Knowledge

Gravitational wave

Source 📝

3054:
star is an inspiral, a spiral with decreasing radius. General relativity precisely describes these trajectories; in particular, the energy radiated in gravitational waves determines the rate of decrease in the period, defined as the time interval between successive periastrons (points of closest approach of the two stars). For the Hulse–Taylor pulsar, the predicted current change in radius is about 3 mm per orbit, and the change in the 7.75 hr period is about 2 seconds per year. Following a preliminary observation showing an orbital energy loss consistent with gravitational waves, careful timing observations by Taylor and Joel Weisberg dramatically confirmed the predicted period decrease to within 10%. With the improved statistics of more than 30 years of timing data since the pulsar's discovery, the observed change in the orbital period currently matches the prediction from gravitational radiation assumed by general relativity to within 0.2 percent. In 1993, spurred in part by this indirect detection of gravitational waves, the Nobel Committee awarded the Nobel Prize in Physics to Hulse and Taylor for "the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation." The lifetime of this binary system, from the present to merger is estimated to be a few hundred million years.
1304:, a complete relativistic theory of gravitation. He conjectured, like Poincare, that the equation would produce gravitational waves, but, as he mentions in a letter to Schwarzschild in February 1916, these could not be similar to electromagnetic waves. Electromagnetic waves can be produced by dipole motion, requiring both a positive and a negative charge. Gravitation has no equivalent to negative charge. Einstein continued to work through the complexity of the equations of general relativity to find an alternative wave model. The result was published in June 1916, and there he came to the conclusion that the gravitational wave must propagate with the speed of light, and there must, in fact, be three types of gravitational waves dubbed longitudinal–longitudinal, transverse–longitudinal, and transverse–transverse by 27: 10622: 729: 1767: 2545: 2996: 3469: 3283: 3601: 1785:. If the dumbbell spins around its axis of symmetry, it will not radiate gravitational waves; if it tumbles end over end, as in the case of two planets orbiting each other, it will radiate gravitational waves. The heavier the dumbbell, and the faster it tumbles, the greater is the gravitational radiation it will give off. In an extreme case, such as when the two weights of the dumbbell are massive stars like neutron stars or black holes, orbiting each other quickly, then significant amounts of gravitational radiation would be given off. 3371:, which occurs because the lasers produce photons randomly; one analogy is to rainfall – the rate of rainfall, like the laser intensity, is measurable, but the raindrops, like photons, fall at random times, causing fluctuations around the average value. This leads to noise at the output of the detector, much like radio static. In addition, for sufficiently high laser power, the random momentum transferred to the test masses by the laser photons shakes the mirrors, masking signals of low frequencies. Thermal noise (e.g., 59: 3094: 2703:. After two supermassive black holes coalesce, emission of linear momentum can produce a "kick" with amplitude as large as 4000 km/s. This is fast enough to eject the coalesced black hole completely from its host galaxy. Even if the kick is too small to eject the black hole completely, it can remove it temporarily from the nucleus of the galaxy, after which it will oscillate about the center, eventually coming to rest. A kicked black hole can also carry a star cluster with it, forming a 1583: 1575: 1258: 2821:. It can be shown that any massless spin-2 field would give rise to a force indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the stress–energy tensor in the same way that the gravitational field does; therefore if a massless spin-2 particle were ever discovered, it would be likely to be the graviton without further distinction from other massless spin-2 particles. Such a discovery would unite quantum theory with gravity. 10694: 30: 29: 34: 33: 28: 10135: 742: 35: 3442:, are also being developed. LISA's design calls for three test masses forming an equilateral triangle, with lasers from each spacecraft to each other spacecraft forming two independent interferometers. LISA is planned to occupy a solar orbit trailing the Earth, with each arm of the triangle being 2.5 million kilometers. This puts the detector in an excellent vacuum far from Earth-based sources of noise, though it will still be susceptible to heat, 3656:
2.73–2.78 solar masses. The inclusion of the Virgo detector in the observation effort allowed for an improvement of the localization of the source by a factor of 10. This in turn facilitated the electromagnetic follow-up of the event. In contrast to the case of binary black hole mergers, binary neutron star mergers were expected to yield an electromagnetic counterpart, that is, a light signal associated with the event. A gamma-ray burst (
954: 32: 10658: 10682: 10634: 10670: 1140: 10646: 1432:
this seems to have been floated independently by various people, including M.E. Gertsenshtein and V. I. Pustovoit in 1962, and Vladimir B. BraginskiÄ­ in 1966. The first prototypes were developed in the 1970s by Robert L. Forward and Rainer Weiss. In the decades that followed, ever more sensitive instruments were constructed, culminating in the construction of
1925: 2830:
phases, space had not yet become "transparent", so observations based upon light, radio waves, and other electromagnetic radiation that far back into time are limited or unavailable. Therefore, gravitational waves are expected in principle to have the potential to provide a wealth of observational data about the very early universe.
3061:) are in close orbits, they send out intense gravitational waves. As they spiral closer to each other, these waves become more intense. At some point they should become so intense that direct detection by their effect on objects on Earth or in space is possible. This direct detection is the goal of several large-scale experiments. 2557:
orbital frequency. Just before merger, the inspiral could be observed by LIGO if such a binary were close enough. LIGO has only a few minutes to observe this merger out of a total orbital lifetime that may have been billions of years. In August 2017, LIGO and Virgo observed the first binary neutron star inspiral in
2634:
into the surrounding space at extremely high velocities (up to 10% of the speed of light). Unless there is perfect spherical symmetry in these explosions (i.e., unless matter is spewed out evenly in all directions), there will be gravitational radiation from the explosion. This is because gravitational waves are
3493:
arrival of pulses from different pulsar pairs as a function of their angular separation in the sky. Although pulsar pulses travel through space for hundreds or thousands of years to reach us, pulsar timing arrays are sensitive to perturbations in their travel time of much less than a millionth of a second.
3291:: A beamsplitter (green line) splits coherent light (from the white box) into two beams which reflect off the mirrors (cyan oblongs); only one outgoing and reflected beam in each arm is shown, and separated for clarity. The reflected beams recombine and an interference pattern is detected (purple circle). 3692:
and B. Laurent theoretically proved that gravitational spin-2 electron transitions are possible in atoms. Compared to electric and magnetic transitions the emission probability is extremely low. Stimulated emission was discussed for increasing the efficiency of the process. Due to the lack of mirrors
3624:
of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted as
3496:
The most likely source of GWs to which pulsar timing arrays are sensitive are supermassive black hole binaries, which form from the collision of galaxies. In addition to individual binary systems, pulsar timing arrays are sensitive to a stochastic background of GWs made from the sum of GWs from many
3379:
noise and other forms of environmental vibration, and other 'non-stationary' noise sources; creaks in mechanical structures, lightning or other large electrical disturbances, etc. may also create noise masking an event or may even imitate an event. All of these must be taken into account and excluded
2838:
The difficulty in directly detecting gravitational waves means it is also difficult for a single detector to identify by itself the direction of a source. Therefore, multiple detectors are used, both to distinguish signals from other "noise" by confirming the signal is not of earthly origin, and also
1431:
This indirect detection of gravitational waves motivated further searches, despite Weber's discredited result. Some groups continued to improve Weber's original concept, while others pursued the detection of gravitational waves using laser interferometers. The idea of using a laser interferometer for
1408:
would drain our galaxy of energy on a timescale much shorter than its inferred age. These doubts were strengthened when, by the mid-1970s, repeated experiments from other groups building their own Weber bars across the globe failed to find any signals, and by the late 1970s consensus was that Weber's
1171:
In principle, gravitational waves can exist at any frequency. Very low frequency waves are detected using pulsar timing arrays. Astronomers monitor the timing of approximately 100 pulsars spread widely across our galaxy over the course of years. Detectable changes in the arrival time of their signals
3679:
In 2021, the detection of the first two neutron star-black hole binaries by the LIGO and VIRGO detectors was published in the Astrophysical Journal Letters, allowing to first set bounds on the quantity of such systems. No neutron star-black hole binary had ever been observed using conventional means
3483:
are rapidly rotating stars. A pulsar emits beams of radio waves that, like lighthouse beams, sweep through the sky as the pulsar rotates. The signal from a pulsar can be detected by radio telescopes as a series of regularly spaced pulses, essentially like the ticks of a clock. GWs affect the time it
3334:
that are 4 kilometers in length. These are at 90 degree angles to each other, with the light passing through 1 m diameter vacuum tubes running the entire 4 kilometers. A passing gravitational wave will slightly stretch one arm as it shortens the other. This is the motion to which
2665:
Many models of the Universe suggest that there was an inflationary epoch in the early history of the Universe when space expanded by a large factor in a very short amount of time. If this expansion was not symmetric in all directions, it may have emitted gravitational radiation detectable today as a
1315:
showed that two of Einstein's types of waves were artifacts of the coordinate system he used, and could be made to propagate at any speed by choosing appropriate coordinates, leading Eddington to jest that they "propagate at the speed of thought". This also cast doubt on the physicality of the third
3555:
In June 2023, NANOGrav published the 15-year data release, which contained the first evidence for a stochastic gravitational wave background. In particular, it included the first measurement of the Hellings-Downs curve, the tell-tale sign of the gravitational wave origin of the observed background.
1621:
with a group of motionless test particles lying in a plane, e.g., the surface of a computer screen. As a gravitational wave passes through the particles along a line perpendicular to the plane of the particles, i.e., following the observer's line of vision into the screen, the particles will follow
1467:
of all the stars in the observable universe combined. The signal increased in frequency from 35 to 250 Hz over 10 cycles (5 orbits) as it rose in strength for a period of 0.2 second. The mass of the new merged black hole was 62 solar masses. Energy equivalent to three solar masses was emitted
3363:
in Japan, is in operation since February 2020. A key point is that a tenfold increase in sensitivity (radius of 'reach') increases the volume of space accessible to the instrument by one thousand times. This increases the rate at which detectable signals might be seen from one per tens of years of
3306:
to measure gravitational-wave induced motion between separated 'free' masses. This allows the masses to be separated by large distances (increasing the signal size); a further advantage is that it is sensitive to a wide range of frequencies (not just those near a resonance as is the case for Weber
3178:, consisting of an exactingly machined 1,150 kg sphere cryogenically cooled to 20 millikelvins. The spherical configuration allows for equal sensitivity in all directions, and is somewhat experimentally simpler than larger linear devices requiring high vacuum. Events are detected by measuring 3080:
Gravitational waves are not easily detectable. When they reach the Earth, they have a small amplitude with strain approximately 10, meaning that an extremely sensitive detector is needed, and that other sources of noise can overwhelm the signal. Gravitational waves are expected to have frequencies
2829:
Due to the weakness of the coupling of gravity to matter, gravitational waves experience very little absorption or scattering, even as they travel over astronomical distances. In particular, gravitational waves are expected to be unaffected by the opacity of the very early universe. In these early
2650:
will generally emit no gravitational radiation because neutron stars are highly dense objects with a strong gravitational field that keeps them almost perfectly spherical. In some cases, however, there might be slight deformities on the surface called "mountains", which are bumps extending no more
2633:
that occurs during the last stellar evolutionary stages of a massive star's life, whose dramatic and catastrophic destruction is marked by one final titanic explosion. This explosion can happen in one of many ways, but in all of them a significant proportion of the matter in the star is blown away
3053:
The information about the orbit can be used to predict how much energy (and angular momentum) would be radiated in the form of gravitational waves. As the binary system loses energy, the stars gradually draw closer to each other, and the orbital period decreases. The resulting trajectory of each
2953:
Gravitational waves have two important and unique properties. First, there is no need for any type of matter to be present nearby in order for the waves to be generated by a binary system of uncharged black holes, which would emit no electromagnetic radiation. Second, gravitational waves can pass
1936:
Gravitational waves carry energy away from their sources and, in the case of orbiting bodies, this is associated with an in-spiral or decrease in orbit. Imagine for example a simple system of two masses – such as the Earth–Sun system – moving slowly compared to the
1645:
changes or rotates at twice the orbital rate, so the time-varying gravitational wave size, or 'periodic spacetime strain', exhibits a variation as shown in the animation. If the orbit of the masses is elliptical then the gravitational wave's amplitude also varies with time according to Einstein's
2556:
10 m (1890 km), its remaining lifetime is about 130,000 seconds or 36 hours. The orbital frequency will vary from 1 orbit per second at the start, to 918 orbits per second when the orbit has shrunk to 20 km at merger. The majority of gravitational radiation emitted will be at twice the
3725:, and 10 cubic centimeters of cuprate high temperature superconductor seem sufficient for the mechanism to properly work. A detailed description of the approach can be found in "High Temperature Superconductors as Quantum Sources of Gravitational Waves: The HTSC GASER". Chapter 3 of this book. 3655:
transient, which occurred on 17 August 2017, allowed for constraining the masses of the neutron stars involved between 0.86 and 2.26 solar masses. Further analysis allowed a greater restriction of the mass values to the interval 1.17–1.60 solar masses, with the total system mass measured to be
3492:
to seek out perturbations due to GWs in measurements of the time of arrival of pulses to a telescope, in other words, to look for deviations in the clock ticks. To detect GWs, pulsar timing arrays search for a distinct quadrupolar pattern of correlation and anti-correlation between the time of
2961:
The sources of gravitational waves described above are in the low-frequency end of the gravitational-wave spectrum (10 to 10 Hz). An astrophysical source at the high-frequency end of the gravitational-wave spectrum (above 10 Hz and probably 10 Hz) generates relic gravitational waves that are
2695:
and by doing so they carry those away from the source. Gravitational waves perform the same function. Thus, for example, a binary system loses angular momentum as the two orbiting objects spiral towards each other – the angular momentum is radiated away by gravitational waves.
3050:, just a few times larger than the diameter of our own Sun. The combination of greater masses and smaller separation means that the energy given off by the Hulse–Taylor binary will be far greater than the energy given off by the Earth–Sun system – roughly 10 times as much. 3425:
intended to detect this type of gravitational wave. By taking data from LIGO and GEO, and sending it out in little pieces to thousands of volunteers for parallel analysis on their home computers, Einstein@Home can sift through the data far more quickly than would be possible otherwise.
2315: 7683:
Agazie, Gabriella; Anumarlapudi, Akash; Archibald, Anne M.; Arzoumanian, Zaven; Baker, Paul T.; BĂ©csy, Bence; Blecha, Laura; Brazier, Adam; Brook, Paul R.; Burke-Spolaor, Sarah; Burnette, Rand; Case, Robin; Charisi, Maria; Chatterjee, Shami; Chatziioannou, Katerina (2023-07-01).
1070:
Generally, the more mass that is contained within a given volume of space, the greater the curvature of spacetime will be at the boundary of its volume. As objects with mass move around in spacetime, the curvature changes to reflect the changed locations of those objects. In
31: 1335:, who anonymously reported that the singularities in question were simply the harmless coordinate singularities of the employed cylindrical coordinates. Einstein, who was unfamiliar with the concept of peer review, angrily withdrew the manuscript, never to publish in 3708:
are characterized by the presence of s-wave and d-wave Cooper pairs. Transitions between s-wave and d-wave are gravitational spin-2. Out of equilibrium conditions can be induced by injecting s-wave Cooper pairs from a low temperature superconductor, for instance
6843:
Chiaberge, M.; Ely, J.C.; Meyer, E.T.; Georganopoulos, M.; Marinucci, A.; Bianchi, S.; Tremblay, G.R.; Hilbert, B.; Kotyla, J.P. (2016-11-16). "The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source?".
7372:
first described in detail a practical solution with an analysis of realistic limitations to the technique in R. Weiss (1972). "Electromagetically Coupled Broadband Gravitational Antenna". Quarterly Progress Report, Research Laboratory of Electronics, MIT 105:
2872: 1147:
Gravitational waves do not strongly interact with matter in the way that electromagnetic radiation does. This allows for the observation of events involving exotic objects in the distant universe that cannot be observed with more traditional means such as
1747:. Polarization of a gravitational wave is just like polarization of a light wave except that the polarizations of a gravitational wave are 45 degrees apart, as opposed to 90 degrees. In particular, in a "cross"-polarized gravitational wave, 2949:
have also brought new insights to astronomy. As each of these regions of the spectrum has opened, new discoveries have been made that could not have been made otherwise. The astronomy community hopes that the same holds true of gravitational waves.
2492: 3406:. Unlike signals from supernovae or binary black holes, these signals evolve little in amplitude or frequency over the period it would be observed by ground-based detectors. However, there would be some change in the measured signal, because of 7352: 2962:
theorized to be faint imprints of the Big Bang like the cosmic microwave background. At these high frequencies it is potentially possible that the sources may be "man made" that is, gravitational waves generated and detected in the laboratory.
2858:
were three detectors operating at the time of the event, therefore, the direction is precisely defined. The detection by all three instruments led to a very accurate estimate of the position of the source, with a 90% credible region of just 60
3633:. The gravitational waves were observed in the region more than 5 sigma (in other words, 99.99997% chances of showing/getting the same result), the probability of finding enough to have been assessed/considered as the evidence/proof in an 2651:
than 10 centimeters (4 inches) above the surface, that make the spinning spherically asymmetric. This gives the star a quadrupole moment that changes with time, and it will emit gravitational waves until the deformities are smoothed out.
3121:
above). Thus, even waves from extreme systems like merging binary black holes die out to very small amplitudes by the time they reach the Earth. Astrophysicists expect that some gravitational waves passing the Earth may be as large as
1428:. Pulsar timing observations over the next decade showed a gradual decay of the orbital period of the Hulse–Taylor pulsar that matched the loss of energy and angular momentum in gravitational radiation predicted by general relativity. 1754:, the effect on the test particles would be basically the same, but rotated by 45 degrees, as shown in the second animation. Just as with light polarization, the polarizations of gravitational waves may also be expressed in terms of 3227:
harmonic oscillators a few centimeters in diameter. The oscillators are designed to have (when uncoupled) almost equal resonant frequencies. The system is currently expected to have a sensitivity to periodic spacetime strains of
3144: – a large, solid bar of metal isolated from outside vibrations. This type of instrument was the first type of gravitational wave detector. Strains in space due to an incident gravitational wave excite the bar's 4226:"A Black Hole Feasted on a Neutron Star. 10 Days Later, It Happened Again – Astronomers had long suspected that collisions between black holes and dead stars occurred, but they had no evidence until a pair of recent detections" 3764:, a "gravity gun" or "gracer" (gravity amplification by collimated emission of resonance) is used to reshape a collapsar, so that the protagonists can exploit the extreme relativistic effects and make an interstellar journey. 1330:
in which they claimed gravitational waves could not exist in the full general theory of relativity because any such solution of the field equations would have a singularity. The journal sent their manuscript to be reviewed by
2095: 1733:. For example, the animations shown here oscillate roughly once every two seconds. This would correspond to a frequency of 0.5 Hz, and a wavelength of about 600 000 km, or 47 times the diameter of the Earth. 852:, does not provide for their existence, instead asserting that gravity has instantaneous effect everywhere. Gravitational waves therefore stand as an important relativistic phenomenon that is absent from Newtonian physics. 5637:"A Background 'Hum' Pervades the Universe. Scientists Are Racing to Find Its Source – Astronomers are now seeking to pinpoint the origins of an exciting new form of gravitational waves that was announced earlier this year" 2638:, which can happen only when there is asymmetrical movement of masses. Since the exact mechanism by which supernovae take place is not fully understood, it is not easy to model the gravitational radiation emitted by them. 1468:
as gravitational waves. The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the
3625:
gravitational waves. The signal was seen by both LIGO detectors in Livingston and Hanford, with a time difference of 7 milliseconds due to the angle between the two detectors and the source. The signal came from the
8661: 1378:
published a detailed version of the "sticky bead argument". This later led to a series of articles (1959 to 1989) by Bondi and Pirani that established the existence of plane wave solutions for gravitational waves.
130: 8593: 8583: 8573: 8542: 8532: 3672:), involving 70 telescopes and observatories and yielding observations over a large region of the electromagnetic spectrum which further confirmed the neutron star nature of the merged objects and the associated 2160: 3338:
Even with such long arms, the strongest gravitational waves will only change the distance between the ends of the arms by at most roughly 10 m. LIGO should be able to detect gravitational waves as small as
3777:, the analysis of a gravitational wave signal from the inspiral of a nearby binary neutron star reveals that its collision and merger is imminent, implying a large gamma-ray burst is going to impact the Earth. 7367:
The idea of using laser interferometry for gravitational wave detection was first mentioned by Gerstenstein and Pustovoit 1963 Sov. Phys.–JETP 16 433. Weber mentioned it in an unpublished laboratory notebook.
2958:, for example, gravitational waves will pass through essentially unimpeded. These two features allow gravitational waves to carry information about astronomical phenomena heretofore never observed by humans. 1370:" notes that if one takes a rod with beads then the effect of a passing gravitational wave would be to move the beads along the rod; friction would then produce heat, implying that the passing wave had done 4034:[On the dynamics of the electron – Note by Henri PoincarĂ© published in the Reports of the Academy of Sciences of the session of June 5, 1905 – Members of the Academy of Sciences since its creation] 1163:
In particular, gravitational waves could be of interest to cosmologists as they offer a possible way of observing the very early universe. This is not possible with conventional astronomy, since before
7349: 3651:
On 16 October 2017, the LIGO and Virgo collaborations announced the first-ever detection of gravitational waves originating from the coalescence of a binary neutron star system. The observation of the
4032:"Sur la dynamique de l'Ă©lectron – Note de Henri PoincarĂ© publiĂ©e dans les Comptes rendus de l'AcadĂ©mie des sciences de la sĂ©ance du 5 juin 1905 – Membres de l'AcadĂ©mie des sciences depuis sa crĂ©ation" 1227:
is a conversion factor for changing the unit of time to the unit of space. This makes it the only speed which does not depend either on the motion of an observer or a source of light and/or gravity.
1249:
and Virgo detectors received gravitational wave signals and at nearly the same time gamma ray satellites and optical telescopes saw signals from a source located about 130 million light years away.
6923:
Weisberg, J.M.; Taylor, J.H.; et al. (The LIGO Scientific Collaboration and the Virgo Collaboration) (2004). "Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis".
5646: 1101:
close to one another. However, due to the astronomical distances to these sources, the effects when measured on Earth are predicted to be very small, having strains of less than 1 part in 10.
8604: 8599: 1289:
proposed gravitational waves, emanating from a body and propagating at the speed of light, as being required by the Lorentz transformations and suggested that, in analogy to an accelerating
8614: 3696:
In 1998, the possibility of a different implementation of the above theoretical analysis was proposed by Giorgio Fontana. The required coherence for a practical GASER could be obtained by
3109:
measurement of the effect of a passing gravitational wave, which could also provide more information about the system that generated it. Any such direct detection is complicated by the
2611:. The largest amplitude of emission occurs during the merger phase, which can be modeled with the techniques of numerical relativity. The first direct detection of gravitational waves, 1343:, who had been in contact with Robertson, convinced Einstein that the criticism was correct, and the paper was rewritten with the opposite conclusion and published elsewhere. In 1956, 1242:(which are the presumptive field particles associated with gravity; however, an understanding of the graviton, if any exist, requires an as-yet unavailable theory of quantum gravity). 2670:. This background signal is too weak for any currently operational gravitational wave detector to observe, and it is thought it may be decades before such an observation can be made. 1168:
the universe was opaque to electromagnetic radiation. Precise measurements of gravitational waves will also allow scientists to test more thoroughly the general theory of relativity.
2607:, and ring-down phases. Hence, in the early 1990s the physics community rallied around a concerted effort to predict the waveforms of gravitational waves from these systems with the 3410:
caused by the motion of the Earth. Despite the signals being simple, detection is extremely computationally expensive, because of the long stretches of data that must be analysed.
2149: 1614:
outside the Solar System by one hair's width. This tiny effect from even extreme gravitational waves makes them observable on Earth only with the most sophisticated detectors.
7383:
LIGO Scientific Collaboration; Virgo Collaboration (2010). "Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors".
3027:
Although the waves from the Earth–Sun system are minuscule, astronomers can point to other sources for which the radiation should be substantial. One important example is the
1594:; however, even the strongest have a minuscule effect and their sources are generally at a great distance. For example, the waves given off by the cataclysmic final merger of 3064:
The only difficulty is that most systems like the Hulse–Taylor binary are so far away. The amplitude of waves given off by the Hulse–Taylor binary at Earth would be roughly
2364: 1882:
must be non-zero in order for it to emit gravitational radiation. This is analogous to the changing dipole moment of charge or current that is necessary for the emission of
5981:
LIGO Scientific Collaboration – FAQ; section: 'Do we expect LIGO's advanced detectors to make a discovery, then?' and 'What's so different about LIGO's advanced detectors?'
3182:. MiniGRAIL is highly sensitive in the 2–4 kHz range, suitable for detecting gravitational waves from rotating neutron star instabilities or small black hole mergers. 1917: 1901: 8927: 3509: 1510: 3148:
and could thus be amplified to detectable levels. Conceivably, a nearby supernova might be strong enough to be seen without resonant amplification. With this instrument,
6783:
Baker, Robert M.L.; Woods, R. Clive; Li, Fangyu (2006). "Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection".
3790:
series, gravitational waves are used as an interstellar broadcast signal, which serves as a central plot point in the conflict between civilizations within the galaxy.
6764:
Bragisnky, V.B.; Rudenko, Valentin N. (1978). "Gravitational waves and the detection of gravitational radiation: Generation of gravitational waves in the laboratory".
1777:
In general terms, gravitational waves are radiated by objects whose motion involves acceleration and its change, provided that the motion is not perfectly spherically
1564: 1539: 9838: 2122: 500: 8886: 3872: 1703:: This is the speed at which a point on the wave (for example, a point of maximum stretch or squeeze) travels. For gravitational waves with small amplitudes, this 7103: 3264:. The Chongqing University detector is planned to detect relic high-frequency gravitational waves with the predicted typical parameters ≈10 Hz (100 GHz) and 3375:) is another limit to sensitivity. In addition to these 'stationary' (constant) noise sources, all ground-based detectors are also limited at low frequencies by 2589:
nuclei. Advanced LIGO detectors should be able to detect such events up to 200 megaparsecs away. Within this range of the order 40 events are expected per year.
5311:
Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger".
4762:
Membres de l'AcadĂ©mie des sciences depuis sa crĂ©ation : Henri Poincare. Sur la dynamique de l' electron. Note de H. PoincarĂ©. C.R. T.140 (1905) 1504–1508.
8690: 3277: 6819: 5636: 2905:, and not all objects in the distant universe shine strongly in this particular band. More information may be found, for example, in radio wavelengths. Using 1086:. Distances between objects increase and decrease rhythmically as the wave passes, at a frequency equal to that of the wave. The magnitude of this effect is 3394:
The simplest gravitational waves are those with constant frequency. The waves given off by a spinning, non-axisymmetric neutron star would be approximately
1629:
The oscillations depicted in the animation are exaggerated for the purpose of discussion – in reality a gravitational wave has a very small
8799: 7492: 6573:
For a comparison of the geometric derivation and the (non-geometric) spin-2 field derivation of general relativity, refer to box 18.1 (and also 17.2.5) of
4716: 773: 3693:
or resonators for gravitational waves, they determined that a single pass GASER (a kind of laser emitting gravitational waves) is practically unfeasible.
2541:
which would also end the emission of gravitational waves. Until then, their gravitational radiation would be comparable to that of a neutron star binary.
1626:" manner, as shown in the animations. The area enclosed by the test particles does not change and there is no motion along the direction of propagation. 4106: 4065: 10312: 10169: 5079:
Taylor, J. H.; Weisberg, J.M.; McCulloch, P.M. (1982). "A new test of general relativity – Gravitational radiation and the binary pulsar PSR 1913+16".
1781:(like an expanding or contracting sphere) or rotationally symmetric (like a spinning disk or sphere). A simple example of this principle is a spinning 2847:
and will reach different detectors at different times depending on their source direction. Although the differences in arrival time may be just a few
2007: 6199:; Choi, Dae-Il; Koppitz, Michael; van Meter, James (2006). "Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes". 3113:
effect the waves would produce on a detector. The amplitude of a spherical wave will fall off as the inverse of the distance from the source (the 1/
8815: 1347:
remedied the confusion caused by the use of various coordinate systems by rephrasing the gravitational waves in terms of the manifestly observable
152: 1230:
Thus, the speed of "light" is also the speed of gravitational waves, and, further, the speed of any massless particle. Such particles include the
7278:. Marcel Grossmann meeting on General Relativity. Rome: World Scientific Publishing Co. Pte. Ltd. (published December 2002). pp. 1899–1901. 6650: 5197: 3604:
LIGO measurement of the gravitational waves at the Hanford (left) and Livingston (right) detectors, compared to the theoretical predicted values.
5922: 1665:, this is the size of the wave – the fraction of stretching or squeezing in the animation. The amplitude shown here is roughly 2529:
if it were not too far away. A far greater number of white dwarf binaries exist with orbital periods in this range. White dwarf binaries have
2310:{\displaystyle {\frac {\mathrm {d} r}{\mathrm {d} t}}=-{\frac {64}{5}}\,{\frac {G^{3}}{c^{5}}}\,{\frac {(m_{1}m_{2})(m_{1}+m_{2})}{r^{3}}}\ ,} 8675: 8671: 8553: 8467: 1687:, this is the frequency with which the wave oscillates (1 divided by the amount of time between two successive maximum stretches or squeezes) 65: 8415: 2646:
As noted above, a mass distribution will emit gravitational radiation only when there is spherically asymmetric motion among the masses. A
357: 1097:
are predicted to be a powerful source of gravitational waves as they coalesce, due to the very large acceleration of their masses as they
9885: 9059: 8778: 3620:
merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the
1617:
The effects of a passing gravitational wave, in an extremely exaggerated form, can be visualized by imagining a perfectly flat region of
1463:
merging about 1.3 billion light-years away. During the final fraction of a second of the merger, it released more than 50 times the
1363: 1354:
At the time, Pirani's work was overshadowed by the community's focus on a different question: whether gravitational waves could transmit
8389: 4165: 10120: 9039: 8569: 8528: 5525: 5124:
Taylor, J. H.; Fowler, L.A.; McCulloch, P.M. (1979). "Measurements of general relativistic effects in the binary pulsar PSR1913 + 16".
3201:
beam circulating in a closed loop about one meter across. Both detectors are expected to be sensitive to periodic spacetime strains of
2608: 1404:; however, the frequency of detection soon raised doubts on the validity of his observations as the implied rate of energy loss of the 1124:
was completed in 2019; its first joint detection with LIGO and VIRGO was reported in 2021. Another European ground-based detector, the
710: 4387:"Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3" 9909: 9655: 8609: 3578:
instrument, an announcement made on 17 March 2014, which was withdrawn on 30 January 2015 ("the signal can be entirely attributed to
520: 362: 6681: 10523: 8987: 3817: 3613: 3591: 1637:). However, they help illustrate the kind of oscillations associated with gravitational waves as produced by a pair of masses in a 1452: 1400:. In 1969, Weber claimed to have detected the first gravitational waves, and by 1970 he was "detecting" signals regularly from the 1385:
further postulated the existence of gravitational waves, declaring them to have "physical significance" in his 1959 lecture at the
1187:
list different frequency bands for gravitational waves that could plausibly be detected, ranging from 10 Hz up to 10 Hz.
1104:
Scientists demonstrate the existence of these waves with highly-sensitive detectors at multiple observation sites. As of 2012, the
914: 845: 766: 475: 43:
orbit closer to one another, they emit gravitational waves, the frequency of which increases to a peak as the black holes coalesce.
6707: 2893:
has been revolutionized by the use of new methods for observing the universe. Astronomical observations were initially made using
8982: 8666: 3645: 3595: 2990: 1018: 860: 5955:"ESO Telescopes Observe First Light from Gravitational Wave Source – Merging neutron stars scatter gold and platinum into space" 10363: 10305: 10162: 9691: 9645: 7622:
Hobbs, G; et al. (2010). "The International Pulsar Timing Array project: using pulsars as a gravitational wave detector".
1895: 1821: 1517:
in 15 years of radio observations of 25 pulsars. Similar results are published by European Pulsar Timing Array, who claimed a
990: 388: 222: 10739: 9829: 8375: 8303: 8270: 8180: 8009: 7974: 7785: 7299: 6630: 6599: 5895: 5734: 4877: 4590: 4559: 4361: 3190: 2954:
through any intervening matter without being scattered significantly. Whereas light from distant stars may be blocked out by
2922: 427: 5668: 3472:
Plot of correlation between pulsars observed by NANOGrav vs angular separation between pulsars, compared with a theoretical
9313: 3537: 3057:
Inspirals are very important sources of gravitational waves. Any time two compact objects (white dwarfs, neutron stars, or
8511: 5475: 4031: 3743:
shows the experiment monitoring the propagation of gravitational waves at the expense of annihilating a chunk of asteroid
3152:
claimed to have detected daily signals of gravitational waves. His results, however, were contested in 1974 by physicists
997: 8579: 6472:
Komossa, S.; Zhou, H.; Lu, H. (May 2008). "A Recoiling Supermassive Black Hole in the Quasar SDSS J092712.65+294344.0?".
4772: 4759: 4138:"Einstein's gravity theory passes toughest test yet: Bizarre binary star system pushes study of relativity to new limits" 3307:
bars). After years of development ground-based interferometers made the first detection of gravitational waves in 2015.
1799:
A spinning non-axisymmetric planetoid – say with a large bump or dimple on the equator –
971: 894:
The first indirect evidence for the existence of gravitational waves came in 1974 from the observed orbital decay of the
759: 3168:
to detect vibration. Weber bars are not sensitive enough to detect anything but extremely powerful gravitational waves.
9566: 9126: 8865: 8751: 8371: 7744: 7100: 3868: 3705: 3435: 3014:
of the BICEP2 detector is shown here. In January 2015, however, the BICEP2 findings were confirmed to be the result of
2526: 1855: 1513:
states, that they were created over cosmological time scales by supermassive black holes, identifying the distinctive
1129: 139: 6527:"Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information" 10298: 10155: 9937: 9571: 8922: 8460: 8354: 8339: 8321: 8288: 8256: 8239: 7316: 3549: 3185:
There are currently two detectors focused on the higher end of the gravitational wave spectrum (10 to 10 Hz): one at
2901:
pioneered the use of telescopes to enhance these observations. However, visible light is only a small portion of the
2533:, and diameters in the order of the Earth. They cannot get much closer together than 10,000 km before they will 1311:
However, the nature of Einstein's approximations led many (including Einstein himself) to doubt the result. In 1922,
1037: 165: 5497: 4744: 4458: 3668:, was associated with the neutron star merger. This was corroborated by the electromagnetic follow-up of the event ( 3331: 1004: 7474: 5608: 3541: 3068:≈ 10. There are some sources, however, that astrophysicists expect to find that produce much greater amplitudes of 2538: 1832: 10621: 9891: 6419:; Schnittman, J.D.; Komossa, S. (2009). "Hypercompact Stellar Systems Around Recoiling Supermassive Black Holes". 5415: 1479:
A year earlier, the BICEP2 collaboration claimed that they had detected the imprint of gravitational waves in the
1277:
The possibility of gravitational waves and that those might travel at the speed of light was discussed in 1893 by
728: 445: 58: 9604: 9080: 5455: 3661: 898:, which matched the decay predicted by general relativity as energy is lost to gravitational radiation. In 1993, 352: 6126:; Marronetti, P.; Zlochower, Y. (2006). "Accurate Evolutions of Orbiting Black-Hole Binaries without Excision". 1730: 10734: 9707: 8502: 8492: 6119: 5387: 3842: 3804:, which was awarded to three individual physicists for their role in the discovery of and testing for the waves 3786: 3297:: A gravitational wave passing over the left arm (yellow) changes its length and thus the interference pattern. 2986: 1965: 1447:
After years of producing null results, improved detectors became operational in 2015. On 11 February 2016, the
1386: 1179:
Using this technique, astronomers have discovered the 'hum' of various SMBH mergers occurring in the universe.
986: 975: 5750: 5700: 1176:
with wavelengths measured in lightyears. These timing changes can be used to locate the source of the waves.
863:
are used to infer data about the sources of gravitational waves. Sources that can be studied this way include
10452: 10138: 9880: 9785: 9715: 9184: 8736: 7802: 4378: 4137: 4122: 4083: 3837: 3626: 3565: 3314: – the Laser Interferometer Gravitational Wave Observatory. LIGO has three detectors: one in 2667: 1506: 1469: 1448: 439: 147: 9848: 1937:
speed of light in circular orbits. Assume that these two masses orbit each other in a circular orbit in the
485: 10729: 10580: 9702: 8917: 8476: 8453: 8093: 4070: 3832: 3529: 3110: 2982: 2884: 2704: 2630: 1223:
is not only about light; instead it is the highest possible speed for any interaction in nature. Formally,
1202: 1157: 1055: 856: 822: 505: 7557:"The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background" 5801:
Peters, P.C.; Mathews, J. (1963-07-01). "Gravitational Radiation from Point Masses in a Keplerian Orbit".
3616:, from a signal detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36 1082:
As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of
10724: 10391: 9743: 9477: 9462: 9239: 9121: 9084: 7809:) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". 4656: 3740: 3571: 2735: 2127: 1480: 921: 746: 237: 157: 5689:
The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals
4324: 3664:, occurring 1.7 seconds after the gravitational wave transient. The signal, originating near the galaxy 2933:
called the "greatest discovery of the century, if not all time". Similar advances in observations using
1766: 10612: 10589: 10030: 9472: 9425: 6622: 4353: 3521: 3157: 2810: 2699:
The waves can also carry off linear momentum, a possibility that has some interesting implications for
2544: 2487:{\displaystyle t={\frac {5}{256}}\,{\frac {c^{5}}{G^{3}}}\,{\frac {r^{4}}{(m_{1}m_{2})(m_{1}+m_{2})}}.} 1956:
In theory, the loss of energy through gravitational radiation could eventually drop the Earth into the
1094: 1083: 884: 650: 198: 5577: 5177:
Gertsenshtein, M.E.; Pustovoit, V.I. (1962). "On the detection of low frequency gravitational waves".
2995: 2851:, this is sufficient to identify the direction of the origin of the wave with considerable precision. 1389:. Further, it was Dirac who predicted gravitational waves with a well defined energy density in 1964. 19:
This article is about the phenomenon of general relativity. For the movement of classical fluids, see
10060: 9686: 9367: 8227: 5081: 4965: 1883: 1417: 1165: 841: 814: 450: 262: 5937: 3468: 10321: 10085: 9635: 9395: 9306: 8025:
M.E. Gerstenstein; V.I. Pustovoit (1962). "On the Detection of Low-Frequency Gravitational Waves".
7324: 7248: 7127: 6715: 6268: 5604: 3822: 3303: 3186: 2969:, created from the merger of the black holes at the center of two merging galaxies detected by the 2902: 1879: 1348: 1297:, accelerated masses in a relativistic field theory of gravity should produce gravitational waves. 1065: 903: 685: 675: 525: 342: 5007: 2004:
over time, but the radius varies only slowly for most of the time and plunges at later stages, as
10444: 10379: 10213: 10178: 9814: 9736: 9356: 9347: 9224: 7019: 5313: 3934: 3689: 3028: 2966: 1840: 1421: 1173: 964: 895: 670: 404: 7894:
Halpern, L.; Laurent, B. (1964-08-01). "On the gravitational radiation of microscopic systems".
5061: 4576: 3326:
and a third (formerly installed as a second detector at Hanford) that is planned to be moved to
1950: 1566:-significance will be achieved by 2025 by combining the measurements of several collaborations. 1412:
In the same period, the first indirect evidence of gravitational waves was discovered. In 1974,
1011: 10598: 10548: 10251: 10040: 9903: 9809: 9767: 9441: 9405: 8327: 7773: 6644: 6642: 5845: 4610: 3975: 3801: 3545: 2970: 2755: 2521:
10 m (189,000 km) has an orbital period of 1,000 seconds, and an expected lifetime of 1.30
2333: 1487: 1425: 1112:
observatories were the most sensitive detectors, operating at resolutions of about one part in
1087: 1059: 925: 917:
was made in 2015, when a signal generated by the merger of two black holes was received by the
907: 640: 625: 470: 232: 10435: 7508:"Upper limits on the isotropic gravitational radiation background from pulsar timing analysis" 5724: 5688: 4225: 1546: 1521: 10714: 10274: 10045: 9650: 9589: 7089: 4549: 4152: 3502: 3418: 3315: 2660: 1755: 1266: 1262: 1133: 615: 183: 6867: 6639: 1459:) detected at 09:50:45 GMT on 14 September 2015 of two black holes with masses of 29 and 36 10719: 10504: 10496: 10461: 9950: 9876: 9720: 9322: 8747: 8201: 8160: 8112: 8034: 7954: 7903: 7870: 7828: 7806: 7707: 7641: 7578: 7519: 7402: 7279: 7276:
Spherical Gravitational Wave Detectors: cooling and quality factor of a small CuAl6% sphere
7256: 7213: 7170: 7056: 6983: 6942: 6863: 6792: 6745: 6548: 6491: 6438: 6374: 6317: 6218: 6145: 6069: 6014: 5860: 5810: 5332: 5247: 5135: 5090: 5019: 4939: 4902: 4827: 4628: 4503: 4408: 4329: 4278: 4198: 4114: 4075: 3997: 3939: 3886: 3517: 3352: 3323: 3282: 3194: 2767: 2727: 2100: 1912:(denoted by the small red cross) in a circle with the larger mass having the smaller orbit. 1642: 1514: 1441: 1367: 1294: 1109: 435: 6736:
Grishchuk, L. P. (1976). "Primordial Gravitons and the Possibility of Their Observation".
5546: 5286: 4979: 4484:
Krauss, LM; Dodelson, S; Meyer, S (2010). "Primordial Gravitational Waves and Cosmology".
3721:
with high critical current. The amplification mechanism can be described as the effect of
3600: 1505:
In 2023, NANOGrav, EPTA, PPTA, and IPTA announced that they found evidence of a universal
1476:. The confidence level of this being an observation of gravitational waves was 99.99994%. 1075:, accelerating objects generate changes in this curvature which propagate outwards at the 8: 10686: 10539: 10515: 10264: 10025: 10020: 10010: 9842: 9791: 9609: 9594: 9420: 9351: 9299: 9209: 9089: 9069: 9016: 8909: 8635: 8393: 8380: 8190:
Barish, Barry C.; Weiss, Rainer (1999). "LIGO and the Detection of Gravitational Waves".
7414: 7068: 5641: 5502: 5008:"A short biography of Paul A.M. Dirac and historical development of Dirac delta function" 4685: 4382: 3827: 3638: 3513: 3485: 3463: 3360: 2775: 1997: 1875: 1737: 1719:
The speed, wavelength, and frequency of a gravitational wave are related by the equation
1332: 849: 790: 630: 600: 595: 347: 10015: 8404: 8205: 8164: 8116: 8038: 7958: 7907: 7832: 7711: 7653: 7645: 7582: 7523: 7406: 7283: 7260: 7217: 7174: 7060: 6987: 6946: 6796: 6749: 6552: 6495: 6442: 6378: 6321: 6222: 6149: 6073: 6018: 5864: 5814: 5382: 5336: 5251: 5139: 5094: 5023: 4943: 4906: 4831: 4507: 4412: 4282: 4202: 4118: 4079: 4001: 3927:
discovered and the first experimental evidence for the existence of gravitational waves.
3355:
should increase the sensitivity still further. Another highly sensitive interferometer,
610: 580: 10674: 10662: 10198: 10090: 9990: 9914: 9772: 9753: 9747: 9640: 9549: 9467: 9385: 9362: 9330: 9229: 9116: 8932: 8820: 8135: 8102: 8088: 8066: 7946: 7927: 7852: 7818: 7745:"This collision was 50 times more powerful than all the stars in the universe combined" 7697: 7665: 7631: 7604: 7568: 7493:"After 15 years, pulsar timing yields evidence of cosmic gravitational wave background" 7451: 7418: 7392: 7229: 7160: 7072: 7046: 7001: 6973: 6932: 6879: 6853: 6538: 6507: 6481: 6454: 6450: 6428: 6398: 6364: 6333: 6307: 6250: 6208: 6177: 6135: 6101: 6059: 6032: 5776: 5613: 5582: 5476:"LIGO's First-Ever Detection of Gravitational Waves Opens a New Window on the Universe" 5456:"This collision was 50 times more powerful than all the stars in the universe combined" 5431: 5364: 5322: 5237: 5159: 5043: 4929: 4845: 4817: 4749:. The Electrician printing and publishing company, limited. pp. 455–66 Appendix B. 4527: 4493: 4440: 4398: 4347: 4304: 4268: 4230: 3987: 3904: 3812: 3525: 3489: 3145: 2799: 2791: 2635: 1863: 1647: 1634: 1413: 1301: 1216: 1125: 680: 565: 490: 337: 227: 188: 50: 10147: 7953:. Lecture Notes in Physics. Vol. 475. Berlin, Heidelberg: Springer. p. 151. 7119: 6526: 4920:
Robinson, D.C. (2019). "Gravitation and general relativity at King's College London".
4386: 4210: 3476:
model (dashed purple) and if there were no gravitational wave background (solid green)
1582: 10333: 10100: 9932: 9924: 9525: 9482: 8881: 8434: 8350: 8335: 8317: 8299: 8284: 8266: 8252: 8235: 8176: 8140: 8005: 7970: 7931: 7919: 7856: 7844: 7781: 7725: 7657: 7596: 7537: 7295: 7076: 7005: 6996: 6961: 6626: 6595: 6575: 6390: 6242: 6234: 6169: 6161: 6093: 6085: 6036: 5901: 5891: 5826: 5730: 5435: 5368: 5356: 5348: 5265: 5198:"Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves" 5151: 5106: 5047: 5035: 4955: 4873: 4586: 4555: 4519: 4432: 4357: 4343: 4308: 4296: 4013: 3914: 3876: 3857: 3701: 3630: 3179: 3175: 3058: 2955: 2942: 2707:. Or it may carry gas, allowing the recoiling black hole to appear temporarily as a " 2604: 2598: 2534: 1641:. In this case the amplitude of the gravitational wave is constant, but its plane of 1574: 1473: 1290: 1149: 1079:
in a wave-like manner. These propagating phenomena are known as gravitational waves.
510: 285: 10290: 9970: 7669: 7608: 7422: 7233: 6883: 6458: 6402: 6337: 6254: 6105: 5163: 4531: 4009: 3223:. The INFN Genoa detector is a resonant antenna consisting of two coupled spherical 1286: 810: 560: 10638: 10567: 10399: 10269: 10223: 10218: 10005: 9995: 9942: 9919: 9497: 9214: 9205: 8424: 8384: 8209: 8168: 8130: 8120: 8054: 7997: 7962: 7911: 7840: 7836: 7715: 7649: 7586: 7527: 7410: 7287: 7221: 7064: 6991: 6905: 6871: 6800: 6615:
Lightman, A.P.; Press, W.H.; Price, R.H.; Teukolsky, S.A. (1975). "Problem 12.16".
6556: 6511: 6499: 6446: 6382: 6325: 6226: 6181: 6153: 6077: 6022: 5868: 5818: 5423: 5344: 5340: 5255: 5143: 5126: 5098: 5027: 5003: 4947: 4849: 4835: 4511: 4444: 4424: 4416: 4286: 4206: 4005: 3847: 3773: 3735: 3718: 3533: 3220: 3047: 2973:, is theorized to have been ejected from the merger center by gravitational waves. 2906: 2787: 2743: 2715: 2692: 1929: 1704: 1697:, this is the distance along the wave between points of maximum stretch or squeeze. 1518: 1396:
started designing and building the first gravitational wave detectors now known as
1312: 1282: 1278: 1196: 899: 806: 798: 635: 590: 570: 515: 10065: 6875: 6668:
Update on Gravitational Wave Science from the LIGO-Virgo Scientific Collaborations
6230: 6157: 6081: 4951: 4257:"Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences" 1669: = 0.5 (or 50%). Gravitational waves passing through the Earth are many 1606:
that changed the length of a 4 km LIGO arm by a thousandth of the width of a
1238:
that make up light (hence carrier of electromagnetic force), and the hypothetical
655: 10470: 10080: 10055: 9980: 9975: 9858: 9819: 9781: 9725: 9599: 9535: 8001: 7356: 7152: 7107: 6583: 6027: 6002: 5493: 5031: 4869:
Traveling at the Speed of Thought: Einstein and the Quest for Gravitational Waves
4867: 4606: 4182: 4102: 4061: 3621: 3372: 3224: 3197:, China. The Birmingham detector measures changes in the polarization state of a 3007: 2930: 2898: 2803: 2574: 2561:, and 70 observatories collaborated to detect the electromagnetic counterpart, a 1905: 1464: 1401: 1359: 1326: 1180: 1153: 1051: 818: 690: 665: 550: 545: 409: 290: 252: 9863: 7949:. In Klamut, Jan; Veal, Boyd W.; Dabrowski, Bogdan M.; Klamut, Piotr W. (eds.). 7382: 7204:
Levine, J. (April 2004). "Early Gravity-Wave Detection Experiments, 1960–1975".
3380:
by analysis before detection may be considered a true gravitational wave event.
2813:(because the gravitational force appears to have unlimited range) and must be a 2090:{\displaystyle r(t)=r_{0}\left(1-{\frac {t}{t_{\text{coalesce}}}}\right)^{1/4},} 1758:
waves. Gravitational waves are polarized because of the nature of their source.
460: 10698: 10626: 10415: 10105: 9777: 9761: 9757: 9660: 9630: 9487: 9390: 9163: 8836: 8445: 7720: 7685: 7591: 7556: 7291: 6560: 6196: 5573: 5224:
Cervantes-Cota, Jorge; Galindo-Uribarri, Salvador; Smoot, George (2016-09-13).
4721: 4712: 4582: 4420: 4291: 4256: 3760: 3498: 3174:
is a spherical gravitational wave antenna using this principle. It is based at
3153: 2946: 2844: 2814: 2795: 2341: 1961: 1909: 1813:
radiate except in the unlikely event that the explosion is perfectly symmetric.
1708: 1657:, there are a number of characteristics used to describe a gravitational wave: 1638: 1611: 1371: 1340: 1317: 1207: 1076: 837: 802: 733: 700: 695: 383: 247: 7991: 7225: 6909: 6900:
Cowen, Ron (2015-01-30). "Gravitational waves discovery now officially dead".
6667: 5872: 5427: 4111:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin
4071:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin
3039:
of radio signals given off by the pulsar. Each of the stars is about 1.4 
10708: 10387: 10355: 10206: 10095: 10075: 10070: 9985: 9853: 9681: 9625: 9457: 9410: 9273: 9094: 8948: 8438: 8244: 8192: 8152: 7923: 7729: 7661: 7600: 7541: 6591: 6416: 6394: 6352: 6295: 6238: 6165: 6123: 6089: 5905: 5830: 5352: 5269: 5155: 5110: 5039: 4964:
David Robinson, Gravitation and general relativity at King's College London,
4959: 4893:
F.A.E., Pirani (1956). "On the physical significance of the Riemann tensor".
4436: 4300: 4017: 3924: 3920: 3917:, for an important class of exact solutions modelling gravitational radiation 3755: 3748: 3722: 3414: 3407: 3389: 3161: 3093: 3036: 3032: 2894: 2860: 2840: 2779: 2734:
and frequency due to the relative velocities of the source and observer (the
2548:
Artist's impression of merging neutron stars, a source of gravitational waves
1981: 1375: 1184: 660: 575: 555: 480: 378: 257: 5822: 5260: 5225: 4840: 4805: 4515: 3942:, for a physical way to see that gravitational radiation should carry energy 620: 10650: 10115: 10035: 10000: 9530: 9492: 9234: 8298:(CRC Press, Taylor & Francis Group, Boca Raton/London/New York, 2020). 8144: 7848: 7686:"The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background" 7369: 7037:
Damour, Thibault (2015). "1974: the discovery of the first binary pulsar".
6616: 6246: 6173: 6097: 5954: 5530: 5360: 4523: 4186: 3909: 3807: 3319: 3149: 3105:
evidence for gravitational waves. A more conclusive observation would be a
2876: 2700: 2510: 2502: 1499: 1491: 1393: 1344: 1321: 1316:(transverse–transverse) type that Eddington showed always propagate at the 1305: 937: 929: 872: 605: 585: 20: 7475:"Focus on NANOGrav's 15 yr Data Set and the Gravitational Wave Background" 7328: 3704:
that are characterized by a macroscopic collective wave-function. Cuprate
1980:(joules per second) is lost through gravitational radiation, leading to a 1281:, using the analogy between the inverse-square law of gravitation and the 1257: 10487: 10407: 10246: 9899: 9868: 9415: 8406: 8309: 8276: 6937: 6312: 5012:
International Journal of Mathematical Education in Science and Technology
3945: 3697: 3657: 3579: 3140:
A simple device theorised to detect the expected wave motion is called a
3101:
Though the Hulse–Taylor observations were very important, they give only
3015: 3011: 2848: 2708: 2578: 2506: 1586:
The effect of a cross-polarized gravitational wave on a ring of particles
868: 864: 495: 465: 8125: 8071: 7273: 6355:(2008-05-10). "Ejection of Supermassive Black Holes from Galaxy Cores". 5890:. Vol. 1, Theory and Experiments. Oxford: Oxford University Press. 3860:, for gravitationally induced electromagnetic radiation from black holes 1578:
The effect of a plus-polarized gravitational wave on a ring of particles
10559: 10556: 10110: 9676: 9520: 9515: 9200: 9172: 8958: 7966: 7915: 7148: 6579: 6298:; et al. (May 2004). "Consequences of Gravitational Wave Recoil". 3744: 3669: 3634: 3617: 3570:
Primordial gravitational waves are gravitational waves observed in the
3451: 3447: 3443: 3395: 3368: 2875:
Two-dimensional representation of gravitational waves generated by two
2761: 2582: 2570: 2530: 2514: 1920:
Two stars of similar mass in circular orbits about their center of mass
1690: 1670: 1599: 1495: 1460: 1382: 978: in this section. Unsourced material may be challenged and removed. 933: 876: 705: 267: 193: 125:{\displaystyle G_{\mu \nu }+\Lambda g_{\mu \nu }={\kappa }T_{\mu \nu }} 40: 10693: 8783: 8065:
Chakrabarty, Indrajit (1999). "Gravitational Waves: An Introduction".
7947:"On the "s" and "d" wave symmetry in high-T c cuprate superconductors" 7682: 7165: 6962:"Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16" 6804: 6213: 6140: 6064: 6050:
Pretorius, Frans (2005). "Evolution of Binary Black-Hole Spacetimes".
4428: 3992: 3484:
takes the pulses to travel from the pulsar to a telescope on Earth. A
2683:
Water waves, sound waves, and electromagnetic waves are able to carry
2525:
10 seconds or about 414,000 years. Such a system could be observed by
2358:
the masses of the bodies. This leads to an expected time to merger of
10576: 10426: 10371: 9507: 9257: 9152: 8722: 8655: 8651: 8619: 8548: 8429: 8410: 8398: 8213: 7157:
Particle and Nuclear Astrophysics and Cosmology in the Next Millenium
6273: 5202: 5147: 3930: 3863: 3781: 3768: 3422: 3403: 3399: 3198: 3171: 3141: 3135: 2934: 2918: 2890: 2739: 2624: 2603:
Black hole binaries emit gravitational waves during their in-spiral,
2586: 1807: 1778: 1680: 1630: 1623: 1618: 1603: 1405: 1397: 880: 826: 276: 5578:"2017 Nobel Prize in Physics Awarded to LIGO Black Hole Researchers" 5383:"Gravitational waves detected 100 years after Einstein's prediction" 4717:"Detection of Waves in Space Buttresses Landmark Theory of Big Bang" 2999:
Now disproved evidence allegedly showing gravitational waves in the
2581:) seconds after the merger, followed by a longer optical transient ( 1846:
A spherically pulsating spherical star (non-zero monopole moment or
1816:
An isolated non-spinning solid object moving at a constant velocity
953: 10535: 10478: 10279: 10050: 9400: 9157: 9131: 9033: 9027: 9022: 9012: 9007: 9002: 8997: 8992: 8773: 8768: 7823: 7702: 7573: 7532: 7507: 7456: 7274:
de Waard, Arlette; Luciano Gottardi; Giorgio Frossati (July 2000).
6978: 6858: 6503: 6386: 6329: 6118: 5551: 5327: 5242: 5223: 5102: 4934: 4822: 4803: 4273: 3898: 3852: 3673: 3665: 3652: 3000: 2926: 2855: 2771: 2731: 2688: 2612: 2566: 2562: 2558: 1945:
plane. To a good approximation, the masses follow simple Keplerian
1831:
radiate. This can be regarded as a consequence of the principle of
1820:
radiate. This can be regarded as a consequence of the principle of
1782: 1595: 1456: 1270: 1239: 888: 645: 455: 295: 8107: 7636: 7397: 7051: 6543: 6486: 6433: 6369: 5979: 5526:"Gravitational waves turn to dust after claims of flawed analysis" 4498: 4403: 3508:
Globally there are three active pulsar timing array projects. The
1792:
Two objects orbiting each other, as a planet would orbit the Sun,
10230: 10182: 8891: 8172: 3714: 3376: 2914: 2910: 2783: 2154:
More generally, the rate of orbital decay can be approximated by
1172:
can result from passing gravitational waves generated by merging
1139: 794: 7450:
Amaro-Seoane, Pau (2017). "Laser interferometer space antenna".
7436: 5729:(4thRevised English ed.). Pergamon Press. pp. 356–57. 4804:
Cervantes-Cota, J.L.; Galindo-Uribarri, S.; Smoot, G.F. (2016).
4066:"NĂ€herungsweise Integration der Feldgleichungen der Gravitation" 3072:≈ 10. At least eight other binary pulsars have been discovered. 2000:
to spiral onto the Sun. This estimate overlooks the decrease in
9730: 9179: 8727: 8538: 8367: 8024: 7777: 6842: 6294: 3890: 3575: 3480: 3439: 3327: 3004: 2824: 2712: 2684: 2647: 1989: 1973: 1607: 1433: 1355: 1235: 940:
for their role in the direct detection of gravitational waves.
924:
in Livingston, Louisiana, and in Hanford, Washington. The 2017
7555:
Arzoumanian, Z.; et al. (NANOGrav Collaboration) (2018).
6682:"Gravitational Waves Discovered: A New Window on the Universe" 6651:"Black Holes, Cosmic Collisions and the Rippling of Spacetime" 3548:. These three groups also collaborate under the title of the 1358:. This matter was settled by a thought experiment proposed by 1261:
Primordial gravitational waves are hypothesized to arise from
10190: 9291: 8953: 8742: 8711: 8589: 8089:"The Confrontation between General Relativity and Experiment" 6708:"Listening to the gravitational universe: what can't we see?" 5669:"15 Years of Radio Data Reveals Evidence of Spacetime Murmur" 5078: 3894: 3629:, in the rough direction of (but much farther away than) the 3367:
Interferometric detectors are limited at high frequencies by
3356: 3165: 3035:. The characteristics of their orbit can be deduced from the 2938: 2818: 1946: 1700: 1591: 1472:, in the rough direction of (but much farther away than) the 1231: 1121: 1098: 793: – generated by the motion or acceleration of 8411:"A two-part feature: The Mathematics of Gravitational waves" 8157:
Fundamentals of Interferometric Gravitational Wave Detectors
7249:"MiniGRAIL, the first spherical gravitational wave detector" 6670:(Video of the press conference), retrieved 27 September 2017 5846:"Gravitational Radiation and the Motion of Two Point Masses" 3510:
North American Nanohertz Observatory for Gravitational Waves
2843:. This technique uses the fact that the waves travel at the 1770:
The gravitational wave spectrum with sources and detectors.
1610:, proportionally equivalent to changing the distance to the 1511:
North American Nanohertz Observatory for Gravitational Waves
9711: 8732: 8717: 8707: 7993:
Gravity-Superconductors Interactions: Theory and Experiment
6614: 4690: 4160: 3933:, a consequence of gravitational wave emission from binary 3882: 3710: 3609: 3311: 2718:
is thought to contain a recoiling supermassive black hole.
2552:
When the orbit of a neutron star binary has decayed to 1.89
1977: 1960:. However, the total energy of the Earth orbiting the Sun ( 1847: 1654: 1437: 1246: 1105: 918: 10645: 5917: 5915: 3532:
uses data from the four largest telescopes in Europe: the
2786:. However the graviton is not yet proven to exist, and no 1483:. However, they were later forced to retract this result. 10346: 7951:
Recent Developments in High Temperature Superconductivity
6820:"Gravitational Waves Send Supermassive Black Hole Flying" 6194: 4578:
Gravity: An introduction to Einstein's General Relativity
3286:
Simplified operation of a gravitational wave observatory
2678: 2517:
neutron stars in a circular orbit at a separation of 1.89
2513:
can be constituents of binaries. For example, a pair of
1957: 1953:. That is, the system will give off gravitational waves. 1924: 1916: 1900: 7246: 7202:
For a review of early experiments using Weber bars, see
6415: 1502:
for their role in the detection of gravitational waves.
1090:
to the distance (not distance squared) from the source.
1058:, gravity is treated as a phenomenon resulting from the 10177: 5912: 5414:
Castelvecchi, Davide; Witze, Witze (11 February 2016).
4651: 4459:"LIGO, Virgo, and KAGRA raise their signal score to 90" 3497:
galaxy mergers. Other potential signal sources include
2871: 1992:. At this rate, it would take the Earth approximately 3 1320:
regardless of coordinate system. In 1936, Einstein and
1128:, is under development. A space-based observatory, the 5176: 3278:
Ground-based interferometric gravitational-wave search
3031: – a pair of stars, one of which is a 1160:
gives new insights into the workings of the universe.
821:
demonstrated that gravitational waves result from his
10610: 10320: 7990:
Modanese, Giovanni; A. Robertson, Glen, eds. (2012).
7770:
MYP Physics Years 4 & 5: A concept-based approach
5123: 4554:. Cambridge: Cambridge University Press. p. 98. 3733:
An episode of the 1962 Russian science-fiction novel
2367: 2163: 2130: 2103: 2010: 1736:
In the above example, it is assumed that the wave is
1549: 1524: 68: 8263:
Gravity's Kiss: The Detection of Gravitational Waves
8249:
Gravity's Shadow: The Search for Gravitational Waves
7989: 6112: 4097: 4095: 4093: 3160:. Modern forms of the Weber bar are still operated, 2762:
Quantum gravity, wave-particle aspects, and graviton
1862:
More technically, the second time derivative of the
8405:Christina Sormani; C. Denson Hill; PaweƂ Nurowski; 8368:
Laser Interferometer Gravitational Wave Observatory
7141: 6959: 6574: 6525:MacLeod, Chelsea L.; Hogan, Craig J. (2008-02-14). 4483: 1062:. This curvature is caused by the presence of mass. 6895: 6893: 6188: 4054: 3046:and the size of their orbits is about 1/75 of the 2833: 2750:gravitational waves is different from redshifting 2486: 2309: 2143: 2116: 2089: 1558: 1533: 124: 7247:De Waard, A.; Gottardi, L.; Frossati, G. (2006). 6350: 6003:"Nobel Lecture: LIGO and gravitational waves III" 5885: 5413: 5409: 5407: 5405: 4090: 3974:Flanagan, Éanna É; Hughes, Scott A (2005-09-29). 10706: 8475: 8409:; David Garfinkle; NicolĂĄs Yunes (August 2017). 6763: 5752:The Science and Detection of Gravitational Waves 4861: 4859: 4679: 4677: 4675: 4551:General Relativity: An Einstein Centenary Survey 4465:. Max Planck Institute for Gravitational Physics 4153:"The Detection of Gravitational Waves with LIGO" 3559: 3302:A more sensitive class of detector uses a laser 3246:, with an expectation to reach a sensitivity of 2809:If such a particle exists, it is expected to be 8334:(Princeton University Press, Princeton, 1995). 8316:(Princeton University Press, Princeton, 1993). 7469: 7467: 6890: 5634: 5545:Rincon, Paul; Amos, Jonathan (3 October 2017). 5287:"Gravitational waves from black holes detected" 2866: 1988:10 meters per day or roughly the diameter of a 1949:. However, such an orbit represents a changing 1622:the distortion in spacetime, oscillating in a " 7893: 7267: 6922: 5722: 5597: 5416:"Einstein's gravitational waves found at last" 5402: 5281: 5279: 4646: 4644: 4642: 4250: 4248: 3973: 3969: 3967: 3965: 3963: 3961: 3585: 3429: 3193:Genoa, Italy. A third is under development at 1598:reached Earth after travelling over a billion 1366:in 1957. In short, his argument known as the " 10306: 10163: 9307: 9030:(first-ever possible light from bh-bh merger) 8461: 7505: 6471: 6043: 5800: 4856: 4799: 4797: 4795: 4793: 4791: 4789: 4787: 4785: 4686:"NASA Technology Views Birth of the Universe" 4672: 4605: 4547: 4181: 3644:Since then LIGO and Virgo have reported more 3457: 3097:A schematic diagram of a laser interferometer 767: 8416:Notices of the American Mathematical Society 8399:Video (94:34) – Scientific Talk on Discovery 7761: 7464: 7449: 7253:Recent Developments in Gravitational Physics 6782: 6524: 5566: 5538: 4705: 3166:superconducting quantum interference devices 2825:Significance for study of the early universe 2806:, have been made, but are not yet accepted. 8296:Gravitational Waves: A history of discovery 8189: 8064: 8061:. Washington, DC: Joseph Henry Press, 2000. 7794: 7554: 6518: 6288: 6269:"Neutron Star Crust Is Stronger than Steel" 5628: 5276: 4639: 4352:(2nd ed.). Cambridge ; New York: 4245: 3958: 3901:– Ground-based gravitational-wave detectors 2673: 2615:, came from the merger of two black holes. 1590:Gravitational waves are constantly passing 813:in 1905 as the gravitational equivalent of 10313: 10299: 10170: 10156: 9314: 9300: 8468: 8454: 7376: 6618:Problem book in Relativity and Gravitation 5544: 4782: 4336: 4217: 4189:(January 1937). "On gravitational waves". 3501:and the primordial background of GWs from 2609:Binary Black Hole Grand Challenge Alliance 774: 760: 8428: 8134: 8124: 8106: 8070: 7822: 7767: 7719: 7701: 7635: 7590: 7572: 7531: 7455: 7396: 7164: 7050: 6995: 6977: 6936: 6857: 6735: 6542: 6485: 6432: 6368: 6311: 6212: 6139: 6063: 6049: 6026: 5492: 5326: 5259: 5241: 4933: 4865: 4839: 4821: 4742: 4497: 4402: 4290: 4272: 3991: 3976:"The basics of gravitational wave theory" 3088: 2863:, a factor 20 more accurate than before. 2641: 2636:generated by a changing quadrupole moment 2409: 2384: 2229: 2204: 2151:the total time needed to fully coalesce. 1673:times weaker than this – 1038:Learn how and when to remove this message 915:direct observation of gravitational waves 9042:(first black hole - neutron star merger) 7350:High Frequency Relic Gravitational Waves 5469: 5467: 5465: 5306: 5304: 5302: 5300: 5226:"A Brief History of Gravitational Waves" 4919: 4806:"A Brief History of Gravitational Waves" 4101: 4060: 3818:First observation of gravitational waves 3614:first observation of gravitational waves 3599: 3592:First observation of gravitational waves 3467: 3281: 3092: 2994: 2870: 2790:yet exists that successfully reconciles 2543: 1923: 1915: 1899: 1772:Credit: NASA Goddard Space Flight Center 1765: 1581: 1573: 1453:first observation of gravitational waves 1256: 1201:The speed of gravitational waves in the 1138: 832:Gravitational waves transport energy as 25: 9147: 8401:, Barry Barish, CERN (11 February 2016) 8232:Principles of ĐĄosmology and Gravitation 8151: 7780:: Oxford University Press. p. 56. 7321:Astrophysics & Space Research Group 5777:"Gravitational Astrophysics Laboratory" 5635:O'Callaghan, Jonathan (4 August 2023). 5572: 5074: 5072: 5070: 5002: 4711: 3596:List of gravitational wave observations 2991:List of gravitational wave observations 1132:(LISA), is also being developed by the 10707: 7944: 7800: 7742: 7203: 7147: 7036: 6000: 5843: 5723:Landau, L. D.; Lifshitz, E.M. (1975). 5713:LIGO press conference 11 February 2016 5603: 5523: 5498:"Gravity Waves from Big Bang Detected" 5473: 5310: 5064:The Royal Swedish Academy of Sciences. 4892: 4683: 4574: 4376: 4342: 4255:Abbott, R.; et al. (2021-07-01). 4254: 3717:, which is pure s-wave, by means of a 3683: 3680:before the gravitational observation. 3574:. They were allegedly detected by the 2679:Energy, momentum, and angular momentum 2592: 2324:is the separation between the bodies, 1896:Two-body problem in general relativity 10294: 10151: 9295: 8449: 8376:Massachusetts Institute of Technology 8349:(Addison–Wesley, Reading, MA, 1980). 8265:(The MIT Press, Cambridge MA, 2017). 8251:, University of Chicago Press, 2004. 7621: 7187: 6899: 6776: 6705: 6679: 6409: 5462: 5297: 4977: 4543: 4541: 4223: 4150: 3434:Space-based interferometers, such as 3335:an interferometer is most sensitive. 3022: 3010:. The microscopic examination of the 2730:, gravitational waves should exhibit 1569: 1143:Linearly polarised gravitational wave 846:Newton's law of universal gravitation 8600:Stanford gravitational wave detector 8283:(Cambridge University Press, 1980). 8086: 7506:Hellings, R.W.; Downs, G.S. (1983). 7190:The detection of gravitational waves 6754:PACS numbers: 04.30. + x, 04.90. + e 6648: 5716: 5067: 4349:A first course in general relativity 4315: 3538:Westerbork Synthesis Radio Telescope 3129: 2774:is the name given to a hypothetical 1928:Two stars of similar mass in highly 1904:Two stars of dissimilar mass are in 1740:with a "plus" polarization, written 1362:during the first "GR" conference at 976:adding citations to reliable sources 947: 9886:Tolman–Oppenheimer–Volkoff equation 9839:Friedmann–LemaĂźtre–Robertson–Walker 8370:. LIGO Laboratory, operated by the 8234:(Adam Hilger, Philadelphia, 1989). 7124:gwoptics: Gravitational wave E-book 6465: 5609:"Learning from Gravitational Waves" 5375: 5195: 4548:Hawking, S. W.; Israel, W. (1979). 4451: 2917:, for example. Observations in the 2839:to determine direction by means of 2794:, which describes gravity, and the 2497: 2144:{\displaystyle t_{\text{coalesce}}} 1908:. Each revolves about their common 1234:(carrier of the strong force), the 1190: 861:observations of gravitational waves 13: 8752:European Gravitational Observatory 8372:California Institute of Technology 8347:Some Strangeness in the Proportion 8048: 7743:Kramer, Sarah (11 February 2016). 7314: 6960:Huang, Y.; Weisberg, J.M. (2016). 6706:Berry, Christopher (14 May 2015). 5936:. 9 September 2015. Archived from 5649:from the original on 4 August 2023 5547:"Einstein's waves win Nobel Prize" 4538: 4135: 3648:from merging black hole binaries. 3271: 3180:deformation of the detector sphere 2738:), but also due to distortions of 2178: 2168: 1392:After the Chapel Hill conference, 1339:again. Nonetheless, his assistant 1130:Laser Interferometer Space Antenna 85: 14: 10751: 9656:Hamilton–Jacobi–Einstein equation 9036:(first-ever "mass gap" collision) 8361: 8079:Landau, L.D. and Lifshitz, E.M., 7690:The Astrophysical Journal Letters 7479:The Astrophysical Journal Letters 6300:The Astrophysical Journal Letters 4684:Clavin, Whitney (17 March 2014). 4261:The Astrophysical Journal Letters 4191:Journal of the Franklin Institute 3550:International Pulsar Timing Array 3310:Currently, the most sensitive is 789:are transient displacements in a 10692: 10680: 10668: 10656: 10644: 10632: 10620: 10134: 10133: 8314:Principles of Physical Cosmology 8018: 7983: 7938: 7887: 7863: 7736: 7676: 7615: 7548: 7499: 7485: 7443: 7429: 6817: 6680:Gough, Evan (11 February 2016). 5701:"Ein neuer Zugang zum Universum" 5671:. NASA Jet Propulsion Laboratory 4322:"First Second of the Big Bang". 4171:from the original on 2016-03-03. 3879:– proposed space-based detectors 3706:high temperature superconductors 3383: 1833:conservation of angular momentum 952: 741: 740: 727: 57: 8221: 7361: 7343: 7308: 7240: 7196: 7181: 7112: 7094: 7083: 7030: 7012: 6953: 6916: 6836: 6824:Scientific American – Space.com 6811: 6757: 6729: 6699: 6673: 6661: 6608: 6567: 6344: 6261: 5994: 5972: 5947: 5879: 5837: 5794: 5769: 5743: 5707: 5693: 5682: 5661: 5517: 5486: 5448: 5217: 5189: 5170: 5117: 5054: 4996: 4971: 4922:The European Physical Journal H 4913: 4886: 4765: 4753: 4736: 4621: 4599: 4568: 4477: 4370: 4224:Chang, Kenneth (29 June 2021). 3662:Fermi Gamma-ray Space Telescope 3646:gravitational wave observations 3364:observation, to tens per year. 3126:≈ 10, but generally no bigger. 3075: 2834:Determining direction of travel 1996:10 times more than the current 1822:conservation of linear momentum 1729:, just like the equation for a 1300:In 1915 Einstein published his 963:needs additional citations for 943: 16:Aspect of relativity in physics 9463:Mass–energy equivalence (E=mc) 9321: 8493:Gravitational-wave observatory 8081:The Classical Theory of Fields 8059:Einstein's Unfinished Symphony 7996:. Bentham Science Publishers. 7841:10.1103/PhysRevLett.119.161101 7415:10.1088/0264-9381/27/17/173001 7101:Binary and Millisecond Pulsars 7069:10.1088/0264-9381/32/12/124009 5726:The Classical Theory of Fields 5388:US National Science Foundation 5345:10.1103/PhysRevLett.116.061102 5196:Cho, Adrian (3 October 2017). 4872:. Princeton University Press. 4175: 4144: 4129: 4024: 3843:Gravitational-wave observatory 2987:Gravitational-wave observatory 2909:, astronomers have discovered 2721: 2531:masses in the order of the Sun 2475: 2449: 2446: 2423: 2285: 2259: 2256: 2233: 2020: 2014: 1966:gravitational potential energy 1850:, but zero quadrupole moment) 805:. They were first proposed by 1: 9185:Gravitational wave background 8737:LIGO Scientific Collaboration 7803:LIGO Scientific Collaboration 7654:10.1088/0264-9381/27/8/084013 7624:Classical and Quantum Gravity 7385:Classical and Quantum Gravity 7192:. Cambridge University Press. 7039:Classical and Quantum Gravity 6785:American Institute of Physics 6231:10.1103/PhysRevLett.96.111102 6158:10.1103/PhysRevLett.96.111101 6082:10.1103/PhysRevLett.95.121101 5923:"Chapter 16 Gravity [ 4652:"BICEP2 2014 Results Release" 4379:LIGO Scientific Collaboration 4211:10.1016/S0016-0032(37)90583-0 3952: 3838:Gravitational wave background 3728: 3627:Southern Celestial Hemisphere 3566:Primordial gravitational wave 3560:Primordial gravitational wave 2921:band led to the detection of 2668:gravitational wave background 1788:Some more detailed examples: 1507:gravitational wave background 1470:Southern Celestial Hemisphere 1451:collaborations announced the 1424:, which earned them the 1993 797:masses – that 10740:Unsolved problems in physics 10516:CRISPR genome-editing method 8988:First observation (GW150914) 8774:TAMA 20, later known as LISM 8477:Gravitational-wave astronomy 8281:The Search for Gravity Waves 8094:Living Reviews in Relativity 8002:10.2174/97816080539951120101 7020:"Nobel Prizes and Laureates" 6846:Astronomy & Astrophysics 6451:10.1088/0004-637X/699/2/1690 6028:10.1103/RevModPhys.90.040503 5474:Scoles, Sarah (2016-02-11). 5032:10.1080/0020739X.2013.770091 4746:Electromagnetic theory Vol 1 3833:Gravitational-wave astronomy 3612:collaboration announced the 3530:European Pulsar Timing Array 3189:, England, and the other at 2983:Gravitational-wave detection 2976: 2885:Gravitational-wave astronomy 2867:Gravitational wave astronomy 2798:, which describes all other 2705:hyper-compact stellar system 2654: 2631:transient astronomical event 2618: 1302:general theory of relativity 1203:general theory of relativity 1158:gravitational wave astronomy 1072: 1056:general theory of relativity 928:was subsequently awarded to 922:gravitational wave detectors 857:gravitational-wave astronomy 823:general theory of relativity 7: 9478:Relativistic Doppler effect 9122:Tests of general relativity 7768:Heathcote, William (2018). 6876:10.1051/0004-6361/201629522 6655:Scientific American (blogs) 4952:10.1140/epjh/e2019-100020-1 4657:National Science Foundation 4617:(2nd ed.). p. 12. 3793: 3787:Remembrance of Earth's Past 3741:Arkady and Boris Strugatsky 3586:LIGO and Virgo observations 3572:cosmic microwave background 3512:uses data collected by the 3430:Space-based interferometers 3330:. Each observatory has two 1889: 1870:-th time derivative of the 1854:radiate, in agreement with 1661:Amplitude: Usually denoted 1481:cosmic microwave background 1063: 883:; and the formation of the 238:Gravitational time dilation 10: 10756: 10590:James Webb Space Telescope 9949:In computational physics: 9473:Relativity of simultaneity 8784:Caltech 40m interferometer 8087:Will, Clifford M. (2014). 7292:10.1142/9789812777386_0420 6997:10.3847/0004-637X/829/1/55 6649:Mack, Katie (2017-06-12). 6623:Princeton University Press 6561:10.1103/PhysRevD.77.043512 6001:Thorne, Kip (2018-12-18). 5886:Maggiore, Michele (2007). 5524:Sample, Ian (2014-06-04). 4866:Kennefick, Daniel (2016). 4743:Heaviside, Oliver (1894). 4421:10.1103/PhysRevD.85.082002 4354:Cambridge University Press 3589: 3563: 3522:Parkes Pulsar Timing Array 3461: 3458:Using pulsar timing arrays 3446:, and artifacts caused by 3387: 3359:, which is located in the 3275: 3221:amplitude spectral density 3133: 2980: 2882: 2658: 2622: 2596: 1932:about their center of mass 1893: 1878:) of an isolated system's 1761: 1252: 1194: 896:Hulse–Taylor binary pulsar 809:in 1893 and then later by 358:Mathisson–Papapetrou–Dixon 199:Pseudo-Riemannian manifold 18: 10570:developed at record speed 10331: 10325:Breakthroughs of the Year 10260: 10239: 10189: 10131: 9963: 9828: 9800: 9786:Lense–Thirring precession 9669: 9618: 9580: 9559: 9548: 9506: 9450: 9434: 9376: 9368:Doubly special relativity 9340: 9329: 9193: 9140: 9109: 9049: 8975: 8968: 8941: 8908: 8874: 8858: 8849: 8829: 8808: 8792: 8761: 8700: 8689: 8644: 8628: 8562: 8521: 8510: 8501: 8483: 7561:The Astrophysical Journal 7512:The Astrophysical Journal 7226:10.1007/s00016-003-0179-6 6910:10.1038/nature.2015.16830 6474:The Astrophysical Journal 6421:The Astrophysical Journal 6357:The Astrophysical Journal 5873:10.1103/PhysRev.136.B1224 5428:10.1038/nature.2016.19361 5082:The Astrophysical Journal 5060:Nobel Prize Award (1993) 4978:Skuse, Ben (2022-09-01). 4966:European Physical Journal 4377:Abadie, J.; et al. ( 4107:"Über Gravitationswellen" 4010:10.1088/1367-2630/7/1/204 3608:On 11 February 2016, the 3117:term in the formulas for 2889:During the past century, 1884:electromagnetic radiation 1418:Joseph Hooton Taylor, Jr. 842:electromagnetic radiation 801:from their source at the 10179:Fundamental interactions 9646:Post-Newtonian formalism 9636:Einstein field equations 9572:Mathematical formulation 9396:Hyperbolic orthogonality 9225:Supermassive black holes 8383:– Collected articles at 8330:and Ciufolini, Ignazio, 7945:MĂŒller, K. Alex (1996). 7871:"GW170817 Press Release" 7801:Abbott BP, et al. ( 7721:10.3847/2041-8213/acdac6 7592:10.3847/1538-4357/aabd3b 7325:University of Birmingham 7128:University of Birmingham 6716:University of Birmingham 6712:University of Birmingham 4984:Lindau Nobel Mediatheque 4968:H 44, pp. 181–270 (2019) 4629:"GW170817 Press Release" 4325:How The Universe Works 3 4292:10.3847/2041-8213/ac082e 4040:www.academie-sciences.fr 3935:supermassive black holes 3823:Gravitational plane wave 3304:Michelson interferometer 3187:University of Birmingham 2903:electromagnetic spectrum 2716:SDSS J092712.65+294344.0 2674:Properties and behaviour 1559:{\displaystyle 5\sigma } 1534:{\displaystyle 3\sigma } 1455:, from a signal (dubbed 1349:Riemann curvature tensor 1174:supermassive black holes 1120:. The Japanese detector 904:Joseph Hooton Taylor Jr. 363:Hamilton–Jacobi–Einstein 343:Einstein field equations 166:Mathematical formulation 10445:Human genetic variation 10380:Whole genome sequencing 10214:Electroweak interaction 9357:Galilean transformation 9348:Principle of relativity 9064:Resonant mass detectors 8332:Gravitation and Inertia 8328:Wheeler, John Archibald 8083:(Pergamon Press), 1987. 7811:Physical Review Letters 7120:"Noise and Sensitivity" 6868:2017A&A...600A..57C 6201:Physical Review Letters 6128:Physical Review Letters 6052:Physical Review Letters 5823:10.1103/PhysRev.131.435 5314:Physical Review Letters 5261:10.3390/universe2030022 4841:10.3390/universe2030022 4611:Wheeler, John Archibald 4516:10.1126/science.1179541 3514:Arecibo Radio Telescope 3351:. Upgrades to LIGO and 2967:supermassive black hole 2573:away, emitting a short 2124:the initial radius and 1409:results were spurious. 1215:. Within the theory of 834:gravitational radiation 10549:Single-cell sequencing 10453:Cellular reprogramming 9442:Lorentz transformation 7774:Great Clarendon Street 7206:Physics in Perspective 7188:Blair DG, ed. (1991). 5758:, p. Introduction 3980:New Journal of Physics 3802:Nobel Prize in Physics 3660:) was detected by the 3605: 3546:Nancay Radio Telescope 3526:Parkes radio-telescope 3477: 3299: 3098: 3089:Ground-based detectors 3019: 2971:Hubble Space Telescope 2880: 2756:gravitational redshift 2732:shifting of wavelength 2642:Spinning neutron stars 2549: 2488: 2334:gravitational constant 2311: 2145: 2118: 2091: 1933: 1921: 1913: 1774: 1587: 1579: 1560: 1535: 1488:Nobel Prize in Physics 1426:Nobel Prize in Physics 1274: 1144: 1088:inversely proportional 1060:curvature of spacetime 926:Nobel Prize in Physics 908:Nobel Prize in Physics 233:Gravitational redshift 126: 44: 10735:Concepts in astronomy 10364:Accelerating universe 10275:Philosophy of physics 9910:Weyl−Lewis−Papapetrou 9651:Raychaudhuri equation 9590:Equivalence principle 9249:Rotating neutron star 9060:Laser interferometers 8392:– Collected articles 7153:"Gravitational Waves" 6966:Astrophysical Journal 6351:Gualandris, Alessia; 5781:science.gsfc/nasa.gov 4980:"Black Holes – Topic" 4895:Acta Physica Polonica 4575:Hartle, J.B. (2003). 3603: 3471: 3419:distributed computing 3316:Livingston, Louisiana 3285: 3111:extraordinarily small 3096: 2998: 2874: 2778:speculated to be the 2728:electromagnetic waves 2661:inflation (cosmology) 2648:spinning neutron star 2547: 2489: 2312: 2146: 2119: 2117:{\displaystyle r_{0}} 2092: 1927: 1919: 1903: 1769: 1585: 1577: 1561: 1543:. They expect that a 1536: 1324:submitted a paper to 1295:electromagnetic waves 1267:accelerated expansion 1260: 1142: 1134:European Space Agency 1073:certain circumstances 815:electromagnetic waves 521:Weyl−Lewis−Papapetrou 476:Kerr–Newman–de Sitter 296:Einstein–Rosen bridge 228:Gravitational lensing 184:Equivalence principle 127: 38: 10497:Cancer immunotherapy 10462:Ardipithecus ramidus 9951:Numerical relativity 9792:pulsar timing arrays 9141:Effects / properties 9070:Atom interferometers 8983:List of observations 8910:Pulsar timing arrays 8159:. World Scientific. 7317:"Research Interests" 7090:Crashing Black Holes 6925:Binary Radio Pulsars 6738:Sov. Phys. JETP Lett 3940:Sticky bead argument 3887:Virgo interferometer 3582:in the Milky Way"). 3542:Effelsberg Telescope 3518:Green Bank Telescope 3324:Richland, Washington 3195:Chongqing University 2879:orbiting each other. 2854:Only in the case of 2802:. Attempts, such as 2768:quantum field theory 2766:In the framework of 2365: 2161: 2128: 2101: 2008: 1880:stress–energy tensor 1756:circularly polarized 1547: 1522: 1515:Hellings-Downs curve 1368:sticky bead argument 1245:In August 2017, the 1095:binary neutron stars 1066:Stress–energy tensor 987:"Gravitational wave" 972:improve this article 910:for this discovery. 867:systems composed of 451:Einstein–Rosen waves 177:Fundamental concepts 66: 10730:Gravitational waves 10540:neutron star merger 10528:gravitational waves 10436:PoincarĂ© conjecture 10265:Glossary of physics 10240:Hypothetical forces 9843:Friedmann equations 9737:Hulse–Taylor binary 9699:Gravitational waves 9595:Riemannian geometry 9421:Proper acceleration 9406:Maxwell's equations 9352:Galilean relativity 9230:Stellar black holes 9210:quantum fluctuation 9090:Pulsar timing array 9077:Indirect detection 9017:neutron star merger 8800:INDIGO (LIGO-India) 8394:Scientific American 8390:Gravitational Waves 8381:Gravitational Waves 8345:Woolf, Harry, ed., 8206:1999PhT....52j..44B 8165:1994figw.book.....S 8126:10.12942/lrr-2014-4 8117:2014LRR....17....4W 8039:1963JETP...16..433G 7959:1996LNP...475..151M 7908:1964NCim...33..728H 7833:2017PhRvL.119p1101A 7807:Virgo Collaboration 7712:2023ApJ...951L...8A 7646:2010CQGra..27h4013H 7583:2018ApJ...859...47A 7524:1983ApJ...265L..39H 7407:2010CQGra..27q3001A 7284:2002nmgm.meet.1899D 7261:2006rdgp.conf..415D 7218:2004PhP.....6...42L 7175:1995pnac.conf..160T 7061:2015CQGra..32l4009D 6988:2016ApJ...829...55W 6947:2005ASPC..328...25W 6797:2006AIPC..813.1280B 6750:1976ZhPmR..23..326G 6553:2008PhRvD..77d3512M 6496:2008ApJ...678L..81K 6443:2009ApJ...699.1690M 6379:2008ApJ...678..780G 6322:2004ApJ...607L...9M 6223:2006PhRvL..96k1102B 6150:2006PhRvL..96k1101C 6074:2005PhRvL..95l1101P 6019:2018RvMP...90d0503T 5943:on 29 January 2016. 5888:Gravitational Waves 5865:1964PhRv..136.1224P 5844:Peters, P. (1964). 5815:1963PhRv..131..435P 5642:Scientific American 5503:Scientific American 5337:2016PhRvL.116f1102A 5293:. 11 February 2016. 5252:2016Univ....2...22C 5140:1979Natur.277..437T 5095:1982ApJ...253..908T 5024:2013IJMES..44.1201D 4944:2019EPJH...44..181R 4907:1956AcPP...15..389P 4832:2016Univ....2...22C 4508:2010Sci...328..989K 4413:2012PhRvD..85h2002A 4383:Virgo Collaboration 4283:2021ApJ...915L...5A 4203:1937FrInJ.223...43E 4119:1918SPAW.......154E 4080:1916SPAW.......688E 4002:2005NJPh....7..204F 3828:Gravitational field 3684:Microscopic sources 3639:statistical physics 3524:uses data from the 3490:millisecond pulsars 3486:pulsar timing array 3464:Pulsar timing array 3421:project similar to 3361:Kamioka Observatory 3029:Hulse–Taylor binary 2776:elementary particle 2593:Black hole binaries 1998:age of the universe 1422:first binary pulsar 1333:Howard P. Robertson 1283:electrostatic force 850:classical mechanics 791:gravitational field 787:Gravitational waves 405:Kaluza–Klein theory 291:Minkowski spacetime 243:Gravitational waves 10725:Effects of gravity 10581:protein structures 10199:Strong interaction 9892:Reissner–Nordström 9810:Brans–Dicke theory 9641:Linearized gravity 9468:Length contraction 9386:Frame of reference 9363:Special relativity 9117:General relativity 8821:Einstein Telescope 8723:Fermilab holometer 8488:Gravitational wave 7967:10.1007/BFb0102023 7916:10.1007/BF02749891 7355:2016-02-16 at the 7106:2012-03-01 at the 5614:The New York Times 5607:(3 October 2017). 5583:The New York Times 5576:(3 October 2017). 4633:LIGO Lab – Caltech 4344:Schutz, Bernard F. 4231:The New York Times 4151:C. Barish, Barry. 4113:. part 1: 154–67. 4074:. part 1: 688–96. 3905:Linearized gravity 3813:Artificial gravity 3719:Josephson junction 3606: 3478: 3332:light storage arms 3300: 3146:resonant frequency 3099: 3023:Indirect detection 3020: 2881: 2800:fundamental forces 2792:general relativity 2550: 2484: 2307: 2141: 2114: 2087: 1982:decay in the orbit 1976:of which only 200 1934: 1922: 1914: 1856:Birkhoff's theorem 1775: 1738:linearly polarized 1693:: Usually denoted 1683:: Usually denoted 1648:quadrupole formula 1635:linearized gravity 1633:(as formulated in 1588: 1580: 1570:Effects of passing 1556: 1531: 1414:Russell Alan Hulse 1275: 1217:special relativity 1150:optical telescopes 1145: 1126:Einstein Telescope 887:shortly after the 734:Physics portal 506:Oppenheimer–Snyder 446:Reissner–Nordström 338:Linearized gravity 286:Spacetime diagrams 189:Special relativity 122: 51:General relativity 45: 10608: 10607: 10568:COVID-19 vaccines 10524:First observation 10392:Molecular circuit 10288: 10287: 10145: 10144: 9959: 9958: 9938:OzsvĂĄth–SchĂŒcking 9544: 9543: 9526:Minkowski diagram 9483:Thomas precession 9426:Relativistic mass 9289: 9288: 9105: 9104: 9056:Direct detection 8904: 8903: 8900: 8899: 8882:Big Bang Observer 8845: 8844: 8685: 8684: 8304:978-0-367-13681-9 8271:978-0-262-03618-4 8182:978-981-02-1820-1 8153:Saulson, Peter R. 8055:Bartusiak, Marcia 8011:978-1-60805-400-8 7976:978-3-540-70695-3 7787:978-0-19-839796-0 7301:978-981-277-738-6 6805:10.1063/1.2169312 6632:978-0-691-08162-5 6601:978-0-7167-0344-0 6531:Physical Review D 6013:(40503): 040503. 5934:AW Physics Macros 5897:978-0-19-152474-5 5736:978-0-08-025072-4 5496:(17 March 2014). 5134:(5696): 437–440. 5004:Debnath, Lokenath 4879:978-1-4008-8274-8 4715:(17 March 2014). 4615:Spacetime Physics 4592:978-981-02-2749-4 4561:978-0-521-22285-3 4391:Physical Review D 4363:978-0-521-88705-2 4330:Discovery Science 3915:pp-wave spacetime 3858:Hawking radiation 3631:Magellanic Clouds 3520:. The Australian 3176:Leiden University 3130:Resonant antennas 3085:< 10 Hz. 3003:was found by the 2956:interstellar dust 2943:ultraviolet light 2629:A supernova is a 2599:Binary black hole 2537:and explode in a 2479: 2407: 2382: 2303: 2299: 2227: 2202: 2186: 2138: 2063: 2060: 1951:quadrupole moment 1930:elliptical orbits 1864:quadrupole moment 1602:, as a ripple in 1474:Magellanic Clouds 1374:. Shortly after, 1291:electrical charge 1048: 1047: 1040: 1022: 879:; events such as 784: 783: 417: 416: 303: 302: 36: 10747: 10697: 10696: 10685: 10684: 10683: 10673: 10672: 10671: 10661: 10660: 10659: 10649: 10648: 10637: 10636: 10635: 10625: 10624: 10616: 10601: 10593: 10584: 10571: 10562: 10551: 10543: 10530: 10518: 10510: 10499: 10491: 10482: 10473: 10465: 10455: 10447: 10439: 10430: 10421: 10410: 10402: 10400:RNA interference 10394: 10382: 10374: 10366: 10358: 10350: 10315: 10308: 10301: 10292: 10291: 10270:Particle physics 10224:electromagnetism 10219:weak interaction 10172: 10165: 10158: 10149: 10148: 10137: 10136: 9920:van Stockum dust 9692:Two-body problem 9610:Mach's principle 9557: 9556: 9498:Terrell rotation 9338: 9337: 9316: 9309: 9302: 9293: 9292: 9221:Binary inspiral 9215:Phase transition 9206:Cosmic inflation 8973: 8972: 8856: 8855: 8698: 8697: 8519: 8518: 8508: 8507: 8470: 8463: 8456: 8447: 8446: 8442: 8432: 8430:10.1090/noti1551 8310:P. J. E. Peebles 8294:Grote, Hartmut, 8261:Collins, Harry, 8217: 8214:10.1063/1.882861 8186: 8148: 8138: 8128: 8110: 8076: 8074: 8043: 8042: 8022: 8016: 8015: 7987: 7981: 7980: 7942: 7936: 7935: 7896:Il Nuovo Cimento 7891: 7885: 7884: 7882: 7881: 7867: 7861: 7860: 7826: 7798: 7792: 7791: 7765: 7759: 7758: 7756: 7755: 7749:Business Insider 7740: 7734: 7733: 7723: 7705: 7680: 7674: 7673: 7639: 7619: 7613: 7612: 7594: 7576: 7552: 7546: 7545: 7535: 7503: 7497: 7496: 7489: 7483: 7482: 7471: 7462: 7461: 7459: 7447: 7441: 7440: 7433: 7427: 7426: 7400: 7380: 7374: 7365: 7359: 7347: 7341: 7340: 7338: 7336: 7327:. Archived from 7312: 7306: 7305: 7271: 7265: 7264: 7244: 7238: 7237: 7200: 7194: 7193: 7185: 7179: 7178: 7168: 7145: 7139: 7138: 7136: 7134: 7116: 7110: 7098: 7092: 7087: 7081: 7080: 7054: 7034: 7028: 7027: 7016: 7010: 7009: 6999: 6981: 6957: 6951: 6950: 6940: 6938:astro-ph/0407149 6920: 6914: 6913: 6897: 6888: 6887: 6861: 6840: 6834: 6833: 6831: 6830: 6815: 6809: 6808: 6791:. AIP: 1280–89. 6780: 6774: 6773: 6761: 6755: 6753: 6733: 6727: 6726: 6724: 6722: 6703: 6697: 6696: 6694: 6692: 6677: 6671: 6665: 6659: 6658: 6646: 6637: 6636: 6612: 6606: 6605: 6571: 6565: 6564: 6546: 6522: 6516: 6515: 6489: 6469: 6463: 6462: 6436: 6427:(2): 1690–1710. 6413: 6407: 6406: 6372: 6348: 6342: 6341: 6315: 6313:astro-ph/0402057 6292: 6286: 6285: 6283: 6282: 6265: 6259: 6258: 6216: 6195:Baker, John G.; 6192: 6186: 6185: 6143: 6116: 6110: 6109: 6067: 6047: 6041: 6040: 6030: 5998: 5992: 5991: 5990: 5988: 5976: 5970: 5969: 5967: 5965: 5951: 5945: 5944: 5942: 5931: 5919: 5910: 5909: 5883: 5877: 5876: 5859:(4B): B1224–32. 5850: 5841: 5835: 5834: 5798: 5792: 5791: 5789: 5787: 5773: 5767: 5766: 5765: 5763: 5757: 5747: 5741: 5740: 5720: 5714: 5711: 5705: 5704: 5697: 5691: 5686: 5680: 5679: 5677: 5676: 5665: 5659: 5658: 5656: 5654: 5632: 5626: 5625: 5623: 5621: 5601: 5595: 5594: 5592: 5590: 5570: 5564: 5563: 5561: 5559: 5542: 5536: 5535: 5521: 5515: 5514: 5512: 5510: 5494:Moskowitz, Clara 5490: 5484: 5483: 5471: 5460: 5459: 5452: 5446: 5445: 5443: 5442: 5411: 5400: 5399: 5397: 5396: 5379: 5373: 5372: 5330: 5308: 5295: 5294: 5283: 5274: 5273: 5263: 5245: 5221: 5215: 5214: 5212: 5210: 5193: 5187: 5186: 5174: 5168: 5167: 5148:10.1038/277437a0 5121: 5115: 5114: 5076: 5065: 5058: 5052: 5051: 5000: 4994: 4993: 4991: 4990: 4975: 4969: 4963: 4937: 4917: 4911: 4910: 4890: 4884: 4883: 4863: 4854: 4853: 4843: 4825: 4801: 4780: 4779: 4777: 4769: 4763: 4757: 4751: 4750: 4740: 4734: 4733: 4731: 4729: 4709: 4703: 4702: 4700: 4698: 4681: 4670: 4669: 4667: 4665: 4648: 4637: 4636: 4625: 4619: 4618: 4607:Taylor, Edwin F. 4603: 4597: 4596: 4572: 4566: 4565: 4545: 4536: 4535: 4501: 4492:(5981): 989–92. 4481: 4475: 4474: 4472: 4470: 4455: 4449: 4448: 4406: 4385:) (2012-04-19). 4374: 4368: 4367: 4340: 4334: 4333: 4319: 4313: 4312: 4294: 4276: 4252: 4243: 4242: 4240: 4238: 4221: 4215: 4214: 4183:Einstein, Albert 4179: 4173: 4172: 4170: 4157: 4148: 4142: 4141: 4133: 4127: 4126: 4121:. Archived from 4103:Einstein, Albert 4099: 4088: 4087: 4082:. Archived from 4062:Einstein, Albert 4058: 4052: 4051: 4049: 4047: 4037: 4028: 4022: 4021: 3995: 3971: 3848:Gravitomagnetism 3736:Space Apprentice 3534:Lovell Telescope 3503:cosmic inflation 3408:Doppler shifting 3350: 3348: 3263: 3262: 3261: 3255: 3245: 3244: 3243: 3237: 3218: 3217: 3216: 3210: 3081:10 Hz < 3037:Doppler shifting 2907:radio telescopes 2788:scientific model 2744:cosmic expansion 2693:angular momentum 2555: 2524: 2520: 2498:Compact binaries 2493: 2491: 2490: 2485: 2480: 2478: 2474: 2473: 2461: 2460: 2445: 2444: 2435: 2434: 2421: 2420: 2411: 2408: 2406: 2405: 2396: 2395: 2386: 2383: 2375: 2316: 2314: 2313: 2308: 2301: 2300: 2298: 2297: 2288: 2284: 2283: 2271: 2270: 2255: 2254: 2245: 2244: 2231: 2228: 2226: 2225: 2216: 2215: 2206: 2203: 2195: 2187: 2185: 2181: 2175: 2171: 2165: 2150: 2148: 2147: 2142: 2140: 2139: 2136: 2123: 2121: 2120: 2115: 2113: 2112: 2096: 2094: 2093: 2088: 2083: 2082: 2078: 2069: 2065: 2064: 2062: 2061: 2058: 2049: 2035: 2034: 1995: 1987: 1971: 1876:multipole moment 1827:A spinning disk 1728: 1707:is equal to the 1677: â‰ˆ 10. 1565: 1563: 1562: 1557: 1540: 1538: 1537: 1532: 1313:Arthur Eddington 1279:Oliver Heaviside 1263:cosmic inflation 1226: 1222: 1214: 1205:is equal to the 1197:Speed of gravity 1191:Speed of gravity 1154:radio telescopes 1119: 1117: 1069: 1043: 1036: 1032: 1029: 1023: 1021: 980: 956: 948: 900:Russell A. Hulse 807:Oliver Heaviside 776: 769: 762: 749: 744: 743: 736: 732: 731: 516:van Stockum dust 501:Robertson–Walker 327: 326: 217: 216: 131: 129: 128: 123: 121: 120: 108: 100: 99: 81: 80: 61: 47: 46: 37: 10755: 10754: 10750: 10749: 10748: 10746: 10745: 10744: 10705: 10704: 10703: 10691: 10681: 10679: 10669: 10667: 10657: 10655: 10643: 10633: 10631: 10619: 10611: 10609: 10604: 10596: 10587: 10574: 10565: 10554: 10546: 10533: 10521: 10513: 10502: 10494: 10485: 10476: 10471:quantum machine 10468: 10458: 10450: 10442: 10433: 10424: 10413: 10405: 10397: 10385: 10377: 10369: 10361: 10356:Dolly the sheep 10353: 10344: 10337: 10327: 10319: 10289: 10284: 10256: 10235: 10191:Physical forces 10185: 10176: 10146: 10141: 10127: 9955: 9859:BKL singularity 9849:LemaĂźtre–Tolman 9824: 9820:Quantum gravity 9802: 9796: 9782:geodetic effect 9756:(together with 9726:LISA Pathfinder 9665: 9614: 9600:Penrose diagram 9582: 9576: 9551: 9540: 9536:Minkowski space 9502: 9446: 9430: 9378: 9372: 9332: 9325: 9320: 9290: 9285: 9194:Types / sources 9189: 9136: 9127:Metric theories 9101: 9045: 8964: 8937: 8896: 8870: 8852:interferometers 8851: 8841: 8825: 8816:Cosmic Explorer 8804: 8788: 8757: 8693:interferometers 8692: 8681: 8676:Mario Schenberg 8640: 8624: 8558: 8554:Mario Schenberg 8513: 8497: 8479: 8474: 8364: 8224: 8183: 8072:physics/9908041 8051: 8049:Further reading 8046: 8023: 8019: 8012: 7988: 7984: 7977: 7943: 7939: 7892: 7888: 7879: 7877: 7869: 7868: 7864: 7799: 7795: 7788: 7766: 7762: 7753: 7751: 7741: 7737: 7681: 7677: 7620: 7616: 7553: 7549: 7504: 7500: 7491: 7490: 7486: 7481:. 29 June 2023. 7473: 7472: 7465: 7448: 7444: 7437:"Einstein@Home" 7435: 7434: 7430: 7381: 7377: 7366: 7362: 7357:Wayback Machine 7348: 7344: 7334: 7332: 7331:on 21 June 2017 7313: 7309: 7302: 7272: 7268: 7245: 7241: 7201: 7197: 7186: 7182: 7146: 7142: 7132: 7130: 7118: 7117: 7113: 7108:Wayback Machine 7099: 7095: 7088: 7084: 7035: 7031: 7018: 7017: 7013: 6958: 6954: 6921: 6917: 6898: 6891: 6841: 6837: 6828: 6826: 6816: 6812: 6781: 6777: 6766:Physics Letters 6762: 6758: 6734: 6730: 6720: 6718: 6704: 6700: 6690: 6688: 6678: 6674: 6666: 6662: 6647: 6640: 6633: 6613: 6609: 6602: 6572: 6568: 6523: 6519: 6470: 6466: 6414: 6410: 6349: 6345: 6293: 6289: 6280: 6278: 6267: 6266: 6262: 6197:Centrella, Joan 6193: 6189: 6117: 6113: 6048: 6044: 5999: 5995: 5986: 5984: 5978: 5977: 5973: 5963: 5961: 5953: 5952: 5948: 5940: 5929: 5921: 5920: 5913: 5898: 5884: 5880: 5853:Physical Review 5848: 5842: 5838: 5803:Physical Review 5799: 5795: 5785: 5783: 5775: 5774: 5770: 5761: 5759: 5755: 5749: 5748: 5744: 5737: 5721: 5717: 5712: 5708: 5699: 5698: 5694: 5687: 5683: 5674: 5672: 5667: 5666: 5662: 5652: 5650: 5633: 5629: 5619: 5617: 5602: 5598: 5588: 5586: 5574:Overbye, Dennis 5571: 5567: 5557: 5555: 5543: 5539: 5522: 5518: 5508: 5506: 5491: 5487: 5472: 5463: 5454: 5453: 5449: 5440: 5438: 5412: 5403: 5394: 5392: 5381: 5380: 5376: 5309: 5298: 5285: 5284: 5277: 5222: 5218: 5208: 5206: 5194: 5190: 5175: 5171: 5122: 5118: 5077: 5068: 5059: 5055: 5001: 4997: 4988: 4986: 4976: 4972: 4918: 4914: 4891: 4887: 4880: 4864: 4857: 4802: 4783: 4775: 4771: 4770: 4766: 4758: 4754: 4741: 4737: 4727: 4725: 4713:Overbye, Dennis 4710: 4706: 4696: 4694: 4682: 4673: 4663: 4661: 4660:. 17 March 2014 4650: 4649: 4640: 4627: 4626: 4622: 4604: 4600: 4593: 4585:. p. 332. 4573: 4569: 4562: 4546: 4539: 4482: 4478: 4468: 4466: 4457: 4456: 4452: 4375: 4371: 4364: 4341: 4337: 4321: 4320: 4316: 4253: 4246: 4236: 4234: 4222: 4218: 4180: 4176: 4168: 4155: 4149: 4145: 4134: 4130: 4100: 4091: 4059: 4055: 4045: 4043: 4035: 4030: 4029: 4025: 3972: 3959: 3955: 3950: 3796: 3731: 3702:superconductors 3686: 3598: 3590:Main articles: 3588: 3568: 3562: 3466: 3460: 3432: 3392: 3386: 3373:Brownian motion 3346: 3344: 3298: 3292: 3280: 3274: 3272:Interferometers 3259: 3257: 3253: 3251: 3241: 3239: 3235: 3233: 3225:superconducting 3214: 3212: 3208: 3206: 3138: 3132: 3091: 3078: 3048:Earth–Sun orbit 3045: 3042: 3025: 3008:radio telescope 3001:infant universe 2993: 2981:Main articles: 2979: 2931:Stephen Hawking 2899:Galileo Galilei 2887: 2869: 2836: 2827: 2804:quantum gravity 2764: 2746:. Redshifting 2724: 2681: 2676: 2663: 2657: 2644: 2627: 2621: 2601: 2595: 2575:gamma ray burst 2553: 2522: 2518: 2500: 2469: 2465: 2456: 2452: 2440: 2436: 2430: 2426: 2422: 2416: 2412: 2410: 2401: 2397: 2391: 2387: 2385: 2374: 2366: 2363: 2362: 2357: 2350: 2293: 2289: 2279: 2275: 2266: 2262: 2250: 2246: 2240: 2236: 2232: 2230: 2221: 2217: 2211: 2207: 2205: 2194: 2177: 2176: 2167: 2166: 2164: 2162: 2159: 2158: 2135: 2131: 2129: 2126: 2125: 2108: 2104: 2102: 2099: 2098: 2074: 2070: 2057: 2053: 2048: 2041: 2037: 2036: 2030: 2026: 2009: 2006: 2005: 1993: 1985: 1969: 1968:) is about 1.14 1906:circular orbits 1898: 1892: 1841:gravitomagnetic 1764: 1753: 1746: 1720: 1572: 1548: 1545: 1544: 1523: 1520: 1519: 1490:was awarded to 1420:discovered the 1402:Galactic Center 1387:Lindau Meetings 1360:Richard Feynman 1337:Physical Review 1327:Physical Review 1269:just after the 1255: 1224: 1220: 1219:, the constant 1212: 1199: 1193: 1181:Stephen Hawking 1156:; accordingly, 1115: 1113: 1052:Albert Einstein 1044: 1033: 1027: 1024: 981: 979: 969: 957: 946: 819:Albert Einstein 799:radiate outward 780: 739: 726: 725: 718: 717: 541: 540: 531: 530: 486:LemaĂźtre–Tolman 431: 430: 419: 418: 410:Quantum gravity 397:Advanced theory 324: 323: 322: 305: 304: 253:Geodetic effect 214: 213: 204: 203: 179: 178: 162: 132: 113: 109: 104: 92: 88: 73: 69: 67: 64: 63: 26: 24: 17: 12: 11: 5: 10753: 10743: 10742: 10737: 10732: 10727: 10722: 10717: 10702: 10701: 10689: 10677: 10665: 10653: 10641: 10629: 10606: 10605: 10603: 10602: 10594: 10585: 10572: 10563: 10552: 10544: 10531: 10519: 10511: 10500: 10492: 10483: 10481:clinical trial 10474: 10466: 10456: 10448: 10440: 10431: 10422: 10411: 10403: 10395: 10383: 10375: 10367: 10359: 10351: 10341: 10339: 10329: 10328: 10318: 10317: 10310: 10303: 10295: 10286: 10285: 10283: 10282: 10277: 10272: 10267: 10261: 10258: 10257: 10255: 10254: 10249: 10243: 10241: 10237: 10236: 10234: 10233: 10228: 10227: 10226: 10221: 10211: 10210: 10209: 10204: 10195: 10193: 10187: 10186: 10175: 10174: 10167: 10160: 10152: 10143: 10142: 10132: 10129: 10128: 10126: 10125: 10118: 10113: 10108: 10103: 10098: 10093: 10088: 10083: 10078: 10073: 10068: 10063: 10058: 10053: 10048: 10046:Choquet-Bruhat 10043: 10038: 10033: 10028: 10023: 10018: 10013: 10008: 10003: 9998: 9993: 9988: 9983: 9978: 9973: 9967: 9965: 9961: 9960: 9957: 9956: 9954: 9953: 9946: 9945: 9940: 9935: 9928: 9927: 9922: 9917: 9912: 9907: 9898:Axisymmetric: 9895: 9894: 9889: 9883: 9872: 9871: 9866: 9861: 9856: 9851: 9846: 9837:Cosmological: 9834: 9832: 9826: 9825: 9823: 9822: 9817: 9812: 9806: 9804: 9798: 9797: 9795: 9794: 9789: 9778:frame-dragging 9775: 9770: 9765: 9762:Einstein rings 9758:Einstein cross 9751: 9740: 9739: 9734: 9728: 9723: 9718: 9705: 9695: 9694: 9689: 9684: 9679: 9673: 9671: 9667: 9666: 9664: 9663: 9661:Ernst equation 9658: 9653: 9648: 9643: 9638: 9633: 9631:BSSN formalism 9628: 9622: 9620: 9616: 9615: 9613: 9612: 9607: 9602: 9597: 9592: 9586: 9584: 9578: 9577: 9575: 9574: 9569: 9563: 9561: 9554: 9546: 9545: 9542: 9541: 9539: 9538: 9533: 9528: 9523: 9518: 9512: 9510: 9504: 9503: 9501: 9500: 9495: 9490: 9488:Ladder paradox 9485: 9480: 9475: 9470: 9465: 9460: 9454: 9452: 9448: 9447: 9445: 9444: 9438: 9436: 9432: 9431: 9429: 9428: 9423: 9418: 9413: 9408: 9403: 9398: 9393: 9391:Speed of light 9388: 9382: 9380: 9374: 9373: 9371: 9370: 9365: 9360: 9354: 9344: 9342: 9335: 9327: 9326: 9319: 9318: 9311: 9304: 9296: 9287: 9286: 9284: 9283: 9282: 9281: 9267: 9266: 9265: 9252: 9251: 9250: 9244: 9243: 9242: 9237: 9232: 9227: 9219: 9218: 9217: 9212: 9197: 9195: 9191: 9190: 9188: 9187: 9182: 9176: 9171:Chirp signal ( 9169: 9166: 9164:speed of light 9160: 9155: 9150: 9144: 9142: 9138: 9137: 9135: 9134: 9129: 9124: 9119: 9113: 9111: 9107: 9106: 9103: 9102: 9100: 9099: 9098: 9097: 9092: 9087: 9075: 9074: 9073: 9065: 9062: 9053: 9051: 9047: 9046: 9044: 9043: 9037: 9031: 9025: 9020: 9010: 9005: 9000: 8995: 8990: 8985: 8979: 8977: 8970: 8966: 8965: 8963: 8962: 8956: 8951: 8945: 8943: 8939: 8938: 8936: 8935: 8930: 8925: 8920: 8914: 8912: 8906: 8905: 8902: 8901: 8898: 8897: 8895: 8894: 8889: 8884: 8878: 8876: 8872: 8871: 8869: 8868: 8862: 8860: 8853: 8847: 8846: 8843: 8842: 8840: 8839: 8837:LIGO-Australia 8833: 8831: 8830:Past proposals 8827: 8826: 8824: 8823: 8818: 8812: 8810: 8806: 8805: 8803: 8802: 8796: 8794: 8790: 8789: 8787: 8786: 8781: 8776: 8771: 8765: 8763: 8759: 8758: 8756: 8755: 8748:Advanced Virgo 8745: 8740: 8730: 8725: 8720: 8715: 8704: 8702: 8695: 8687: 8686: 8683: 8682: 8680: 8679: 8674:(downsized to 8669: 8664: 8659: 8654:(downsized to 8648: 8646: 8645:Past proposals 8642: 8641: 8639: 8638: 8632: 8630: 8626: 8625: 8623: 8622: 8617: 8612: 8607: 8602: 8597: 8587: 8577: 8566: 8564: 8560: 8559: 8557: 8556: 8551: 8546: 8536: 8525: 8523: 8516: 8505: 8499: 8498: 8496: 8495: 8490: 8484: 8481: 8480: 8473: 8472: 8465: 8458: 8450: 8444: 8443: 8423:(7): 684–707. 8402: 8396: 8387: 8385:Nature Journal 8378: 8363: 8362:External links 8360: 8359: 8358: 8343: 8325: 8307: 8292: 8277:Davies, P.C.W. 8274: 8259: 8245:Collins, Harry 8242: 8228:Berry, Michael 8223: 8220: 8219: 8218: 8187: 8181: 8149: 8084: 8077: 8062: 8050: 8047: 8045: 8044: 8029:(in Russian). 8017: 8010: 7982: 7975: 7937: 7886: 7862: 7817:(16): 161101. 7793: 7786: 7760: 7735: 7675: 7614: 7547: 7533:10.1086/183954 7498: 7484: 7463: 7442: 7428: 7375: 7360: 7342: 7315:Cruise, Mike. 7307: 7300: 7266: 7239: 7195: 7180: 7151:(1995-07-01). 7149:Thorne, Kip S. 7140: 7111: 7093: 7082: 7045:(12): 124009. 7029: 7024:NobelPrize.org 7011: 6952: 6915: 6889: 6835: 6810: 6775: 6756: 6728: 6698: 6686:Universe Today 6672: 6660: 6638: 6631: 6607: 6600: 6566: 6517: 6504:10.1086/588656 6480:(2): L81–L84. 6464: 6408: 6387:10.1086/586877 6353:Merritt, David 6343: 6330:10.1086/421551 6287: 6260: 6207:(11): 111102. 6187: 6134:(11): 111101. 6120:Campanelli, M. 6111: 6058:(12): 121101. 6042: 6007:Rev. Mod. Phys 5993: 5971: 5946: 5911: 5896: 5878: 5836: 5793: 5768: 5742: 5735: 5715: 5706: 5692: 5681: 5660: 5627: 5596: 5565: 5537: 5516: 5485: 5461: 5447: 5401: 5374: 5296: 5275: 5216: 5188: 5169: 5116: 5103:10.1086/159690 5066: 5053: 5018:(8): 1201–23. 4995: 4970: 4928:(3): 181–270. 4912: 4885: 4878: 4855: 4781: 4764: 4752: 4735: 4722:New York Times 4704: 4671: 4638: 4620: 4598: 4591: 4583:Addison-Wesley 4567: 4560: 4537: 4476: 4463:www.aei.mpg.de 4450: 4369: 4362: 4335: 4314: 4244: 4216: 4174: 4143: 4136:Finley, Dave. 4128: 4125:on 2016-01-15. 4089: 4086:on 2016-01-15. 4053: 4023: 3956: 3954: 3951: 3949: 3948: 3943: 3937: 3928: 3918: 3912: 3907: 3902: 3880: 3866: 3861: 3855: 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3805: 3797: 3795: 3792: 3771:'s 1997 novel 3758:'s 1986 novel 3730: 3727: 3685: 3682: 3587: 3584: 3564:Main article: 3561: 3558: 3499:cosmic strings 3474:Hellings-Downs 3462:Main article: 3459: 3456: 3431: 3428: 3388:Main article: 3385: 3382: 3293: 3287: 3276:Main article: 3273: 3270: 3219:, given as an 3158:David Douglass 3154:Richard Garwin 3134:Main article: 3131: 3128: 3090: 3087: 3077: 3074: 3043: 3040: 3024: 3021: 2978: 2975: 2947:infrared light 2929:, a discovery 2923:faint imprints 2883:Main article: 2868: 2865: 2845:speed of light 2835: 2832: 2826: 2823: 2796:Standard Model 2782:that mediates 2763: 2760: 2736:Doppler effect 2723: 2720: 2680: 2677: 2675: 2672: 2659:Main article: 2656: 2653: 2643: 2640: 2623:Main article: 2620: 2617: 2597:Main article: 2594: 2591: 2565:in the galaxy 2499: 2496: 2495: 2494: 2483: 2477: 2472: 2468: 2464: 2459: 2455: 2451: 2448: 2443: 2439: 2433: 2429: 2425: 2419: 2415: 2404: 2400: 2394: 2390: 2381: 2378: 2373: 2370: 2355: 2348: 2342:speed of light 2318: 2317: 2306: 2296: 2292: 2287: 2282: 2278: 2274: 2269: 2265: 2261: 2258: 2253: 2249: 2243: 2239: 2235: 2224: 2220: 2214: 2210: 2201: 2198: 2193: 2190: 2184: 2180: 2174: 2170: 2134: 2111: 2107: 2086: 2081: 2077: 2073: 2068: 2056: 2052: 2047: 2044: 2040: 2033: 2029: 2025: 2022: 2019: 2016: 2013: 1962:kinetic energy 1910:center of mass 1891: 1888: 1860: 1859: 1844: 1835:. However, it 1825: 1814: 1804: 1797: 1763: 1760: 1751: 1744: 1717: 1716: 1709:speed of light 1698: 1688: 1678: 1653:As with other 1639:circular orbit 1571: 1568: 1555: 1552: 1530: 1527: 1341:Leopold Infeld 1318:speed of light 1287:Henri PoincarĂ© 1254: 1251: 1208:speed of light 1195:Main article: 1192: 1189: 1077:speed of light 1046: 1045: 960: 958: 951: 945: 942: 885:early universe 838:radiant energy 825:as ripples in 811:Henri PoincarĂ© 803:speed of light 782: 781: 779: 778: 771: 764: 756: 753: 752: 751: 750: 737: 720: 719: 716: 715: 708: 703: 698: 693: 688: 683: 678: 673: 668: 663: 658: 653: 648: 643: 638: 633: 628: 623: 618: 613: 608: 603: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 542: 538: 537: 536: 533: 532: 529: 528: 523: 518: 513: 508: 503: 498: 493: 488: 483: 478: 473: 468: 463: 458: 453: 448: 443: 432: 426: 425: 424: 421: 420: 415: 414: 413: 412: 407: 399: 398: 394: 393: 392: 391: 389:Post-Newtonian 386: 381: 373: 372: 368: 367: 366: 365: 360: 355: 350: 345: 340: 332: 331: 325: 321: 320: 317: 313: 312: 311: 310: 307: 306: 301: 300: 299: 298: 293: 288: 280: 279: 273: 272: 271: 270: 265: 260: 255: 250: 248:Frame-dragging 245: 240: 235: 230: 225: 223:Kepler problem 215: 211: 210: 209: 206: 205: 202: 201: 196: 191: 186: 180: 176: 175: 174: 171: 170: 169: 168: 163: 161: 160: 155: 150: 144: 142: 134: 133: 119: 116: 112: 107: 103: 98: 95: 91: 87: 84: 79: 76: 72: 62: 54: 53: 15: 9: 6: 4: 3: 2: 10752: 10741: 10738: 10736: 10733: 10731: 10728: 10726: 10723: 10721: 10718: 10716: 10713: 10712: 10710: 10700: 10695: 10690: 10688: 10678: 10676: 10666: 10664: 10654: 10652: 10647: 10642: 10640: 10630: 10628: 10623: 10618: 10617: 10614: 10600: 10595: 10591: 10586: 10582: 10578: 10573: 10569: 10564: 10561: 10558: 10553: 10550: 10545: 10541: 10537: 10532: 10529: 10525: 10520: 10517: 10512: 10509: 10508:comet mission 10507: 10501: 10498: 10493: 10489: 10484: 10480: 10475: 10472: 10467: 10464: 10463: 10457: 10454: 10449: 10446: 10441: 10437: 10432: 10428: 10423: 10420: 10418: 10412: 10409: 10404: 10401: 10396: 10393: 10389: 10384: 10381: 10376: 10373: 10368: 10365: 10360: 10357: 10352: 10349:understanding 10348: 10343: 10342: 10340: 10336: 10335: 10330: 10326: 10324: 10316: 10311: 10309: 10304: 10302: 10297: 10296: 10293: 10281: 10278: 10276: 10273: 10271: 10268: 10266: 10263: 10262: 10259: 10253: 10250: 10248: 10245: 10244: 10242: 10238: 10232: 10229: 10225: 10222: 10220: 10217: 10216: 10215: 10212: 10208: 10205: 10202: 10201: 10200: 10197: 10196: 10194: 10192: 10188: 10184: 10180: 10173: 10168: 10166: 10161: 10159: 10154: 10153: 10150: 10140: 10130: 10124: 10123: 10119: 10117: 10114: 10112: 10109: 10107: 10104: 10102: 10099: 10097: 10094: 10092: 10089: 10087: 10084: 10082: 10079: 10077: 10074: 10072: 10069: 10067: 10064: 10062: 10059: 10057: 10054: 10052: 10049: 10047: 10044: 10042: 10039: 10037: 10034: 10032: 10031:Chandrasekhar 10029: 10027: 10024: 10022: 10019: 10017: 10014: 10012: 10009: 10007: 10004: 10002: 9999: 9997: 9994: 9992: 9991:Schwarzschild 9989: 9987: 9984: 9982: 9979: 9977: 9974: 9972: 9969: 9968: 9966: 9962: 9952: 9948: 9947: 9944: 9941: 9939: 9936: 9934: 9930: 9929: 9926: 9923: 9921: 9918: 9916: 9913: 9911: 9908: 9905: 9901: 9897: 9896: 9893: 9890: 9887: 9884: 9882: 9878: 9877:Schwarzschild 9874: 9873: 9870: 9867: 9865: 9862: 9860: 9857: 9855: 9852: 9850: 9847: 9844: 9840: 9836: 9835: 9833: 9831: 9827: 9821: 9818: 9816: 9813: 9811: 9808: 9807: 9805: 9799: 9793: 9790: 9787: 9783: 9779: 9776: 9774: 9773:Shapiro delay 9771: 9769: 9766: 9763: 9759: 9755: 9752: 9749: 9745: 9742: 9741: 9738: 9735: 9732: 9729: 9727: 9724: 9722: 9719: 9717: 9716:collaboration 9713: 9709: 9706: 9704: 9700: 9697: 9696: 9693: 9690: 9688: 9685: 9683: 9682:Event horizon 9680: 9678: 9675: 9674: 9672: 9668: 9662: 9659: 9657: 9654: 9652: 9649: 9647: 9644: 9642: 9639: 9637: 9634: 9632: 9629: 9627: 9626:ADM formalism 9624: 9623: 9621: 9617: 9611: 9608: 9606: 9603: 9601: 9598: 9596: 9593: 9591: 9588: 9587: 9585: 9579: 9573: 9570: 9568: 9565: 9564: 9562: 9558: 9555: 9553: 9547: 9537: 9534: 9532: 9531:Biquaternions 9529: 9527: 9524: 9522: 9519: 9517: 9514: 9513: 9511: 9509: 9505: 9499: 9496: 9494: 9491: 9489: 9486: 9484: 9481: 9479: 9476: 9474: 9471: 9469: 9466: 9464: 9461: 9459: 9458:Time dilation 9456: 9455: 9453: 9449: 9443: 9440: 9439: 9437: 9433: 9427: 9424: 9422: 9419: 9417: 9414: 9412: 9411:Proper length 9409: 9407: 9404: 9402: 9399: 9397: 9394: 9392: 9389: 9387: 9384: 9383: 9381: 9375: 9369: 9366: 9364: 9361: 9358: 9355: 9353: 9349: 9346: 9345: 9343: 9339: 9336: 9334: 9328: 9324: 9317: 9312: 9310: 9305: 9303: 9298: 9297: 9294: 9279: 9278:other unknown 9275: 9274:cosmic string 9271: 9270: 9268: 9263: 9259: 9256: 9255: 9253: 9248: 9247: 9245: 9241: 9238: 9236: 9235:Neutron stars 9233: 9231: 9228: 9226: 9223: 9222: 9220: 9216: 9213: 9211: 9207: 9204: 9203: 9202: 9199: 9198: 9196: 9192: 9186: 9183: 9181: 9177: 9174: 9170: 9167: 9165: 9161: 9159: 9156: 9154: 9151: 9149: 9146: 9145: 9143: 9139: 9133: 9130: 9128: 9125: 9123: 9120: 9118: 9115: 9114: 9112: 9108: 9096: 9095:Binary pulsar 9093: 9091: 9088: 9086: 9082: 9079: 9078: 9076: 9072: 9071: 9066: 9063: 9061: 9058: 9057: 9055: 9054: 9052: 9048: 9041: 9038: 9035: 9032: 9029: 9026: 9024: 9021: 9018: 9014: 9011: 9009: 9006: 9004: 9001: 8999: 8996: 8994: 8991: 8989: 8986: 8984: 8981: 8980: 8978: 8974: 8971: 8967: 8961:: Gravity Spy 8960: 8957: 8955: 8952: 8950: 8949:Einstein@Home 8947: 8946: 8944: 8942:Data analysis 8940: 8934: 8931: 8929: 8926: 8924: 8921: 8919: 8916: 8915: 8913: 8911: 8907: 8893: 8890: 8888: 8885: 8883: 8880: 8879: 8877: 8873: 8867: 8864: 8863: 8861: 8857: 8854: 8848: 8838: 8835: 8834: 8832: 8828: 8822: 8819: 8817: 8814: 8813: 8811: 8807: 8801: 8798: 8797: 8795: 8791: 8785: 8782: 8780: 8777: 8775: 8772: 8770: 8767: 8766: 8764: 8760: 8753: 8749: 8746: 8744: 8741: 8738: 8734: 8733:Advanced LIGO 8731: 8729: 8726: 8724: 8721: 8719: 8716: 8713: 8709: 8706: 8705: 8703: 8699: 8696: 8694: 8688: 8677: 8673: 8670: 8668: 8665: 8663: 8660: 8657: 8653: 8650: 8649: 8647: 8643: 8637: 8634: 8633: 8631: 8627: 8621: 8618: 8616: 8613: 8611: 8608: 8606: 8603: 8601: 8598: 8595: 8591: 8588: 8585: 8581: 8578: 8575: 8571: 8568: 8567: 8565: 8561: 8555: 8552: 8550: 8547: 8544: 8540: 8537: 8534: 8530: 8527: 8526: 8524: 8520: 8517: 8515: 8512:Resonant mass 8509: 8506: 8504: 8500: 8494: 8491: 8489: 8486: 8485: 8482: 8478: 8471: 8466: 8464: 8459: 8457: 8452: 8451: 8448: 8440: 8436: 8431: 8426: 8422: 8418: 8417: 8412: 8408: 8403: 8400: 8397: 8395: 8391: 8388: 8386: 8382: 8379: 8377: 8373: 8369: 8366: 8365: 8356: 8355:0-201-09924-1 8352: 8348: 8344: 8341: 8340:0-691-03323-4 8337: 8333: 8329: 8326: 8323: 8322:0-691-01933-9 8319: 8315: 8311: 8308: 8305: 8301: 8297: 8293: 8290: 8289:0-521-23197-3 8286: 8282: 8278: 8275: 8272: 8268: 8264: 8260: 8258: 8257:0-226-11378-7 8254: 8250: 8246: 8243: 8241: 8240:0-85274-037-9 8237: 8233: 8229: 8226: 8225: 8215: 8211: 8207: 8203: 8199: 8195: 8194: 8193:Physics Today 8188: 8184: 8178: 8174: 8170: 8166: 8162: 8158: 8154: 8150: 8146: 8142: 8137: 8132: 8127: 8122: 8118: 8114: 8109: 8104: 8100: 8096: 8095: 8090: 8085: 8082: 8078: 8073: 8068: 8063: 8060: 8056: 8053: 8052: 8040: 8036: 8033:(8): 605–07. 8032: 8028: 8021: 8013: 8007: 8003: 7999: 7995: 7994: 7986: 7978: 7972: 7968: 7964: 7960: 7956: 7952: 7948: 7941: 7933: 7929: 7925: 7921: 7917: 7913: 7909: 7905: 7902:(3): 728–51. 7901: 7897: 7890: 7876: 7872: 7866: 7858: 7854: 7850: 7846: 7842: 7838: 7834: 7830: 7825: 7820: 7816: 7812: 7808: 7804: 7797: 7789: 7783: 7779: 7775: 7771: 7764: 7750: 7746: 7739: 7731: 7727: 7722: 7717: 7713: 7709: 7704: 7699: 7695: 7691: 7687: 7679: 7671: 7667: 7663: 7659: 7655: 7651: 7647: 7643: 7638: 7633: 7630:(8): 084013. 7629: 7625: 7618: 7610: 7606: 7602: 7598: 7593: 7588: 7584: 7580: 7575: 7570: 7566: 7562: 7558: 7551: 7543: 7539: 7534: 7529: 7525: 7521: 7517: 7513: 7509: 7502: 7494: 7488: 7480: 7476: 7470: 7468: 7458: 7453: 7446: 7438: 7432: 7424: 7420: 7416: 7412: 7408: 7404: 7399: 7394: 7391:(17): 17300. 7390: 7386: 7379: 7371: 7364: 7358: 7354: 7351: 7346: 7330: 7326: 7322: 7318: 7311: 7303: 7297: 7293: 7289: 7285: 7281: 7277: 7270: 7262: 7258: 7254: 7250: 7243: 7235: 7231: 7227: 7223: 7219: 7215: 7211: 7207: 7199: 7191: 7184: 7176: 7172: 7167: 7166:gr-qc/9506086 7162: 7158: 7154: 7150: 7144: 7129: 7125: 7121: 7115: 7109: 7105: 7102: 7097: 7091: 7086: 7078: 7074: 7070: 7066: 7062: 7058: 7053: 7048: 7044: 7040: 7033: 7025: 7021: 7015: 7007: 7003: 6998: 6993: 6989: 6985: 6980: 6975: 6971: 6967: 6963: 6956: 6948: 6944: 6939: 6934: 6930: 6926: 6919: 6911: 6907: 6903: 6896: 6894: 6885: 6881: 6877: 6873: 6869: 6865: 6860: 6855: 6851: 6847: 6839: 6825: 6821: 6814: 6806: 6802: 6798: 6794: 6790: 6786: 6779: 6772:(5): 165–200. 6771: 6767: 6760: 6751: 6747: 6744:(6): 293–96. 6743: 6739: 6732: 6717: 6713: 6709: 6702: 6687: 6683: 6676: 6669: 6664: 6656: 6652: 6645: 6643: 6634: 6628: 6624: 6620: 6619: 6611: 6603: 6597: 6593: 6592:W. H. Freeman 6589: 6585: 6584:Wheeler, J.A. 6581: 6577: 6570: 6562: 6558: 6554: 6550: 6545: 6540: 6537:(4): 043512. 6536: 6532: 6528: 6521: 6513: 6509: 6505: 6501: 6497: 6493: 6488: 6483: 6479: 6475: 6468: 6460: 6456: 6452: 6448: 6444: 6440: 6435: 6430: 6426: 6422: 6418: 6412: 6404: 6400: 6396: 6392: 6388: 6384: 6380: 6376: 6371: 6366: 6363:(2): 780–97. 6362: 6358: 6354: 6347: 6339: 6335: 6331: 6327: 6323: 6319: 6314: 6309: 6306:(1): L9–L12. 6305: 6301: 6297: 6291: 6277:. 18 May 2009 6276: 6275: 6270: 6264: 6256: 6252: 6248: 6244: 6240: 6236: 6232: 6228: 6224: 6220: 6215: 6214:gr-qc/0511103 6210: 6206: 6202: 6198: 6191: 6183: 6179: 6175: 6171: 6167: 6163: 6159: 6155: 6151: 6147: 6142: 6141:gr-qc/0511048 6137: 6133: 6129: 6125: 6121: 6115: 6107: 6103: 6099: 6095: 6091: 6087: 6083: 6079: 6075: 6071: 6066: 6065:gr-qc/0507014 6061: 6057: 6053: 6046: 6038: 6034: 6029: 6024: 6020: 6016: 6012: 6008: 6004: 5997: 5983: 5982: 5975: 5960: 5956: 5950: 5939: 5935: 5928: 5926: 5918: 5916: 5907: 5903: 5899: 5893: 5889: 5882: 5874: 5870: 5866: 5862: 5858: 5854: 5847: 5840: 5832: 5828: 5824: 5820: 5816: 5812: 5809:(1): 435–40. 5808: 5804: 5797: 5782: 5778: 5772: 5754: 5753: 5746: 5738: 5732: 5728: 5727: 5719: 5710: 5702: 5696: 5690: 5685: 5670: 5664: 5648: 5644: 5643: 5638: 5631: 5616: 5615: 5610: 5606: 5605:Kaiser, David 5600: 5585: 5584: 5579: 5575: 5569: 5554: 5553: 5548: 5541: 5533: 5532: 5527: 5520: 5505: 5504: 5499: 5495: 5489: 5481: 5477: 5470: 5468: 5466: 5457: 5451: 5437: 5433: 5429: 5425: 5421: 5417: 5410: 5408: 5406: 5390: 5389: 5384: 5378: 5370: 5366: 5362: 5358: 5354: 5350: 5346: 5342: 5338: 5334: 5329: 5324: 5321:(6): 061102. 5320: 5316: 5315: 5307: 5305: 5303: 5301: 5292: 5288: 5282: 5280: 5271: 5267: 5262: 5257: 5253: 5249: 5244: 5239: 5235: 5231: 5227: 5220: 5205: 5204: 5199: 5192: 5184: 5180: 5173: 5165: 5161: 5157: 5153: 5149: 5145: 5141: 5137: 5133: 5129: 5128: 5120: 5112: 5108: 5104: 5100: 5096: 5092: 5088: 5084: 5083: 5075: 5073: 5071: 5063: 5062:Press Release 5057: 5049: 5045: 5041: 5037: 5033: 5029: 5025: 5021: 5017: 5013: 5009: 5005: 4999: 4985: 4981: 4974: 4967: 4961: 4957: 4953: 4949: 4945: 4941: 4936: 4931: 4927: 4923: 4916: 4908: 4904: 4900: 4896: 4889: 4881: 4875: 4871: 4870: 4862: 4860: 4851: 4847: 4842: 4837: 4833: 4829: 4824: 4819: 4815: 4811: 4807: 4800: 4798: 4796: 4794: 4792: 4790: 4788: 4786: 4774: 4768: 4761: 4756: 4748: 4747: 4739: 4724: 4723: 4718: 4714: 4708: 4693: 4692: 4687: 4680: 4678: 4676: 4659: 4658: 4653: 4647: 4645: 4643: 4634: 4630: 4624: 4616: 4612: 4608: 4602: 4594: 4588: 4584: 4580: 4579: 4571: 4563: 4557: 4553: 4552: 4544: 4542: 4533: 4529: 4525: 4521: 4517: 4513: 4509: 4505: 4500: 4495: 4491: 4487: 4480: 4464: 4460: 4454: 4446: 4442: 4438: 4434: 4430: 4426: 4422: 4418: 4414: 4410: 4405: 4400: 4397:(8): 082002. 4396: 4392: 4388: 4384: 4380: 4373: 4365: 4359: 4355: 4351: 4350: 4345: 4339: 4331: 4327: 4326: 4318: 4310: 4306: 4302: 4298: 4293: 4288: 4284: 4280: 4275: 4270: 4266: 4262: 4258: 4251: 4249: 4233: 4232: 4227: 4220: 4212: 4208: 4204: 4200: 4196: 4192: 4188: 4187:Rosen, Nathan 4184: 4178: 4167: 4163: 4162: 4154: 4147: 4139: 4132: 4124: 4120: 4116: 4112: 4108: 4104: 4098: 4096: 4094: 4085: 4081: 4077: 4073: 4072: 4067: 4064:(June 1916). 4063: 4057: 4041: 4033: 4027: 4019: 4015: 4011: 4007: 4003: 3999: 3994: 3993:gr-qc/0501041 3989: 3985: 3981: 3977: 3970: 3968: 3966: 3964: 3962: 3957: 3947: 3944: 3941: 3938: 3936: 3932: 3929: 3926: 3925:binary pulsar 3922: 3919: 3916: 3913: 3911: 3908: 3906: 3903: 3900: 3896: 3892: 3888: 3884: 3881: 3878: 3874: 3870: 3867: 3865: 3862: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3803: 3799: 3798: 3791: 3789: 3788: 3783: 3778: 3776: 3775: 3770: 3765: 3763: 3762: 3757: 3756:Stanislaw Lem 3752: 3750: 3749:Mount Everest 3746: 3742: 3738: 3737: 3726: 3724: 3723:superradiance 3720: 3716: 3712: 3707: 3703: 3699: 3694: 3691: 3681: 3677: 3675: 3671: 3667: 3663: 3659: 3654: 3649: 3647: 3642: 3640: 3636: 3632: 3628: 3623: 3619: 3615: 3611: 3602: 3597: 3593: 3583: 3581: 3577: 3573: 3567: 3557: 3553: 3551: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3515: 3511: 3506: 3504: 3500: 3494: 3491: 3487: 3482: 3475: 3470: 3465: 3455: 3453: 3449: 3445: 3441: 3437: 3427: 3424: 3420: 3417:project is a 3416: 3415:Einstein@Home 3411: 3409: 3405: 3401: 3397: 3396:monochromatic 3391: 3390:Einstein@Home 3384:Einstein@Home 3381: 3378: 3374: 3370: 3365: 3362: 3358: 3354: 3342: 3336: 3333: 3329: 3325: 3321: 3318:, one at the 3317: 3313: 3308: 3305: 3296: 3290: 3284: 3279: 3269: 3267: 3249: 3231: 3226: 3222: 3204: 3200: 3196: 3192: 3188: 3183: 3181: 3177: 3173: 3169: 3167: 3164:cooled, with 3163: 3162:cryogenically 3159: 3155: 3151: 3147: 3143: 3137: 3127: 3125: 3120: 3116: 3112: 3108: 3104: 3095: 3086: 3084: 3073: 3071: 3067: 3062: 3060: 3055: 3051: 3049: 3038: 3034: 3030: 3017: 3013: 3009: 3006: 3002: 2997: 2992: 2988: 2984: 2974: 2972: 2968: 2963: 2959: 2957: 2951: 2948: 2944: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2908: 2904: 2900: 2896: 2895:visible light 2892: 2886: 2878: 2877:neutron stars 2873: 2864: 2862: 2857: 2852: 2850: 2846: 2842: 2841:triangulation 2831: 2822: 2820: 2816: 2812: 2807: 2805: 2801: 2797: 2793: 2789: 2785: 2781: 2780:force carrier 2777: 2773: 2769: 2759: 2757: 2753: 2749: 2745: 2741: 2737: 2733: 2729: 2719: 2717: 2714: 2710: 2706: 2702: 2697: 2694: 2690: 2686: 2671: 2669: 2662: 2652: 2649: 2639: 2637: 2632: 2626: 2616: 2614: 2610: 2606: 2600: 2590: 2588: 2585:) powered by 2584: 2580: 2576: 2572: 2568: 2564: 2560: 2546: 2542: 2540: 2536: 2532: 2528: 2516: 2512: 2511:neutron stars 2508: 2504: 2503:Compact stars 2481: 2470: 2466: 2462: 2457: 2453: 2441: 2437: 2431: 2427: 2417: 2413: 2402: 2398: 2392: 2388: 2379: 2376: 2371: 2368: 2361: 2360: 2359: 2354: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2304: 2294: 2290: 2280: 2276: 2272: 2267: 2263: 2251: 2247: 2241: 2237: 2222: 2218: 2212: 2208: 2199: 2196: 2191: 2188: 2182: 2172: 2157: 2156: 2155: 2152: 2132: 2109: 2105: 2084: 2079: 2075: 2071: 2066: 2054: 2050: 2045: 2042: 2038: 2031: 2027: 2023: 2017: 2011: 2003: 1999: 1991: 1983: 1979: 1975: 1967: 1963: 1959: 1954: 1952: 1948: 1944: 1940: 1931: 1926: 1918: 1911: 1907: 1902: 1897: 1887: 1885: 1881: 1877: 1873: 1869: 1865: 1857: 1853: 1849: 1845: 1842: 1838: 1834: 1830: 1826: 1823: 1819: 1815: 1812: 1809: 1805: 1802: 1798: 1795: 1791: 1790: 1789: 1786: 1784: 1780: 1773: 1768: 1759: 1757: 1750: 1743: 1739: 1734: 1732: 1727: 1723: 1714: 1710: 1706: 1702: 1699: 1696: 1692: 1689: 1686: 1682: 1679: 1676: 1672: 1668: 1664: 1660: 1659: 1658: 1656: 1651: 1649: 1644: 1640: 1636: 1632: 1627: 1625: 1620: 1615: 1613: 1609: 1605: 1601: 1597: 1593: 1584: 1576: 1567: 1553: 1550: 1542: 1541:-significance 1528: 1525: 1516: 1512: 1508: 1503: 1501: 1497: 1493: 1489: 1486:In 2017, the 1484: 1482: 1477: 1475: 1471: 1466: 1462: 1458: 1454: 1450: 1445: 1443: 1439: 1435: 1429: 1427: 1423: 1419: 1415: 1410: 1407: 1403: 1399: 1395: 1390: 1388: 1384: 1380: 1377: 1376:Hermann Bondi 1373: 1369: 1365: 1361: 1357: 1352: 1350: 1346: 1342: 1338: 1334: 1329: 1328: 1323: 1319: 1314: 1309: 1307: 1303: 1298: 1296: 1292: 1288: 1284: 1280: 1272: 1268: 1265:, a phase of 1264: 1259: 1250: 1248: 1243: 1241: 1237: 1233: 1228: 1218: 1210: 1209: 1204: 1198: 1188: 1186: 1185:Werner Israel 1182: 1177: 1175: 1169: 1167: 1166:recombination 1161: 1159: 1155: 1151: 1141: 1137: 1135: 1131: 1127: 1123: 1111: 1107: 1102: 1100: 1096: 1091: 1089: 1085: 1080: 1078: 1074: 1067: 1061: 1057: 1053: 1042: 1039: 1031: 1020: 1017: 1013: 1010: 1006: 1003: 999: 996: 992: 989: â€“  988: 984: 983:Find sources: 977: 973: 967: 966: 961:This section 959: 955: 950: 949: 941: 939: 935: 931: 927: 923: 920: 916: 911: 909: 906:received the 905: 901: 897: 892: 890: 886: 882: 878: 874: 873:neutron stars 870: 866: 862: 858: 853: 851: 847: 843: 839: 835: 830: 828: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 777: 772: 770: 765: 763: 758: 757: 755: 754: 748: 738: 735: 730: 724: 723: 722: 721: 714: 713: 709: 707: 704: 702: 699: 697: 694: 692: 689: 687: 684: 682: 679: 677: 674: 672: 669: 667: 664: 662: 659: 657: 654: 652: 651:Chandrasekhar 649: 647: 644: 642: 639: 637: 634: 632: 629: 627: 624: 622: 619: 617: 614: 612: 609: 607: 604: 602: 599: 597: 594: 592: 589: 587: 584: 582: 579: 577: 574: 572: 569: 567: 566:Schwarzschild 564: 562: 559: 557: 554: 552: 549: 547: 544: 543: 535: 534: 527: 526:Hartle–Thorne 524: 522: 519: 517: 514: 512: 509: 507: 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 472: 469: 467: 464: 462: 459: 457: 454: 452: 449: 447: 444: 441: 437: 436:Schwarzschild 434: 433: 429: 423: 422: 411: 408: 406: 403: 402: 401: 400: 396: 395: 390: 387: 385: 382: 380: 377: 376: 375: 374: 370: 369: 364: 361: 359: 356: 354: 351: 349: 346: 344: 341: 339: 336: 335: 334: 333: 329: 328: 318: 315: 314: 309: 308: 297: 294: 292: 289: 287: 284: 283: 282: 281: 278: 275: 274: 269: 266: 264: 261: 259: 258:Event horizon 256: 254: 251: 249: 246: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 220: 219: 218: 208: 207: 200: 197: 195: 192: 190: 187: 185: 182: 181: 173: 172: 167: 164: 159: 156: 154: 151: 149: 146: 145: 143: 141: 138: 137: 136: 135: 117: 114: 110: 105: 101: 96: 93: 89: 82: 77: 74: 70: 60: 56: 55: 52: 49: 48: 42: 22: 10715:Binary stars 10687:Solar System 10560:made visible 10527: 10505: 10469:2010: First 10460: 10416: 10388:Nanocircuits 10332: 10322: 10252:Quintessence 10121: 9815:Kaluza–Klein 9698: 9567:Introduction 9493:Twin paradox 9277: 9261: 9162:Travel with 9148:Polarization 9067: 8969:Observations 8691:Ground-based 8487: 8420: 8414: 8346: 8331: 8313: 8295: 8280: 8262: 8248: 8231: 8222:Bibliography 8197: 8191: 8173:10.1142/2410 8156: 8098: 8092: 8080: 8058: 8030: 8026: 8020: 7992: 7985: 7950: 7940: 7899: 7895: 7889: 7878:. Retrieved 7874: 7865: 7814: 7810: 7796: 7769: 7763: 7752:. Retrieved 7748: 7738: 7693: 7689: 7678: 7627: 7623: 7617: 7564: 7560: 7550: 7515: 7511: 7501: 7487: 7478: 7445: 7431: 7388: 7384: 7378: 7370:Rainer Weiss 7363: 7345: 7333:. Retrieved 7329:the original 7320: 7310: 7275: 7269: 7252: 7242: 7212:(1): 42–75. 7209: 7205: 7198: 7189: 7183: 7156: 7143: 7131:. Retrieved 7123: 7114: 7096: 7085: 7042: 7038: 7032: 7023: 7014: 6969: 6965: 6955: 6928: 6924: 6918: 6901: 6849: 6845: 6838: 6827:. Retrieved 6823: 6818:Wall, Mike. 6813: 6788: 6784: 6778: 6769: 6765: 6759: 6741: 6737: 6731: 6719:. Retrieved 6711: 6701: 6689:. Retrieved 6685: 6675: 6663: 6654: 6617: 6610: 6587: 6580:Thorne, K.S. 6576:Misner, C.W. 6569: 6534: 6530: 6520: 6477: 6473: 6467: 6424: 6420: 6411: 6360: 6356: 6346: 6303: 6299: 6290: 6279:. Retrieved 6272: 6263: 6204: 6200: 6190: 6131: 6127: 6124:Lousto, C.O. 6114: 6055: 6051: 6045: 6010: 6006: 5996: 5985:, retrieved 5980: 5974: 5962:. Retrieved 5958: 5949: 5938:the original 5933: 5927:] Waves" 5924: 5887: 5881: 5856: 5852: 5839: 5806: 5802: 5796: 5786:20 September 5784:. Retrieved 5780: 5771: 5760:, retrieved 5751: 5745: 5725: 5718: 5709: 5695: 5684: 5673:. Retrieved 5663: 5651:. Retrieved 5640: 5630: 5618:. Retrieved 5612: 5599: 5587:. Retrieved 5581: 5568: 5556:. Retrieved 5550: 5540: 5531:The Guardian 5529: 5519: 5507:. Retrieved 5501: 5488: 5479: 5450: 5439:. Retrieved 5419: 5393:. Retrieved 5391:. 2016-02-11 5386: 5377: 5318: 5312: 5290: 5233: 5229: 5219: 5207:. Retrieved 5201: 5191: 5182: 5178: 5172: 5131: 5125: 5119: 5086: 5080: 5056: 5015: 5011: 4998: 4987:. Retrieved 4983: 4973: 4925: 4921: 4915: 4898: 4894: 4888: 4868: 4813: 4809: 4767: 4755: 4745: 4738: 4726:. Retrieved 4720: 4707: 4695:. Retrieved 4689: 4662:. Retrieved 4655: 4632: 4623: 4614: 4601: 4577: 4570: 4550: 4489: 4485: 4479: 4467:. Retrieved 4462: 4453: 4394: 4390: 4372: 4348: 4338: 4323: 4317: 4264: 4260: 4235:. Retrieved 4229: 4219: 4197:(1): 43–54. 4194: 4190: 4177: 4159: 4146: 4131: 4123:the original 4110: 4084:the original 4069: 4056: 4044:. Retrieved 4039: 4026: 3983: 3979: 3923:, the first 3921:PSR B1913+16 3910:Peres metric 3808:Anti-gravity 3785: 3779: 3772: 3766: 3759: 3753: 3747:the size of 3734: 3732: 3698:Cooper pairs 3695: 3687: 3678: 3650: 3643: 3618:solar masses 3607: 3569: 3554: 3507: 3495: 3479: 3473: 3433: 3412: 3393: 3366: 3340: 3337: 3320:Hanford site 3309: 3301: 3294: 3288: 3265: 3247: 3229: 3202: 3184: 3170: 3150:Joseph Weber 3139: 3123: 3118: 3114: 3106: 3102: 3100: 3082: 3079: 3076:Difficulties 3069: 3065: 3063: 3056: 3052: 3026: 2964: 2960: 2952: 2888: 2853: 2849:milliseconds 2837: 2828: 2808: 2765: 2751: 2747: 2725: 2709:naked quasar 2701:astrophysics 2698: 2682: 2664: 2645: 2628: 2602: 2551: 2507:white dwarfs 2501: 2352: 2345: 2337: 2329: 2325: 2321: 2319: 2153: 2001: 1955: 1942: 1938: 1935: 1871: 1867: 1861: 1851: 1836: 1828: 1817: 1810: 1800: 1793: 1787: 1776: 1771: 1748: 1741: 1735: 1725: 1721: 1718: 1712: 1694: 1684: 1674: 1666: 1662: 1652: 1643:polarization 1628: 1616: 1612:nearest star 1589: 1504: 1500:Barry Barish 1492:Rainer Weiss 1485: 1478: 1461:solar masses 1446: 1430: 1411: 1394:Joseph Weber 1391: 1381: 1353: 1345:Felix Pirani 1336: 1325: 1322:Nathan Rosen 1310: 1306:Hermann Weyl 1299: 1276: 1244: 1229: 1206: 1200: 1178: 1170: 1162: 1146: 1103: 1093:Inspiraling 1092: 1081: 1049: 1034: 1025: 1015: 1008: 1001: 994: 982: 970:Please help 965:verification 962: 944:Introduction 938:Barry Barish 930:Rainer Weiss 912: 893: 869:white dwarfs 854: 836:, a form of 833: 831: 786: 785: 711: 671:Raychaudhuri 242: 140:Introduction 21:Gravity wave 10720:Black holes 10675:Outer space 10663:Spaceflight 10599:GLP-1 Drugs 10488:Higgs boson 10408:Dark energy 10247:Fifth force 10231:Gravitation 10203:fundamental 9904:Kerr–Newman 9875:Spherical: 9744:Other tests 9687:Singularity 9619:Formulation 9581:Fundamental 9435:Formulation 9416:Proper time 9377:Fundamental 9269:Hypothesis 9246:Continuous 8850:Space-based 8407:Lydia Bieri 7335:29 November 7133:10 December 6721:29 November 6588:Gravitation 6417:Merritt, D. 6296:Merritt, D. 5987:14 February 5959:www.eso.org 5420:Nature News 4901:: 389–405. 4773:"page 1507" 4469:13 November 4140:. Phys.Org. 4042:(in French) 3946:Tidal force 3658:GRB 170817A 3448:cosmic rays 3268:≈10 to 10. 3059:black holes 3016:cosmic dust 3012:focal plane 2722:Redshifting 2579:GRB 170817A 2571:megaparsecs 1600:light-years 1364:Chapel Hill 1285:. In 1905, 1211:in vacuum, 1028:August 2024 877:black holes 865:binary star 840:similar to 817:. In 1916, 795:gravitating 686:van Stockum 616:Oppenheimer 471:Kerr–Newman 263:Singularity 41:black holes 10709:Categories 10557:black hole 10056:Zel'dovich 9964:Scientists 9943:Alcubierre 9750:of Mercury 9748:precession 9677:Black hole 9560:Background 9552:relativity 9521:World line 9516:Light cone 9341:Background 9333:relativity 9323:Relativity 9272:Colliding 9201:Stochastic 9173:chirp mass 9068:Proposed: 8959:Zooniverse 8200:(10): 44. 7880:2017-10-17 7824:1710.05832 7754:2020-09-06 7703:2306.16213 7574:1801.02617 7457:1702.00786 6979:1606.02744 6859:1611.05501 6829:2017-03-27 6281:2016-07-01 5964:18 October 5675:2023-06-30 5441:2016-02-11 5395:2016-02-11 5328:1602.03837 5243:1609.09400 4989:2023-11-02 4935:1811.07303 4823:1609.09400 4429:2440/74812 4274:2106.15163 4046:3 November 3986:(1): 204. 3953:References 3745:15 Eunomia 3729:In fiction 3690:L. Halpern 3670:AT 2017gfo 3635:experiment 3452:solar wind 3444:shot noise 3369:shot noise 2935:gamma rays 2742:, such as 2583:AT 2017gfo 2515:solar mass 1984:by about 1 1894:See also: 1731:light wave 1705:wave speed 1691:Wavelength 1671:sextillion 1496:Kip Thorne 1449:LIGO-Virgo 1398:Weber bars 1383:Paul Dirac 1293:producing 998:newspapers 934:Kip Thorne 913:The first 881:supernovae 848:, part of 539:Scientists 371:Formalisms 319:Formalisms 268:Black hole 194:World line 10639:Astronomy 10490:discovery 10429:in action 10427:Evolution 10372:Stem cell 10026:Robertson 10011:Friedmann 10006:Eddington 9996:de Sitter 9830:Solutions 9708:detectors 9703:astronomy 9670:Phenomena 9605:Geodesics 9508:Spacetime 9451:Phenomena 9258:Supernova 9153:Spin-flip 8779:TENKO-100 8656:MiniGRAIL 8620:Weber bar 8549:MiniGRAIL 8503:Detectors 8439:1088-9477 8108:1403.7377 7932:121980464 7924:1827-6121 7857:217163611 7730:2041-8205 7696:(1): L8. 7662:0264-9381 7637:0911.5206 7601:0004-637X 7567:(1): 47. 7542:0004-637X 7398:1003.2480 7077:118307286 7052:1411.3930 7006:119283147 6972:(1): 55. 6544:0712.0618 6487:0804.4585 6434:0809.5046 6395:0004-637X 6370:0708.0771 6274:Space.com 6239:0031-9007 6166:0031-9007 6090:0031-9007 6037:125431568 5906:319064125 5831:0031-899X 5762:8 October 5620:3 October 5589:3 October 5558:3 October 5436:182916902 5369:124959784 5353:0031-9007 5270:2218-1997 5236:(3): 22. 5203:Space.com 5185:: 605–07. 5156:0028-0836 5111:0004-637X 5048:121423215 5040:0020-739X 4960:2102-6459 4816:(3): 22. 4499:1004.2504 4437:1550-7998 4404:1111.7314 4309:235670241 4301:2041-8205 4267:(1): L5. 4018:1367-2630 3931:Spin-flip 3864:HM Cancri 3782:Liu Cixin 3769:Greg Egan 3688:In 1964, 3552:project. 3423:SETI@home 3404:acoustics 3400:pure tone 3256:10 / 3238:10 / 3211:10 / 3199:microwave 3172:MiniGRAIL 3142:Weber bar 3136:Weber bar 2977:Detection 2919:microwave 2891:astronomy 2754:gravity ( 2740:spacetime 2655:Inflation 2625:Supernova 2619:Supernova 2587:r-process 2539:supernova 2192:− 2046:− 1808:supernova 1779:symmetric 1681:Frequency 1631:amplitude 1624:cruciform 1619:spacetime 1604:spacetime 1554:σ 1529:σ 1406:Milky Way 1240:gravitons 827:spacetime 631:Robertson 596:Friedmann 591:Eddington 581:Nordström 571:de Sitter 428:Solutions 353:Geodesics 348:Friedmann 330:Equations 316:Equations 277:Spacetime 212:Phenomena 118:ν 115:μ 106:κ 97:ν 94:μ 86:Λ 78:ν 75:μ 10555:2019: A 10536:GW170817 10479:HPTN 052 10280:Universe 10207:residual 10139:Category 10016:LemaĂźtre 9981:Einstein 9971:PoincarĂ© 9931:Others: 9915:Taub–NUT 9881:interior 9803:theories 9801:Advanced 9768:redshift 9583:concepts 9401:Rapidity 9379:concepts 9260:or from 9178:Carried 9168:h strain 9158:Redshift 9132:Graviton 9040:GW200105 9034:GW190814 9028:GW190521 9023:GW190412 9013:GW170817 9008:GW170814 9003:GW170608 8998:GW170104 8993:GW151226 8928:NANOGrav 8875:Proposed 8809:Proposed 8769:TAMA 300 8672:Graviton 8629:Proposed 8570:EXPLORER 8529:NAUTILUS 8514:antennas 8374:and the 8155:(1994). 8145:28179848 8101:(1): 4. 7849:29099225 7670:56073764 7609:89615050 7423:15200690 7353:Archived 7234:76657516 7104:Archived 6884:27351189 6691:30 March 6586:(1973). 6459:17260029 6403:14314439 6338:15404149 6255:23409406 6247:16605809 6174:16605808 6106:24225193 6098:16197061 5653:4 August 5647:Archived 5552:BBC News 5509:21 March 5361:26918975 5291:BBC News 5230:Universe 5164:22984747 5006:(2013). 4810:Universe 4728:17 March 4697:17 March 4664:18 March 4613:(1991). 4532:11804455 4524:20489015 4346:(2009). 4328:. 2014. 4166:Archived 4105:(1918). 3899:TAMA 300 3853:Graviton 3794:See also 3784:'s 2006 3774:Diaspora 3674:kilonova 3666:NGC 4993 3653:GW170817 3544:and the 3295:Figure 2 3289:Figure 1 3103:indirect 3044:☉ 2927:Big Bang 2856:GW170814 2811:massless 2772:graviton 2689:momentum 2613:GW150914 2567:NGC 4993 2563:kilonova 2559:GW170817 2137:coalesce 2059:coalesce 1890:Binaries 1866:(or the 1852:will not 1843:effects. 1829:will not 1818:will not 1803:radiate. 1796:radiate. 1783:dumbbell 1596:GW150914 1457:GW150914 1271:Big Bang 889:Big Bang 747:Category 611:LemaĂźtre 576:Reissner 561:PoincarĂ© 546:Einstein 491:Taub–NUT 456:Wormhole 440:interior 153:Timeline 10699:Science 10627:Physics 10613:Portals 10579:brings 10506:Rosetta 10338:journal 10334:Science 10323:Science 10183:physics 10081:Hawking 10076:Penrose 10061:Novikov 10041:Wheeler 9986:Hilbert 9976:Lorentz 9933:pp-wave 9754:lensing 9550:General 9331:Special 9280:sources 9264:sources 9262:unknown 9081:B-modes 9050:Methods 9015:(first 8892:TianQin 8859:Planned 8793:Planned 8610:GEOGRAV 8580:ALLEGRO 8202:Bibcode 8161:Bibcode 8136:5255900 8113:Bibcode 8035:Bibcode 7955:Bibcode 7904:Bibcode 7875:Caltech 7829:Bibcode 7708:Bibcode 7642:Bibcode 7579:Bibcode 7520:Bibcode 7518:: L39. 7495:. 2022. 7403:Bibcode 7280:Bibcode 7257:Bibcode 7255:: 415. 7214:Bibcode 7171:Bibcode 7159:: 160. 7057:Bibcode 6984:Bibcode 6943:Bibcode 6864:Bibcode 6852:: A57. 6793:Bibcode 6746:Bibcode 6549:Bibcode 6512:6860884 6492:Bibcode 6439:Bibcode 6375:Bibcode 6318:Bibcode 6219:Bibcode 6182:5954627 6146:Bibcode 6070:Bibcode 6015:Bibcode 5861:Bibcode 5811:Bibcode 5333:Bibcode 5248:Bibcode 5136:Bibcode 5091:Bibcode 5089:: 908. 5020:Bibcode 4940:Bibcode 4903:Bibcode 4850:2187981 4828:Bibcode 4504:Bibcode 4486:Science 4445:6842810 4409:Bibcode 4279:Bibcode 4237:29 June 4199:Bibcode 4115:Bibcode 4076:Bibcode 3998:Bibcode 3715:niobium 3481:Pulsars 3377:seismic 3258:√ 3240:√ 3213:√ 2925:of the 2915:quasars 2911:pulsars 2784:gravity 2711:". The 1762:Sources 1273:(2014). 1253:History 1236:photons 1012:scholar 666:Hawking 661:Penrose 636:Bardeen 626:Wheeler 556:Hilbert 551:Lorentz 511:pp-wave 148:History 39:As two 10597:2023: 10588:2022: 10583:to all 10575:2021: 10566:2020: 10547:2018: 10534:2017: 10522:2016: 10514:2015: 10503:2014: 10495:2013: 10486:2012: 10477:2011: 10459:2009: 10451:2008: 10443:2007: 10434:2006: 10425:2005: 10417:Spirit 10414:2004: 10406:2003: 10398:2002: 10386:2001: 10378:2000: 10370:1999: 10362:1998: 10354:1997: 10345:1996: 10122:others 10111:Thorne 10101:Misner 10086:Taylor 10071:Geroch 10066:Ehlers 10036:Zwicky 9854:Kasner 9254:Burst 9180:energy 9110:Theory 8976:Events 8887:DECIGO 8728:GEO600 8701:Active 8605:ALTAIR 8539:AURIGA 8522:Active 8437:  8353:  8338:  8320:  8302:  8287:  8269:  8255:  8238:  8179:  8143:  8133:  8008:  7973:  7930:  7922:  7855:  7847:  7805:& 7784:  7778:Oxford 7728:  7668:  7660:  7607:  7599:  7540:  7421:  7298:  7232:  7075:  7004:  6931:: 25. 6902:nature 6882:  6629:  6598:  6510:  6457:  6401:  6393:  6336:  6253:  6245:  6237:  6180:  6172:  6164:  6104:  6096:  6088:  6035:  5904:  5894:  5829:  5733:  5434:  5367:  5359:  5351:  5268:  5209:20 May 5162:  5154:  5127:Nature 5109:  5046:  5038:  4958:  4876:  4848:  4589:  4558:  4530:  4522:  4443:  4435:  4360:  4307:  4299:  4016:  3897:, and 3891:GEO600 3873:DECIGO 3761:Fiasco 3576:BICEP2 3540:, the 3536:, the 3528:. The 3440:DECIGO 3107:direct 3033:pulsar 3005:BICEP2 2989:, and 2945:, and 2939:x-rays 2770:, the 2752:due to 2713:quasar 2691:, and 2685:energy 2605:merger 2344:, and 2328:time, 2320:where 2302:  1990:proton 1974:joules 1947:orbits 1608:proton 1440:, and 1434:GEO600 1356:energy 1084:strain 1064:(See: 1014:  1007:  1000:  993:  985:  875:, and 745:  712:others 706:Thorne 696:Newman 676:Taylor 656:Ehlers 641:Walker 606:Zwicky 481:Kasner 10651:Stars 10592:debut 10438:proof 10419:rover 10116:Weiss 10096:Bondi 10091:Hulse 10021:Milne 9925:discs 9869:Milne 9864:Gödel 9721:Virgo 8954:PyCBC 8743:KAGRA 8712:ACIGA 8667:SFERA 8652:GRAIL 8615:AGATA 8590:NIOBE 8103:arXiv 8067:arXiv 8027:ZhETF 7928:S2CID 7853:S2CID 7819:arXiv 7698:arXiv 7666:S2CID 7632:arXiv 7605:S2CID 7569:arXiv 7452:arXiv 7419:S2CID 7393:arXiv 7230:S2CID 7161:arXiv 7073:S2CID 7047:arXiv 7002:S2CID 6974:arXiv 6933:arXiv 6880:S2CID 6854:arXiv 6539:arXiv 6508:S2CID 6482:arXiv 6455:S2CID 6429:arXiv 6399:S2CID 6365:arXiv 6334:S2CID 6308:arXiv 6251:S2CID 6209:arXiv 6178:S2CID 6136:arXiv 6102:S2CID 6060:arXiv 6033:S2CID 5941:(PDF) 5930:(PDF) 5849:(PDF) 5756:(PDF) 5480:Wired 5432:S2CID 5365:S2CID 5323:arXiv 5238:arXiv 5160:S2CID 5044:S2CID 4930:arXiv 4846:S2CID 4818:arXiv 4776:(PDF) 4760:(PDF) 4528:S2CID 4494:arXiv 4441:S2CID 4399:arXiv 4305:S2CID 4269:arXiv 4169:(PDF) 4156:(PDF) 4036:(PDF) 3988:arXiv 3895:KAGRA 3800:2017 3622:power 3488:uses 3357:KAGRA 3353:Virgo 3328:India 2819:boson 2726:Like 2569:, 40 2535:merge 2505:like 2097:with 1978:watts 1839:show 1701:Speed 1655:waves 1592:Earth 1465:power 1442:Virgo 1232:gluon 1122:KAGRA 1110:VIRGO 1099:orbit 1019:JSTOR 1005:books 681:Hulse 621:Gödel 601:Milne 496:Milne 461:Gödel 158:Tests 10051:Kerr 10001:Weyl 9900:Kerr 9760:and 9714:and 9712:LIGO 9276:and 9240:EMRI 8933:PPTA 8923:IPTA 8918:EPTA 8866:LISA 8762:Past 8718:CLIO 8708:AIGO 8662:TIGA 8636:TOBA 8594:IGEC 8584:IGEC 8574:IGEC 8563:Past 8543:IGEC 8533:IGEC 8435:ISSN 8351:ISBN 8336:ISBN 8318:ISBN 8300:ISBN 8285:ISBN 8267:ISBN 8253:ISBN 8236:ISBN 8177:ISBN 8141:PMID 8006:ISBN 7971:ISBN 7920:ISSN 7845:PMID 7782:ISBN 7726:ISSN 7658:ISSN 7597:ISSN 7538:ISSN 7337:2015 7296:ISBN 7135:2015 6723:2015 6693:2021 6627:ISBN 6596:ISBN 6391:ISSN 6243:PMID 6235:ISSN 6170:PMID 6162:ISSN 6094:PMID 6086:ISSN 5989:2016 5966:2017 5902:OCLC 5892:ISBN 5827:ISSN 5788:2016 5764:2022 5731:ISBN 5655:2023 5622:2017 5591:2017 5560:2017 5511:2016 5357:PMID 5349:ISSN 5266:ISSN 5211:2019 5179:JETP 5152:ISSN 5107:ISSN 5036:ISSN 4956:ISSN 4874:ISBN 4730:2014 4699:2014 4691:NASA 4666:2014 4587:ISBN 4556:ISBN 4520:PMID 4471:2021 4433:ISSN 4358:ISBN 4297:ISSN 4239:2021 4161:UCLA 4048:2023 4014:ISSN 3883:LIGO 3875:and 3869:LISA 3711:lead 3610:LIGO 3594:and 3580:dust 3516:and 3450:and 3438:and 3436:LISA 3413:The 3398:: a 3312:LIGO 3191:INFN 3156:and 2913:and 2815:spin 2527:LISA 2509:and 2351:and 2340:the 2332:the 1874:-th 1848:mass 1837:will 1811:will 1801:will 1794:will 1498:and 1438:LIGO 1416:and 1372:work 1247:LIGO 1183:and 1108:and 1106:LIGO 991:news 936:and 919:LIGO 902:and 691:Taub 646:Kerr 586:Weyl 466:Kerr 384:BSSN 10526:of 10390:or 10347:HIV 10181:of 10106:Yau 9731:GEO 9085:CMB 9083:of 8425:doi 8210:doi 8169:doi 8131:PMC 8121:doi 7998:doi 7963:doi 7912:doi 7837:doi 7815:119 7716:doi 7694:951 7650:doi 7587:doi 7565:859 7528:doi 7516:265 7411:doi 7373:54. 7288:doi 7222:doi 7065:doi 6992:doi 6970:829 6929:328 6906:doi 6872:doi 6850:600 6801:doi 6789:813 6557:doi 6500:doi 6478:678 6447:doi 6425:699 6383:doi 6361:678 6326:doi 6304:607 6227:doi 6154:doi 6078:doi 6023:doi 5925:sic 5869:doi 5857:136 5819:doi 5807:131 5424:doi 5341:doi 5319:116 5256:doi 5144:doi 5132:277 5099:doi 5087:253 5028:doi 4948:doi 4836:doi 4512:doi 4490:328 4425:hdl 4417:doi 4287:doi 4265:915 4207:doi 4195:223 4006:doi 3877:BBO 3780:In 3767:In 3754:In 3739:by 3713:or 3700:in 3637:of 3402:in 3322:in 2861:deg 2817:-2 2758:). 2380:256 1972:10 1958:Sun 1152:or 1054:'s 1050:In 974:by 855:In 701:Yau 379:ADM 10711:: 10577:AI 9780:/ 9746:: 9701:: 8433:. 8421:64 8419:. 8413:. 8312:, 8279:, 8247:, 8230:, 8208:. 8198:54 8196:. 8175:. 8167:. 8139:. 8129:. 8119:. 8111:. 8099:17 8097:. 8091:. 8057:. 8031:16 8004:. 7969:. 7961:. 7926:. 7918:. 7910:. 7900:33 7898:. 7873:. 7851:. 7843:. 7835:. 7827:. 7813:. 7776:, 7772:. 7747:. 7724:. 7714:. 7706:. 7692:. 7688:. 7664:. 7656:. 7648:. 7640:. 7628:27 7626:. 7603:. 7595:. 7585:. 7577:. 7563:. 7559:. 7536:. 7526:. 7514:. 7510:. 7477:. 7466:^ 7417:. 7409:. 7401:. 7389:27 7387:. 7323:. 7319:. 7294:. 7286:. 7251:. 7228:. 7220:. 7208:. 7169:. 7155:. 7126:. 7122:. 7071:. 7063:. 7055:. 7043:32 7041:. 7022:. 7000:. 6990:. 6982:. 6968:. 6964:. 6941:. 6927:. 6904:. 6892:^ 6878:. 6870:. 6862:. 6848:. 6822:. 6799:. 6787:. 6770:46 6768:. 6742:23 6740:. 6714:. 6710:. 6684:. 6653:. 6641:^ 6625:. 6621:. 6594:. 6590:. 6582:; 6578:; 6555:. 6547:. 6535:77 6533:. 6529:. 6506:. 6498:. 6490:. 6476:. 6453:. 6445:. 6437:. 6423:. 6397:. 6389:. 6381:. 6373:. 6359:. 6332:. 6324:. 6316:. 6302:. 6271:. 6249:. 6241:. 6233:. 6225:. 6217:. 6205:96 6203:. 6176:. 6168:. 6160:. 6152:. 6144:. 6132:96 6130:. 6122:; 6100:. 6092:. 6084:. 6076:. 6068:. 6056:95 6054:. 6031:. 6021:. 6011:90 6009:. 6005:. 5957:. 5932:. 5914:^ 5900:. 5867:. 5855:. 5851:. 5825:. 5817:. 5805:. 5779:. 5645:. 5639:. 5611:. 5580:. 5549:. 5528:. 5500:. 5478:. 5464:^ 5430:. 5422:. 5418:. 5404:^ 5385:. 5363:. 5355:. 5347:. 5339:. 5331:. 5317:. 5299:^ 5289:. 5278:^ 5264:. 5254:. 5246:. 5232:. 5228:. 5200:. 5183:43 5181:. 5158:. 5150:. 5142:. 5130:. 5105:. 5097:. 5085:. 5069:^ 5042:. 5034:. 5026:. 5016:44 5014:. 5010:. 4982:. 4954:. 4946:. 4938:. 4926:44 4924:. 4899:15 4897:. 4858:^ 4844:. 4834:. 4826:. 4812:. 4808:. 4784:^ 4719:. 4688:. 4674:^ 4654:. 4641:^ 4631:. 4609:; 4581:. 4540:^ 4526:. 4518:. 4510:. 4502:. 4488:. 4461:. 4439:. 4431:. 4423:. 4415:. 4407:. 4395:85 4393:. 4389:. 4381:; 4356:. 4303:. 4295:. 4285:. 4277:. 4263:. 4259:. 4247:^ 4228:. 4205:. 4193:. 4185:; 4164:. 4158:. 4109:. 4092:^ 4068:. 4038:. 4012:. 4004:. 3996:. 3982:. 3978:. 3960:^ 3893:, 3889:, 3885:, 3871:, 3751:. 3676:. 3641:. 3505:. 3454:. 3349:10 3343:~ 3260:Hz 3250:~ 3242:Hz 3232:~ 3215:Hz 3205:~ 2985:, 2965:A 2941:, 2937:, 2897:. 2748:of 2687:, 2336:, 2197:64 1964:+ 1886:. 1806:A 1726:λf 1724:= 1715:). 1650:. 1509:. 1494:, 1444:. 1436:, 1351:. 1308:. 1136:. 1118:10 932:, 891:. 871:, 859:, 844:. 829:. 10615:: 10542:) 10538:( 10314:e 10307:t 10300:v 10171:e 10164:t 10157:v 9906:) 9902:( 9888:) 9879:( 9845:) 9841:( 9788:) 9784:( 9764:) 9733:) 9710:( 9359:) 9350:( 9315:e 9308:t 9301:v 9208:- 9175:) 9019:) 8754:) 8750:( 8739:) 8735:( 8714:) 8710:( 8678:) 8658:) 8596:) 8592:( 8586:) 8582:( 8576:) 8572:( 8545:) 8541:( 8535:) 8531:( 8469:e 8462:t 8455:v 8441:. 8427:: 8357:. 8342:. 8324:. 8306:. 8291:. 8273:. 8216:. 8212:: 8204:: 8185:. 8171:: 8163:: 8147:. 8123:: 8115:: 8105:: 8075:. 8069:: 8041:. 8037:: 8014:. 8000:: 7979:. 7965:: 7957:: 7934:. 7914:: 7906:: 7883:. 7859:. 7839:: 7831:: 7821:: 7790:. 7757:. 7732:. 7718:: 7710:: 7700:: 7672:. 7652:: 7644:: 7634:: 7611:. 7589:: 7581:: 7571:: 7544:. 7530:: 7522:: 7460:. 7454:: 7439:. 7425:. 7413:: 7405:: 7395:: 7339:. 7304:. 7290:: 7282:: 7263:. 7259:: 7236:. 7224:: 7216:: 7210:6 7177:. 7173:: 7163:: 7137:. 7079:. 7067:: 7059:: 7049:: 7026:. 7008:. 6994:: 6986:: 6976:: 6949:. 6945:: 6935:: 6912:. 6908:: 6886:. 6874:: 6866:: 6856:: 6832:. 6807:. 6803:: 6795:: 6752:. 6748:: 6725:. 6695:. 6657:. 6635:. 6604:. 6563:. 6559:: 6551:: 6541:: 6514:. 6502:: 6494:: 6484:: 6461:. 6449:: 6441:: 6431:: 6405:. 6385:: 6377:: 6367:: 6340:. 6328:: 6320:: 6310:: 6284:. 6257:. 6229:: 6221:: 6211:: 6184:. 6156:: 6148:: 6138:: 6108:. 6080:: 6072:: 6062:: 6039:. 6025:: 6017:: 5968:. 5908:. 5875:. 5871:: 5863:: 5833:. 5821:: 5813:: 5790:. 5739:. 5703:. 5678:. 5657:. 5624:. 5593:. 5562:. 5534:. 5513:. 5482:. 5458:. 5444:. 5426:: 5398:. 5371:. 5343:: 5335:: 5325:: 5272:. 5258:: 5250:: 5240:: 5234:2 5213:. 5166:. 5146:: 5138:: 5113:. 5101:: 5093:: 5050:. 5030:: 5022:: 4992:. 4962:. 4950:: 4942:: 4932:: 4909:. 4905:: 4882:. 4852:. 4838:: 4830:: 4820:: 4814:2 4778:. 4732:. 4701:. 4668:. 4635:. 4595:. 4564:. 4534:. 4514:: 4506:: 4496:: 4473:. 4447:. 4427:: 4419:: 4411:: 4401:: 4366:. 4332:. 4311:. 4289:: 4281:: 4271:: 4241:. 4213:. 4209:: 4201:: 4117:: 4078:: 4050:. 4020:. 4008:: 4000:: 3990:: 3984:7 3347:× 3345:5 3341:h 3266:h 3254:× 3252:2 3248:h 3236:× 3234:2 3230:h 3209:× 3207:2 3203:h 3124:h 3119:h 3115:R 3083:f 3070:h 3066:h 3041:M 3018:. 2577:( 2554:× 2523:× 2519:× 2482:. 2476:) 2471:2 2467:m 2463:+ 2458:1 2454:m 2450:( 2447:) 2442:2 2438:m 2432:1 2428:m 2424:( 2418:4 2414:r 2403:3 2399:G 2393:5 2389:c 2377:5 2372:= 2369:t 2356:2 2353:m 2349:1 2346:m 2338:c 2330:G 2326:t 2322:r 2305:, 2295:3 2291:r 2286:) 2281:2 2277:m 2273:+ 2268:1 2264:m 2260:( 2257:) 2252:2 2248:m 2242:1 2238:m 2234:( 2223:5 2219:c 2213:3 2209:G 2200:5 2189:= 2183:t 2179:d 2173:r 2169:d 2133:t 2110:0 2106:r 2085:, 2080:4 2076:/ 2072:1 2067:) 2055:t 2051:t 2043:1 2039:( 2032:0 2028:r 2024:= 2021:) 2018:t 2015:( 2012:r 2002:r 1994:× 1986:× 1970:× 1943:y 1941:– 1939:x 1872:l 1868:l 1858:. 1824:. 1752:× 1749:h 1745:+ 1742:h 1722:c 1713:c 1711:( 1695:λ 1685:f 1675:h 1667:h 1663:h 1551:5 1526:3 1225:c 1221:c 1213:c 1116:× 1114:5 1068:) 1041:) 1035:( 1030:) 1026:( 1016:· 1009:· 1002:· 995:· 968:. 775:e 768:t 761:v 442:) 438:( 111:T 102:= 90:g 83:+ 71:G 23:.

Index

Gravity wave
black holes
General relativity
Spacetime curvature schematic
Introduction
History
Timeline
Tests
Mathematical formulation
Equivalence principle
Special relativity
World line
Pseudo-Riemannian manifold
Kepler problem
Gravitational lensing
Gravitational redshift
Gravitational time dilation
Gravitational waves
Frame-dragging
Geodetic effect
Event horizon
Singularity
Black hole
Spacetime
Spacetime diagrams
Minkowski spacetime
Einstein–Rosen bridge
Linearized gravity
Einstein field equations
Friedmann

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑