Knowledge

Grand tack hypothesis

Source 📝

310:
that were scattered inward during Jupiter's and Saturn's gas accretion, and by stony asteroids that were scattered outward by the forming terrestrial planets. The inward scattered icy planetesimals could also deliver water to the terrestrial region. An initially low-mass asteroid belt could have had its orbital eccentricities and inclinations excited by secular resonances if the resonant orbits of Jupiter and Saturn became chaotic before the instability of the Nice model. The eccentricities and inclinations of the asteroid could also be excited during the giant planet instability, reaching the observed levels if it lasted for a few hundred thousand years. Gravitational interactions between the asteroids and embryos in an initially massive asteroid belt would enhance these effects by altering the asteroids semi-major axes, driving many asteroids into unstable orbits where they were removed due to interactions with the planets, resulting in the loss of more than 99% of its mass. Secular resonance sweeping during the dissipation of the gas disk could have excited the orbits of the asteroids and removed many as they spiraled toward the Sun due to gas drag after their eccentricities were excited.
289:
However, this gas would provide a source for accretion, which would affect the growth of Jupiter and Saturn and their mass ratio. The type of nebula density required for capture in the 3:2 mean-motion resonance is especially dangerous for the survival of the two planets, because it can lead to significant mass growth and ensuing planet-planet scattering. But conditions leading to 2:1 mean-motion resonant systems may also put the planets in danger. Accretion of gas on both planets also tends to reduce the supply toward the inner disk, lowering the accretion rate toward the Sun. This process works to deplete somewhat the disk interior to Jupiter's orbit, weakening the torques on Jupiter arising from inner Lindblad resonances and potentially ending the planets' outward migration.
137:
balance of torques, allowing the planets to migrate outward relative to the disk; the exchange also transferred mass from the outer disk to the inner disk. The transfer of gas to the inner disk also slowed the reduction of the inner disk's mass relative to the outer disk as it accreted onto the Sun, which otherwise would weaken the inner torque, ending the giant planets' outward migration. In the grand tack hypothesis this process is assumed to have reversed the inward migration of the planets when Jupiter was at 1.5 AU. The outward migration of Jupiter and Saturn continued until they reached a zero-torque configuration within a flared disk, or when the gas disk dissipated. The whole process is presumed to end when Jupiter reached its approximate current orbit.
242:
and could have been driven into the Sun as the debris spiraled inward. The current terrestrial planets would then form from planetesimals left behind when Jupiter reversed course. However, the migration of close orbiting super-Earths into the Sun could be avoided if the debris coalesced into larger objects, reducing gas drag; and if the protoplanetary disk had an inner cavity, their inward migration could be halted near its edge. If no planets had yet formed in the inner Solar System, the destruction of the larger bodies during the collisional cascade could have left the remaining debris small enough to be pushed outward by the solar wind, which would have been much stronger during the early Solar System, leaving little to form planets inside Mercury's orbit.
326:
have resulted in the formation of large terrestrial planets near this distance leaving Mercury as a stranded embryo. An early generation of inner planets could have been lost due to catastrophic collisions during an instability, resulting in the debris being ground small enough to be lost due to Poynting-Robertson drag. If planetesimal formation only occurred early, the inner edge of the planetesimal disk might have been located at the silicate condensation line at this time. The formation of planetesimals closer than Mercury's orbit may have required that the magnetic field of the star be aligned with the rotation of the disk, enabling the depletion of the gas so that solid to gas ratios reached values sufficient for
211:
distance from the Sun. Rocky asteroids dominated the inner region, while more primitive and icy asteroids dominated the outer region beyond the ice line. As Jupiter and Saturn migrate inward, ~15% of the inner asteroids are scattered outward onto orbits beyond Saturn. After reversing course, Jupiter and Saturn first encounter these objects, scattering about 0.5% of the original population back inward onto stable orbits. Later, as Jupiter and Saturn migrate into the outer region, about 0.5% of the primitive asteroids are scattered onto orbits in the outer asteroid belt. The encounters with Jupiter and Saturn leave many of the captured asteroids with large
306:, a small Mars could be the result this process having been less efficient with increasing distances from the Sun. Convergent migration of planetary embryos in the gas disk toward 1 AU would result in the formation of terrestrial planets only near this distance leaving Mars as a stranded embryo. Sweeping secular resonances during the clearing of the gas disk could also excite inclinations and eccentricities, increasing relative velocities so that collisions resulted in fragmentation instead of accretion. A number of these hypotheses could also explain the low mass of the asteroid belt. 20: 259:
after the first solids. The vaporization of these metals requires impacts of greater than 18 km/s, well beyond the maximum of 12.2 km/s in standard accretion models. Jupiter's migration across the asteroid belt increases the eccentricities and inclinations of the asteroids, resulting in a 0.5 Myr period of impact velocities sufficient to vaporize metals. If the formation of CB chondrites was due to Jupiter's migration it would have occurred 4.5-5 Myrs after the formation of the Solar System.
251:
perturbations from Jupiter. As these eccentricities are damped by the denser gas disk of recent models, the semi-major axes of the embryos shrink, shifting the peak density of solids inward. For simulations with Jupiter's migration reversing at 1.5 AU, this resulted in the largest terrestrial planet forming near Venus's orbit rather than at Earth's orbit. Simulations that instead reversed Jupiter's migration at 2.0 AU yielded a closer match to the current Solar System.
267:
System. While these encounters enable the orbit of Mars to become decoupled from the other planets and remain on a stable orbit, they can also perturb the disk of material from which the moons of Mars form. These perturbations cause material to escape from the orbit of Mars or to impact on its surface reducing the mass of the disk resulting in the formation of smaller moons.
89:, scattering asteroids outward then inward. The resulting asteroid belt has a small mass, a wide range of inclinations and eccentricities, and a population originating from both inside and outside Jupiter's original orbit. Debris produced by collisions among planetesimals swept ahead of Jupiter may have driven an early generation of planets into the 280:
mean-motion resonance. Capture of Jupiter and Saturn in the 2:1 mean-motion resonance does not typically reverse the direction of migration, but particular nebula configurations have been identified that may drive outward migration. These configurations, however, tend to excite Jupiter's and Saturn's
309:
A number of hypotheses have also been proposed to explain the orbital eccentricities and inclinations of the asteroids and the low mass of the asteroid belt. If the region of the asteroid belt was initially empty due to few planetesimals forming there it could have been populated by icy planetesimals
275:
Most of the accretion of Mars must have taken place outside the narrow annulus of material formed by the grand tack if Mars has a different composition than Earth and Venus. The planets that grow in the annulus created by the grand tack end with similar compositions. If the grand tack occurred early,
258:
The migration of the giant planets through the asteroid belt creates a spike in impact velocities that could result in the formation of CB chondrites. CB chondrites are metal rich carbonaceous chondrites containing iron/nickel nodules that formed from the crystallization of impact melts 4.8 ±0.3 Myrs
210:
Jupiter and Saturn drive most asteroids from their initial orbits during their migrations, leaving behind an excited remnant derived from both inside and outside Jupiter's original location. Before Jupiter's migrations the surrounding regions contained asteroids which varied in composition with their
330:
to occur. The formation of super-Earths may require a higher flux of inward drifting pebbles than occurred in the early Solar System. Planetesimals orbiting in a protoplanetary disk closer than 0.6 AU may have eroded away due to a headwind. An early Solar System that was largely depleted of material
241:
follows as the planetesimals' relative velocities became large enough to produce catastrophic impacts. The resulting debris then spirals inward toward the Sun due to drag from the gas disk. If there were super-Earths in the early Solar System, they would have caught much of this debris in resonances
325:
orbit depleted. In a protoplanetary disk that was evolving via a disk wind, planetary embryos could have migrated outward before merging to form planets, leaving the Solar System without planets inside Mercury's orbit. Convergent migration of planetary embryos in the gas disk toward 1 AU would also
297:
Multiple hypotheses have been offered to explain the small mass of Mars. A small Mars may have been a low probability event as it occurs in a small, but non-zero, fraction of simulations that begin with planetesimals distributed across the entire inner Solar System. A small Mars could be the result
254:
When the fragmentation due to hit and run collisions are included in simulations with an early instability the orbits of the terrestrial planets are better produced. The larger numbers of small bodies resulting from these collisions reduce the eccentricities and inclinations of the growing planets
266:
Encounters with other embryos could destabilize a disk orbiting Mars reducing the mass of moons that form around Mars. After Mars is scattered from the annulus by encounters with other planets it continues to have encounters with other objects until the planets clear material from the inner Solar
223:
so that the eccentricity distribution resembles that of the current asteroid belt. Some of the icy asteroids are also left in orbits crossing the region where the terrestrial planets later formed, allowing water to be delivered to the accreting planets as when the icy asteroids collide with them.
288:
The grand tack scenario ignores the ongoing accretion of gas on both Jupiter and Saturn. In fact, to drive outward migration and move the planets to the proximity of their current orbits, the solar nebula had to contain a sufficiently large reservoir of gas around the orbits of the two planets.
136:
exceeding those from the outer disk, and the planets began to migrate outward. The outward migration was able to continue because interactions between the planets allowed gas to stream through the gap. The gas exchanged angular momentum with the planets during its passage, adding to the positive
279:
Later studies have shown that the convergent orbital migration of Jupiter and Saturn in the fading solar nebula is unlikely to establish a 3:2 mean-motion resonance. Instead of supporting a faster runaway migration, nebula conditions lead to a slower migration of Saturn and its capture in a 2:1
3478:
Lambrechts, Michiel; Morbidelli, Alessandro; Jacobson, Seth A.; Johansen, Anders; Bitsch, Bertram; Izidoro, Andre; Raymond, Sean N. (2019). "Formation of planetary systems by pebble accretion and migration: How the radial pebble flux determines a terrestrial-planet or super-Earth growth mode".
250:
Simulations of the formation of the terrestrial planets using models of the protoplanetary disk that include viscous heating and the migration of the planetary embryos indicate that Jupiter's migration may have reversed at 2.0 AU. In simulations the eccentricities of the embryos are excited by
128:
or runaway migration. Saturn converged on Jupiter and was captured in a 2:3 mean-motion resonance with Jupiter during this migration. An overlapping gap in the gas disk then formed around Jupiter and Saturn, altering the balance of forces on these planets which began migrating together. Saturn
262:
The presence of a thick atmosphere around Titan and its absence around Ganymede and Callisto may be due to the timing of their formation relative to the grand tack. If Ganymede and Callisto formed before the grand tack their atmospheres would have been lost as Jupiter moved closer to the Sun.
284:
to values between two and three times as large as their actual values. Also, if the temperature and viscosity of the gas allow Saturn to produce a deeper gap, the resulting net torque can again become negative, resulting in the inward migration of the system.
298:
of its region having been largely empty due to solid material drifting farther inward before the planetesimals formed. Most of the mass could also have been removed from the Mars region before it formed if the giant planet instability described in the
1632:
Clement, Matthew S.; Kaib, Nathan A.; Raymond, Sean N.; Chambers, John E.; Walsh, Kevin J. (2019). "The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation".
3154:
Ogihara, Masahiro; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Suzuki, Takeru K. (2015). "Formation of terrestrial planets in disks evolving via disk winds and implications for the origin of the solar system's terrestrial planets".
236:
in the Solar System may also be the result of Jupiter's inward migration. As Jupiter migrates inward, planetesimals are captured in its mean-motion resonances, causing their orbits to shrink and their eccentricities to grow. A
255:
orbits via additional collisions and dynamical friction. This also results in a larger fraction of the terrestrial planets mass being concentrated in Venus and Earth and extends their formation times relative to that of Mars.
2043:
Pierens, Arnaud; Raymond, Sean N.; Nesvorny, David; Morbidelli, Alessandro (2014). "Outward Migration of Jupiter and Saturn in 3:2 or 2:1 Resonance in Radiative Disks: Implications for the Grand Tack and Nice models".
276:
while the embryo that became Mars was relatively small, a Mars with a differing composition could form if it was instead scattered outward then inward like the asteroids. The chance of this occurring is roughly 2%.
198:) over a period of 60 to 130 million years. Others are scattered outside the band where they are deprived of additional material, slowing their growth, and form the lower-mass terrestrial planets Mars and 3208:
Ogihara, Masahiro; Kokubo, Eiichiro; Suzuki, Takeru K.; Morbidelli, Alessandro (2018). "Formation of the terrestrial planets in the solar system around 1 au via radial concentration of planetesimals".
3340:
Morbidelli, A.; Bitsch, B.; Crida, A.; Gounelle, M.; Guillot, T.; Jacobsen, S.; Johansen, A.; Lambrechts, M.; Lega, E. (2016). "Fossilized condensation lines in the Solar System protoplanetary disk".
1254:
Deienno, Rogerio; Gomes, Rodney S.; Walsh, Kevin J.; Morbidelli, Alessandro; Nesvorný, David (2016). "Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?".
321:. If Jupiter's core formed close to the Sun, its outward migration across the inner Solar System could have pushed material outward in its resonances, leaving the region inside 190:, and leaves the Mars region largely empty. Planetary embryos quickly form in the narrow band. Most of these embryos collide and merge to form the larger terrestrial planets ( 179:, when begun with planetesimals distributed throughout the inner Solar System. Jupiter's grand tack resolves the Mars problem by limiting the material available to form Mars. 2274:
Barclay, Thomas; Quintana, Elisa V. (2015). "In-situ Formation of Mars-like Planets – Results from Hundreds of N-body Simulations That Include Collisional Fragmentaion".
920:
Raymond, Sean N.; O'Brien, David P.; Morbidelli, Alessandro; Kaib, Nathan A. (2009). "Building the terrestrial planets: Constrained accretion in the inner Solar System".
1307:
O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M. (2014). "Water delivery and giant impacts in the 'Grand Tack' scenario".
528:
Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; O'Brien, David P.; Mandell, Avi M. (2011). "A low mass for Mars from Jupiter's early gas-driven migration".
2694:
Raymond, Sean N.; Izidoro, Andre (2017). "Origin of water in the inner Solar System: Planetesimals scattered inward during Jupiter and Saturn's rapid gas accretion".
182:
Jupiter's inward migration alters this distribution of material, driving planetesimals inward to form a narrow dense band with a mix of materials inside 1.0 
331:
could have resulted in the formation of small planets that were lost or destroyed in an early instability leaving only Mercury or the formation of only Mercury.
1001:
Carter, Philip J.; Leinhardt, Zoë M.; Elliott, Tim; Walter, Michael J.; Stewart, Sarah T. (2015). "Compositional evolution during rocky protoplanet accretion".
2582:
M. Brož, M.; Chrenko, O.; Nesvorný, D.; Dauphas, N. (2021). "Early terrestrial planet formation by torque-driven convergent migration of planetary embryos".
120:, moving slowly toward the Sun with the gas disk. If uninterrupted, this migration would have left Jupiter in a close orbit around the Sun, similar to 746: 591: 1491: 1425: 381: 2409:
Clement, Matthew S.; Kaib, Nathan A.; Raymond, Sean N.; Walsh, Kevin J. (2018). "Mars' Growth Stunted by an Early Giant Planet Instability".
980: 494: 263:
However, for Titan to avoid Type I migration into Saturn, and for Titan's atmosphere to survive, it must have formed after the grand tack.
340: 3071:"Planetesimal Clearing and Size-dependent Asteroid Retention by Secular Resonance Sweeping during the Depletion of the Solar Nebula" 867:
Pierens, A.; Raymond, S.N. (2011). "Two phase, inward-then-outward migration of Jupiter and Saturn in the gaseous solar nebula".
1927: 3730: 1797: 1743:
Heller, R.; Marleau, G.-D; Pudritz, R. E. (2015). "The formation of the Galilean moons and Titan in the Grand Tack scenario".
976: 1362:"Effects of Dynamical Evolution of Giant Planets on the Delivery of Atmophile Elements during Terrestrial Planet Formation" 3262: 2156:
D'Angelo, G.; Marzari, F. (2015). "Sustained Accretion on Gas Giants Surrounded by Low-Turbulence Circumplanetary Disks".
2239: 621:
Morbidelli, Alessandro; Crida, Aurélien (2007). "The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk".
124:
in other planetary systems. Saturn also migrated toward the Sun, but being smaller it migrated faster, undergoing either
2237:
Fischer, R. A.; Ciesla, F. J. (2014). "Dynamics of the terrestrial planets from a large number of N-body simulations".
3593:"Dynamical Avenues for Mercury's Origin. I. The Lone Survivor of a Primordial Generation of Short-period Protoplanets" 2951:
Deienno, Rogerio; Izidoro, Andre; Morbidelli, Alessandro; Gomes, Rodney S.; Nesvorny, David; Raymond, Sean N. (2018).
2866:
Izidoro, Andre; Raymond, Sean N.; Pierens, Arnaud; Morbidelli, Alessandro; Winter, Othon C.; Nesvorny, David (2016).
3725: 2356:
Drążkowska, J.; Alibert, Y.; Moore, B. (2016). "Close-in planetesimal formation by pile-up of drifting pebbles".
415: 2202:
Chambers, J. E. (2013). "Late-stage planetary accretion including hit-and-run collisions and fragmentation".
443: 2926: 3129: 117: 2815: 125: 683:"Analysis of terrestrial planet formation by the Grand Tack model: System architecture and tack location" 471: 3394: 1954:"Capture and migration of Jupiter and Saturn in mean motion resonance in a gaseous protoplanetary disc" 1203: 302:
occurred early. If most of the growth of planetesimals and embryos into terrestrial planets was due to
1995:
Griveaud, P.; Crida A.; Lega E. (2023). "Migration of pairs of giant planets in low-viscosity discs".
1873:
Brasser, R.; Mojzsis, S. J.; Matsumura, S.; Ida, S. (2017). "The cool and distant formation of Mars".
814:
D'Angelo, G.; Marzari, F. (2012). "Outward Migration of Jupiter and Saturn in Evolved Gaseous Disks".
389: 1003: 110: 3287:
Volk, Kathryn; Gladman, Brett (2015). "Consolidating and Crushing Exoplanets: Did It Happen Here?".
2488: 2179:
Marzari, F.; D'Angelo, G. (2013). "Mass Growth and Evolution of Giant Planets on Resonant Orbits".
345: 129:
partially cleared its part of the gap reducing the torque exerted on Jupiter by the outer disk.
2841: 596: 350: 2953:"The excitation of a primordial cold asteroid belt as an outcome of the planetary instability" 3715: 3652:"Dynamical Avenues for Mercury's Origin. II. In Situ Formation in the Inner Terrestrial Disk" 327: 3532:
Cedenblad, Lukas; Schaffer, Noemi; Johansen, Anders; Mehlig, B.; Mitra, Dhrubaditya (2021).
3502: 3231: 3178: 2379: 2252: 2018: 1896: 1766: 890: 132:
The net torque on the planets then became positive, with the torques generated by the inner
81:
disk is truncated at 1.0 AU by Jupiter's migration, limiting the material available to form
3673: 3614: 3555: 3498: 3442: 3359: 3306: 3227: 3174: 3092: 3033: 2974: 2889: 2770: 2713: 2658: 2601: 2533: 2463: 2428: 2375: 2320: 2279: 2248: 2211: 2184: 2161: 2120: 2063: 2014: 1892: 1845: 1762: 1699: 1652: 1596: 1545: 1444: 1383: 1326: 1273: 1168: 1105: 1022: 941: 886: 833: 765: 704: 640: 549: 281: 212: 2512:"Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects" 105:
Jupiter underwent a two-phase migration after its formation, migrating inward to 1.5 
19: 8: 3720: 2299:"Terrestrial planet formation constrained by Mars and the structure of the asteroid belt" 678: 360: 216: 63: 35: 3677: 3618: 3559: 3446: 3363: 3310: 3096: 3037: 2978: 2893: 2774: 2717: 2662: 2605: 2537: 2432: 2324: 2283: 2215: 2188: 2165: 2124: 2067: 1849: 1703: 1688:"Timing of the formation and migration of giant planets as constrained by CB chondrites" 1656: 1600: 1549: 1448: 1387: 1330: 1277: 1172: 1149:
Hansen, Brad M.S. (2009). "Formation of the Terrestrial planets from a narrow annulus".
1109: 1026: 945: 837: 769: 708: 644: 553: 3691: 3663: 3632: 3604: 3573: 3545: 3514: 3488: 3460: 3432: 3375: 3349: 3322: 3296: 3243: 3217: 3190: 3164: 3110: 3082: 3051: 3023: 2992: 2964: 2907: 2879: 2791: 2760: 2748: 2729: 2703: 2676: 2648: 2617: 2591: 2556: 2523: 2511: 2444: 2418: 2391: 2365: 2310: 2138: 2110: 2079: 2053: 2004: 1965: 1908: 1882: 1835: 1778: 1752: 1720: 1687: 1668: 1642: 1614: 1586: 1535: 1467: 1434: 1420: 1401: 1373: 1342: 1316: 1289: 1263: 1184: 1180: 1158: 1126: 1095: 1083: 1038: 1012: 957: 931: 902: 876: 849: 823: 783: 755: 722: 694: 656: 630: 573: 539: 420: 158: 133: 109:
before reversing course and migrating outward. Jupiter's formation took place near the
3455: 3420: 3318: 3105: 3070: 2075: 3695: 3636: 3577: 3518: 3464: 3326: 3194: 3114: 3055: 2996: 2911: 2902: 2867: 2796: 2733: 2680: 2621: 2561: 2142: 2083: 1782: 1725: 1672: 1618: 1472: 1405: 1396: 1361: 1293: 1229: 1131: 1060: 1034: 853: 845: 787: 778: 742:"Reversing type II migration: Resonance trapping of a lighter giant protoplanet" 741: 726: 717: 682: 565: 183: 106: 71: 59: 47: 3379: 3247: 2448: 2395: 1912: 1346: 1188: 1042: 961: 906: 660: 3681: 3622: 3563: 3506: 3450: 3367: 3314: 3235: 3182: 3100: 3041: 2982: 2897: 2786: 2778: 2721: 2666: 2609: 2551: 2541: 2436: 2383: 2338: 2328: 2297:
Izidoro, André; Raymond, Sean N.; Morbidelli, Alessandro; Winter, Othon C. (2015).
2256: 2219: 2128: 2071: 2022: 1975: 1900: 1853: 1770: 1715: 1707: 1660: 1604: 1553: 1462: 1452: 1391: 1334: 1281: 1176: 1121: 1113: 1030: 949: 922: 894: 841: 773: 712: 648: 577: 557: 530: 318: 303: 238: 199: 3510: 3421:"The Influence of Magnetic Field Geometry on the Formation of Close-in Exoplanets" 3239: 3186: 2387: 2026: 1774: 1524:"Did Jupiter's core form in the innermost parts of the Sun's protoplanetary disc?" 898: 3371: 3012:"Excitation and Depletion of the Asteroid Belt in the Early Instability Scenario" 2725: 2440: 2223: 1686:
Johnson, B. C.; Walsh, K. J.; Minton, D. A.; Krot, A. N.; Levison, H. F. (2016).
1664: 1338: 1285: 953: 652: 62:, eventually halting near its current orbit at 5.2 AU. The reversal of Jupiter's 2510:
Levison, Harold F.; Kretke, Katherine A.; Walsh, Kevin; Bottke, William (2015).
3686: 3651: 3627: 3592: 3568: 3533: 3046: 3011: 2987: 2952: 2671: 2636: 2613: 2260: 2133: 2098: 1904: 1609: 1574: 448: 1492:"Wandering Jupiter swept away super-Earths, creating our unusual Solar System" 3709: 1522:
Raymond, Sean N.; Izidoro, Andre; Bitsch, Bertram; Jacobsen, Seth A. (2016).
1496: 1489: 86: 2546: 2333: 2298: 1980: 1953: 1858: 1823: 1457: 219:. These may be reduced during the giant planet instability described in the 2800: 2782: 2637:"Terrestrial planet formation: Dynamical shake-up and the low mass of Mars" 2565: 1729: 1711: 1558: 1523: 1476: 1135: 1117: 569: 170:
planet in its region, much larger than the actual mass of Mars: 0.107 
78: 54:, then migrated inward to 1.5 AU, before reversing course due to capturing 27: 2099:"Circumstellar Dust Distribution in Systems with Two Planets in Resonance" 1575:"The Primordial Solar Wind as a Sculptor of Terrestrial Planet Formation" 760: 314: 313:
Several hypotheses have also been offered for the lack of close orbiting
233: 145:
The hypothesis can be applied to multiple phenomena in the Solar System.
121: 2342: 592:"New research suggests solar system may have once harbored super-Earths" 561: 495:"New research suggests Solar system may have once harbored super-Earths" 355: 299: 220: 171: 162: 1421:"Jupiter's decisive role in the inner Solar System's early evolution" 472:"Jupiter's 'Smashing' Migration May Explain Our Oddball Solar System" 3477: 3668: 3609: 3550: 3493: 3437: 3354: 3301: 3222: 3169: 3087: 3069:
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N. (2017).
3028: 2969: 2884: 2765: 2708: 2653: 2596: 2528: 2423: 2370: 2315: 2115: 2009: 1970: 1887: 1840: 1757: 1647: 1591: 1540: 1439: 1378: 1268: 1084:"Lunar and terrestrial planet formation in the Grand Tack scenario" 1017: 699: 67: 2058: 1321: 1163: 1100: 936: 881: 828: 635: 544: 3591:
Clement, Matthew S.; Chambers, John E.; Jackson, Alan P. (2021).
1306: 527: 498: 43: 23: 2868:"The Asteroid Belt as a Relic From a Chaotic Early Solar System" 2042: 919: 3531: 3010:
Clement, Matthew S.; Raymond, Sean N.; Kaib, Nathan A. (2019).
2865: 1928:"Mars may not have been born alongside the other rocky planets" 157:
is a conflict between some simulations of the formation of the
55: 3153: 2842:"Where did Earth's (and the asteroid belt's) water come from?" 2296: 2096: 3339: 3207: 2950: 2581: 2489:"Scientists predict that rocky planets formed from "pebbles"" 322: 195: 191: 1798:"Hold on to Your Moons! Ice, Atmospheres and the Grand Tack" 1521: 1000: 977:"Ripping apart asteroids to account for Earth's strangeness" 1253: 385: 82: 1872: 1631: 676: 1824:"A dynamical context for the origin of Phobos and Deimos" 90: 51: 2509: 1075: 2408: 2178: 2155: 1994: 813: 809: 807: 805: 803: 801: 799: 797: 616: 614: 116:
After clearing a gap in the gas disk Jupiter underwent
3590: 2355: 1685: 1360:
Matsumura, Soko; Brasser, Ramon; Ida, Shigeru (2016).
1081: 733: 2687: 2267: 1412: 140: 3333: 2740: 2349: 2236: 2172: 2149: 1742: 1517: 1515: 860: 794: 677:
Brasser, R.; Matsumura, S.; Ida, S.; Mojzsis, S.J.;
672: 670: 611: 3525: 3471: 3068: 2628: 1490:University of California Santa Cruz Press Release. 1359: 1353: 382:"Jupiter's Youthful Travels Redefined Solar System" 3643: 3584: 3009: 3003: 2402: 1625: 3534:"Planetesimals on Eccentric Orbits Erode Rapidly" 3280: 3263:"Mercury Sole Survivor of Close Orbiting Planets" 3201: 3147: 2944: 2859: 2577: 2575: 2303:Monthly Notices of the Royal Astronomical Society 2290: 1958:Monthly Notices of the Royal Astronomical Society 1866: 1828:Monthly Notices of the Royal Astronomical Society 1679: 1528:Monthly Notices of the Royal Astronomical Society 1512: 1247: 913: 747:Monthly Notices of the Royal Astronomical Society 667: 523: 521: 519: 517: 515: 3707: 2918: 1736: 1300: 994: 739: 3062: 2635:Bromley, Benjamin C.; Kenyon, Scott J. (2017). 2491:. Southwest Research Institute. 26 October 2015 2273: 2097:Marzari, F.; D’Angelo, G.; Picogna, G. (2019). 2038: 2036: 1426:Proceedings of the National Academy of Sciences 1418: 968: 620: 3650:Clement, Matthew S.; Chamber, John E. (2021). 3649: 2746: 2693: 2572: 2276:American Astronomical Society, DPS Meeting #47 2181:American Astronomical Society, DPS Meeting #45 2158:American Astronomical Society, DPS Meeting #47 1566: 1195: 866: 512: 486: 3121: 2833: 2807: 2634: 2503: 2455: 1988: 1945: 1054: 1052: 409: 407: 373: 2195: 2090: 2033: 1419:Batygin, Konstantin; Laughlin, Greg (2015). 1221: 1082:Jacobson, S. A.; Morbidelli, A., A. (2014). 3386: 3286: 2924: 2816:"The asteroid belt: a cosmic refugee camp?" 2230: 1919: 1815: 1789: 1483: 1202:Davidsson, Dr. Björn J. R. (9 March 2014). 1142: 974: 584: 435: 341:Formation and evolution of the Solar System 3412: 1049: 492: 404: 16:Theory of early changes in Jupiter's orbit 3685: 3667: 3626: 3608: 3567: 3549: 3492: 3454: 3436: 3353: 3300: 3254: 3221: 3168: 3104: 3086: 3045: 3027: 2986: 2968: 2901: 2883: 2790: 2764: 2747:Raymond, Sean N.; Izidoro, Andre (2017). 2707: 2670: 2652: 2595: 2555: 2545: 2527: 2481: 2422: 2369: 2332: 2314: 2132: 2114: 2057: 2008: 1979: 1969: 1886: 1857: 1839: 1756: 1719: 1646: 1608: 1590: 1572: 1557: 1539: 1466: 1456: 1438: 1395: 1377: 1320: 1267: 1201: 1162: 1125: 1099: 1016: 935: 880: 827: 777: 759: 716: 698: 634: 543: 444:"How Did Jupiter Shape Our Solar System?" 2927:"Modest chaos in the early solar system" 2201: 1951: 463: 18: 3130:"Did the Solar System form inside-out?" 3127: 2839: 2813: 2461: 1227: 441: 3708: 3392: 1925: 1821: 1795: 1148: 413: 227: 3418: 3395:"Why is Mercury so far from the Sun?" 379: 270: 245: 2749:"The empty primordial asteroid belt" 975:Lichtenberg, Tim (2 November 2015). 469: 2814:Raymond, Sean (13 September 2017). 2240:Earth and Planetary Science Letters 1875:Earth and Planetary Science Letters 740:Masset, F.; Snellgrove, M. (2001). 13: 3393:Hammer, Michael (12 August 2016). 3128:Raymond, Sean (21 February 2016). 2925:Lichtenberg, Tim (November 2016). 493:Fesenmaier, Kimm (23 March 2015). 470:Choi, Charles Q. (23 March 2015). 416:"Our "New, Improved" Solar System" 141:Scope of the grand tack hypothesis 74:) as it travels against the wind. 14: 3742: 3425:The Astrophysical Journal Letters 3289:The Astrophysical Journal Letters 2872:The Astrophysical Journal Letters 2046:The Astrophysical Journal Letters 1579:The Astrophysical Journal Letters 1058: 414:Beatty, Kelly (16 October 2010). 3260: 1204:"Mysteries of the asteroid belt" 779:10.1046/j.1365-8711.2001.04159.x 205: 1573:Spaulding, Christopher (2018). 1228:Raymond, Sean (2 August 2013). 1208:The History of the Solar System 442:Sanders, Ray (23 August 2011). 292: 148: 1822:Hansen, Bradley M. S. (2018). 1063:. Southwest Research Institute 232:The absence of close orbiting 161:which end with a 0.5–1.0  96: 1: 3731:Solar System dynamic theories 2840:Raymond, Sean (5 July 2017). 2462:Raymond, Sean (29 May 2018). 1926:Sumner, Thomas (5 May 2017). 1796:Wilson, David (9 June 2015). 366: 3481:Astronomy & Astrophysics 3372:10.1016/j.icarus.2015.11.027 3210:Astronomy & Astrophysics 3157:Astronomy & Astrophysics 2726:10.1016/j.icarus.2017.06.030 2441:10.1016/j.icarus.2018.04.008 2358:Astronomy & Astrophysics 2224:10.1016/j.icarus.2013.02.015 1997:Astronomy & Astrophysics 1745:Astronomy & Astrophysics 1665:10.1016/j.icarus.2018.12.033 1500:. Pole Star Publications Ltd 1339:10.1016/j.icarus.2014.05.009 1286:10.1016/j.icarus.2016.02.043 1181:10.1088/0004-637X/703/1/1131 954:10.1016/j.icarus.2009.05.016 869:Astronomy & Astrophysics 653:10.1016/j.icarus.2007.04.001 85:. Jupiter twice crosses the 66:is likened to the path of a 46:formed at a distance of 3.5 7: 3511:10.1051/0004-6361/201834229 3456:10.3847/2041-8205/827/2/L37 3319:10.1088/2041-8205/806/2/L26 3240:10.1051/0004-6361/201832654 3187:10.1051/0004-6361/201525636 3106:10.3847/1538-4357/836/2/207 2388:10.1051/0004-6361/201628983 2076:10.1088/2041-8205/795/1/L11 2027:10.1051/0004-6361/202245208 1775:10.1051/0004-6361/201526348 899:10.1051/0004-6361/201117451 334: 10: 3747: 2903:10.3847/1538-4357/833/1/40 2614:10.1038/s41550-021-01383-3 2261:10.1016/j.epsl.2014.02.011 1952:Chametla, Raul O. (2020). 1905:10.1016/j.epsl.2017.04.005 1397:10.3847/0004-637X/818/1/15 1035:10.1088/0004-637X/813/1/72 846:10.1088/0004-637X/757/1/50 718:10.3847/0004-637X/821/2/75 113:, at roughly 3.5 AU. 3538:The Astrophysical Journal 3075:The Astrophysical Journal 2957:The Astrophysical Journal 1366:The Astrophysical Journal 1151:The Astrophysical Journal 1004:The Astrophysical Journal 816:The Astrophysical Journal 687:The Astrophysical Journal 3687:10.3847/1538-3881/abfb6c 3656:The Astronomical Journal 3628:10.3847/1538-3881/abf09f 3597:The Astronomical Journal 3569:10.3847/1538-4357/ac1e88 3047:10.3847/1538-3881/aaf21e 3016:The Astronomical Journal 2988:10.3847/1538-4357/aad55d 2672:10.3847/1538-3881/aa6aaa 2641:The Astronomical Journal 2134:10.3847/1538-3881/aaf3b6 2103:The Astronomical Journal 1610:10.3847/2041-8213/aaf478 346:Jumping-Jupiter scenario 3726:Astronomical hypotheses 3503:2019A&A...627A..83L 3232:2018A&A...612L...5O 3179:2015A&A...579A..65O 2547:10.1073/pnas.1513364112 2464:"Mars' growth stunted!" 2380:2016A&A...594A.105D 2253:2014E&PSL.392...28F 2019:2023A&A...672A.190G 1897:2017E&PSL.468...85B 1767:2015A&A...579L...4H 1458:10.1073/pnas.1423252112 891:2011A&A...533A.131P 328:streaming instabilities 2783:10.1126/sciadv.1701138 2109:(2): id. 45 (12 pp.). 1712:10.1126/sciadv.1601658 1118:10.1098/rsta.2013.0174 1088:Phil. Trans. R. Soc. A 380:Zubritsky, Elizabeth. 351:Late Heavy Bombardment 317:and the small mass of 118:type II migration 31: 26:might have shaped the 3419:Simon, Jacob (2016). 3267:Astrobiology Magazine 2334:10.1093/mnras/stv1835 2183:. id.113.04: 113.04. 2160:. id.418.06: 418.06. 1981:10.1093/mnras/staa260 1859:10.1093/mnras/stx3361 126:type I migration 103:grand tack hypothesis 70:changing directions ( 40:grand tack hypothesis 22: 1559:10.1093/mnras/stw431 282:orbital eccentricity 3678:2021AJ....162....3C 3619:2021AJ....161..240C 3560:2021ApJ...921..123C 3447:2016ApJ...827L..37S 3364:2016Icar..267..368M 3311:2015ApJ...806L..26V 3261:Redd, Nola Taylor. 3097:2017ApJ...836..207Z 3038:2019AJ....157...38C 2979:2018ApJ...864...50D 2894:2016ApJ...833...40I 2775:2017SciA....3E1138R 2718:2017Icar..297..134R 2663:2017AJ....153..216B 2606:2021NatAs...5..898B 2538:2015PNAS..11214180L 2522:(46): 14180–14185. 2433:2018Icar..311..340C 2325:2015MNRAS.453.3619I 2284:2015DPS....4750706B 2278:. #507.06: 507.06. 2216:2013Icar..224...43C 2189:2013DPS....4511304M 2166:2015DPS....4741806D 2125:2019AJ....157...45M 2068:2014ApJ...795L..11P 1850:2018MNRAS.475.2452H 1704:2016SciA....2E1658J 1657:2019Icar..321..778C 1601:2018ApJ...869L..17S 1550:2016MNRAS.458.2962R 1449:2015PNAS..112.4214B 1388:2016ApJ...818...15M 1331:2014Icar..239...74O 1278:2016Icar..272..114D 1173:2009ApJ...703.1131H 1110:2014RSPTA.37230174J 1027:2015ApJ...813...72C 946:2009Icar..203..644R 838:2012ApJ...757...50D 770:2001MNRAS.320L..55M 709:2016ApJ...821...75B 645:2007Icar..191..158M 562:10.1038/nature10201 554:2011Natur.475..206W 421:Sky & Telescope 361:Planetary migration 239:collisional cascade 228:Absent super-Earths 159:terrestrial planets 134:Lindblad resonances 64:planetary migration 36:planetary astronomy 822:(1): 50 (23 pp.). 271:Potential problems 246:Later developments 32: 1433:(14): 4214–4217. 538:(7355): 206–209. 60:orbital resonance 30:on its grand tack 3738: 3700: 3699: 3689: 3671: 3647: 3641: 3640: 3630: 3612: 3588: 3582: 3581: 3571: 3553: 3529: 3523: 3522: 3496: 3475: 3469: 3468: 3458: 3440: 3416: 3410: 3409: 3407: 3405: 3390: 3384: 3383: 3357: 3337: 3331: 3330: 3304: 3284: 3278: 3277: 3275: 3273: 3258: 3252: 3251: 3225: 3205: 3199: 3198: 3172: 3151: 3145: 3144: 3142: 3140: 3125: 3119: 3118: 3108: 3090: 3066: 3060: 3059: 3049: 3031: 3007: 3001: 3000: 2990: 2972: 2948: 2942: 2941: 2939: 2937: 2922: 2916: 2915: 2905: 2887: 2863: 2857: 2856: 2854: 2852: 2837: 2831: 2830: 2828: 2826: 2811: 2805: 2804: 2794: 2768: 2753:Science Advances 2744: 2738: 2737: 2711: 2691: 2685: 2684: 2674: 2656: 2632: 2626: 2625: 2599: 2584:Nature Astronomy 2579: 2570: 2569: 2559: 2549: 2531: 2507: 2501: 2500: 2498: 2496: 2485: 2479: 2478: 2476: 2474: 2459: 2453: 2452: 2426: 2406: 2400: 2399: 2373: 2353: 2347: 2346: 2336: 2318: 2309:(4): 3619–3634. 2294: 2288: 2287: 2271: 2265: 2264: 2234: 2228: 2227: 2199: 2193: 2192: 2176: 2170: 2169: 2153: 2147: 2146: 2136: 2118: 2094: 2088: 2087: 2061: 2040: 2031: 2030: 2012: 1992: 1986: 1985: 1983: 1973: 1964:(4): 6007–6018. 1949: 1943: 1942: 1940: 1938: 1923: 1917: 1916: 1890: 1870: 1864: 1863: 1861: 1843: 1834:(2): 2452–2466. 1819: 1813: 1812: 1810: 1808: 1793: 1787: 1786: 1760: 1740: 1734: 1733: 1723: 1698:(12): e1601658. 1692:Science Advances 1683: 1677: 1676: 1650: 1629: 1623: 1622: 1612: 1594: 1570: 1564: 1563: 1561: 1543: 1534:(3): 2962–2972. 1519: 1510: 1509: 1507: 1505: 1487: 1481: 1480: 1470: 1460: 1442: 1416: 1410: 1409: 1399: 1381: 1357: 1351: 1350: 1324: 1304: 1298: 1297: 1271: 1251: 1245: 1244: 1242: 1240: 1230:"The Grand Tack" 1225: 1219: 1218: 1216: 1214: 1199: 1193: 1192: 1166: 1157:(1): 1131–1140. 1146: 1140: 1139: 1129: 1103: 1079: 1073: 1072: 1070: 1068: 1061:"The Grand Tack" 1056: 1047: 1046: 1020: 998: 992: 991: 989: 987: 972: 966: 965: 939: 917: 911: 910: 884: 864: 858: 857: 831: 811: 792: 791: 781: 763: 761:astro-ph/0003421 737: 731: 730: 720: 702: 674: 665: 664: 638: 618: 609: 608: 606: 604: 588: 582: 581: 547: 525: 510: 509: 507: 505: 490: 484: 483: 481: 479: 467: 461: 460: 458: 456: 439: 433: 432: 430: 428: 411: 402: 401: 399: 397: 388:. Archived from 377: 304:pebble accretion 188: 187: 3746: 3745: 3741: 3740: 3739: 3737: 3736: 3735: 3706: 3705: 3704: 3703: 3648: 3644: 3589: 3585: 3530: 3526: 3476: 3472: 3417: 3413: 3403: 3401: 3391: 3387: 3338: 3334: 3285: 3281: 3271: 3269: 3259: 3255: 3206: 3202: 3152: 3148: 3138: 3136: 3126: 3122: 3067: 3063: 3008: 3004: 2949: 2945: 2935: 2933: 2923: 2919: 2864: 2860: 2850: 2848: 2838: 2834: 2824: 2822: 2812: 2808: 2759:(9): e1701138. 2745: 2741: 2692: 2688: 2633: 2629: 2580: 2573: 2508: 2504: 2494: 2492: 2487: 2486: 2482: 2472: 2470: 2460: 2456: 2407: 2403: 2354: 2350: 2295: 2291: 2272: 2268: 2235: 2231: 2200: 2196: 2177: 2173: 2154: 2150: 2095: 2091: 2041: 2034: 1993: 1989: 1950: 1946: 1936: 1934: 1924: 1920: 1871: 1867: 1820: 1816: 1806: 1804: 1794: 1790: 1741: 1737: 1684: 1680: 1630: 1626: 1571: 1567: 1520: 1513: 1503: 1501: 1488: 1484: 1417: 1413: 1358: 1354: 1305: 1301: 1252: 1248: 1238: 1236: 1226: 1222: 1212: 1210: 1200: 1196: 1147: 1143: 1080: 1076: 1066: 1064: 1057: 1050: 999: 995: 985: 983: 973: 969: 918: 914: 865: 861: 812: 795: 738: 734: 675: 668: 619: 612: 602: 600: 590: 589: 585: 526: 513: 503: 501: 491: 487: 477: 475: 468: 464: 454: 452: 440: 436: 426: 424: 412: 405: 395: 393: 392:on 1 March 2017 378: 374: 369: 337: 295: 273: 248: 230: 208: 185: 184: 177: 174: 168: 165: 151: 143: 99: 17: 12: 11: 5: 3744: 3734: 3733: 3728: 3723: 3718: 3702: 3701: 3642: 3583: 3524: 3470: 3411: 3385: 3332: 3279: 3253: 3200: 3146: 3120: 3061: 3002: 2943: 2917: 2858: 2832: 2806: 2739: 2686: 2627: 2590:(9): 898–902. 2571: 2502: 2480: 2454: 2401: 2348: 2289: 2266: 2229: 2194: 2171: 2148: 2089: 2032: 1987: 1944: 1918: 1865: 1814: 1788: 1735: 1678: 1624: 1565: 1511: 1482: 1411: 1352: 1299: 1246: 1220: 1194: 1141: 1074: 1059:Walsh, Kevin. 1048: 993: 967: 930:(2): 644–662. 912: 859: 793: 754:(4): L55–L59. 732: 666: 629:(1): 158–171. 610: 583: 511: 485: 462: 449:Universe Today 434: 403: 371: 370: 368: 365: 364: 363: 358: 353: 348: 343: 336: 333: 294: 291: 272: 269: 247: 244: 229: 226: 213:eccentricities 207: 204: 175: 172: 166: 163: 155:"Mars problem" 150: 147: 142: 139: 98: 95: 42:proposes that 15: 9: 6: 4: 3: 2: 3743: 3732: 3729: 3727: 3724: 3722: 3719: 3717: 3714: 3713: 3711: 3697: 3693: 3688: 3683: 3679: 3675: 3670: 3665: 3661: 3657: 3653: 3646: 3638: 3634: 3629: 3624: 3620: 3616: 3611: 3606: 3602: 3598: 3594: 3587: 3579: 3575: 3570: 3565: 3561: 3557: 3552: 3547: 3543: 3539: 3535: 3528: 3520: 3516: 3512: 3508: 3504: 3500: 3495: 3490: 3486: 3482: 3474: 3466: 3462: 3457: 3452: 3448: 3444: 3439: 3434: 3430: 3426: 3422: 3415: 3400: 3396: 3389: 3381: 3377: 3373: 3369: 3365: 3361: 3356: 3351: 3347: 3343: 3336: 3328: 3324: 3320: 3316: 3312: 3308: 3303: 3298: 3294: 3290: 3283: 3268: 3264: 3257: 3249: 3245: 3241: 3237: 3233: 3229: 3224: 3219: 3215: 3211: 3204: 3196: 3192: 3188: 3184: 3180: 3176: 3171: 3166: 3162: 3158: 3150: 3135: 3131: 3124: 3116: 3112: 3107: 3102: 3098: 3094: 3089: 3084: 3080: 3076: 3072: 3065: 3057: 3053: 3048: 3043: 3039: 3035: 3030: 3025: 3021: 3017: 3013: 3006: 2998: 2994: 2989: 2984: 2980: 2976: 2971: 2966: 2962: 2958: 2954: 2947: 2932: 2928: 2921: 2913: 2909: 2904: 2899: 2895: 2891: 2886: 2881: 2877: 2873: 2869: 2862: 2847: 2843: 2836: 2821: 2817: 2810: 2802: 2798: 2793: 2788: 2784: 2780: 2776: 2772: 2767: 2762: 2758: 2754: 2750: 2743: 2735: 2731: 2727: 2723: 2719: 2715: 2710: 2705: 2701: 2697: 2690: 2682: 2678: 2673: 2668: 2664: 2660: 2655: 2650: 2646: 2642: 2638: 2631: 2623: 2619: 2615: 2611: 2607: 2603: 2598: 2593: 2589: 2585: 2578: 2576: 2567: 2563: 2558: 2553: 2548: 2543: 2539: 2535: 2530: 2525: 2521: 2517: 2513: 2506: 2490: 2484: 2469: 2465: 2458: 2450: 2446: 2442: 2438: 2434: 2430: 2425: 2420: 2416: 2412: 2405: 2397: 2393: 2389: 2385: 2381: 2377: 2372: 2367: 2363: 2359: 2352: 2344: 2340: 2335: 2330: 2326: 2322: 2317: 2312: 2308: 2304: 2300: 2293: 2285: 2281: 2277: 2270: 2262: 2258: 2254: 2250: 2246: 2242: 2241: 2233: 2225: 2221: 2217: 2213: 2209: 2205: 2198: 2190: 2186: 2182: 2175: 2167: 2163: 2159: 2152: 2144: 2140: 2135: 2130: 2126: 2122: 2117: 2112: 2108: 2104: 2100: 2093: 2085: 2081: 2077: 2073: 2069: 2065: 2060: 2055: 2051: 2047: 2039: 2037: 2028: 2024: 2020: 2016: 2011: 2006: 2002: 1998: 1991: 1982: 1977: 1972: 1967: 1963: 1959: 1955: 1948: 1933: 1929: 1922: 1914: 1910: 1906: 1902: 1898: 1894: 1889: 1884: 1880: 1876: 1869: 1860: 1855: 1851: 1847: 1842: 1837: 1833: 1829: 1825: 1818: 1803: 1799: 1792: 1784: 1780: 1776: 1772: 1768: 1764: 1759: 1754: 1750: 1746: 1739: 1731: 1727: 1722: 1717: 1713: 1709: 1705: 1701: 1697: 1693: 1689: 1682: 1674: 1670: 1666: 1662: 1658: 1654: 1649: 1644: 1640: 1636: 1628: 1620: 1616: 1611: 1606: 1602: 1598: 1593: 1588: 1584: 1580: 1576: 1569: 1560: 1555: 1551: 1547: 1542: 1537: 1533: 1529: 1525: 1518: 1516: 1499: 1498: 1497:Astronomy Now 1493: 1486: 1478: 1474: 1469: 1464: 1459: 1454: 1450: 1446: 1441: 1436: 1432: 1428: 1427: 1422: 1415: 1407: 1403: 1398: 1393: 1389: 1385: 1380: 1375: 1371: 1367: 1363: 1356: 1348: 1344: 1340: 1336: 1332: 1328: 1323: 1318: 1314: 1310: 1303: 1295: 1291: 1287: 1283: 1279: 1275: 1270: 1265: 1261: 1257: 1250: 1235: 1231: 1224: 1209: 1205: 1198: 1190: 1186: 1182: 1178: 1174: 1170: 1165: 1160: 1156: 1152: 1145: 1137: 1133: 1128: 1123: 1119: 1115: 1111: 1107: 1102: 1097: 1094:(2024): 174. 1093: 1089: 1085: 1078: 1062: 1055: 1053: 1044: 1040: 1036: 1032: 1028: 1024: 1019: 1014: 1010: 1006: 1005: 997: 982: 978: 971: 963: 959: 955: 951: 947: 943: 938: 933: 929: 925: 924: 916: 908: 904: 900: 896: 892: 888: 883: 878: 874: 870: 863: 855: 851: 847: 843: 839: 835: 830: 825: 821: 817: 810: 808: 806: 804: 802: 800: 798: 789: 785: 780: 775: 771: 767: 762: 757: 753: 749: 748: 743: 736: 728: 724: 719: 714: 710: 706: 701: 696: 692: 688: 684: 680: 673: 671: 662: 658: 654: 650: 646: 642: 637: 632: 628: 624: 617: 615: 599: 598: 593: 587: 579: 575: 571: 567: 563: 559: 555: 551: 546: 541: 537: 533: 532: 524: 522: 520: 518: 516: 500: 496: 489: 473: 466: 451: 450: 445: 438: 423: 422: 417: 410: 408: 391: 387: 383: 376: 372: 362: 359: 357: 354: 352: 349: 347: 344: 342: 339: 338: 332: 329: 324: 320: 316: 311: 307: 305: 301: 290: 286: 283: 277: 268: 264: 260: 256: 252: 243: 240: 235: 225: 222: 218: 214: 206:Asteroid belt 203: 201: 197: 193: 189: 180: 178: 169: 160: 156: 146: 138: 135: 130: 127: 123: 119: 114: 112: 108: 104: 94: 92: 88: 87:asteroid belt 84: 80: 75: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 29: 25: 21: 3716:Solar System 3659: 3655: 3645: 3600: 3596: 3586: 3541: 3537: 3527: 3484: 3480: 3473: 3428: 3424: 3414: 3402:. Retrieved 3398: 3388: 3345: 3341: 3335: 3292: 3288: 3282: 3270:. Retrieved 3266: 3256: 3213: 3209: 3203: 3160: 3156: 3149: 3137:. Retrieved 3134:PlanetPlanet 3133: 3123: 3078: 3074: 3064: 3019: 3015: 3005: 2960: 2956: 2946: 2934:. Retrieved 2930: 2920: 2875: 2871: 2861: 2849:. Retrieved 2846:planetplanet 2845: 2835: 2825:14 September 2823:. Retrieved 2820:planetplanet 2819: 2809: 2756: 2752: 2742: 2699: 2695: 2689: 2644: 2640: 2630: 2587: 2583: 2519: 2515: 2505: 2493:. Retrieved 2483: 2471:. Retrieved 2468:planetplanet 2467: 2457: 2414: 2410: 2404: 2361: 2357: 2351: 2343:11449/177633 2306: 2302: 2292: 2275: 2269: 2244: 2238: 2232: 2210:(1): 43–56. 2207: 2203: 2197: 2180: 2174: 2157: 2151: 2106: 2102: 2092: 2049: 2045: 2000: 1996: 1990: 1961: 1957: 1947: 1935:. Retrieved 1932:Science News 1931: 1921: 1878: 1874: 1868: 1831: 1827: 1817: 1805:. Retrieved 1801: 1791: 1748: 1744: 1738: 1695: 1691: 1681: 1638: 1634: 1627: 1582: 1578: 1568: 1531: 1527: 1502:. Retrieved 1495: 1485: 1430: 1424: 1414: 1369: 1365: 1355: 1312: 1308: 1302: 1259: 1255: 1249: 1237:. Retrieved 1234:PlanetPlanet 1233: 1223: 1211:. Retrieved 1207: 1197: 1154: 1150: 1144: 1091: 1087: 1077: 1065:. Retrieved 1008: 1002: 996: 984:. Retrieved 970: 927: 921: 915: 872: 868: 862: 819: 815: 751: 745: 735: 690: 686: 679:Werner, S.C. 626: 622: 601:. Retrieved 597:Astrobiology 595: 586: 535: 529: 502:. Retrieved 488: 476:. Retrieved 465: 453:. Retrieved 447: 437: 425:. Retrieved 419: 394:. Retrieved 390:the original 375: 312: 308: 296: 293:Alternatives 287: 278: 274: 265: 261: 257: 253: 249: 234:super-Earths 231: 217:inclinations 209: 181: 154: 152: 149:Mars problem 144: 131: 122:hot Jupiters 115: 102: 100: 79:planetesimal 76: 39: 33: 28:Solar System 3404:29 November 3348:: 368–376. 3139:23 February 2936:21 November 2702:: 134–148. 2495:22 November 2417:: 340–356. 1807:20 November 1641:: 778–790. 1262:: 114–124. 474:. Space.com 315:super-Earth 97:Description 3721:Hypotheses 3710:Categories 3669:2104.11252 3610:2104.11246 3603:(5): 240. 3551:2011.14431 3544:(2): 123. 3494:1902.08694 3438:1608.00573 3431:(2): L37. 3399:astrobites 3355:1511.06556 3302:1502.06558 3295:(2): L26. 3272:14 January 3223:1804.02361 3170:1505.01086 3088:1610.09670 3081:(2): 207. 3029:1811.07916 2970:1808.00609 2931:astrobites 2885:1609.04970 2766:1709.04242 2709:1707.01234 2654:1703.10618 2647:(5): 216. 2597:2109.11385 2529:1510.02095 2473:31 January 2424:1804.04233 2371:1607.05734 2316:1508.01365 2116:1812.07698 2052:(1): L11. 2010:2303.04652 1971:2001.09235 1888:1704.00184 1841:1801.07775 1802:astrobites 1758:1506.01024 1648:1812.07590 1592:1811.11697 1585:(1): L17. 1541:1602.06573 1504:3 November 1440:1503.06945 1379:1512.08182 1269:1701.02775 1239:7 November 1213:7 November 1067:6 November 1018:1509.07504 986:6 November 981:Astrobites 700:1603.01009 603:5 November 504:5 November 478:4 November 455:4 November 427:4 November 396:4 November 367:References 356:Nice model 300:Nice model 221:Nice model 3696:233388200 3637:233387902 3578:238227254 3519:119470314 3465:118420788 3327:118052299 3195:119110384 3115:119260501 3056:119495020 3022:(1): 38. 2997:118947612 2963:(1): 50. 2912:118486946 2878:(1): 40. 2734:119031134 2681:119446914 2622:236317507 2247:: 28–38. 2143:119454927 2084:118417097 2059:1410.0543 1881:: 85–93. 1783:119211657 1673:119063847 1619:119382211 1406:119205579 1372:(1): 15. 1322:1407.3290 1315:: 74–84. 1294:119054790 1164:0908.0743 1101:1406.2697 1011:(1): 72. 937:0905.3750 882:1107.5656 854:118587166 829:1207.2737 788:119442503 727:119207767 693:(2): 75. 636:0704.1210 545:1201.5177 50:from the 3662:(1): 3. 3380:54642403 3248:54494720 2801:28924609 2566:26512109 2449:53070809 2396:55846864 2364:: A105. 2003:: A190. 1913:15171917 1730:27957541 1477:25831540 1347:51737711 1189:14226690 1136:25114304 1043:53354566 962:15578957 907:67818537 875:: A131. 681:(2016). 661:17672873 570:21642961 335:See also 111:ice line 68:sailboat 3674:Bibcode 3615:Bibcode 3556:Bibcode 3499:Bibcode 3487:: 627. 3443:Bibcode 3360:Bibcode 3307:Bibcode 3228:Bibcode 3175:Bibcode 3163:: A65. 3093:Bibcode 3034:Bibcode 2975:Bibcode 2890:Bibcode 2792:5597311 2771:Bibcode 2714:Bibcode 2659:Bibcode 2602:Bibcode 2557:4655528 2534:Bibcode 2429:Bibcode 2376:Bibcode 2321:Bibcode 2280:Bibcode 2249:Bibcode 2212:Bibcode 2185:Bibcode 2162:Bibcode 2121:Bibcode 2064:Bibcode 2015:Bibcode 1937:23 June 1893:Bibcode 1846:Bibcode 1763:Bibcode 1721:5148210 1700:Bibcode 1653:Bibcode 1597:Bibcode 1546:Bibcode 1468:4394287 1445:Bibcode 1384:Bibcode 1327:Bibcode 1274:Bibcode 1169:Bibcode 1127:4128261 1106:Bibcode 1023:Bibcode 942:Bibcode 887:Bibcode 834:Bibcode 766:Bibcode 705:Bibcode 641:Bibcode 578:4431823 550:Bibcode 499:Caltech 323:Venus's 319:Mercury 200:Mercury 101:In the 72:tacking 44:Jupiter 24:Jupiter 3694:  3635:  3576:  3517:  3463:  3378:  3342:Icarus 3325:  3246:  3216:: L5. 3193:  3113:  3054:  2995:  2910:  2851:7 July 2799:  2789:  2732:  2696:Icarus 2679:  2620:  2564:  2554:  2447:  2411:Icarus 2394:  2204:Icarus 2141:  2082:  1911:  1781:  1751:: L4. 1728:  1718:  1671:  1635:Icarus 1617:  1475:  1465:  1404:  1345:  1309:Icarus 1292:  1256:Icarus 1187:  1134:  1124:  1041:  960:  923:Icarus 905:  852:  786:  725:  659:  623:Icarus 576:  568:  531:Nature 58:in an 56:Saturn 38:, the 3692:S2CID 3664:arXiv 3633:S2CID 3605:arXiv 3574:S2CID 3546:arXiv 3515:S2CID 3489:arXiv 3461:S2CID 3433:arXiv 3376:S2CID 3350:arXiv 3323:S2CID 3297:arXiv 3244:S2CID 3218:arXiv 3191:S2CID 3165:arXiv 3111:S2CID 3083:arXiv 3052:S2CID 3024:arXiv 2993:S2CID 2965:arXiv 2908:S2CID 2880:arXiv 2761:arXiv 2730:S2CID 2704:arXiv 2677:S2CID 2649:arXiv 2618:S2CID 2592:arXiv 2524:arXiv 2445:S2CID 2419:arXiv 2392:S2CID 2366:arXiv 2311:arXiv 2139:S2CID 2111:arXiv 2080:S2CID 2054:arXiv 2005:arXiv 1966:arXiv 1909:S2CID 1883:arXiv 1836:arXiv 1779:S2CID 1753:arXiv 1669:S2CID 1643:arXiv 1615:S2CID 1587:arXiv 1536:arXiv 1435:arXiv 1402:S2CID 1374:arXiv 1343:S2CID 1317:arXiv 1290:S2CID 1264:arXiv 1185:S2CID 1159:arXiv 1096:arXiv 1039:S2CID 1013:arXiv 958:S2CID 932:arXiv 903:S2CID 877:arXiv 850:S2CID 824:arXiv 784:S2CID 756:arXiv 723:S2CID 695:arXiv 657:S2CID 631:arXiv 574:S2CID 540:arXiv 196:Earth 192:Venus 3406:2016 3274:2017 3141:2016 2938:2016 2853:2017 2827:2017 2797:PMID 2562:PMID 2516:PNAS 2497:2015 2475:2019 1939:2017 1809:2016 1726:PMID 1506:2015 1473:PMID 1241:2015 1215:2015 1132:PMID 1069:2015 988:2015 605:2015 566:PMID 506:2015 480:2015 457:2015 429:2015 398:2015 386:NASA 215:and 194:and 153:The 83:Mars 77:The 3682:doi 3660:162 3623:doi 3601:161 3564:doi 3542:921 3507:doi 3485:A83 3451:doi 3429:827 3368:doi 3346:267 3315:doi 3293:806 3236:doi 3214:612 3183:doi 3161:579 3101:doi 3079:836 3042:doi 3020:157 2983:doi 2961:864 2898:doi 2876:833 2787:PMC 2779:doi 2722:doi 2700:297 2667:doi 2645:153 2610:doi 2552:PMC 2542:doi 2520:112 2437:doi 2415:311 2384:doi 2362:594 2339:hdl 2329:doi 2307:453 2257:doi 2245:392 2220:doi 2208:224 2129:doi 2107:157 2072:doi 2050:795 2023:doi 2001:672 1976:doi 1962:492 1901:doi 1879:468 1854:doi 1832:475 1771:doi 1749:579 1716:PMC 1708:doi 1661:doi 1639:321 1605:doi 1583:869 1554:doi 1532:458 1463:PMC 1453:doi 1431:112 1392:doi 1370:818 1335:doi 1313:239 1282:doi 1260:272 1177:doi 1155:703 1122:PMC 1114:doi 1092:372 1031:doi 1009:813 950:doi 928:203 895:doi 873:533 842:doi 820:757 774:doi 752:320 713:doi 691:821 649:doi 627:191 558:doi 536:475 91:Sun 52:Sun 34:In 3712:: 3690:. 3680:. 3672:. 3658:. 3654:. 3631:. 3621:. 3613:. 3599:. 3595:. 3572:. 3562:. 3554:. 3540:. 3536:. 3513:. 3505:. 3497:. 3483:. 3459:. 3449:. 3441:. 3427:. 3423:. 3397:. 3374:. 3366:. 3358:. 3344:. 3321:. 3313:. 3305:. 3291:. 3265:. 3242:. 3234:. 3226:. 3212:. 3189:. 3181:. 3173:. 3159:. 3132:. 3109:. 3099:. 3091:. 3077:. 3073:. 3050:. 3040:. 3032:. 3018:. 3014:. 2991:. 2981:. 2973:. 2959:. 2955:. 2929:. 2906:. 2896:. 2888:. 2874:. 2870:. 2844:. 2818:. 2795:. 2785:. 2777:. 2769:. 2755:. 2751:. 2728:. 2720:. 2712:. 2698:. 2675:. 2665:. 2657:. 2643:. 2639:. 2616:. 2608:. 2600:. 2586:. 2574:^ 2560:. 2550:. 2540:. 2532:. 2518:. 2514:. 2466:. 2443:. 2435:. 2427:. 2413:. 2390:. 2382:. 2374:. 2360:. 2337:. 2327:. 2319:. 2305:. 2301:. 2255:. 2243:. 2218:. 2206:. 2137:. 2127:. 2119:. 2105:. 2101:. 2078:. 2070:. 2062:. 2048:. 2035:^ 2021:. 2013:. 1999:. 1974:. 1960:. 1956:. 1930:. 1907:. 1899:. 1891:. 1877:. 1852:. 1844:. 1830:. 1826:. 1800:. 1777:. 1769:. 1761:. 1747:. 1724:. 1714:. 1706:. 1694:. 1690:. 1667:. 1659:. 1651:. 1637:. 1613:. 1603:. 1595:. 1581:. 1577:. 1552:. 1544:. 1530:. 1526:. 1514:^ 1494:. 1471:. 1461:. 1451:. 1443:. 1429:. 1423:. 1400:. 1390:. 1382:. 1368:. 1364:. 1341:. 1333:. 1325:. 1311:. 1288:. 1280:. 1272:. 1258:. 1232:. 1206:. 1183:. 1175:. 1167:. 1153:. 1130:. 1120:. 1112:. 1104:. 1090:. 1086:. 1051:^ 1037:. 1029:. 1021:. 1007:. 979:. 956:. 948:. 940:. 926:. 901:. 893:. 885:. 871:. 848:. 840:. 832:. 818:. 796:^ 782:. 772:. 764:. 750:. 744:. 721:. 711:. 703:. 689:. 685:. 669:^ 655:. 647:. 639:. 625:. 613:^ 594:. 572:. 564:. 556:. 548:. 534:. 514:^ 497:. 446:. 418:. 406:^ 384:. 202:. 186:AU 107:AU 93:. 48:AU 3698:. 3684:: 3676:: 3666:: 3639:. 3625:: 3617:: 3607:: 3580:. 3566:: 3558:: 3548:: 3521:. 3509:: 3501:: 3491:: 3467:. 3453:: 3445:: 3435:: 3408:. 3382:. 3370:: 3362:: 3352:: 3329:. 3317:: 3309:: 3299:: 3276:. 3250:. 3238:: 3230:: 3220:: 3197:. 3185:: 3177:: 3167:: 3143:. 3117:. 3103:: 3095:: 3085:: 3058:. 3044:: 3036:: 3026:: 2999:. 2985:: 2977:: 2967:: 2940:. 2914:. 2900:: 2892:: 2882:: 2855:. 2829:. 2803:. 2781:: 2773:: 2763:: 2757:3 2736:. 2724:: 2716:: 2706:: 2683:. 2669:: 2661:: 2651:: 2624:. 2612:: 2604:: 2594:: 2588:5 2568:. 2544:: 2536:: 2526:: 2499:. 2477:. 2451:. 2439:: 2431:: 2421:: 2398:. 2386:: 2378:: 2368:: 2345:. 2341:: 2331:: 2323:: 2313:: 2286:. 2282:: 2263:. 2259:: 2251:: 2226:. 2222:: 2214:: 2191:. 2187:: 2168:. 2164:: 2145:. 2131:: 2123:: 2113:: 2086:. 2074:: 2066:: 2056:: 2029:. 2025:: 2017:: 2007:: 1984:. 1978:: 1968:: 1941:. 1915:. 1903:: 1895:: 1885:: 1862:. 1856:: 1848:: 1838:: 1811:. 1785:. 1773:: 1765:: 1755:: 1732:. 1710:: 1702:: 1696:2 1675:. 1663:: 1655:: 1645:: 1621:. 1607:: 1599:: 1589:: 1562:. 1556:: 1548:: 1538:: 1508:. 1479:. 1455:: 1447:: 1437:: 1408:. 1394:: 1386:: 1376:: 1349:. 1337:: 1329:: 1319:: 1296:. 1284:: 1276:: 1266:: 1243:. 1217:. 1191:. 1179:: 1171:: 1161:: 1138:. 1116:: 1108:: 1098:: 1071:. 1045:. 1033:: 1025:: 1015:: 990:. 964:. 952:: 944:: 934:: 909:. 897:: 889:: 879:: 856:. 844:: 836:: 826:: 790:. 776:: 768:: 758:: 729:. 715:: 707:: 697:: 663:. 651:: 643:: 633:: 607:. 580:. 560:: 552:: 542:: 508:. 482:. 459:. 431:. 400:. 176:E 173:M 167:E 164:M

Index


Jupiter
Solar System
planetary astronomy
Jupiter
AU
Sun
Saturn
orbital resonance
planetary migration
sailboat
tacking
planetesimal
Mars
asteroid belt
Sun
AU
ice line
type II migration
hot Jupiters
type I migration
Lindblad resonances
terrestrial planets
ME
ME
AU
Venus
Earth
Mercury
eccentricities

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.