Knowledge

Gravity anomaly

Source 📝

972: 1016:
thinner oceanic crust. The free-air and isostatic anomalies are small near the centers of ocean basins or continental plateaus, showing that these are approximately in isostatic equilibrium. The gravitational attraction of the high terrain is balanced by the reduced gravitational attraction of its underlying low-density roots. This brings the free-air anomaly, which omits the correction terms for either, close to zero. The isostatic anomaly includes correction terms for both effects, which reduces it nearly to zero as well. The Bouguer anomaly includes only the negative correction for the high terrain and so is strongly negative.
957:
isostatic correction is dependent on the isostatic model used to calculate isostatic balance, and so is slightly different for the Airy-Heiskanen model (which assumes that the crust and mantle are uniform in density and isostatic balance is provided by changes in crust thickness), the Pratt-Hayford model (which assumes that the bottom of the crust is at the same depth everywhere and isostatic balance is provided by lateral changes in crust density), and the Vening Meinesz elastic plate model (which assumes the crust acts like an elastic sheet).
1057:. The Hawaiian gravity anomaly appears to be fully compensated within the lithosphere, not within the underlying aesthenosphere, contradicting the explanation of the Hawaiian rise as a product of aesthenosphere flow associated with the underlying mantle plume. The rise may instead be a result of lithosphere thinning: The underlying aesthenosphere is less dense than the lithosphere and it rises to produce the swell. Subsequent cooling thickens the lithosphere again and subsidence takes place. 1117: 279: 295: 271: 287: 209: 1039:, the free-air anomalies are small and correlate with the ocean bottom topography. The ridge and its flanks appear to be fully isostatically compensated. There is a large Bouger positive, of over 350 mgal, beyond 1,000 kilometers (620 mi) from the ridge axis, which drops to 200 over the axis. This is consistent with seismic data and suggests the presence of a low-density magma chamber under the ridge axis. 25: 988: 1046:. These are indications of strong dynamic effects in subduction zones. The free-air anomaly is around +70 mgal along the Andes coast, and this is attributed to the subducting dense slab. The trench itself is very negative, with values more negative than −250 mgal. This arises from the low-density ocean water and sediments filling the trench. 90:
altitude and the effects of nearby terrain, but it usually still differs slightly from the measured value. This gravity anomaly can reveal the presence of subsurface structures of unusual density. For example, a mass of dense ore below the surface will give a positive anomaly due to the increased gravitational attraction of the ore.
1019:
More generally, the Airy isostatic anomaly is zero over regions where there is complete isostatic compensation. The free-air anomaly is also close to zero except near boundaries of crustal blocks. The Bouger anomaly is very negative over elevated terrain. The opposite is true for the theoretical case
191:
than Paris, would be both further from the center of Earth (reducing the Earth's bulk gravitational attraction slightly) and subject to stronger centrifugal acceleration from the Earth's rotation. Both these effects reduce the value of gravity, explaining why Richter's pendulum clock, which depended
956:
is defined as the Bouger anomaly minus the gravity anomaly due to the subsurface compensation, and is a measure of the local departure from isostatic equilibrium, due to dynamic processes in the viscous mantle. At the center of a level plateau, it is approximately equal to the free air anomaly. The
595:
The Sun and Moon create time-dependent tidal forces that affect the measured value of gravity by about 0.3 mgal. Two-thirds of this is from the Moon. This effect is very well understood and can be calculated precisely for a given time and location using astrophysical data and formulas, to yield the
1777:
Tapley, Byron D.; Watkins, Michael M.; Flechtner, Frank; Reigber, Christoph; Bettadpur, Srinivas; Rodell, Matthew; Sasgen, Ingo; Famiglietti, James S.; Landerer, Felix W.; Chambers, Don P.; Reager, John T.; Gardner, Alex S.; Save, Himanshu; Ivins, Erik R.; Swenson, Sean C.; Boening, Carmen; Dahle,
641:
The next correction is the free-air correction. This takes into account the fact that the measurement is usually at a different elevation than the reference ellipsoid at the measurement latitude and longitude. For a measurement point above the reference ellipsoid, this means that the gravitational
89:
of uniform density, then the gravity measured at every point on its surface would be given precisely by a simple algebraic expression. However, the Earth has a rugged surface and non-uniform composition, which distorts its gravitational field. The theoretical value of gravity can be corrected for
1015:
are −150 milligals. By contrast, the Bouguer anomaly is positive over oceans. These anomalies reflect the varying thickness of the Earth's crust. The higher continental terrain is supported by thick, low-density crust that "floats" on the denser mantle, while the ocean basins are floored by much
626:
The terrain correction must be calculated for every point at which gravity is measured, taking into account every hill or valley whose difference in elevation from the measurement point is greater than about 5% of its distance from the measurement point. This is tedious and time-consuming but
948:
The Bouguer anomaly is positive over ocean basins and negative over high continental areas. This shows that the low elevation of ocean basins and high elevation of continents is compensated by the thickness of the crust at depth. The higher terrain is held up by the buoyancy of thicker crust
195:
To understand the nature of the gravity anomaly due to the subsurface, a number of corrections must be made to the measured gravity value. Different theoretical models will include different corrections to the value of gravity, and so a gravity anomaly is always specified with reference to a
186:
used his newly formulated universal theory of gravitation to explain the anomaly. Newton showed that the measured value of gravity was affected by the rotation of the Earth, which caused the Earth's equator to bulge out slightly relative to its poles. Cayenne, being nearer the
309:
for every point on the Earth's idealized shape. Further refinements of the model field are usually expressed as corrections added to the measured gravity or (equivalently) subtracted from the normal gravity. At a minimum, these include the tidal correction
182:. Richter was equipped with a highly precise pendulum clock which had been carefully calibrated at Paris before his departure. However, he found that the clock ran too slowly in Cayenne, compared with the apparent motion of the stars. Fifteen years later, 933: 1031:
produce a negative anomaly. Larger surveys across the region provide evidence of a relict subduction zone. Negative isostatic anomalies in Switzerland correlate with areas of active uplift, while positive anomalies are associated with subsidence.
775:
The free-air anomaly does not take into account the layer of material (after terrain leveling) outside the reference ellipsoid. The gravitational attraction of this layer or plate is taken into account by the Bouguer plate correction, which is
615:
of the land surface affects the gravity measurement. Both terrain higher than the measurement point and valleys lower than the measurement point reduce the measured value of gravity. This is taken into account by the terrain correction
760: 453: 623:. The terrain correction is calculated from knowledge of the local topography and estimates of the density of the rock making up the high ground. In effect, the terrain correction levels the terrain around the measurement point. 806: 1087:
At scales between entire mountain ranges and ore bodies, Bouguer anomalies may indicate rock types. For example, the northeast-southwest trending high across central New Jersey represents a
652: 963:
is the process of computing the detailed shape of the compensation required by a theoretical model and using this to correct the Bouguer anomaly to yield an isostatic anomaly.
348: 1165:(GRACE) consisted of two satellites that detected gravitational changes across the Earth. Also these changes could be presented as gravity anomaly temporal variations. The 553: 515: 585: 1619:
Burov, E. V.; Kogan, M. G.; Lyon-Caen, Hélène; Molnar, Peter (1 January 1990). "Gravity anomalies, the deep structure, and dynamic processes beneath the Tien Shan".
1148: 331:. Other corrections are added for various gravitational models. The difference between the corrected measured gravity and the normal gravity is the gravity anomaly. 1704:
Igneous processes during the assembly and breakup of Pangaea: Northern New Jersey and New York City: 30th Annual Meeting of the Geological Association of New Jersey
480: 264: 237: 642:
attraction of the bulk mass of the earth is slightly reduced. The free-air correction is simply 0.3086 mgal m times the elevation above the reference ellipsoid.
93:
Different theoretical models will predict different values of gravity, and so a gravity anomaly is always specified with reference to a particular model. The
345:
The normal gravity accounts for the bulk gravitation of the entire Earth, corrected for its idealized shape and rotation. It is given by the formula:
788:
mgal m kg. The density of crustal rock, ρ, is usually taken to be 2670 kg m so the Bouguer plate correction is usually taken as −0.1119 mgal m
1701:
Herman, G.C.; Dooley, J.H.; Monteverde, D.H. (2013). "Structure of the CAMP bodies and positive Bouger gravity anomalies of the New York Recess".
1023:
The Bouger anomaly map of the Alps shows additional features besides the expected deep mountain roots. A positive anomaly is associated with the
104:
A gravity survey is conducted by measuring the gravity anomaly at many locations in a region of interest, using a portable instrument called a
1020:
of terrain that is completely uncompensated: The Bouger anomaly is zero while the free-air and Airy isostatic anomalies are very positive.
979:
anomalies caused by various crustal and lithospheric thickness changes relative to a reference configuration. All settings are under local
1011:
The Bouguer anomaly over continents is generally negative, especially over mountain ranges. For example, typical Bouguer anomalies in the
1151:. These satellite missions aim at the recovery of a detailed gravity field model of the Earth, typically presented in the form of a 1184: 999:
Lateral variations in gravity anomalies are related to anomalous density distributions within the Earth. Local measurements of the
1726:
Meyer, Ulrich; Sosnica, Krzysztof; Arnold, Daniel; Dahle, Christoph; Thaller, Daniela; Dach, Rolf; Jäggi, Adrian (22 April 2019).
1839:
Sośnica, Krzysztof; Jäggi, Adrian; Meyer, Ulrich; Thaller, Daniela; Beutler, Gerhard; Arnold, Daniel; Dach, Rolf (October 2015).
1162: 1124:
Currently, the static and time-variable Earth's gravity field parameters are determined using modern satellite missions, such as
1268: 200:, free-air, and isostatic gravity anomalies are each based on different theoretical corrections to the value of gravity. 1169:(GRAIL) also consisted of two spacecraft orbiting the Moon, which orbited for three years before their deorbit in 2015. 587:. When greater precision is needed, a more elaborate formula gives the normal gravity with an accuracy of 0.0001 mgal. 1441: 1317: 137: 1053:. For example, the formation and sinking of a lithospheric root may explain negative isostatic anomalies in eastern 1027:
body, a wedge of dense mantle rock caught up by an ancient continental collision. The low-density sediments of the
1906: 302:
The starting point for the model field is the International Reference Ellipsoid, which gives the normal gravity
1591: 1243: 1204: 1147:
Large-scale gravity anomalies can be detected from space, as a by-product of satellite gravity missions, e.g.,
1140:. The lowest-degree parameters, including the Earth's oblateness and geocenter motion are best determined from 971: 101:, and isostatic gravity anomalies are each based on different theoretical corrections to the value of gravity. 928:{\displaystyle \Delta g_{B}=g_{m}+(\Delta g_{BP}+\Delta g_{FA}+\Delta g_{T}+\Delta g_{\text{tide}})-g_{n}} 108:. Careful analysis of the gravity data allows geologists to make inferences about the subsurface geology. 1654:
Detrick, Robert S.; Crough, S. Thomas (1978). "Island subsidence, hot spots, and lithospheric thinning".
117: 78: 67: 1511:
Werner, Dietrich; Kissling, Eduard (August 1985). "Gravity anomalies and dynamics of the Swiss Alps".
1921: 192:
on the value of gravity, ran too slowly. Correcting for these effects removed most of this anomaly.
98: 36:
about gravity anomalies on other celestial objects, particularly the Moon, Mars, Vesta, and Pluto.
1155:
expansion of the Earth's gravitational potential, but alternative presentations, such as maps of
1141: 531: 493: 1194: 570: 60: 1632: 1109: 755:{\displaystyle \Delta g_{F}=g_{m}+(\Delta g_{FA}+\Delta g_{T}+\Delta g_{\text{tide}})-g_{n}} 132:) near a planet's surface, and the corresponding value predicted by a model of the planet's 1852: 1795: 1739: 1663: 1628: 1520: 458: 242: 215: 212:
Hypothetical gravity measurement. The value of gravity is measured at the red point marked
39: 8: 1911: 1214: 1152: 149: 141: 133: 1856: 1799: 1743: 1667: 1524: 38:
Please expand the article to include this information. Further details may exist on the
1816: 1783: 1779: 1137: 1133: 1066: 448:{\displaystyle g_{n}=g_{e}(1+\beta _{1}\sin ^{2}\lambda +\beta _{2}\sin ^{2}2\lambda )} 1821: 1702: 1640: 1587: 1532: 1437: 1313: 1264: 1239: 1129: 983:
compensation with an elevation of either +1000 or −1000 m above the reference level.
1916: 1860: 1811: 1803: 1757: 1747: 1671: 1636: 1528: 1209: 1199: 1000: 636: 1036: 770: 197: 94: 86: 340: 1865: 1840: 1807: 16:
Difference between ideal and observed gravitational acceleration at a location
1900: 1116: 1028: 1675: 1049:
Gravity anomalies provide clues on other processes taking place deep in the
174:
Gravity anomalies were first discovered in 1672, when the French astronomer
1889: 1825: 1012: 799:
The remaining gravity anomaly at this point in the reduction is called the
645:
The remaining gravity anomaly at this point in the reduction is called the
183: 121: 85:
and the value predicted by a theoretical model. If the Earth were an ideal
278: 1189: 1050: 294: 175: 1762: 1238:(Fourth ed.). Alexandria, Virginia: American Geological Institute. 270: 160:, and the value of gravity predicted for points on the ellipsoid is the 1752: 1727: 1179: 1043: 992: 612: 564: 105: 1455: 1453: 1077: 1054: 286: 208: 145: 125: 1092: 980: 943: 153: 1728:"SLR, GRACE and Swarm Gravity Field Determination and Combination" 1450: 1682: 188: 179: 129: 82: 1778:
Christoph; Wiese, David N.; Dobslaw, Henryk; Tamisiea, Mark E.;
282:
Hypothetical gravity measurement corrected for tides and terrain
24: 1477: 1096: 1088: 1069:. For example, a local positive anomaly may indicate a body of 1776: 1166: 1156: 1070: 1024: 976: 157: 1125: 1084:
has a low density compared to the rocks the dome intrudes.
1081: 987: 274:
Hypothetical gravity measurement corrected for tidal forces
1403: 1401: 290:
Hypothetical gravity measurement with free-air corrections
152:
is then given by a simple formula which only contains the
1841:"Time variable Earth's gravity field from SLR satellites" 1618: 1551: 1465: 1080:
are typically expressed in gravity maps as lows, because
1073: 1042:
There are intense isostatic and free-air anomalies along
1838: 1784:"Contributions of GRACE to understanding climate change" 298:
Hypothetical gravity measurement with Bouguer correction
1725: 1563: 1494: 1492: 1398: 1386: 1263:(2nd ed.). Cambridge: Cambridge University Press. 1003:
help us to understand the planet's internal structure.
1884:
Heiskanen, Weikko Aleksanteri; Moritz, Helmut (1967).
1707:. New York: College of Staten Island. pp. 103–142 1700: 1338: 1326: 627:
necessary for obtaining a meaningful gravity anomaly.
1436:(3rd ed.). Oxford: Wiley-Blackwell. p. 42. 1159:
undulations or gravity anomalies, are also produced.
809: 655: 573: 534: 496: 461: 351: 245: 218: 1600: 1539: 1489: 1413: 1374: 1312:(Fourth ed.). Oxford: Oxford University Press. 1362: 1350: 1289: 1277: 1234:Jackson, Julia A., ed. (1997). "gravity anomaly". 927: 754: 579: 547: 509: 474: 447: 258: 231: 203: 1483: 1459: 1431: 1898: 796:is the elevation above the reference ellipsoid. 1883: 140:, such as that, under its self-gravitation and 1688: 1581: 1510: 1432:Kearey, P.; Klepeis, K.A.; Vine, F.J. (2009). 991:(Bouguer) gravity anomaly map of the state of 148:of revolution. Gravity on the surface of this 1653: 178:established an observatory on the island of 156:. For Earth, the reference ellipsoid is the 77:at a location on the Earth's surface is the 1584:Physical geology : exploring the Earth 1308:Allaby, Michael (2013). "gravity anomaly". 764: 68:Gravity of Earth § Mathematical models 1310:A dictionary of geology and earth sciences 1227: 630: 1864: 1815: 1761: 1751: 1582:Monroe, James S.; Wicander, Reed (1992). 1252: 1102: 606: 1185:Gravity anomalies of Britain and Ireland 1167:Gravity Recovery and Interior Laboratory 1115: 986: 970: 293: 285: 277: 269: 266:, which lies on the reference ellipsoid. 239:. The green point is the normal gravity 207: 1586:. St. Paul: West Pub. Co. p. 326. 1233: 1163:Gravity Recovery and Climate Experiment 937: 590: 1899: 1606: 1569: 1557: 1545: 1498: 1471: 1419: 1407: 1392: 1380: 1368: 1356: 1344: 1332: 1307: 1295: 1283: 1258: 144:, the planet assumes the figure of an 334: 649:. That is, the free-air anomaly is: 18: 1621:Earth and Planetary Science Letters 803:. That is, the Bouguer anomaly is: 13: 1877: 1060: 1006: 896: 880: 861: 842: 810: 723: 707: 688: 656: 136:. Typically the model is based on 14: 1933: 1110:Gravimetry § Satellite gravimetry 158:International Reference Ellipsoid 1108:This section is an excerpt from 23: 1832: 1770: 1719: 1694: 1656:Journal of Geophysical Research 1647: 1612: 1575: 1504: 1484:Kearey, Klepeis & Vine 2009 1460:Kearey, Klepeis & Vine 2009 1425: 324:, and the free air correction △ 204:The model field and corrections 1301: 1205:Mass concentration (astronomy) 1120:Gravity anomaly map from GRACE 1095:age largely filled with dense 909: 839: 736: 685: 442: 375: 81:between the observed value of 1: 1259:Lowrie, William (2007). "2". 1220: 111: 1641:10.1016/0012-821X(90)90013-N 1533:10.1016/0040-1951(85)90239-2 1065:Local anomalies are used in 7: 1173: 116:The gravity anomaly is the 10: 1938: 1689:Monroe & Wicander 1992 1261:Fundamentals of geophysics 1107: 949:"floating" on the mantle. 941: 768: 634: 563:. This is accurate to 0.1 548:{\displaystyle \beta _{2}} 510:{\displaystyle \beta _{1}} 338: 317:, the terrain correction △ 65: 58: 1866:10.1007/s00190-015-0825-1 1808:10.1038/s41558-019-0456-2 966: 765:Bouguer plate correction 580:{\displaystyle \lambda } 59:Not to be confused with 1676:10.1029/JB083iB03p01236 1633:1990E&PSL..96..367B 1142:satellite laser ranging 631:The free-air correction 138:simplifying assumptions 1907:Exploration geophysics 1195:Indian Ocean Geoid Low 1121: 1103:Satellite measurements 996: 984: 929: 756: 607:The terrain correction 581: 549: 511: 476: 449: 299: 291: 283: 275: 267: 260: 233: 196:particular model. The 66:For the formulas, see 34:is missing information 1788:Nature Climate Change 1119: 990: 974: 930: 757: 582: 550: 512: 477: 475:{\displaystyle g_{e}} 450: 297: 289: 281: 273: 261: 259:{\displaystyle g_{n}} 234: 232:{\displaystyle g_{m}} 211: 120:between the observed 61:Gravitational anomaly 938:Isostatic correction 807: 653: 591:The tidal correction 571: 532: 494: 459: 349: 243: 216: 1857:2015JGeod..89..945S 1800:2019NatCC...9..358T 1780:Velicogna, Isabella 1744:2019RemS...11..956M 1691:, pp. 302–303. 1668:1978JGR....83.1236D 1525:1985Tectp.117...97W 1474:, pp. 103–104. 1236:Glossary of geology 1215:Vertical deflection 150:reference ellipsoid 134:gravitational field 1845:Journal of Geodesy 1753:10.3390/rs11080956 1560:, p. 103–105. 1153:spherical-harmonic 1138:GRACE and GRACE-FO 1122: 1067:applied geophysics 997: 985: 925: 752: 596:tidal correction △ 577: 545: 507: 472: 445: 335:The normal gravity 300: 292: 284: 276: 268: 256: 229: 1572:, pp. 97–99. 1462:, pp. 45–48. 1410:, pp. 83–84. 1395:, pp. 79–80. 1347:, pp. 65–66. 1335:, pp. 77–78. 1270:978-1-60119-744-3 961:Forward modelling 954:isostatic anomaly 906: 733: 142:rotational motion 57: 56: 1929: 1922:Economic geology 1893: 1886:Physical Geodesy 1871: 1870: 1868: 1836: 1830: 1829: 1819: 1774: 1768: 1767: 1765: 1755: 1723: 1717: 1716: 1714: 1712: 1698: 1692: 1686: 1680: 1679: 1651: 1645: 1644: 1616: 1610: 1604: 1598: 1597: 1579: 1573: 1567: 1561: 1555: 1549: 1543: 1537: 1536: 1508: 1502: 1496: 1487: 1481: 1475: 1469: 1463: 1457: 1448: 1447: 1434:Global tectonics 1429: 1423: 1417: 1411: 1405: 1396: 1390: 1384: 1378: 1372: 1366: 1360: 1354: 1348: 1342: 1336: 1330: 1324: 1323: 1305: 1299: 1293: 1287: 1281: 1275: 1274: 1256: 1250: 1249: 1231: 1210:Physical geodesy 1200:Magnetic anomaly 1037:mid-ocean ridges 1001:gravity of Earth 934: 932: 931: 926: 924: 923: 908: 907: 904: 892: 891: 876: 875: 857: 856: 835: 834: 822: 821: 783: 781: 761: 759: 758: 753: 751: 750: 735: 734: 731: 719: 718: 703: 702: 681: 680: 668: 667: 647:free-air anomaly 637:Free-air anomaly 586: 584: 583: 578: 567:at any latitude 562: 560: 554: 552: 551: 546: 544: 543: 527: 525: 522: 516: 514: 513: 508: 506: 505: 489: 487: 481: 479: 478: 473: 471: 470: 454: 452: 451: 446: 432: 431: 422: 421: 403: 402: 393: 392: 374: 373: 361: 360: 265: 263: 262: 257: 255: 254: 238: 236: 235: 230: 228: 227: 124:of an object in 52: 49: 43: 27: 19: 1937: 1936: 1932: 1931: 1930: 1928: 1927: 1926: 1897: 1896: 1880: 1878:Further reading 1875: 1874: 1851:(10): 945–960. 1837: 1833: 1775: 1771: 1724: 1720: 1710: 1708: 1699: 1695: 1687: 1683: 1652: 1648: 1617: 1613: 1605: 1601: 1594: 1580: 1576: 1568: 1564: 1556: 1552: 1544: 1540: 1519:(1–2): 97–108. 1509: 1505: 1497: 1490: 1482: 1478: 1470: 1466: 1458: 1451: 1444: 1430: 1426: 1418: 1414: 1406: 1399: 1391: 1387: 1379: 1375: 1367: 1363: 1355: 1351: 1343: 1339: 1331: 1327: 1320: 1306: 1302: 1294: 1290: 1282: 1278: 1271: 1257: 1253: 1246: 1232: 1228: 1223: 1176: 1171: 1170: 1113: 1105: 1063: 1061:Local anomalies 1009: 1007:Regional causes 969: 946: 940: 919: 915: 903: 899: 887: 883: 868: 864: 849: 845: 830: 826: 817: 813: 808: 805: 804: 801:Bouguer anomaly 779: 777: 773: 771:Bouguer anomaly 767: 746: 742: 730: 726: 714: 710: 695: 691: 676: 672: 663: 659: 654: 651: 650: 639: 633: 622: 609: 602: 593: 572: 569: 568: 558: 556: 539: 535: 533: 530: 529: 523: 520: 518: 501: 497: 495: 492: 491: 488: m⋅s 485: 483: 466: 462: 460: 457: 456: 427: 423: 417: 413: 398: 394: 388: 384: 369: 365: 356: 352: 350: 347: 346: 343: 337: 330: 323: 316: 308: 250: 246: 244: 241: 240: 223: 219: 217: 214: 213: 206: 170: 114: 87:oblate spheroid 75:gravity anomaly 71: 64: 53: 47: 44: 37: 28: 17: 12: 11: 5: 1935: 1925: 1924: 1919: 1914: 1909: 1895: 1894: 1879: 1876: 1873: 1872: 1831: 1794:(5): 358–369. 1769: 1732:Remote Sensing 1718: 1693: 1681: 1646: 1627:(3): 367–383. 1611: 1599: 1592: 1574: 1562: 1550: 1538: 1513:Tectonophysics 1503: 1488: 1476: 1464: 1449: 1442: 1424: 1412: 1397: 1385: 1373: 1361: 1349: 1337: 1325: 1318: 1300: 1288: 1276: 1269: 1251: 1244: 1225: 1224: 1222: 1219: 1218: 1217: 1212: 1207: 1202: 1197: 1192: 1187: 1182: 1175: 1172: 1114: 1106: 1104: 1101: 1062: 1059: 1008: 1005: 968: 965: 939: 936: 922: 918: 914: 911: 902: 898: 895: 890: 886: 882: 879: 874: 871: 867: 863: 860: 855: 852: 848: 844: 841: 838: 833: 829: 825: 820: 816: 812: 769:Main article: 766: 763: 749: 745: 741: 738: 729: 725: 722: 717: 713: 709: 706: 701: 698: 694: 690: 687: 684: 679: 675: 671: 666: 662: 658: 635:Main article: 632: 629: 620: 608: 605: 600: 592: 589: 576: 542: 538: 504: 500: 469: 465: 444: 441: 438: 435: 430: 426: 420: 416: 412: 409: 406: 401: 397: 391: 387: 383: 380: 377: 372: 368: 364: 359: 355: 341:Normal gravity 339:Main article: 336: 333: 328: 321: 314: 306: 253: 249: 226: 222: 205: 202: 168: 162:normal gravity 113: 110: 55: 54: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1934: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1904: 1902: 1891: 1887: 1882: 1881: 1867: 1862: 1858: 1854: 1850: 1846: 1842: 1835: 1827: 1823: 1818: 1813: 1809: 1805: 1801: 1797: 1793: 1789: 1785: 1781: 1773: 1764: 1759: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1722: 1706: 1705: 1697: 1690: 1685: 1677: 1673: 1669: 1665: 1661: 1657: 1650: 1642: 1638: 1634: 1630: 1626: 1622: 1615: 1609:, p. 99. 1608: 1603: 1595: 1589: 1585: 1578: 1571: 1566: 1559: 1554: 1548:, p. 97. 1547: 1542: 1534: 1530: 1526: 1522: 1518: 1514: 1507: 1501:, p. 95. 1500: 1495: 1493: 1486:, p. 46. 1485: 1480: 1473: 1468: 1461: 1456: 1454: 1445: 1443:9781405107778 1439: 1435: 1428: 1422:, p. 80. 1421: 1416: 1409: 1404: 1402: 1394: 1389: 1383:, p. 79. 1382: 1377: 1371:, p. 77. 1370: 1365: 1359:, p. 54. 1358: 1353: 1346: 1341: 1334: 1329: 1321: 1319:9780199653065 1315: 1311: 1304: 1298:, p. 44. 1297: 1292: 1286:, p. 65. 1285: 1280: 1272: 1266: 1262: 1255: 1247: 1241: 1237: 1230: 1226: 1216: 1213: 1211: 1208: 1206: 1203: 1201: 1198: 1196: 1193: 1191: 1188: 1186: 1183: 1181: 1178: 1177: 1168: 1164: 1160: 1158: 1154: 1150: 1145: 1143: 1139: 1135: 1131: 1127: 1118: 1111: 1100: 1098: 1094: 1090: 1085: 1083: 1079: 1075: 1072: 1068: 1058: 1056: 1052: 1047: 1045: 1040: 1038: 1033: 1030: 1029:Molasse basin 1026: 1021: 1017: 1014: 1004: 1002: 994: 989: 982: 978: 973: 964: 962: 958: 955: 950: 945: 935: 920: 916: 912: 900: 893: 888: 884: 877: 872: 869: 865: 858: 853: 850: 846: 836: 831: 827: 823: 818: 814: 802: 797: 795: 791: 787: 772: 762: 747: 743: 739: 727: 720: 715: 711: 704: 699: 696: 692: 682: 677: 673: 669: 664: 660: 648: 643: 638: 628: 624: 619: 614: 604: 599: 588: 574: 566: 540: 536: 502: 498: 467: 463: 439: 436: 433: 428: 424: 418: 414: 410: 407: 404: 399: 395: 389: 385: 381: 378: 370: 366: 362: 357: 353: 342: 332: 327: 320: 313: 305: 296: 288: 280: 272: 251: 247: 224: 220: 210: 201: 199: 193: 190: 185: 181: 177: 172: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 109: 107: 102: 100: 96: 91: 88: 84: 80: 76: 69: 62: 51: 41: 35: 32:This article 30: 26: 21: 20: 1890:W.H. Freeman 1885: 1848: 1844: 1834: 1791: 1787: 1782:(May 2019). 1772: 1763:10281/240694 1735: 1731: 1721: 1709:. Retrieved 1703: 1696: 1684: 1662:(B3): 1236. 1659: 1655: 1649: 1624: 1620: 1614: 1602: 1583: 1577: 1565: 1553: 1541: 1516: 1512: 1506: 1479: 1467: 1433: 1427: 1415: 1388: 1376: 1364: 1352: 1340: 1328: 1309: 1303: 1291: 1279: 1260: 1254: 1235: 1229: 1146: 1123: 1086: 1064: 1048: 1041: 1034: 1022: 1018: 1013:Central Alps 1010: 998: 975:Gravity and 960: 959: 953: 951: 947: 800: 798: 793: 789: 785: 774: 646: 644: 640: 625: 617: 610: 597: 594: 344: 325: 318: 311: 303: 301: 194: 184:Isaac Newton 173: 165: 161: 122:acceleration 115: 103: 92: 74: 72: 45: 33: 1607:Lowrie 2007 1570:Lowrie 2007 1558:Lowrie 2007 1546:Lowrie 2007 1499:Lowrie 2007 1472:Lowrie 2007 1420:Lowrie 2007 1408:Lowrie 2007 1393:Lowrie 2007 1381:Lowrie 2007 1369:Lowrie 2007 1357:Lowrie 2007 1345:Lowrie 2007 1333:Lowrie 2007 1296:Lowrie 2007 1284:Lowrie 2007 1190:Gravity map 1051:lithosphere 1044:island arcs 176:Jean Richer 1912:Gravimetry 1901:Categories 1738:(8): 956. 1711:29 January 1593:0314921958 1245:0922152349 1221:References 1180:Gravimetry 1078:Salt domes 993:New Jersey 942:See also: 613:topography 611:The local 118:difference 112:Definition 106:gravimeter 79:difference 1055:Tien Shan 981:isostatic 913:− 897:Δ 881:Δ 862:Δ 843:Δ 811:Δ 740:− 724:Δ 708:Δ 689:Δ 657:Δ 575:λ 537:β 499:β 440:λ 434:⁡ 415:β 408:λ 405:⁡ 386:β 146:ellipsoid 126:free fall 48:June 2024 40:talk page 1826:31534490 1174:See also 1093:Triassic 1071:metallic 944:Isostasy 154:latitude 99:free-air 1917:Geodesy 1853:Bibcode 1817:6750016 1796:Bibcode 1740:Bibcode 1664:Bibcode 1629:Bibcode 1521:Bibcode 1097:basalts 792:. Here 778:−0.0419 198:Bouguer 189:equator 180:Cayenne 130:gravity 95:Bouguer 83:gravity 1824:  1814:  1590:  1440:  1316:  1267:  1242:  1089:graben 995:(USGS) 967:Causes 528:; and 455:where 1157:geoid 1134:Swarm 1130:CHAMP 1035:Over 1025:Ivrea 977:geoid 519:5.302 484:9.780 1822:PMID 1713:2022 1588:ISBN 1438:ISBN 1314:ISBN 1265:ISBN 1240:ISBN 1161:The 1149:GOCE 1126:GOCE 1082:salt 1074:ores 952:The 905:tide 732:tide 565:mgal 557:−5.8 73:The 1861:doi 1812:PMC 1804:doi 1758:hdl 1748:doi 1672:doi 1637:doi 1529:doi 1517:117 1091:of 601:tid 486:327 425:sin 396:sin 315:tid 1903:: 1888:. 1859:. 1849:89 1847:. 1843:. 1820:. 1810:. 1802:. 1790:. 1786:. 1756:. 1746:. 1736:11 1734:. 1730:. 1670:. 1660:83 1658:. 1635:. 1625:96 1623:. 1527:. 1515:. 1491:^ 1452:^ 1400:^ 1144:. 1136:, 1132:, 1128:, 1099:. 1076:. 784:ρ 782:10 603:. 561:10 555:= 526:10 521:44 517:= 490:; 482:= 329:FA 171:. 164:, 97:, 1892:. 1869:. 1863:: 1855:: 1828:. 1806:: 1798:: 1792:9 1766:. 1760:: 1750:: 1742:: 1715:. 1678:. 1674:: 1666:: 1643:. 1639:: 1631:: 1596:. 1535:. 1531:: 1523:: 1446:. 1322:. 1273:. 1248:. 1112:. 921:n 917:g 910:) 901:g 894:+ 889:T 885:g 878:+ 873:A 870:F 866:g 859:+ 854:P 851:B 847:g 840:( 837:+ 832:m 828:g 824:= 819:B 815:g 794:h 790:h 786:h 780:× 748:n 744:g 737:) 728:g 721:+ 716:T 712:g 705:+ 700:A 697:F 693:g 686:( 683:+ 678:m 674:g 670:= 665:F 661:g 621:T 618:g 616:△ 598:g 559:× 541:2 524:× 503:1 468:e 464:g 443:) 437:2 429:2 419:2 411:+ 400:2 390:1 382:+ 379:1 376:( 371:e 367:g 363:= 358:n 354:g 326:g 322:T 319:g 312:g 310:△ 307:n 304:g 252:n 248:g 225:m 221:g 169:n 166:g 128:( 70:. 63:. 50:) 46:( 42:.

Index


talk page
Gravitational anomaly
Gravity of Earth § Mathematical models
difference
gravity
oblate spheroid
Bouguer
free-air
gravimeter
difference
acceleration
free fall
gravity
gravitational field
simplifying assumptions
rotational motion
ellipsoid
reference ellipsoid
latitude
International Reference Ellipsoid
Jean Richer
Cayenne
Isaac Newton
equator
Bouguer



Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.