Knowledge

Green fluorescent protein

Source 📝

1217:; that is, the gene's regulatory sequence now controls the production of GFP, in addition to the tagged protein(s). In cells where the gene is expressed, and the tagged proteins are produced, GFP is produced at the same time. Thus, only those cells in which the tagged gene is expressed, or the target proteins are produced, will fluoresce when observed under fluorescence microscopy. Analysis of such time lapse movies has redefined the understanding of many biological processes including protein folding, protein transport, and RNA dynamics, which in the past had been studied using fixed (i.e., dead) material. Obtained data are also used to calibrate mathematical models of intracellular systems and to estimate rates of gene expression. Similarly, GFP can be used as an indicator of protein expression in heterologous systems. In this scenario, fusion proteins containing GFP are introduced indirectly, using RNA of the construct, or directly, with the tagged protein itself. This method is useful for studying structural and functional characteristics of the tagged protein on a macromolecular or single-molecule scale with fluorescence microscopy. 1148:-formaldehyde, phenol, triclosan, and paraben. GFP is great as a reporter protein because it has no effect on the host when introduced to the host's cellular environment. Due to this ability, no external visualization stain, ATP, or cofactors are needed. With regards to pollutant levels, the fluorescence was measured in order to gauge the effect that the pollutants have on the host cell. The cellular density of the host cell was also measured. Results from the study conducted by Song, Kim, & Seo (2016) showed that there was a decrease in both fluorescence and cellular density as pollutant levels increased. This was indicative of the fact that cellular activity had decreased. More research into this specific application in order to determine the mechanism by which GFP acts as a pollutant marker. Similar results have been observed in zebrafish because zebrafish that were injected with GFP were approximately twenty times more susceptible to recognize cellular stresses than zebrafish that were not injected with GFP. 1200:
method is to use a GFP that contains a mutation where the fluorescence will change from green to yellow over time, which is referred to as a fluorescent timer. With the fluorescent timer, researchers can study the state of protein production such as recently activated, continuously activated, or recently deactivated based on the color reported by the fluorescent protein. In yet another example, scientists have modified GFP to become active only after exposure to irradiation giving researchers a tool to selectively activate certain portions of a cell and observe where proteins tagged with the GFP move from the starting location. These are only two examples in a burgeoning field of fluorescent microcopy and a more complete review of biosensors utilizing GFP and other fluorescent proteins can be found here
811: 451: 608: 836: 979: 826:, eqFP611, Dronpa, TagRFPs, KFP, EosFP/IrisFP, Dendra, and so on. Having been developed from proteins in different organisms, these proteins can sometimes display unanticipated approaches to chromophore formation. Some of these, such as KFP, are developed from naturally non- or weakly-fluorescent proteins to be greatly improved upon by mutagenesis. When GFP-like barrels of different spectra characteristics are used, the excitation spectra of one chromophore can be used to power another chromophore (FRET), allowing for conversion between wavelengths of light. 1172: 1028:
residues of Gln94, Arg96, and His148 are able to stabilize by delocalizing the chromophore charge. Arg96 is the most important stabilizing residue due to the fact that it prompts the necessary structural realignments that are necessary from the HBI ring to occur. Any mutation to the Arg96 residue would result in a decrease in the development rate of the chromophore because proper electrostatic and steric interactions would be lost. Tyr66 is the recipient of hydrogen bonds and does not ionize in order to produce favorable electrostatics.
1032: 692: 1385: 604:
binds Zn(II) and Cu(II) has been developed. BFPms1 have several important mutations including and the BFP chromophore (Y66H),Y145F for higher quantum yield, H148G for creating a hole into the beta-barrel and several other mutations that increase solubility. Zn(II) binding increases fluorescence intensity, while Cu(II) binding quenches fluorescence and shifts the absorbance maximum from 379 to 444 nm. Therefore, they can be used as Zn biosensor.
1044: 441: 704: 1115: 1076: 563: 36: 1320: 1286:
of blue light. At a certain pulse threshold, the eGFP's optical output becomes brighter and completely uniform in color of pure green with a wavelength of 516 nm. Before being emitted as laser light, the light bounces back and forth within the resonator cavity and passes the cell numerous times. By studying the changes in optical activity, researchers may better understand cellular processes.
832:(FbFPs) were developed in 2007 and are a class of small (11–16 kDa), oxygen-independent fluorescent proteins that are derived from blue-light receptors. They are intended especially for the use under anaerobic or hypoxic conditions, since the formation and binding of the Flavin chromophore does not require molecular oxygen, as it is the case with the synthesis of the GFP chromophore. 1213:, where expression of GFP can be used as a marker for a particular characteristic. GFP can also be expressed in different structures enabling morphological distinction. In such cases, the gene for the production of GFP is incorporated into the genome of the organism in the region of the DNA that codes for the target proteins and that is controlled by the same 1369:, a German-born artist specializing in "protein sculptures," created sculptures based on the structure of GFP, including the 1.70 metres (5 feet 7 inches) tall "Green Fluorescent Protein" (2004) and the 1.40 metres (4 feet 7 inches) tall "Steel Jellyfish" (2006). The latter sculpture is located at the place of GFP's discovery by 2329: 1342:) that were initially developed to detect pollution in waterways. NeonPets, a US-based company has marketed green fluorescent mice to the pet industry as NeonMice. Green fluorescent pigs, known as Noels, were bred by a group of researchers led by Wu Shinn-Chih at the Department of Animal Science and Technology at 1199:
There are many techniques to utilize GFP in a live cell imaging experiment. The most direct way of utilizing GFP is to directly attach it to a protein of interest. For example, GFP can be included in a plasmid expressing other genes to indicate a successful transfection of a gene of interest. Another
1010:
structure is a nearly perfect cylinder, 42Å long and 24Å in diameter (some studies have reported a diameter of 30Å), creating what is referred to as a "β-can" formation, which is unique to the GFP-like family. HBI, the spontaneously modified form of the tripeptide Ser65–Tyr66–Gly67, is nonfluorescent
741:
appears to evolutionarily prefer the less-efficient, dual-peaked excitation spectrum. Roger Tsien has speculated that varying hydrostatic pressure with depth may affect serine 65's ability to donate a hydrogen to the chromophore and shift the ratio of the two excitation peaks. Thus, the jellyfish may
731:
of GFP in jellyfish is unknown. GFP is co-expressed with aequorin in small granules around the rim of the jellyfish bell. The secondary excitation peak (480 nm) of GFP does absorb some of the blue emission of aequorin, giving the bioluminescence a more green hue. The serine 65 residue of the GFP
603:
derivatives (YFP, Citrine, Venus, YPet). BFP derivatives (except mKalama1) contain the Y66H substitution. They exhibit a broad absorption band in the ultraviolet centered close to 380 nanometers and an emission maximum at 448 nanometers. A green fluorescent protein mutant (BFPms1) that preferentially
1297:
GFP can be used to analyse the colocalization of proteins. This is achieved by "splitting" the protein into two fragments which are able to self-assemble, and then fusing each of these to the two proteins of interest. Alone, these incomplete GFP fragments are unable to fluoresce. However, if the two
1156:
The biggest advantage of GFP is that it can be heritable, depending on how it was introduced, allowing for continued study of cells and tissues it is expressed in. Visualizing GFP is noninvasive, requiring only illumination with blue light. GFP alone does not interfere with biological processes, but
736:
is responsible for the dual-peaked excitation spectra of wild-type GFP. It is conserved in all three GFP isoforms originally cloned by Prasher. Nearly all mutations of this residue consolidate the excitation spectra to a single peak at either 395 nm or 480 nm. The precise mechanism of this
619:
rather than phenol component. Several additional compensatory mutations in the surrounding barrel are required to restore brightness to this modified chromophore due to the increased bulk of the indole group. In ECFP and Cerulean, the N-terminal half of the seventh strand exhibits two conformations.
583:
filter sets, increasing the practicality of use by the general researcher. A 37 °C folding efficiency (F64L) point mutant to this scaffold, yielding enhanced GFP (EGFP), was discovered in 1995 by the laboratories of Thastrup and Falkow. EGFP allowed the practical use of GFPs in mammalian cells.
531:
in 1994. Frederick Tsuji's lab independently reported the expression of the recombinant protein one month later. Remarkably, the GFP molecule folded and was fluorescent at room temperature, without the need for exogenous cofactors specific to the jellyfish. Although this near-wtGFP was fluorescent,
1285:
A novel possible use of GFP includes using it as a sensitive monitor of intracellular processes via an eGFP laser system made out of a human embryonic kidney cell line. The first engineered living laser is made by an eGFP expressing cell inside a reflective optical cavity and hitting it with pulses
1027:
fluorescence from quenching by water. In addition to the auto-cyclization of the Ser65-Tyr66-Gly67, a 1,2-dehydrogenation reaction occurs at the Tyr66 residue. Besides the three residues that form the chromophore, residues such as Gln94, Arg96, His148, Thr203, and Glu222 all act as stabilizers. The
843:
Fluorescent proteins with other chromophores, such as UnaG with bilirubin, can display unique properties like red-shifted emission above 600 nm or photoconversion from a green-emitting state to a red-emitting state. They can have excitation and emission wavelengths far enough apart to achieve
623:
Additional site-directed random mutagenesis in combination with fluorescence lifetime based screening has further stabilized the seventh β-strand resulting in a bright variant, mTurquoise2, with a quantum yield (QY) of 0.93. The red-shifted wavelength of the YFP derivatives is accomplished by the
1195:
when used in live cells, fluorescent proteins such as GFP are usually much less harmful when illuminated in living cells. This has triggered the development of highly automated live-cell fluorescence microscopy systems, which can be used to observe cells over time expressing one or more proteins
1224:
microscope using the SPDM Phymod technology uses the so-called "reversible photobleaching" effect of fluorescent dyes like GFP and its derivatives to localize them as single molecules in an optical resolution of 10 nm. This can also be performed as a co-localization of two GFP derivatives
628:(FRET) experiments. Genetically encoded FRET reporters sensitive to cell signaling molecules, such as calcium or glutamate, protein phosphorylation state, protein complementation, receptor dimerization, and other processes provide highly specific optical readouts of cell activity in real time. 431:
Most commercially available genes for GFP and similar fluorescent proteins are around 730 base-pairs long. The natural protein has 238 amino acids. Its molecular mass is 27 kD. Therefore, fusing the GFP gene to the gene of a protein of interest can significantly increase the protein's size and
579:. This mutation dramatically improved the spectral characteristics of GFP, resulting in increased fluorescence, photostability, and a shift of the major excitation peak to 488 nm, with the peak emission kept at 509 nm. This matched the spectral characteristics of commonly available 1120:
Mechanistically, the process involves base-mediated cyclization followed by dehydration and oxidation. In the reaction of 7a to 8 involves the formation of an enamine from the imine, while in the reaction of 7b to 9 a proton is abstracted. The formed HBI fluorophore is highlighted in green.
1306:
Macro-scale biological processes, such as the spread of virus infections, can be followed using GFP labeling. In the past, mutagenic ultra violet light (UV) has been used to illuminate living organisms (e.g., see) to detect and photograph the GFP expression. Recently, a technique using
1266:
It has also been found that new lines of transgenic GFP rats can be relevant for gene therapy as well as regenerative medicine. By using "high-expresser" GFP, transgenic rats display high expression in most tissues, and many cells that have not been characterized or have been only poorly
3138:
Maiti, Atanu; Buffalo, Cosmo Z.; Saurabh, Saumya; Montecinos-Franjola, Felipe; Hachey, Justin S.; Conlon, William J.; Tran, Geraldine N.; Hassan, Bakar; Walters, Kylie J.; Drobizhev, Mikhail; Moerner, W. E.; Ghosh, Partho; Matsuo, Hiroshi; Tsien, Roger Y.; Lin, John Y. (2023-07-12).
737:
sensitivity is complex, but, it seems, involves donation of a hydrogen from serine 65 to glutamate 222, which influences chromophore ionization. Since a single mutation can dramatically enhance the 480 nm excitation peak, making GFP a much more efficient partner of aequorin,
620:
These conformations both have a complex set of van der Waals interactions with the chromophore. The Y145A and H148D mutations in Cerulean stabilize these interactions and allow the chromophore to be more planar, better packed, and less prone to collisional quenching.
549:
formation and neighboring residue interactions. Researchers have modified these residues by directed and random mutagenesis to produce the wide variety of GFP derivatives in use today. Further research into GFP has shown that it is resistant to detergents, proteases,
1011:
in the absence of the properly folded GFP scaffold and exists mainly in the un-ionized phenol form in wtGFP. Inward-facing sidechains of the barrel induce specific cyclization reactions in Ser65–Tyr66–Gly67 that induce ionization of HBI to the phenolate form and
1298:
proteins of interest colocalize, then the two GFP fragments assemble together to form a GFP-like structure which is able to fluoresce. Therefore, by measuring the level of fluorescence it is possible to determine whether the two proteins of interest colocalize.
1023:. The hydrogen-bonding network and electron-stacking interactions with these sidechains influence the color, intensity and photostability of GFP and its numerous derivatives. The tightly packed nature of the barrel excludes solvent molecules, protecting the 3671:
Pan Y, Leifert A, Graf M, Schiefer F, Thoröe-Boveleth S, Broda J, Halloran MC, Hollert H, Laaf D, Simon U, Jahnen-Dechent W (March 2013). "High-sensitivity real-time analysis of nanoparticle toxicity in green fluorescent protein-expressing zebrafish".
4342:
Remy S, Tesson L, Usal C, Menoret S, Bonnamain V, Nerriere-Daguin V, Rossignol J, Boyer C, Nguyen TH, Naveilhan P, Lescaudron L, Anegon I (Oct 2010). "New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy".
496:
ions, inducing a blue glow. Some of this luminescent energy is transferred to the GFP, shifting the overall color towards green. However, its utility as a tool for molecular biologists did not begin to be realized until 1992 when
631:
Semirational mutagenesis of a number of residues led to pH-sensitive mutants known as pHluorins, and later super-ecliptic pHluorins. By exploiting the rapid change in pH upon synaptic vesicle fusion, pHluorins tagged to
2501:
Lelimousin M, Noirclerc-Savoye M, Lazareno-Saez C, Paetzold B, Le Vot S, Chazal R, Macheboeuf P, Field MJ, Bourgeois D, Royant A (Oct 2009). "Intrinsic dynamics in ECFP and Cerulean control fluorescence quantum yield".
570:
Due to the potential for widespread usage and the evolving needs of researchers, many different mutants of GFP have been engineered. The first major improvement was a single point mutation (S65T) reported in 1995 in
3475:
Rosenow MA, Huffman HA, Phail ME, Wachter RM (April 2004). "The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation".
2136: 1157:
when fused to proteins of interest, careful design of linkers is required to maintain the function of the protein of interest. Moreover, if used with a monomer it is able to diffuse readily throughout cells.
454:
3D reconstruction of confocal image of VEGF-overexpressing neural progenitors (red) and GFP-positive control neural progenitor cells (green) in the rat olfactory bulb. RECA-1-positive blood vessels - blue
532:
it had several drawbacks, including dual peaked excitation spectra, pH sensitivity, chloride sensitivity, poor fluorescence quantum yield, poor photostability and poor folding at 37 °C (99 °F).
598:
Many other mutations have been made, including color mutants; in particular, blue fluorescent protein (EBFP, EBFP2, Azurite, mKalama1), cyan fluorescent protein (ECFP, Cerulean, CyPet, mTurquoise2), and
1144:
For example, GFP can be used as a reporter for environmental toxicity levels. This protein has been shown to be an effective way to measure the toxicity levels of various chemicals including ethanol,
1358:
with fibroblast cells from sea anemones. The dogs give off a red fluorescent light, and they are meant to allow scientists to study the genes that cause human diseases like narcolepsy and blindness.
1289:
GFP is used widely in cancer research to label and track cancer cells. GFP-labelled cancer cells have been used to model metastasis, the process by which cancer cells spread to distant organs.
412:, and maintained in their genome and that of their offspring. GFP has been expressed in many species, including bacteria, yeasts, fungi, fish and mammals, including in human cells. Scientists 4093:
Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (Nov 2007). "Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system".
566:
The diversity of genetic mutations is illustrated by this San Diego beach scene drawn with living bacteria expressing 8 different colors of fluorescent proteins (derived from GFP and dsRed).
2873:
Chudakov DM, Belousov VV, Zaraisky AG, Novoselov VV, Staroverov DB, Zorov DB, Lukyanov S, Lukyanov KA (February 2003). "Kindling fluorescent proteins for precise in vivo photolabeling".
624:
T203Y mutation and is due to π-electron stacking interactions between the substituted tyrosine residue and the chromophore. These two classes of spectral variants are often employed for
1307:
non-mutagenic LED lights have been developed for macro-photography. The technique uses an epifluorescence camera attachment based on the same principle used in the construction of
683:
tendency at concentrations above 5 mg/mL. mGFP also stands for "modified GFP," which has been optimized through amino acid exchange for stable expression in plant cells.
2916:
Wiens MD, Shen Y, Li X, Salem MA, Smisdom N, Zhang W, Brown A, Campbell RE (December 2016). "A Tandem Green-Red Heterodimeric Fluorescent Protein with High FRET Efficiency".
771:
agent in the larvae, preventing damage caused by high-intensity blue light by converting it into lower-intensity green light. However, these theories have not been tested.
3511:
Ma Y, Yu JG, Sun Q, Li Z, Smith SC (2015-07-01). "The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study".
1793:
Shimomura O, Johnson FH, Saiga Y (Jun 1962). "Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea".
164: 408:
that a gene can be expressed throughout a given organism, in selected organs, or in cells of interest. GFP can be introduced into animals or other species through
5148: 3296:
Bokman SH, Ward WW (1982). "Reversible denaturation of Aequorea green-fluorescent protein: physical separation and characterization of the renatured protein".
4587:
Cabantous S, Terwilliger TC, Waldo GS (January 2005). "Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein".
791: 712: 1179:(GFP-Snf2H and RFP-H2A), Co-localisation studies (2CLM) in the nucleus of a bone cancer cell. 120.000 localized molecules in a widefield area (470 μm). 4421:
Fakhrudin N, Ladurner A, Atanasov AG, Heiss EH, Baumgartner L, Markt P, Schuster D, Ellmerer EP, Wolber G, Rollinger JM, Stuppner H, Dirsch VM (Apr 2010).
3809:
Terskikh A, Fradkov A, Ermakova G, Zaraisky A, Tan P, Kajava AV, et al. (November 2000). ""Fluorescent timer": protein that changes color with time".
1228:
Another powerful use of GFP is to express the protein in small sets of specific cells. This allows researchers to optically detect specific types of cells
595:
Superfolder GFP (sfGFP), a series of mutations that allow GFP to rapidly fold and mature even when fused to poorly folding peptides, was reported in 2006.
5133: 4423:"Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma" 5334: 3636:
Song YH, Kim CS, Seo JH (April 2016). "Noninvasive monitoring of environmental toxicity through green fluorescent protein expressing Escherichia coli".
1447:
Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (September 1996). "Crystal structure of the Aequorea victoria green fluorescent protein".
1711:
Uckert W, Pedersen L, Günzburg W (2000). "Green fluorescent protein retroviral vector: generation of high-titer producer cells and virus supernatant".
1498:
Prendergast FG, Mann KG (Aug 1978). "Chemical and physical properties of aequorin and the green fluorescent protein isolated from Aequorea forskålea".
2959:
Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, et al. (April 2007). "Reporter proteins for in vivo fluorescence without oxygen".
2419:
Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (Jan 2006). "Engineering and characterization of a superfolder green fluorescent protein".
2192: 365:) has a single major excitation peak at 498 nm. GFP makes for an excellent tool in many forms of biology due to its ability to form an internal 2594:
Miesenböck G, De Angelis DA, Rothman JE (Jul 1998). "Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins".
2686:
Zacharias DA, Violin JD, Newton AC, Tsien RY (May 2002). "Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells".
4935: 2005:
Ormö M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (Sep 1996). "Crystal structure of the Aequorea victoria green fluorescent protein".
1867:
Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (Feb 1992). "Primary structure of the Aequorea victoria green-fluorescent protein".
1107: 4759:"An epifluorescent attachment improves whole-plant digital photography of Arabidopsis thaliana expressing red-shifted green fluorescent protein" 4665:
Zhu YJ, Agbayani R, Moore PH (Apr 2004). "Green fluorescent protein as a visual selection marker for papaya (Carica papaya L.) transformation".
1006:-hydroxybenzylidene)imidazolidin-5-one (HBI) running through the center. Five shorter alpha helices form caps on the ends of the structure. The 4630:
Rodman MK, Yadav NS, Artus NN (2002-09-01). "Progression of geminivirus-induced transgene silencing is associated with transgene methylation".
1795: 3380:
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (Jul 2010). "Fluorescent proteins and their applications in imaging living cells and tissues".
1282:
assays were 0.97. Another application is the use of GFP co-transfection as internal control for transfection efficiency in mammalian cells.
4386:
Elliott G, McGrath J, Crockett-Torabi E (Jun 2000). "Green fluorescent protein: A novel viability assay for cryobiological applications".
4144:
Baker BJ, Mutoh H, Dimitrov D, Akemann W, Perron A, Iwamoto Y, Jin L, Cohen LB, Isacoff EY, Pieribone VA, Hughes T, Knöpfel T (Aug 2008).
663:
The nomenclature of modified GFPs is often confusing due to overlapping mapping of several GFP versions onto a single name. For example,
1240:(in the living organism). Genetically combining several spectral variants of GFP is a useful trick for the analysis of brain circuitry ( 625: 5387: 1334:
using GFP for purposes of art and social commentary. The US company Yorktown Technologies markets to aquarium shops green fluorescent
615:
Chromophore binding. The critical mutation in cyan derivatives is the Y66W substitution, which causes the chromophore to form with an
5226: 1124:
The reactions are catalyzed by residues Glu222 and Arg96. An analogous mechanism is also possible with threonine in place of Ser65.
5474: 1830:
Morise H, Shimomura O, Johnson FH, Winant J (Jun 1974). "Intermolecular energy transfer in the bioluminescent system of Aequorea".
3852:
Patterson GH, Lippincott-Schwartz J (September 2002). "A photoactivatable GFP for selective photolabeling of proteins and cells".
432:
molecular mass, and can impair the protein's natural function or change its location or trajectory of transport within the cell.
3552:"Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein)" 998:
structure consisting of eleven β-strands with a pleated sheet arrangement, with an alpha helix containing the covalently bonded
5469: 4757:
Baker SS, Vidican CB, Cameron DS, Greib HG, Jarocki CC, Setaputri AW, Spicuzza CH, Burr AA, Waqas MA, Tolbert DA (2012-01-01).
3253:
Montecinos-Franjola F, Lin JY, Rodriguez EA (2020-11-16). "Fluorescent proteins for in vivo imaging, where's the biliverdin?".
347:
of 395 nm and a minor one at 475 nm. Its emission peak is at 509 nm, which is in the lower green portion of the
5068: 5040: 3071: 2250: 1769: 1428: 746:, where GFP was originally discovered, has hampered further study of the role of GFP in the jellyfish's natural environment. 112: 3601:
Arun KH, Kaul CL, Ramarao P (2005). "Green fluorescent proteins in receptor research: an emerging tool for drug discovery".
1904:
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (Feb 1994). "Green fluorescent protein as a marker for gene expression".
1541: 184: 4807:"PlantEdDL - Using SRL digital cameras in quantitative investigations of plants expressing green fluorescent protein (GFP)" 2537:
Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TW, Royant A (2012).
213: 4710:"Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants" 1676:
Phillips GJ (Oct 2001). "Green fluorescent protein—a bright idea for the study of bacterial protein localization".
3956:"Using a single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression" 1959:"Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein" 1187:
and the way it is used in cell biology and other biological disciplines. While most small fluorescent molecules such as
3054:
Mattson S, Tran GN, Rodriguez EA (2023). "Directed Evolution of Fluorescent Proteins in Bacteria". In Sharma M (ed.).
2267: 818:
There are many GFP-like proteins that, despite being in the same protein family as GFP, are not directly derived from
3333:"Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants" 1728: 1603: 2384:
McRae SR, Brown CL, Bushell GR (May 2005). "Rapid purification of EGFP, EYFP, and ECFP with high yield and purity".
5324: 5304: 5112: 829: 5285: 5093: 1016: 1629:"Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes" 172: 5515: 5500: 5314: 5219: 2327:, Thastrup O, Tullin S, Kongsbak Poulsen L, Bjørn S, "Fluorescent Proteins", published 2001-01-09 948: 585: 5344: 4538:
Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ, Pai SY, Ho IC, Werb Z (Feb 2008).
3204:
Rodriguez EA, Campbell RE, Lin JY, Lin MZ, Miyawaki A, Palmer AE, Shu X, Zhang J, Tsien RY (February 2017).
2739:"The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus)" 5362: 4058:
Chudakov DM, Lukyanov S, Lukyanov KA (Dec 2005). "Fluorescent proteins as a toolkit for in vivo imaging".
742:
change the color of its bioluminescence with depth. However, a collapse in the population of jellyfish in
5525: 5461: 5367: 5295: 5143: 4514: 513:
expressed the coding sequence of wtGFP, with the first few amino acids deleted, in heterologous cells of
5127: 2647:"Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators" 1423: 1396: 1378: 1343: 679:
GFP, which is often achieved by the dimer interface breaking A206K mutation. Wild-type GFP has a weak
600: 168: 4845: 2324: 5319: 5309: 5299: 3423:
Stepanenko OV, Verkhusha VV, Shavlovsky MM, Kuznetsova IM, Uversky VN, Turoverov KK (November 2008).
743: 340: 125: 1244:). Other interesting uses of fluorescent proteins in the literature include using FPs as sensors of 541:
in 1996. One month later, the Phillips group independently reported the wild-type GFP structure in
535:
The first reported crystal structure of a GFP was that of the S65T mutant by the Remington group in
5520: 5510: 5495: 5339: 5212: 1374: 986:
Reviews on new classes of fluorescent proteins and applications can be found in the cited reviews.
857: 425: 2062: 767:
towards the mouth of the lancelet, serving as a passive hunting mechanism. It may also serve as a
1308: 1209: 1184: 1166: 870: 370: 5410: 5372: 1832: 521: 5107: 4806: 4011:
Gunkel M, Erdel F, Rippe K, Lemmer P, Kaufmann R, Hörmann C, Amberger R, Cremer C (Jun 2009).
1752:
Goodman SR, ed. (2008). "Chapter 1 - Tools of the Cell Biologist: Green Fluorescent Protein".
1583: 5505: 5329: 4870: 835: 5377: 5256: 5122: 4479: 4247: 4102: 3967: 3861: 3818: 3720: 3516: 3152: 3058:. Methods in Molecular Biology. Vol. 2564. New York, NY: Springer US. pp. 75–97. 2809: 2750: 2695: 2645:
Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ (Mar 2004).
2603: 2550: 2463: 2282: 2145: 2014: 1915: 1456: 1056: 551: 450: 151: 3141:"Structural and photophysical characterization of the small ultra-red fluorescent protein" 1350:
as proof of concept to use them potentially as model organisms for diseases, particularly
978: 814:
Different proteins produce different fluorescent colors when exposed to ultraviolet light.
253: 8: 5290: 5281: 4012: 3425:"Understanding the role of Arg96 in structure and stability of green fluorescent protein" 1388: 1366: 1214: 960: 848: 810: 428:
on 10 October 2008 for their discovery and development of the green fluorescent protein.
409: 378: 4483: 4251: 4106: 3971: 3865: 3822: 3724: 3520: 3181: 3156: 3140: 2813: 2754: 2699: 2607: 2554: 2539:"Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%" 2286: 2149: 2018: 1919: 1460: 1323:
Mice expressing GFP under UV light (left & right), compared to normal mouse (center)
799:
of 0.92, making them nearly two-fold brighter than the commonly used EGFP isolated from
607: 5276: 4966: 4912: 4887: 4783: 4758: 4739: 4690: 4612: 4564: 4540:"GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model" 4539: 4495: 4447: 4422: 4368: 4319: 4294: 4170: 4145: 4126: 4040: 3988: 3955: 3931: 3904: 3885: 3791: 3743: 3708: 3653: 3578: 3551: 3449: 3424: 3405: 3357: 3332: 3278: 3230: 3205: 3120: 3031: 3006: 2984: 2941: 2898: 2832: 2798:"Very bright green fluorescent proteins from the Pontellid copepod Pontella mimocerami" 2797: 2773: 2738: 2719: 2627: 2571: 2538: 2444: 2306: 2223: 2103: 2038: 1939: 1775: 1761: 1653: 1628: 1609: 1480: 1354:. In 2009 a South Korean team from Seoul National University bred the first transgenic 1248: 1171: 760: 361: 5138: 4270: 4235: 1689: 5431: 5193: 5184: 5074: 5064: 5046: 5036: 5029: 4917: 4788: 4731: 4726: 4709: 4682: 4647: 4643: 4604: 4569: 4452: 4403: 4360: 4324: 4275: 4216: 4175: 4118: 4075: 4032: 3993: 3936: 3877: 3834: 3795: 3783: 3748: 3689: 3618: 3583: 3532: 3493: 3454: 3397: 3362: 3313: 3282: 3270: 3235: 3186: 3168: 3112: 3108: 3077: 3067: 3036: 3005:
Rodriguez EA, Tran GN, Gross LA, Crisp JL, Shu X, Lin JY, Tsien RY (September 2016).
2976: 2933: 2890: 2837: 2778: 2711: 2668: 2619: 2576: 2519: 2483: 2436: 2401: 2366: 2361: 2344: 2298: 2246: 2215: 2173: 2168: 2127: 2095: 2030: 1982: 1977: 1958: 1931: 1906: 1886: 1882: 1849: 1812: 1765: 1734: 1724: 1693: 1658: 1613: 1599: 1564: 1560: 1515: 1472: 1085: 1061: 932: 916: 755: 537: 527: 389: 304: 159: 117: 4970: 4694: 4616: 4499: 4372: 4044: 3889: 3657: 3409: 2902: 2723: 2310: 2227: 2107: 2042: 1779: 1484: 839:
White light image, or image seen by the eye, of fluorescent proteins in image above.
68: 5446: 4958: 4907: 4899: 4831: 4778: 4770: 4721: 4674: 4639: 4596: 4559: 4551: 4487: 4442: 4434: 4395: 4352: 4314: 4306: 4265: 4255: 4206: 4165: 4157: 4130: 4110: 4067: 4024: 3983: 3975: 3926: 3916: 3869: 3826: 3775: 3738: 3728: 3681: 3645: 3610: 3573: 3563: 3524: 3485: 3444: 3436: 3389: 3352: 3344: 3305: 3262: 3225: 3217: 3176: 3160: 3124: 3104: 3059: 3026: 3018: 2988: 2968: 2945: 2925: 2882: 2827: 2817: 2768: 2758: 2703: 2658: 2631: 2611: 2566: 2558: 2511: 2475: 2448: 2428: 2393: 2356: 2290: 2207: 2163: 2153: 2126:
Brejc K, Sixma TK, Kitts PA, Kain SR, Tsien RY, Ormö M, Remington SJ (March 1997).
2085: 2077: 2022: 1972: 1943: 1923: 1878: 1841: 1804: 1757: 1716: 1685: 1648: 1640: 1591: 1556: 1507: 1464: 862: 515: 405: 348: 147: 4743: 4071: 3905:"Genetically encoded fluorescent biosensors illuminate kinase signaling in cancer" 3830: 2026: 1468: 643:) was engineered by introduction of cysteines into the beta barrel structure. The 81: 5415: 5239: 5204: 5152: 4949:
Voss-Andreae J (2005). "Protein Sculptures: Life's Building Blocks Inspire Art".
4211: 4194: 3528: 2822: 2323: 1627:
Stepanenko OV, Verkhusha VV, Kuznetsova IM, Uversky VN, Turoverov KK (Aug 2008).
1400: 1370: 1330:, a green-fluorescent rabbit, was created by a French laboratory commissioned by 1275: 866: 768: 720: 592:(QY) of EGFP is 0.60. The relative brightness, expressed as ε•QY, is 33,000 Mcm. 498: 481: 417: 93: 20: 16:
Protein that exhibits bright green fluorescence when exposed to ultraviolet light
4195:"Photoinactivation of native AMPA receptors reveals their real-time trafficking" 3614: 3063: 2466:(Apr 2002). "Structural chemistry of a green fluorescent protein Zn biosensor". 1720: 1031: 263: 5354: 5271: 5160: 5156: 4240:
Proceedings of the National Academy of Sciences of the United States of America
3713:
Proceedings of the National Academy of Sciences of the United States of America
3393: 3221: 3164: 2500: 2137:
Proceedings of the National Academy of Sciences of the United States of America
1869: 1644: 1176: 1080: 668: 576: 510: 421: 413: 4962: 4678: 4555: 4356: 4161: 3979: 3921: 3649: 3007:"A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein" 2397: 5489: 5451: 5441: 5382: 4883: 3536: 3172: 2536: 1327: 1138: 1047:
GFP molecules drawn in cartoon style, one fully and one with the side of the
952: 912: 852: 796: 680: 672: 633: 589: 397: 352: 100: 5078: 5050: 4774: 4491: 4260: 3873: 3733: 2707: 2243:
Fluorescent Analogs of Biomolecular Building Blocks: Design and Applications
1927: 404:, and many animals have been created that express GFP, which demonstrates a 5436: 5405: 5266: 5171: 4921: 4792: 4735: 4686: 4651: 4608: 4573: 4456: 4438: 4407: 4399: 4364: 4328: 4279: 4220: 4179: 4122: 4079: 4036: 4028: 3997: 3940: 3881: 3838: 3787: 3752: 3693: 3685: 3622: 3587: 3497: 3458: 3401: 3366: 3274: 3239: 3190: 3081: 3040: 2980: 2937: 2929: 2894: 2841: 2782: 2715: 2672: 2663: 2646: 2580: 2523: 2487: 2440: 2405: 2219: 2158: 1963: 1816: 1808: 1738: 1697: 1662: 1204: 728: 385: 288: 5165: 3779: 3317: 3116: 2623: 2370: 2302: 2177: 2099: 2034: 1986: 1935: 1890: 1853: 1595: 1568: 1476: 1035:
GFP Movie showing entire structure and zoom in to fluorescent chromophore.
121: 4295:"Visualization of targeted transduction by engineered lentiviral vectors" 3206:"The Growing and Glowing Toolbox of Fluorescent and Photoactive Proteins" 2081: 1413: 1331: 1279: 1271: 1256: 1221: 1188: 1052: 1048: 1024: 1012: 1007: 999: 995: 936: 920: 885: 782: 775: 759:, lancelets do not produce their own blue light, and the origin of their 733: 648: 580: 546: 464:
In the 1960s and 1970s, GFP, along with the separate luminescent protein
366: 317: 292: 234: 5177: 5139:
Video of 2008 Nobel Prize lecture of Roger Tsien on fluorescent proteins
4114: 3309: 3266: 1845: 1519: 1511: 1384: 19:"EGFP" redirects here. For the airport with that ICAO airport code, see 5248: 4903: 4310: 3568: 3440: 3422: 3022: 2855: 2562: 1192: 940: 888: 786: 344: 321: 229: 3489: 3348: 3137: 2763: 2515: 2479: 2090: 1101: 1089: 1065: 1043: 2294: 2211: 1335: 1260: 1183:
The availability of GFP and its derivatives has thoroughly redefined
900: 881: 473: 401: 356: 300: 5003: 4600: 3331:
Pouwels LJ, Zhang L, Chan NH, Dorrestein PC, Wachter RM (Sep 2008).
2972: 2432: 2128:"Structural basis for dual excitation and photoisomerization of the 1756:(3rd ed.). Amsterdam: Elsevier/Academic Press. pp. 14–25. 1626: 703: 440: 5151:
dedicated to the 2008 Nobel Prize winners in Chemistry, Professors
2886: 1241: 1230: 764: 750: 724: 709: 691: 489: 465: 329: 88: 4537: 2615: 753:
are known to produce GFP in various regions of their body. Unlike
105: 5235: 5198: 5188: 5174:: an illustrated overview of GFP-like variants by David Goodsell. 2872: 1339: 1236: 892: 778: 676: 493: 374: 325: 284: 5144:
Excitation and emission spectra for various fluorescent proteins
2418: 1715:. Methods in Molecular Medicine. Vol. 35. pp. 275–85. 1114: 1075: 5132:
Interactive Java applet demonstrating the chemistry behind the
5123:
A comprehensive article on fluorescent proteins at Scholarpedia
5031:
Aglow in the Dark: The Revolutionary Science of Biofluorescence
4888:"Antiviral restriction factor transgenesis in the domestic cat" 4146:"Genetically encoded fluorescent sensors of membrane potential" 4013:"Dual color localization microscopy of cellular nanostructures" 3808: 3252: 2345:"FACS-optimized mutants of the green fluorescent protein (GFP)" 1866: 1245: 968: 944: 928: 924: 908: 878: 874: 616: 562: 469: 179: 35: 4708:
Niwa Y, Hirano T, Yoshimoto K, Shimizu M, Kobayashi H (1999).
4420: 2461: 1319: 5397: 4385: 1355: 964: 904: 896: 823: 652: 644: 640: 505:. The funding for this project had run out, so Prasher sent 313: 312:. However, GFPs have been found in other organisms including 5183:
Overview of all the structural information available in the
5055:
Popular science book describing history and discovery of GFP
4881: 4233: 3851: 3379: 1829: 955:(0.20), which makes it comparable biophysical brightness to 299:
traditionally refers to the protein first isolated from the
4470:
Gather MC, Yun SH (2011). "Single-cell biological lasers".
2644: 2593: 1418: 1252: 956: 506: 393: 141: 75: 63: 4707: 3474: 3330: 2958: 2685: 636:
have been used to visualize synaptic activity in neurons.
476:, releasing light), was first purified from the jellyfish 4586: 4234:
Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (Aug 2003).
4143: 3953: 1395:(2006). The image shows the stainless-steel sculpture at 1351: 1347: 972: 774:
GFP-like proteins have been found in multiple species of
501:
reported the cloning and nucleotide sequence of wtGFP in
4756: 4057: 3549: 3095:
Tsien RY (1998-01-01). "The green fluorescent protein".
545:. These crystal structures provided vital background on 4849: 4236:"Visualizing infection of individual influenza viruses" 3550:
Jugder BE, Welch J, Braidy N, Marquis CP (2016-07-26).
3203: 3004: 2796:
Hunt ME, Scherrer MP, Ferrari FD, Matz MV (July 2010).
2795: 2737:
Yue JX, Holland ND, Holland LZ, Deheyn DD (June 2016).
2736: 1903: 1207:
of various organisms for identification purposes as in
1203:
For example, GFP had been widely used in labelling the
4092: 4010: 3670: 2063:"The molecular structure of green fluorescent protein" 1710: 1590:. Boca Raton: Jenny Stanford Publishing. p. 122. 763:
GFP is still unknown. Some speculate that it attracts
4341: 3766:
Yuste R (Dec 2005). "Fluorescence microscopy today".
2342: 2004: 1792: 1446: 1346:. A Japanese-American Team created green-fluorescent 554:(GdmCl) treatments, and drastic temperature changes. 4192: 3603:
Journal of Pharmacological and Toxicological Methods
3053: 2190: 5168:: an illustrated overview of GFP by David Goodsell. 5149:
Green Fluorescent Protein Chem Soc Rev themed issue
4936:"Fluorescent puppy is world's first transgenic dog" 4515:"Green Fluorescent Protein Makes for Living Lasers" 2125: 1102:
Autocatalytic formation of the chromophore in wtGFP
971:spectral properties are similar to the organic dye 5234: 5028: 3680:(6). Weinheim an Der Bergstrasse, Germany: 863–9. 675:. However, the same term is also used to refer to 4871:Scientists in Taiwan breed fluorescent green pigs 2383: 982:E. coli colonies expressing fluorescent proteins. 5487: 4875: 4664: 4629: 3954:Komorowski M, Finkenstädt B, Rand D (Jun 2010). 2915: 2060: 5026: 3600: 2587: 2494: 2265: 1497: 1491: 1267:characterized in previous GFP-transgenic rats. 1108:3,5-Difluoro-4-hydroxybenzylidene imidazolinone 2679: 2455: 2240: 2191:Shaner NC, Steinbach PA, Tsien RY (Dec 2005). 1796:Journal of Cellular and Comparative Physiology 959:and ~2-fold brighter than most red or far-red 5220: 4193:Adesnik H, Nicoll RA, England PM (Dec 2005). 4051: 3902: 2412: 2317: 2121: 2119: 2117: 1786: 805: 400:. It has been used in modified forms to make 5061:Glowing Genes: A Revolution In Biotechnology 4948: 4882:Wongsrikeao P, Saenz D, Rinkoski T, Otoi T, 4701: 4414: 4335: 4286: 4227: 4186: 4137: 4086: 4004: 3947: 3700: 3664: 3594: 3416: 3324: 2336: 2056: 2054: 2052: 2000: 1998: 1996: 1897: 1860: 1669: 1535: 1533: 1531: 1529: 727:'s action on luciferin) and the (secondary) 588:(denoted ε) of 55,000 Mcm. The fluorescence 4984:Pawlak A (2005). "Inspirierende Proteine". 3289: 2638: 2184: 1956: 1950: 1823: 1704: 1620: 1403:(Wash., USA), the place of GFP's discovery. 1137:Green fluorescent protein may be used as a 795:has shown high levels of brightness with a 5227: 5213: 3759: 3635: 3295: 2343:Cormack BP, Valdivia RH, Falkow S (1996). 2193:"A guide to choosing fluorescent proteins" 2114: 1440: 1278:. Correlation of viability as measured by 1191:(fluorescein isothiocyanate) are strongly 1160: 34: 5180:on FPbase, a fluorescent protein database 4911: 4782: 4725: 4563: 4469: 4446: 4318: 4269: 4259: 4210: 4169: 3987: 3930: 3920: 3742: 3732: 3577: 3567: 3510: 3448: 3356: 3229: 3180: 3030: 2831: 2821: 2789: 2772: 2762: 2662: 2570: 2360: 2259: 2167: 2157: 2089: 2061:Yang F, Moss LG, Phillips GN (Oct 1996). 2049: 1993: 1976: 1652: 1575: 1526: 667:often refers to a GFP with an N-terminal 3903:Lin W, Mehta S, Zhang J (October 2019). 2730: 2468:Journal of the American Chemical Society 2266:Heim R, Cubitt AB, Tsien RY (Feb 1995). 1675: 1383: 1318: 1170: 1074: 1042: 1030: 977: 844:conversion between red and green light. 834: 809: 702: 690: 606: 561: 459: 449: 439: 4292: 3706: 2952: 1751: 611:A palette of variants of GFP and DsRed. 5488: 5470:Photoactivated localization microscopy 5388:Protein–protein interaction prediction 5058: 4983: 4512: 3638:Korean Journal of Chemical Engineering 2462:Barondeau DP, Kassmann CJ, Tainer JA, 647:state of the cysteines determines the 355:(QY) of GFP is 0.79. The GFP from the 5208: 3765: 3470: 3468: 3094: 3000: 2998: 1633:Current Protein & Peptide Science 1581: 1539: 1429:Genetically encoded voltage indicator 1263:viruses and lentiviral viruses, etc. 291:when exposed to light in the blue to 5128:Brief summary of landmark GFP papers 1588:Fundamentals of Fluorescence Imaging 1301: 509:samples to several labs. The lab of 5345:Freeze-fracture electron microscopy 5197:(Green fluorescent protein) at the 3909:The Journal of Biological Chemistry 2651:The Journal of Biological Chemistry 2386:Protein Expression and Purification 1270:GFP has been shown to be useful in 907:-derived GFP-like proteins require 13: 5019: 3465: 2995: 1762:10.1016/B978-0-12-370458-0.50006-2 1314: 1196:tagged with fluorescent proteins. 1132: 1106:For a synthetic analogue see also 719:The purpose of both the (primary) 557: 14: 5537: 5087: 5063:. Buffalo, NY: Prometheus Books. 699:) under a fluorescent microscope. 626:Förster resonance energy transfer 5325:Isothermal titration calorimetry 5305:Dual-polarization interferometry 5172:Molecule of the Month, June 2014 5166:Molecule of the Month, June 2003 5134:formation of the GFP chromophore 4727:10.1046/j.1365-313X.1999.00464.x 4644:10.1046/j.1469-8137.2002.00467.x 3255:Biochemical Society Transactions 3109:10.1146/annurev.biochem.67.1.509 1561:10.1146/annurev.biochem.67.1.509 1259:and the infection of individual 1113: 951:(180,000 M cm) and has a modest 891:without the need of an external 830:FMN-binding fluorescent proteins 472:that catalyzes the breakdown of 369:without requiring any accessory 5004:"Julian Voss-Andreae Sculpture" 4996: 4977: 4942: 4928: 4864: 4838: 4829: 4823: 4799: 4750: 4658: 4623: 4580: 4531: 4506: 4463: 4379: 3896: 3845: 3802: 3629: 3543: 3504: 3373: 3246: 3197: 3131: 3088: 3047: 2909: 2866: 2848: 2530: 2377: 2234: 1957:Inouye S, Tsuji FI (Mar 1994). 1542:"The green fluorescent protein" 1127: 1017:post-translational modification 671:that causes the GFP to bind to 658: 488:, GFP fluorescence occurs when 5027:Pieribone V, Gruber D (2006). 3210:Trends in Biochemical Sciences 1745: 480:and its properties studied by 1: 5315:Chromatin immunoprecipitation 4072:10.1016/j.tibtech.2005.10.005 3831:10.1126/science.290.5496.1585 3097:Annual Review of Biochemistry 2268:"Improved green fluorescence" 2241:Wilhelmsson M, Tor Y (2016). 2027:10.1126/science.273.5280.1392 1690:10.1016/S0378-1097(01)00358-5 1549:Annual Review of Biochemistry 1469:10.1126/science.273.5280.1392 1434: 1255:receptors on cell membranes, 1151: 435: 381:other than molecular oxygen. 136:Available protein structures: 5378:Protein structural alignment 5363:Protein structure prediction 5113:Resources in other libraries 5035:. Cambridge: Belknap Press. 4212:10.1016/j.neuron.2005.11.030 3529:10.1016/j.cplett.2015.04.061 2823:10.1371/journal.pone.0011517 2362:10.1016/0378-1119(95)00685-0 1978:10.1016/0014-5793(94)80472-9 1883:10.1016/0378-1119(92)90691-H 1292: 989: 789:families. GFP isolated from 686: 525:, publishing the results in 7: 5462:Super-resolution microscopy 5368:Protein function prediction 5296:Peptide mass fingerprinting 5291:Protein immunoprecipitation 4846:"Glow-In-The Dark NeonMice" 4293:Joo KI, Wang P (Oct 2008). 3615:10.1016/j.vascn.2004.07.006 3064:10.1007/978-1-0716-2667-2_4 1407: 1309:epifluorescence microscopes 1015:formation. This process of 10: 5542: 3394:10.1152/physrev.00038.2009 3222:10.1016/j.tibs.2016.09.010 3165:10.1038/s41467-023-39776-9 2132:green fluorescent protein" 1645:10.2174/138920308785132668 1424:Yellow fluorescent protein 1397:Friday Harbor Laboratories 1379:Friday Harbor Laboratories 1344:National Taiwan University 1164: 1105: 1040: 806:Other fluorescent proteins 601:yellow fluorescent protein 44:green fluorescent protein. 18: 5460: 5424: 5396: 5353: 5320:Surface plasmon resonance 5310:Microscale thermophoresis 5300:Protein mass spectrometry 5262:Green fluorescent protein 5247: 5178:Green Fluorescent Protein 5108:Resources in your library 5099:Green fluorescent protein 4963:10.1162/leon.2005.38.1.41 4679:10.1007/s00299-004-0755-5 4556:10.1016/j.ccr.2008.01.011 4357:10.1007/s11248-009-9352-2 4162:10.1007/s11068-008-9026-7 3980:10.1016/j.bpj.2010.03.032 3922:10.1074/jbc.REV119.006177 3650:10.1007/s11814-015-0253-1 2398:10.1016/j.pep.2004.12.030 1721:10.1385/1-59259-086-1:275 1678:FEMS Microbiology Letters 1175:Superresolution with two 277:green fluorescent protein 259: 249: 244: 240: 228: 220: 208: 203: 199:Green fluorescent protein 198: 178: 158: 140: 135: 131: 111: 99: 87: 74: 62: 54: 49: 33: 29:Green fluorescent protein 28: 5340:Cryo-electron microscopy 3513:Chemical Physics Letters 1375:University of Washington 869:, and named small ultra 858:Trichodesmium erythraeum 781:, particularly from the 426:Nobel Prize in Chemistry 396:is frequently used as a 308:and is sometimes called 5373:Protein–protein docking 5286:Protein electrophoresis 4492:10.1038/nphoton.2011.99 4261:10.1073/pnas.0832269100 4060:Trends in Biotechnology 3874:10.1126/science.1074952 3734:10.1073/pnas.0904061106 3709:"GFP: Lighting up life" 2708:10.1126/science.1068539 1928:10.1126/science.8303295 1391:'s GFP-based sculpture 1210:Drosophila melanogaster 1185:fluorescence microscopy 1167:Fluorescence microscope 1161:Fluorescence microscopy 1051:cut away to reveal the 871:red fluorescent protein 5272:Protein immunostaining 4439:10.1124/mol.109.062141 4427:Molecular Pharmacology 4400:10.1006/cryo.2000.2258 4029:10.1002/biot.200900005 3707:Chalfie M (Jun 2009). 3686:10.1002/smll.201201173 2930:10.1002/cbic.201600492 2664:10.1074/jbc.M312846200 2159:10.1073/pnas.94.6.2306 1809:10.1002/jcp.1030590302 1713:Gene Therapy of Cancer 1584:"Fluorescent Proteins" 1404: 1361: 1324: 1180: 1094: 1070: 1036: 983: 949:extinction coefficient 884:self-incorporates the 840: 815: 716: 707:In the marine copepod 700: 612: 586:extinction coefficient 567: 456: 447: 424:were awarded the 2008 398:reporter of expression 5330:X-ray crystallography 4775:10.1093/aobpla/pls003 4017:Biotechnology Journal 3780:10.1038/nmeth1205-902 3382:Physiological Reviews 3145:Nature Communications 2543:Nature Communications 2325:US patent 6172188 2245:. New Jersey: Wiley. 1596:10.1201/9781351129404 1387: 1322: 1234:(in a dish), or even 1174: 1078: 1046: 1034: 981: 838: 813: 706: 694: 639:Redox sensitive GFP ( 610: 565: 460:Wild-type GFP (wtGFP) 453: 443: 410:transgenic techniques 5516:Fluorescent proteins 5501:Recombinant proteins 5257:Protein purification 4852:on February 14, 2009 4589:Nature Biotechnology 3056:Fluorescent Proteins 2961:Nature Biotechnology 2875:Nature Biotechnology 2421:Nature Biotechnology 2355:(1 Spec No): 33–38. 2082:10.1038/nbt1096-1246 2070:Nature Biotechnology 1754:Medical Cell Biology 961:fluorescent proteins 552:guanidinium chloride 543:Nature Biotechnology 373:, gene products, or 287:that exhibits green 5282:Gel electrophoresis 4519:Scientific American 4484:2011NaPho...5..406G 4345:Transgenic Research 4252:2003PNAS..100.9280L 4115:10.1038/nature06293 4107:2007Natur.450...56L 3972:2010BpJ....98.2759K 3960:Biophysical Journal 3915:(40): 14814–14822. 3866:2002Sci...297.1873P 3823:2000Sci...290.1585T 3725:2009PNAS..10610073C 3719:(25): 10073–10080. 3521:2015CPL...631...42M 3310:10.1021/bi00262a003 3267:10.1042/BST20200444 3157:2023NatCo..14.4155M 2814:2010PLoSO...511517H 2755:2016NatSR...628350Y 2700:2002Sci...296..913Z 2608:1998Natur.394..192M 2555:2012NatCo...3..751G 2510:(42): 10038–10046. 2287:1995Natur.373..663H 2150:1997PNAS...94.2306B 2019:1996Sci...273.1392O 1920:1994Sci...263..802C 1846:10.1021/bi00709a028 1512:10.1021/bi00610a004 1461:1996Sci...273.1392O 1389:Julian Voss-Andreae 1367:Julian Voss-Andreae 1215:regulatory sequence 851:was evolved from a 849:fluorescent protein 792:Pontella mimocerami 351:. The fluorescence 5526:Cnidarian proteins 5425:Display techniques 5277:Protein sequencing 4904:10.1038/nmeth.1703 4811:planted.botany.org 4667:Plant Cell Reports 4311:10.1038/gt.2008.87 4150:Brain Cell Biology 3569:10.7717/peerj.2269 3515:. 631–632: 42–46. 3441:10.1002/prot.22089 3023:10.1038/nmeth.3935 2743:Scientific Reports 2563:10.1038/ncomms1738 1586:. In Cox G (ed.). 1405: 1325: 1249:membrane potential 1181: 1095: 1071: 1037: 1019:is referred to as 984: 841: 816: 717: 701: 613: 568: 457: 448: 362:Renilla reniformis 295:range. The label 5483: 5482: 5432:Bacterial display 5094:Library resources 5070:978-1-59102-253-4 5059:Zimmer M (2005). 5042:978-0-674-01921-8 4714:The Plant Journal 4513:Matson J (2011). 3966:(12): 2759–2769. 3490:10.1021/bi0361315 3484:(15): 4464–4472. 3349:10.1021/bi8007164 3304:(19): 4535–4540. 3073:978-1-0716-2666-5 2924:(24): 2361–2367. 2764:10.1038/srep28350 2516:10.1021/bi901093w 2480:10.1021/ja0176954 2474:(14): 3522–3524. 2252:978-1-118-17586-6 2130:Aequorea victoria 1771:978-0-12-370458-0 1540:Tsien RY (1998). 1302:Macro-photography 1099: 1098: 933:hydrogen peroxide 927:does not require 917:hydrogen peroxide 882:autocatalytically 820:Aequorea victoria 478:Aequorea victoria 445:Aequorea victoria 390:molecular biology 305:Aequorea victoria 273: 272: 269: 268: 214:Aequorea victoria 194: 193: 190: 189: 185:structure summary 42:Aequorea victoria 40:Structure of the 5533: 5447:Ribosome display 5383:Protein ontology 5229: 5222: 5215: 5206: 5205: 5082: 5054: 5034: 5014: 5013: 5011: 5010: 5000: 4994: 4993: 4981: 4975: 4974: 4946: 4940: 4939: 4932: 4926: 4925: 4915: 4879: 4873: 4868: 4862: 4861: 4859: 4857: 4848:. Archived from 4842: 4836: 4835: 4827: 4821: 4820: 4818: 4817: 4803: 4797: 4796: 4786: 4754: 4748: 4747: 4729: 4705: 4699: 4698: 4662: 4656: 4655: 4627: 4621: 4620: 4584: 4578: 4577: 4567: 4535: 4529: 4528: 4526: 4525: 4510: 4504: 4503: 4472:Nature Photonics 4467: 4461: 4460: 4450: 4418: 4412: 4411: 4383: 4377: 4376: 4339: 4333: 4332: 4322: 4290: 4284: 4283: 4273: 4263: 4231: 4225: 4224: 4214: 4190: 4184: 4183: 4173: 4141: 4135: 4134: 4090: 4084: 4083: 4055: 4049: 4048: 4008: 4002: 4001: 3991: 3951: 3945: 3944: 3934: 3924: 3900: 3894: 3893: 3860:(5588): 1873–7. 3849: 3843: 3842: 3817:(5496): 1585–8. 3806: 3800: 3799: 3763: 3757: 3756: 3746: 3736: 3704: 3698: 3697: 3668: 3662: 3661: 3633: 3627: 3626: 3598: 3592: 3591: 3581: 3571: 3547: 3541: 3540: 3508: 3502: 3501: 3472: 3463: 3462: 3452: 3420: 3414: 3413: 3377: 3371: 3370: 3360: 3343:(38): 10111–22. 3328: 3322: 3321: 3293: 3287: 3286: 3261:(6): 2657–2667. 3250: 3244: 3243: 3233: 3201: 3195: 3194: 3184: 3135: 3129: 3128: 3092: 3086: 3085: 3051: 3045: 3044: 3034: 3002: 2993: 2992: 2956: 2950: 2949: 2913: 2907: 2906: 2870: 2864: 2863: 2852: 2846: 2845: 2835: 2825: 2793: 2787: 2786: 2776: 2766: 2734: 2728: 2727: 2694:(5569): 913–16. 2683: 2677: 2676: 2666: 2657:(13): 13044–53. 2642: 2636: 2635: 2591: 2585: 2584: 2574: 2534: 2528: 2527: 2498: 2492: 2491: 2459: 2453: 2452: 2416: 2410: 2409: 2381: 2375: 2374: 2364: 2340: 2334: 2333: 2332: 2328: 2321: 2315: 2314: 2295:10.1038/373663b0 2272: 2263: 2257: 2256: 2238: 2232: 2231: 2212:10.1038/nmeth819 2197: 2188: 2182: 2181: 2171: 2161: 2144:(6): 2306–2311. 2123: 2112: 2111: 2093: 2067: 2058: 2047: 2046: 2013:(5280): 1392–5. 2002: 1991: 1990: 1980: 1954: 1948: 1947: 1901: 1895: 1894: 1864: 1858: 1857: 1827: 1821: 1820: 1790: 1784: 1783: 1749: 1743: 1742: 1708: 1702: 1701: 1673: 1667: 1666: 1656: 1624: 1618: 1617: 1582:Salih A (2019). 1579: 1573: 1572: 1546: 1537: 1524: 1523: 1495: 1489: 1488: 1455:(5280): 1392–5. 1444: 1117: 1092: 1068: 1055:(highlighted as 1039: 1038: 863:phycobiliprotein 822:. These include 749:Most species of 406:proof of concept 349:visible spectrum 242: 241: 216: 196: 195: 133: 132: 38: 26: 25: 5541: 5540: 5536: 5535: 5534: 5532: 5531: 5530: 5521:Bioluminescence 5511:Protein imaging 5496:Protein methods 5486: 5485: 5484: 5479: 5456: 5420: 5416:Secretion assay 5392: 5349: 5243: 5233: 5153:Osamu Shimomura 5119: 5118: 5117: 5102: 5101: 5097: 5090: 5085: 5071: 5043: 5022: 5020:Further reading 5017: 5008: 5006: 5002: 5001: 4997: 4982: 4978: 4947: 4943: 4934: 4933: 4929: 4880: 4876: 4869: 4865: 4855: 4853: 4844: 4843: 4839: 4828: 4824: 4815: 4813: 4805: 4804: 4800: 4755: 4751: 4706: 4702: 4663: 4659: 4632:New Phytologist 4628: 4624: 4601:10.1038/nbt1044 4585: 4581: 4536: 4532: 4523: 4521: 4511: 4507: 4468: 4464: 4419: 4415: 4384: 4380: 4340: 4336: 4305:(20): 1384–96. 4291: 4287: 4232: 4228: 4191: 4187: 4142: 4138: 4101:(7166): 56–62. 4091: 4087: 4056: 4052: 4009: 4005: 3952: 3948: 3901: 3897: 3850: 3846: 3807: 3803: 3764: 3760: 3705: 3701: 3669: 3665: 3634: 3630: 3599: 3595: 3548: 3544: 3509: 3505: 3473: 3466: 3421: 3417: 3378: 3374: 3329: 3325: 3294: 3290: 3251: 3247: 3202: 3198: 3136: 3132: 3093: 3089: 3074: 3052: 3048: 3003: 2996: 2973:10.1038/nbt1293 2957: 2953: 2914: 2910: 2871: 2867: 2854: 2853: 2849: 2794: 2790: 2735: 2731: 2684: 2680: 2643: 2639: 2602:(6689): 192–5. 2592: 2588: 2535: 2531: 2499: 2495: 2460: 2456: 2433:10.1038/nbt1172 2417: 2413: 2382: 2378: 2341: 2337: 2330: 2322: 2318: 2281:(6516): 663–4. 2270: 2264: 2260: 2253: 2239: 2235: 2195: 2189: 2185: 2124: 2115: 2076:(10): 1246–51. 2065: 2059: 2050: 2003: 1994: 1971:(2–3): 277–80. 1955: 1951: 1914:(5148): 802–5. 1902: 1898: 1865: 1861: 1840:(12): 2656–62. 1828: 1824: 1791: 1787: 1772: 1750: 1746: 1731: 1709: 1705: 1674: 1670: 1625: 1621: 1606: 1580: 1576: 1544: 1538: 1527: 1506:(17): 3448–53. 1496: 1492: 1445: 1441: 1437: 1410: 1401:San Juan Island 1393:Steel Jellyfish 1364: 1317: 1315:Transgenic pets 1304: 1295: 1276:viability assay 1177:fusion proteins 1169: 1163: 1154: 1135: 1133:Reporter assays 1130: 1111: 1104: 1084: 1060: 992: 867:allophycocyanin 847:A new class of 808: 769:photoprotective 721:bioluminescence 695:Live lancelet ( 689: 661: 560: 558:GFP derivatives 499:Douglas Prasher 492:interacts with 482:Osamu Shimomura 462: 438: 418:Osamu Shimomura 341:excitation peak 212: 45: 24: 21:Pembrey Airport 17: 12: 11: 5: 5539: 5529: 5528: 5523: 5518: 5513: 5508: 5503: 5498: 5481: 5480: 5478: 5477: 5472: 5466: 5464: 5458: 5457: 5455: 5454: 5449: 5444: 5439: 5434: 5428: 5426: 5422: 5421: 5419: 5418: 5413: 5408: 5402: 5400: 5394: 5393: 5391: 5390: 5385: 5380: 5375: 5370: 5365: 5359: 5357: 5355:Bioinformatics 5351: 5350: 5348: 5347: 5342: 5337: 5332: 5327: 5322: 5317: 5312: 5307: 5302: 5293: 5288: 5279: 5274: 5269: 5264: 5259: 5253: 5251: 5245: 5244: 5232: 5231: 5224: 5217: 5209: 5203: 5202: 5181: 5175: 5169: 5163: 5161:Roger Y. Tsien 5157:Martin Chalfie 5146: 5141: 5136: 5130: 5125: 5116: 5115: 5110: 5104: 5103: 5092: 5091: 5089: 5088:External links 5086: 5084: 5083: 5069: 5056: 5041: 5023: 5021: 5018: 5016: 5015: 4995: 4986:Physik Journal 4976: 4941: 4927: 4892:Nature Methods 4874: 4863: 4837: 4822: 4798: 4749: 4700: 4657: 4638:(3): 461–468. 4622: 4579: 4530: 4505: 4478:(7): 406–410. 4462: 4413: 4394:(4): 360–369. 4378: 4334: 4285: 4246:(16): 9280–5. 4226: 4185: 4156:(1–4): 53–67. 4136: 4085: 4066:(12): 605–13. 4050: 4003: 3946: 3895: 3844: 3801: 3768:Nature Methods 3758: 3699: 3663: 3628: 3593: 3542: 3503: 3464: 3435:(3): 539–551. 3415: 3388:(3): 1103–63. 3372: 3323: 3288: 3245: 3216:(2): 111–129. 3196: 3130: 3087: 3072: 3046: 3011:Nature Methods 2994: 2967:(4): 443–445. 2951: 2908: 2887:10.1038/nbt778 2865: 2847: 2788: 2729: 2678: 2637: 2586: 2529: 2493: 2454: 2411: 2392:(1): 121–127. 2376: 2335: 2316: 2258: 2251: 2233: 2200:Nature Methods 2183: 2113: 2048: 1992: 1949: 1896: 1859: 1822: 1785: 1770: 1744: 1729: 1703: 1668: 1619: 1604: 1574: 1525: 1490: 1438: 1436: 1433: 1432: 1431: 1426: 1421: 1416: 1409: 1406: 1363: 1360: 1316: 1313: 1303: 1300: 1294: 1291: 1251:, tracking of 1165:Main article: 1162: 1159: 1153: 1150: 1134: 1131: 1129: 1126: 1103: 1100: 1097: 1096: 1081:ribbon diagram 1072: 1057:ball-and-stick 991: 988: 913:stoichiometric 911:and produce a 853:cyanobacterial 807: 804: 688: 685: 673:cell membranes 669:palmitoylation 660: 657: 651:properties of 559: 556: 511:Martin Chalfie 461: 458: 437: 434: 422:Martin Chalfie 414:Roger Y. Tsien 271: 270: 267: 266: 261: 257: 256: 251: 247: 246: 238: 237: 232: 226: 225: 222: 218: 217: 210: 206: 205: 201: 200: 192: 191: 188: 187: 182: 176: 175: 162: 156: 155: 145: 138: 137: 129: 128: 115: 109: 108: 103: 97: 96: 91: 85: 84: 79: 72: 71: 66: 60: 59: 56: 52: 51: 47: 46: 39: 31: 30: 15: 9: 6: 4: 3: 2: 5538: 5527: 5524: 5522: 5519: 5517: 5514: 5512: 5509: 5507: 5504: 5502: 5499: 5497: 5494: 5493: 5491: 5476: 5473: 5471: 5468: 5467: 5465: 5463: 5459: 5453: 5452:Yeast display 5450: 5448: 5445: 5443: 5442:Phage display 5440: 5438: 5435: 5433: 5430: 5429: 5427: 5423: 5417: 5414: 5412: 5411:Protein assay 5409: 5407: 5404: 5403: 5401: 5399: 5395: 5389: 5386: 5384: 5381: 5379: 5376: 5374: 5371: 5369: 5366: 5364: 5361: 5360: 5358: 5356: 5352: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5326: 5323: 5321: 5318: 5316: 5313: 5311: 5308: 5306: 5303: 5301: 5297: 5294: 5292: 5289: 5287: 5283: 5280: 5278: 5275: 5273: 5270: 5268: 5265: 5263: 5260: 5258: 5255: 5254: 5252: 5250: 5246: 5241: 5237: 5230: 5225: 5223: 5218: 5216: 5211: 5210: 5207: 5200: 5196: 5195: 5190: 5186: 5182: 5179: 5176: 5173: 5170: 5167: 5164: 5162: 5158: 5154: 5150: 5147: 5145: 5142: 5140: 5137: 5135: 5131: 5129: 5126: 5124: 5121: 5120: 5114: 5111: 5109: 5106: 5105: 5100: 5095: 5080: 5076: 5072: 5066: 5062: 5057: 5052: 5048: 5044: 5038: 5033: 5032: 5025: 5024: 5005: 4999: 4991: 4987: 4980: 4972: 4968: 4964: 4960: 4956: 4952: 4945: 4937: 4931: 4923: 4919: 4914: 4909: 4905: 4901: 4898:(10): 853–9. 4897: 4893: 4889: 4885: 4878: 4872: 4867: 4851: 4847: 4841: 4833: 4826: 4812: 4808: 4802: 4794: 4790: 4785: 4780: 4776: 4772: 4768: 4764: 4760: 4753: 4745: 4741: 4737: 4733: 4728: 4723: 4720:(4): 455–63. 4719: 4715: 4711: 4704: 4696: 4692: 4688: 4684: 4680: 4676: 4672: 4668: 4661: 4653: 4649: 4645: 4641: 4637: 4633: 4626: 4618: 4614: 4610: 4606: 4602: 4598: 4594: 4590: 4583: 4575: 4571: 4566: 4561: 4557: 4553: 4550:(2): 141–52. 4549: 4545: 4541: 4534: 4520: 4516: 4509: 4501: 4497: 4493: 4489: 4485: 4481: 4477: 4473: 4466: 4458: 4454: 4449: 4444: 4440: 4436: 4433:(4): 559–66. 4432: 4428: 4424: 4417: 4409: 4405: 4401: 4397: 4393: 4389: 4382: 4374: 4370: 4366: 4362: 4358: 4354: 4351:(5): 745–63. 4350: 4346: 4338: 4330: 4326: 4321: 4316: 4312: 4308: 4304: 4300: 4296: 4289: 4281: 4277: 4272: 4267: 4262: 4257: 4253: 4249: 4245: 4241: 4237: 4230: 4222: 4218: 4213: 4208: 4205:(6): 977–85. 4204: 4200: 4196: 4189: 4181: 4177: 4172: 4167: 4163: 4159: 4155: 4151: 4147: 4140: 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4104: 4100: 4096: 4089: 4081: 4077: 4073: 4069: 4065: 4061: 4054: 4046: 4042: 4038: 4034: 4030: 4026: 4023:(6): 927–38. 4022: 4018: 4014: 4007: 3999: 3995: 3990: 3985: 3981: 3977: 3973: 3969: 3965: 3961: 3957: 3950: 3942: 3938: 3933: 3928: 3923: 3918: 3914: 3910: 3906: 3899: 3891: 3887: 3883: 3879: 3875: 3871: 3867: 3863: 3859: 3855: 3848: 3840: 3836: 3832: 3828: 3824: 3820: 3816: 3812: 3805: 3797: 3793: 3789: 3785: 3781: 3777: 3774:(12): 902–4. 3773: 3769: 3762: 3754: 3750: 3745: 3740: 3735: 3730: 3726: 3722: 3718: 3714: 3710: 3703: 3695: 3691: 3687: 3683: 3679: 3675: 3667: 3659: 3655: 3651: 3647: 3644:(4): 1331–6. 3643: 3639: 3632: 3624: 3620: 3616: 3612: 3608: 3604: 3597: 3589: 3585: 3580: 3575: 3570: 3565: 3561: 3557: 3553: 3546: 3538: 3534: 3530: 3526: 3522: 3518: 3514: 3507: 3499: 3495: 3491: 3487: 3483: 3479: 3471: 3469: 3460: 3456: 3451: 3446: 3442: 3438: 3434: 3430: 3426: 3419: 3411: 3407: 3403: 3399: 3395: 3391: 3387: 3383: 3376: 3368: 3364: 3359: 3354: 3350: 3346: 3342: 3338: 3334: 3327: 3319: 3315: 3311: 3307: 3303: 3299: 3292: 3284: 3280: 3276: 3272: 3268: 3264: 3260: 3256: 3249: 3241: 3237: 3232: 3227: 3223: 3219: 3215: 3211: 3207: 3200: 3192: 3188: 3183: 3178: 3174: 3170: 3166: 3162: 3158: 3154: 3150: 3146: 3142: 3134: 3126: 3122: 3118: 3114: 3110: 3106: 3103:(1): 509–44. 3102: 3098: 3091: 3083: 3079: 3075: 3069: 3065: 3061: 3057: 3050: 3042: 3038: 3033: 3028: 3024: 3020: 3016: 3012: 3008: 3001: 2999: 2990: 2986: 2982: 2978: 2974: 2970: 2966: 2962: 2955: 2947: 2943: 2939: 2935: 2931: 2927: 2923: 2919: 2912: 2904: 2900: 2896: 2892: 2888: 2884: 2880: 2876: 2869: 2861: 2857: 2851: 2843: 2839: 2834: 2829: 2824: 2819: 2815: 2811: 2808:(7): e11517. 2807: 2803: 2799: 2792: 2784: 2780: 2775: 2770: 2765: 2760: 2756: 2752: 2748: 2744: 2740: 2733: 2725: 2721: 2717: 2713: 2709: 2705: 2701: 2697: 2693: 2689: 2682: 2674: 2670: 2665: 2660: 2656: 2652: 2648: 2641: 2633: 2629: 2625: 2621: 2617: 2616:10.1038/28190 2613: 2609: 2605: 2601: 2597: 2590: 2582: 2578: 2573: 2568: 2564: 2560: 2556: 2552: 2548: 2544: 2540: 2533: 2525: 2521: 2517: 2513: 2509: 2505: 2497: 2489: 2485: 2481: 2477: 2473: 2469: 2465: 2458: 2450: 2446: 2442: 2438: 2434: 2430: 2426: 2422: 2415: 2407: 2403: 2399: 2395: 2391: 2387: 2380: 2372: 2368: 2363: 2358: 2354: 2350: 2346: 2339: 2326: 2320: 2312: 2308: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2269: 2262: 2254: 2248: 2244: 2237: 2229: 2225: 2221: 2217: 2213: 2209: 2206:(12): 905–9. 2205: 2201: 2194: 2187: 2179: 2175: 2170: 2165: 2160: 2155: 2151: 2147: 2143: 2139: 2138: 2133: 2131: 2122: 2120: 2118: 2109: 2105: 2101: 2097: 2092: 2087: 2083: 2079: 2075: 2071: 2064: 2057: 2055: 2053: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2012: 2008: 2001: 1999: 1997: 1988: 1984: 1979: 1974: 1970: 1966: 1965: 1960: 1953: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1917: 1913: 1909: 1908: 1900: 1892: 1888: 1884: 1880: 1877:(2): 229–33. 1876: 1872: 1871: 1863: 1855: 1851: 1847: 1843: 1839: 1835: 1834: 1826: 1818: 1814: 1810: 1806: 1803:(3): 223–39. 1802: 1798: 1797: 1789: 1781: 1777: 1773: 1767: 1763: 1759: 1755: 1748: 1740: 1736: 1732: 1730:1-59259-086-1 1726: 1722: 1718: 1714: 1707: 1699: 1695: 1691: 1687: 1683: 1679: 1672: 1664: 1660: 1655: 1650: 1646: 1642: 1639:(4): 338–69. 1638: 1634: 1630: 1623: 1615: 1611: 1607: 1605:9781351129404 1601: 1597: 1593: 1589: 1585: 1578: 1570: 1566: 1562: 1558: 1554: 1550: 1543: 1536: 1534: 1532: 1530: 1521: 1517: 1513: 1509: 1505: 1501: 1494: 1486: 1482: 1478: 1474: 1470: 1466: 1462: 1458: 1454: 1450: 1443: 1439: 1430: 1427: 1425: 1422: 1420: 1417: 1415: 1412: 1411: 1402: 1398: 1394: 1390: 1386: 1382: 1380: 1376: 1373:in 1962, the 1372: 1368: 1359: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1329: 1321: 1312: 1310: 1299: 1290: 1287: 1283: 1281: 1277: 1273: 1268: 1264: 1262: 1258: 1254: 1250: 1247: 1243: 1239: 1238: 1233: 1232: 1226: 1223: 1218: 1216: 1212: 1211: 1206: 1201: 1197: 1194: 1190: 1186: 1178: 1173: 1168: 1158: 1149: 1147: 1142: 1140: 1139:reporter gene 1125: 1122: 1118: 1116: 1109: 1091: 1087: 1082: 1077: 1073: 1067: 1063: 1058: 1054: 1050: 1045: 1041: 1033: 1029: 1026: 1022: 1018: 1014: 1009: 1005: 1001: 997: 987: 980: 976: 974: 970: 966: 963:derived from 962: 958: 954: 953:quantum yield 950: 946: 942: 938: 935:and uses the 934: 930: 926: 922: 918: 914: 910: 906: 902: 898: 895:, known as a 894: 890: 887: 883: 880: 876: 872: 868: 864: 860: 859: 854: 850: 845: 837: 833: 831: 827: 825: 821: 812: 803: 802: 798: 797:quantum yield 794: 793: 788: 784: 780: 777: 772: 770: 766: 762: 758: 757: 752: 747: 745: 744:Friday Harbor 740: 735: 730: 726: 722: 715: 714: 711: 705: 698: 693: 684: 682: 678: 674: 670: 666: 656: 654: 650: 646: 642: 637: 635: 634:synaptobrevin 629: 627: 621: 618: 609: 605: 602: 596: 593: 591: 590:quantum yield 587: 582: 578: 574: 564: 555: 553: 548: 544: 540: 539: 533: 530: 529: 524: 523: 518: 517: 512: 508: 504: 500: 495: 491: 487: 483: 479: 475: 471: 467: 452: 446: 442: 433: 429: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 382: 380: 376: 372: 368: 364: 363: 358: 354: 353:quantum yield 350: 346: 342: 338: 335:The GFP from 333: 331: 327: 323: 319: 315: 311: 307: 306: 302: 298: 294: 290: 286: 282: 278: 265: 262: 258: 255: 252: 248: 243: 239: 236: 233: 231: 227: 223: 219: 215: 211: 207: 202: 197: 186: 183: 181: 177: 174: 170: 166: 163: 161: 157: 153: 149: 146: 143: 139: 134: 130: 127: 123: 119: 116: 114: 110: 107: 104: 102: 98: 95: 92: 90: 86: 83: 80: 77: 73: 70: 67: 65: 61: 57: 53: 48: 43: 37: 32: 27: 22: 5506:Cell imaging 5437:mRNA display 5406:Enzyme assay 5267:Western blot 5261: 5249:Experimental 5192: 5098: 5060: 5030: 5007:. Retrieved 4998: 4989: 4985: 4979: 4954: 4950: 4944: 4930: 4895: 4891: 4877: 4866: 4854:. Retrieved 4850:the original 4840: 4825: 4814:. Retrieved 4810: 4801: 4766: 4762: 4752: 4717: 4713: 4703: 4673:(9): 660–7. 4670: 4666: 4660: 4635: 4631: 4625: 4595:(1): 102–7. 4592: 4588: 4582: 4547: 4543: 4533: 4522:. Retrieved 4518: 4508: 4475: 4471: 4465: 4430: 4426: 4416: 4391: 4387: 4381: 4348: 4344: 4337: 4302: 4299:Gene Therapy 4298: 4288: 4243: 4239: 4229: 4202: 4198: 4188: 4153: 4149: 4139: 4098: 4094: 4088: 4063: 4059: 4053: 4020: 4016: 4006: 3963: 3959: 3949: 3912: 3908: 3898: 3857: 3853: 3847: 3814: 3810: 3804: 3771: 3767: 3761: 3716: 3712: 3702: 3677: 3673: 3666: 3641: 3637: 3631: 3606: 3602: 3596: 3559: 3555: 3545: 3512: 3506: 3481: 3478:Biochemistry 3477: 3432: 3428: 3418: 3385: 3381: 3375: 3340: 3337:Biochemistry 3336: 3326: 3301: 3298:Biochemistry 3297: 3291: 3258: 3254: 3248: 3213: 3209: 3199: 3148: 3144: 3133: 3100: 3096: 3090: 3055: 3049: 3017:(9): 763–9. 3014: 3010: 2964: 2960: 2954: 2921: 2917: 2911: 2881:(2): 191–4. 2878: 2874: 2868: 2859: 2850: 2805: 2801: 2791: 2749:(1): 28350. 2746: 2742: 2732: 2691: 2687: 2681: 2654: 2650: 2640: 2599: 2595: 2589: 2546: 2542: 2532: 2507: 2504:Biochemistry 2503: 2496: 2471: 2467: 2457: 2427:(1): 79–88. 2424: 2420: 2414: 2389: 2385: 2379: 2352: 2348: 2338: 2319: 2278: 2274: 2261: 2242: 2236: 2203: 2199: 2186: 2141: 2135: 2129: 2073: 2069: 2010: 2006: 1968: 1964:FEBS Letters 1962: 1952: 1911: 1905: 1899: 1874: 1868: 1862: 1837: 1833:Biochemistry 1831: 1825: 1800: 1794: 1788: 1753: 1747: 1712: 1706: 1681: 1677: 1671: 1636: 1632: 1622: 1587: 1577: 1552: 1548: 1503: 1500:Biochemistry 1499: 1493: 1452: 1448: 1442: 1392: 1365: 1326: 1305: 1296: 1288: 1284: 1269: 1265: 1235: 1229: 1227: 1219: 1208: 1202: 1198: 1182: 1155: 1145: 1143: 1136: 1128:Applications 1123: 1119: 1112: 1020: 1003: 993: 985: 947:has a large 856: 846: 842: 828: 819: 817: 801:A. victoria. 800: 790: 773: 754: 748: 738: 729:fluorescence 718: 708: 696: 681:dimerization 664: 662: 659:Nomenclature 638: 630: 622: 614: 597: 594: 584:EGFP has an 572: 569: 542: 536: 534: 526: 520: 514: 502: 485: 477: 463: 444: 430: 383: 360: 339:has a major 336: 334: 318:sea anemones 309: 303: 296: 289:fluorescence 280: 276: 274: 41: 5475:Vertico SMI 5335:Protein NMR 4832:"GFP Bunny" 4544:Cancer Cell 4388:Cryobiology 3609:(1): 1–23. 3151:(1): 4155. 2918:ChemBioChem 1684:(1): 9–18. 1414:Protein tag 1332:Eduardo Kac 1280:trypan blue 1272:cryobiology 1257:viral entry 1222:Vertico SMI 1205:spermatozoa 1053:chromophore 1049:beta barrel 1025:chromophore 1013:chromophore 1008:beta barrel 1000:chromophore 996:beta barrel 937:chromophore 931:or produce 923:formation. 921:chromophore 886:chromophore 877:) in 2016. 783:Pontellidae 756:A. victoria 739:A. victoria 734:chromophore 697:B. floridae 649:fluorescent 577:Roger Tsien 547:chromophore 486:A. victoria 367:chromophore 337:A. victoria 293:ultraviolet 254:Swiss-model 204:Identifiers 50:Identifiers 5490:Categories 5009:2007-06-14 4884:Poeschla E 4856:August 30, 4816:2016-03-23 4769:: pls003. 4763:AoB Plants 4524:2011-06-13 2464:Getzoff ED 2091:1911/19233 1555:: 509–44. 1435:References 1193:phototoxic 1152:Advantages 1021:maturation 994:GFP has a 941:biliverdin 915:amount of 889:biliverdin 787:Aetideidae 761:endogenous 713:mimocerami 522:C. elegans 436:Background 402:biosensors 392:, the GFP 379:substrates 345:wavelength 322:zoanithids 250:Structures 245:Search for 148:structures 4957:: 41–45. 3796:205418407 3562:: e2269. 3537:0009-2614 3283:226971864 3173:2041-1723 1614:213688192 1371:Shimomura 1336:zebrafish 1293:Split GFP 1261:influenza 990:Structure 901:Jellyfish 687:In nature 677:monomeric 474:luciferin 371:cofactors 357:sea pansy 330:lancelets 301:jellyfish 94:IPR011584 5242:of study 5236:Proteins 5079:56614624 5051:60321612 4971:57558522 4951:Leonardo 4922:21909101 4886:(2011). 4793:22479674 4736:10406127 4695:23198182 4687:14749892 4652:33873315 4617:25833063 4609:15580262 4574:18242514 4500:54971962 4457:20064974 4408:10924267 4373:42499768 4365:20094912 4329:18480844 4280:12883000 4221:16364901 4180:18679801 4123:17972876 4080:16269193 4045:18162278 4037:19548231 3998:20550887 3941:31434714 3890:45058411 3882:12228718 3839:11090358 3788:16299474 3753:19553219 3694:23143852 3658:62828580 3623:15596111 3588:27547572 3498:15078092 3459:18470931 3429:Proteins 3410:10767597 3402:20664080 3367:18759496 3275:33196077 3240:27814948 3191:37438348 3182:10338489 3082:36107338 3041:27479328 2981:17351616 2938:27781394 2903:52887792 2895:12524551 2842:20644720 2802:PLOS ONE 2783:27311567 2724:14957077 2716:11988576 2673:14722062 2581:22434194 2524:19754158 2488:11929238 2441:16369541 2406:15802229 2311:40179694 2228:10024284 2220:16299475 2108:34713931 2043:43030290 1817:13911999 1780:90224559 1739:21390811 1698:11682170 1663:18691124 1485:43030290 1408:See also 1242:Brainbow 1231:in vitro 1225:(2CLM). 1093:​. 1069:​. 1059:). From 779:copepods 765:plankton 751:lancelet 725:aequorin 710:Pontella 490:aequorin 466:aequorin 326:copepods 264:InterPro 209:Organism 165:RCSB PDB 89:InterPro 5240:methods 5199:PDBe-KB 5189:UniProt 4913:4006694 4830:Kac E. 4784:3296078 4565:2262951 4480:Bibcode 4448:3523390 4320:2575058 4248:Bibcode 4171:2775812 4131:4402093 4103:Bibcode 3989:2884236 3968:Bibcode 3932:6779441 3862:Bibcode 3854:Science 3819:Bibcode 3811:Science 3744:2700921 3721:Bibcode 3579:4974937 3517:Bibcode 3450:2908022 3358:2643082 3318:6128025 3231:5272834 3153:Bibcode 3125:8138960 3117:9759496 3032:5007177 2989:7335755 2946:4301322 2833:2904364 2810:Bibcode 2774:4911609 2751:Bibcode 2696:Bibcode 2688:Science 2632:4320849 2624:9671304 2604:Bibcode 2572:3316892 2551:Bibcode 2549:: 751. 2449:2966399 2371:8707053 2303:7854443 2283:Bibcode 2178:9122190 2146:Bibcode 2100:9631087 2035:8703075 2015:Bibcode 2007:Science 1987:8137953 1944:9043327 1936:8303295 1916:Bibcode 1907:Science 1891:1347277 1854:4151620 1654:2904242 1569:9759496 1477:8703075 1457:Bibcode 1449:Science 1356:beagles 1340:GloFish 1237:in vivo 1083:. From 893:protein 538:Science 528:Science 516:E. coli 375:enzymes 285:protein 283:) is a 260:Domains 230:UniProt 69:PF01353 5238:: key 5194:P42212 5096:about 5077:  5067:  5049:  5039:  4969:  4920:  4910:  4791:  4781:  4744:292648 4742:  4734:  4693:  4685:  4650:  4615:  4607:  4572:  4562:  4498:  4455:  4445:  4406:  4371:  4363:  4327:  4317:  4278:  4271:170909 4268:  4219:  4199:Neuron 4178:  4168:  4129:  4121:  4095:Nature 4078:  4043:  4035:  3996:  3986:  3939:  3929:  3888:  3880:  3837:  3794:  3786:  3751:  3741:  3692:  3656:  3621:  3586:  3576:  3535:  3496:  3457:  3447:  3408:  3400:  3365:  3355:  3316:  3281:  3273:  3238:  3228:  3189:  3179:  3171:  3123:  3115:  3080:  3070:  3039:  3029:  2987:  2979:  2944:  2936:  2901:  2893:  2860:FPbase 2856:"eGFP" 2840:  2830:  2781:  2771:  2722:  2714:  2671:  2630:  2622:  2596:Nature 2579:  2569:  2522:  2486:  2447:  2439:  2404:  2369:  2331:  2309:  2301:  2275:Nature 2249:  2226:  2218:  2176:  2166:  2106:  2098:  2041:  2033:  1985:  1942:  1934:  1889:  1852:  1815:  1778:  1768:  1737:  1727:  1696:  1661:  1651:  1612:  1602:  1567:  1518:  1483:  1475:  1246:neuron 969:smURFP 945:smURFP 929:oxygen 925:smURFP 909:oxygen 903:- and 879:smURFP 875:smURFP 776:marine 723:(from 617:indole 573:Nature 484:. In 470:enzyme 455:color. 420:, and 314:corals 235:P42212 221:Symbol 180:PDBsum 154:  144:  126:SUPFAM 82:CL0069 55:Symbol 5398:Assay 4992:: 12. 4967:S2CID 4740:S2CID 4691:S2CID 4613:S2CID 4496:S2CID 4369:S2CID 4127:S2CID 4041:S2CID 3886:S2CID 3792:S2CID 3674:Small 3654:S2CID 3556:PeerJ 3406:S2CID 3279:S2CID 3121:S2CID 2985:S2CID 2942:S2CID 2899:S2CID 2720:S2CID 2628:S2CID 2445:S2CID 2307:S2CID 2271:(PDF) 2224:S2CID 2196:(PDF) 2169:20083 2104:S2CID 2066:(PDF) 2039:S2CID 1940:S2CID 1776:S2CID 1610:S2CID 1545:(PDF) 1520:28749 1481:S2CID 1274:as a 965:coral 919:upon 905:coral 897:lyase 824:dsRed 653:roGFP 645:redox 641:roGFP 343:at a 310:avGFP 122:SCOPe 113:SCOP2 5187:for 5159:and 5075:OCLC 5065:ISBN 5047:OCLC 5037:ISBN 4918:PMID 4858:2016 4789:PMID 4767:2012 4732:PMID 4683:PMID 4648:PMID 4605:PMID 4570:PMID 4453:PMID 4404:PMID 4361:PMID 4325:PMID 4276:PMID 4217:PMID 4176:PMID 4119:PMID 4076:PMID 4033:PMID 3994:PMID 3937:PMID 3878:PMID 3835:PMID 3784:PMID 3749:PMID 3690:PMID 3619:PMID 3584:PMID 3533:ISSN 3494:PMID 3455:PMID 3398:PMID 3363:PMID 3314:PMID 3271:PMID 3236:PMID 3187:PMID 3169:ISSN 3113:PMID 3078:PMID 3068:ISBN 3037:PMID 2977:PMID 2934:PMID 2891:PMID 2838:PMID 2779:PMID 2712:PMID 2669:PMID 2620:PMID 2577:PMID 2520:PMID 2484:PMID 2437:PMID 2402:PMID 2367:PMID 2349:Gene 2299:PMID 2247:ISBN 2216:PMID 2174:PMID 2096:PMID 2031:PMID 1983:PMID 1932:PMID 1887:PMID 1870:Gene 1850:PMID 1813:PMID 1766:ISBN 1735:PMID 1725:ISBN 1694:PMID 1659:PMID 1600:ISBN 1565:PMID 1516:PMID 1473:PMID 1419:pGLO 1348:cats 1328:Alba 1253:AMPA 1220:The 1189:FITC 1090:1EMA 1079:GFP 1066:1GFL 957:eGFP 865:, α- 785:and 665:mGFP 581:FITC 519:and 507:cDNA 503:Gene 468:(an 394:gene 388:and 386:cell 328:and 275:The 173:PDBj 169:PDBe 152:ECOD 142:Pfam 118:1ema 106:1ema 101:CATH 78:clan 76:Pfam 64:Pfam 5185:PDB 4959:doi 4908:PMC 4900:doi 4779:PMC 4771:doi 4722:doi 4675:doi 4640:doi 4636:155 4597:doi 4560:PMC 4552:doi 4488:doi 4443:PMC 4435:doi 4396:doi 4353:doi 4315:PMC 4307:doi 4266:PMC 4256:doi 4244:100 4207:doi 4166:PMC 4158:doi 4111:doi 4099:450 4068:doi 4025:doi 3984:PMC 3976:doi 3927:PMC 3917:doi 3913:294 3870:doi 3858:297 3827:doi 3815:290 3776:doi 3739:PMC 3729:doi 3717:106 3682:doi 3646:doi 3611:doi 3574:PMC 3564:doi 3525:doi 3486:doi 3445:PMC 3437:doi 3390:doi 3353:PMC 3345:doi 3306:doi 3263:doi 3226:PMC 3218:doi 3177:PMC 3161:doi 3105:doi 3060:doi 3027:PMC 3019:doi 2969:doi 2926:doi 2883:doi 2828:PMC 2818:doi 2769:PMC 2759:doi 2704:doi 2692:296 2659:doi 2655:279 2612:doi 2600:394 2567:PMC 2559:doi 2512:doi 2476:doi 2472:124 2429:doi 2394:doi 2357:doi 2353:173 2291:doi 2279:373 2208:doi 2164:PMC 2154:doi 2086:hdl 2078:doi 2023:doi 2011:273 1973:doi 1969:341 1924:doi 1912:263 1879:doi 1875:111 1842:doi 1805:doi 1758:doi 1717:doi 1686:doi 1682:204 1649:PMC 1641:doi 1592:doi 1557:doi 1508:doi 1465:doi 1453:273 1399:on 1377:'s 1362:Art 1352:HIV 1086:PDB 1062:PDB 1002:4-( 973:Cy5 575:by 384:In 297:GFP 281:GFP 224:GFP 160:PDB 58:GFP 5492:: 5191:: 5155:, 5073:. 5045:. 4988:. 4965:. 4955:38 4953:. 4916:. 4906:. 4894:. 4890:. 4809:. 4787:. 4777:. 4765:. 4761:. 4738:. 4730:. 4718:18 4716:. 4712:. 4689:. 4681:. 4671:22 4669:. 4646:. 4634:. 4611:. 4603:. 4593:23 4591:. 4568:. 4558:. 4548:13 4546:. 4542:. 4517:. 4494:. 4486:. 4474:. 4451:. 4441:. 4431:77 4429:. 4425:. 4402:. 4392:40 4390:. 4367:. 4359:. 4349:19 4347:. 4323:. 4313:. 4303:15 4301:. 4297:. 4274:. 4264:. 4254:. 4242:. 4238:. 4215:. 4203:48 4201:. 4197:. 4174:. 4164:. 4154:36 4152:. 4148:. 4125:. 4117:. 4109:. 4097:. 4074:. 4064:23 4062:. 4039:. 4031:. 4019:. 4015:. 3992:. 3982:. 3974:. 3964:98 3962:. 3958:. 3935:. 3925:. 3911:. 3907:. 3884:. 3876:. 3868:. 3856:. 3833:. 3825:. 3813:. 3790:. 3782:. 3770:. 3747:. 3737:. 3727:. 3715:. 3711:. 3688:. 3676:. 3652:. 3642:33 3640:. 3617:. 3607:51 3605:. 3582:. 3572:. 3558:. 3554:. 3531:. 3523:. 3492:. 3482:43 3480:. 3467:^ 3453:. 3443:. 3433:73 3431:. 3427:. 3404:. 3396:. 3386:90 3384:. 3361:. 3351:. 3341:47 3339:. 3335:. 3312:. 3302:21 3300:. 3277:. 3269:. 3259:48 3257:. 3234:. 3224:. 3214:42 3212:. 3208:. 3185:. 3175:. 3167:. 3159:. 3149:14 3147:. 3143:. 3119:. 3111:. 3101:67 3099:. 3076:. 3066:. 3035:. 3025:. 3015:13 3013:. 3009:. 2997:^ 2983:. 2975:. 2965:25 2963:. 2940:. 2932:. 2922:17 2920:. 2897:. 2889:. 2879:21 2877:. 2858:. 2836:. 2826:. 2816:. 2804:. 2800:. 2777:. 2767:. 2757:. 2745:. 2741:. 2718:. 2710:. 2702:. 2690:. 2667:. 2653:. 2649:. 2626:. 2618:. 2610:. 2598:. 2575:. 2565:. 2557:. 2545:. 2541:. 2518:. 2508:48 2506:. 2482:. 2470:. 2443:. 2435:. 2425:24 2423:. 2400:. 2390:41 2388:. 2365:. 2351:. 2347:. 2305:. 2297:. 2289:. 2277:. 2273:. 2222:. 2214:. 2202:. 2198:. 2172:. 2162:. 2152:. 2142:94 2140:. 2134:. 2116:^ 2102:. 2094:. 2084:. 2074:14 2072:. 2068:. 2051:^ 2037:. 2029:. 2021:. 2009:. 1995:^ 1981:. 1967:. 1961:. 1938:. 1930:. 1922:. 1910:. 1885:. 1873:. 1848:. 1838:13 1836:. 1811:. 1801:59 1799:. 1774:. 1764:. 1733:. 1723:. 1692:. 1680:. 1657:. 1647:. 1635:. 1631:. 1608:. 1598:. 1563:. 1553:67 1551:. 1547:. 1528:^ 1514:. 1504:17 1502:. 1479:. 1471:. 1463:. 1451:. 1381:. 1311:. 1141:. 1088:: 1064:: 975:. 967:. 943:. 939:, 899:. 861:) 655:. 494:Ca 416:, 377:/ 332:. 324:, 320:, 316:, 171:; 167:; 150:/ 124:/ 120:/ 5298:/ 5284:/ 5228:e 5221:t 5214:v 5201:. 5081:. 5053:. 5012:. 4990:4 4973:. 4961:: 4938:. 4924:. 4902:: 4896:8 4860:. 4834:. 4819:. 4795:. 4773:: 4746:. 4724:: 4697:. 4677:: 4654:. 4642:: 4619:. 4599:: 4576:. 4554:: 4527:. 4502:. 4490:: 4482:: 4476:5 4459:. 4437:: 4410:. 4398:: 4375:. 4355:: 4331:. 4309:: 4282:. 4258:: 4250:: 4223:. 4209:: 4182:. 4160:: 4133:. 4113:: 4105:: 4082:. 4070:: 4047:. 4027:: 4021:4 4000:. 3978:: 3970:: 3943:. 3919:: 3892:. 3872:: 3864:: 3841:. 3829:: 3821:: 3798:. 3778:: 3772:2 3755:. 3731:: 3723:: 3696:. 3684:: 3678:9 3660:. 3648:: 3625:. 3613:: 3590:. 3566:: 3560:4 3539:. 3527:: 3519:: 3500:. 3488:: 3461:. 3439:: 3412:. 3392:: 3369:. 3347:: 3320:. 3308:: 3285:. 3265:: 3242:. 3220:: 3193:. 3163:: 3155:: 3127:. 3107:: 3084:. 3062:: 3043:. 3021:: 2991:. 2971:: 2948:. 2928:: 2905:. 2885:: 2862:. 2844:. 2820:: 2812:: 2806:5 2785:. 2761:: 2753:: 2747:6 2726:. 2706:: 2698:: 2675:. 2661:: 2634:. 2614:: 2606:: 2583:. 2561:: 2553:: 2547:3 2526:. 2514:: 2490:. 2478:: 2451:. 2431:: 2408:. 2396:: 2373:. 2359:: 2313:. 2293:: 2285:: 2255:. 2230:. 2210:: 2204:2 2180:. 2156:: 2148:: 2110:. 2088:: 2080:: 2045:. 2025:: 2017:: 1989:. 1975:: 1946:. 1926:: 1918:: 1893:. 1881:: 1856:. 1844:: 1819:. 1807:: 1782:. 1760:: 1741:. 1719:: 1700:. 1688:: 1665:. 1643:: 1637:9 1616:. 1594:: 1571:. 1559:: 1522:. 1510:: 1487:. 1467:: 1459:: 1338:( 1146:p 1110:. 1004:p 873:( 855:( 359:( 279:( 23:.

Index

Pembrey Airport

Pfam
PF01353
Pfam
CL0069
InterPro
IPR011584
CATH
1ema
SCOP2
1ema
SCOPe
SUPFAM
Pfam
structures
ECOD
PDB
RCSB PDB
PDBe
PDBj
PDBsum
structure summary
Aequorea victoria
UniProt
P42212
Swiss-model
InterPro
protein
fluorescence

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.