 2462: 2458: 2454: 2447: 2441:, p. 55. 2440: 2435: 2417: 2413: 2406: 2399: 2390: 2385: 2381: 2377: 2373: 2369: 2362: 2354: 2350: 2346: 2342: 2335: 2333: 2324: 2320: 2316: 2312: 2305: 2296: 2291: 2287: 2283: 2279: 2275: 2268: 2266: 2264: 2245: 2241: 2237: 2230: 2223: 2221: 2219: 2212:, p. 29. 2211: 2206: 2204: 2195: 2191: 2187: 2183: 2176: 2168: 2164: 2160: 2156: 2149: 2147: 2145: 2143: 2134: 2130: 2126: 2122: 2115: 2113: 2111: 2109: 2107: 2105: 2103: 2101: 2091: 2086: 2082: 2078: 2074: 2067: 2065: 2056: 2054:9780123694614 2050: 2046: 2039: 2037: 2035: 2030: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2001: 1995: 1993: 1989: 1985: 1980: 1976: 1967: 1964: 1950: 1930: 1927: 1924: 1904: 1901: 1898: 1895: 1892: 1872: 1869: 1866: 1858: 1853: 1851: 1847: 1843: 1825: 1821: 1800: 1778: 1774: 1765: 1749: 1741: 1725: 1717: 1701: 1673: 1670: 1666: 1662: 1659: 1652: 1646: 1642: 1638: 1635: 1628: 1627: 1626: 1624: 1620: 1604: 1595: 1581: 1561: 1547: 1531: 1527: 1523: 1520: 1497: 1493: 1489: 1486: 1482: 1478: 1475: 1465: 1449: 1446: 1437: 1434: 1431: 1423: 1419: 1413: 1405: 1401: 1394: 1391: 1388: 1380: 1373: 1370: 1363: 1357: 1353: 1349: 1346: 1342: 1336: 1333: 1325: 1323: 1317: 1303: 1281: 1274: 1271: 1245: 1241: 1231: 1216: 1213: 1208: 1201: 1198: 1189: 1185: 1179: 1176: 1171: 1162: 1153: 1144: 1141: 1133: 1119: 1094: 1089: 1082: 1079: 1072: 1069: 1064: 1061: 1054: 1051: 1042: 1039: 1032: 1029: 1022: 1017: 996: 995: 994: 975: 970: 966: 962: 959: 954: 951: 947: 941: 938: 934: 930: 925: 911: 910: 909: 890: 887: 880: 877: 868: 865: 858: 855: 846: 843: 838: 822: 818: 815: 810: 805: 798: 795: 784: 783: 782: 779: 777: 756: 753: 749: 743: 740: 736: 730: 727: 722: 713: 709: 706: 701: 696: 692: 684: 683: 682: 679: 678: 674: 668: 650: 647: 640: 637: 630: 625: 622: 618: 609: 606: 603: 600: 597: 596: 595: 592: 576: 573: 565: 562: 556: 553: 482: 472: 456: 447: 444: 441: 428: 426: 420: 418: 408: 406: 402: 396: 366: 341: 337: 333: 317: 309: 293: 273: 253: 233: 225: 221: 217: 199: 195: 186: 168: 161: 158: 145: 130: 125: 121: 117: 114: 109: 102: 99: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 2595: 2578: 2574: 2561: 2544: 2540: 2507: 2503: 2497: 2485: 2473: 2456: 2452: 2446: 2434: 2423:. Retrieved 2411: 2398: 2371: 2367: 2361: 2344: 2340: 2314: 2310: 2304: 2277: 2273: 2251:. Retrieved 2239: 2235: 2185: 2181: 2175: 2158: 2154: 2124: 2120: 2080: 2076: 2044: 1981: 1977: 1973: 1965: 1854: 1842:scalar field 1693: 1596: 1553: 1467: 1326: 1319: 1232: 1134: 1111: 992: 907: 780: 773: 680: 676: 675: 672: 593: 474: 429: 422: 414: 397: 146: 88: 43: 39: 29: 2242:: 171–183. 2188:: 143–210. 1970:Limitations 80:strain rate 56:glacial ice 2619:Glaciology 2613:Categories 2425:2024-01-27 2412:(Preprint) 2389:1912/29119 2295:1808/17348 2253:2024-01-27 2025:References 2004:Glaciology 214:(units of 183:(units of 32:glaciology 2547:: 21–49. 1992:crevasses 1660:− 1487:− 1435:− 1420:τ 1392:− 1374:˙ 1371:ϵ 1347:− 1334:μ 1322:viscosity 1320:Glen–Nye 1304:μ 1275:˙ 1272:ϵ 1242:τ 1214:− 1202:˙ 1199:ϵ 1186:τ 1163:˙ 1160:ϵ 1150:τ 1142:μ 1120:μ 1083:˙ 1080:ϵ 1055:˙ 1052:ϵ 1033:˙ 1030:ϵ 1011:˙ 1008:ϵ 967:τ 948:τ 935:τ 921:τ 881:˙ 878:ϵ 859:˙ 856:ϵ 832:˙ 829:ϵ 799:˙ 796:ϵ 750:τ 737:τ 718:τ 693:τ 641:˙ 638:ϵ 631:∝ 619:τ 574:− 566:μ 554:λ 531:˙ 528:ϵ 504:τ 483:μ 457:˙ 454:ϵ 448:μ 438:τ 423:Glen–Nye 380:˙ 377:ϵ 350:τ 318:μ 196:τ 162:˙ 159:ϵ 122:τ 103:˙ 100:ϵ 76:power law 68:isotropic 2416:Archived 2244:Archived 2014:Rheology 1998:See also 599:Isotropy 405:ice flow 363:and the 52:rheology 1848:of the 1762:is the 1738:is the 1714:is the 338:of the 224:tensors 60:viscous 2374:(57). 2051:  1990:(i.e. 1742:, and 1694:where 1468:where 1324:of ice 1296:, and 774:where 475:where 427:of ice 330:, the 84:stress 38:, the 2571:(PDF) 2537:(PDF) 2419:(PDF) 2408:(PDF) 2317:(5). 2247:(PDF) 2232:(PDF) 993:and 401:creep 2049:ISBN 1902:< 1896:< 1870:> 1574:and 246:and 82:and 34:and 2583:doi 2549:doi 2512:doi 2461:doi 2384:hdl 2376:doi 2349:doi 2345:106 2319:doi 2290:hdl 2282:doi 2190:doi 2186:136 2163:doi 2159:228 2129:doi 2125:219 2085:doi 1625:: 1594:. 1260:or 86:: 54:of 2615:: 2577:. 2573:. 2545:61 2543:. 2539:. 2524:^ 2506:. 2455:. 2414:. 2410:. 2382:. 2370:. 2343:. 2331:^ 2315:32 2313:. 2288:. 2278:36 2276:. 2262:^ 2240:47 2238:. 2234:. 2217:^ 2202:^ 2184:. 2157:. 2141:^ 2123:. 2099:^ 2079:. 2075:. 2063:^ 2033:^ 1986:, 1718:, 407:. 395:. 216:Pa 70:, 66:, 62:, 2589:. 2585:: 2579:5 2555:. 2551:: 2518:. 2514:: 2508:1 2467:. 2463:: 2457:8 2428:. 2392:. 2386:: 2378:: 2372:3 2355:. 2351:: 2325:. 2321:: 2298:. 2292:: 2284:: 2256:. 2196:. 2192:: 2169:. 2165:: 2135:. 2131:: 2093:. 2087:: 2081:2 2057:. 1951:n 1931:3 1928:= 1925:n 1905:4 1899:n 1893:2 1873:1 1867:n 1826:0 1822:A 1801:A 1779:0 1775:A 1750:T 1726:R 1702:Q 1677:) 1674:T 1671:R 1667:/ 1663:Q 1657:( 1653:e 1647:0 1643:A 1639:= 1636:A 1605:A 1582:n 1562:A 1532:n 1528:/ 1524:1 1498:n 1494:/ 1490:1 1483:A 1479:= 1476:B 1450:A 1447:2 1441:) 1438:n 1432:1 1429:( 1424:e 1414:= 1406:n 1402:/ 1398:) 1395:1 1389:n 1386:( 1381:e 1364:2 1358:n 1354:/ 1350:1 1343:A 1337:= 1282:e 1246:e 1217:1 1209:e 1190:e 1180:2 1177:1 1172:= 1154:2 1145:= 1095:2 1090:e 1073:2 1070:= 1065:j 1062:i 1043:j 1040:i 1023:= 1018:2 976:2 971:e 963:2 960:= 955:j 952:i 942:j 939:i 931:= 926:2 891:j 888:i 869:j 866:i 847:2 844:1 839:= 823:I 819:I 816:= 811:2 806:e 757:j 754:i 744:j 741:i 731:2 728:1 723:= 714:I 710:I 707:= 702:2 697:e 669:. 651:j 648:i 626:j 623:i 577:1 570:) 563:2 560:( 557:= 445:2 442:= 294:A 274:n 254:n 234:A 200:e 185:s 169:e 131:n 126:e 118:A 115:= 110:e 20:)

Index

Glen's flow law
glaciology
continuum mechanics
constitutive relation
rheology
glacial ice
viscous
incompressible
isotropic
non-Newtonian fluid
power law
strain rate
stress
s
Pa
principle invariants
tensors
viscous stress tensor
dynamic viscosity
tensor invariants
deviatoric stress tensor
strain rate tensor
creep
ice flow
generalized Newtonian fluid
constitutive law
Isotropy
Incompressibility
principal stresses
Einstein notation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.