Knowledge

Ground track

Source 📝

559: 173: 253: 108: 2426: 20: 519: 442:(meaning the orbital plane is not tilted relative to the Earth's equator). The "ground track" in this case consists of a single point on the Earth's equator, above which the satellite sits at all times. Note that the satellite is still orbiting the Earth — its apparent lack of motion is due to the fact that the Earth is rotating about its own 1256: 498:, which may not always be feasible given other launch constraints. At the extremes, a launch site located on the equator can launch directly into any desired inclination, while a hypothetical launch site at the north or south pole would only be able to launch into polar orbits. (While it is possible to perform an 505:
In addition to providing for a wider range of initial orbit inclinations, low-latitude launch sites offer the benefit of requiring less energy to make orbit (at least for prograde orbits, which comprise the vast majority of launches), due to the initial velocity provided by the Earth's rotation. The
348:
than one day will tend to move from east to west along its ground track, in what is called "apparent retrograde" motion. This effect occurs because the satellite orbits more slowly than the speed at which the Earth rotates beneath it. Any satellite in a true retrograde orbit will always move from
566:
As orbital operations are often required to monitor a specific location on Earth, orbits that cover the same ground track periodically are often used. On earth, these orbits are commonly referred to as Earth-repeat orbits, and are often designed with "frozen orbit" parameters to achieve a repeat
85:
A satellite ground track may be thought of as a path along the Earth's surface that traces the movement of an imaginary line between the satellite and the center of the Earth. In other words, the ground track is the set of points at which the satellite will pass directly overhead, or cross the
356:
orbit moves faster near perigee and slower near apogee, it is possible for a satellite to track eastward during part of its orbit and westward during another part. This phenomenon allows for ground tracks that cross over themselves in a single orbit, as in the geosynchronous and Molniya orbits
550:= 0.72). This causes the satellite to "hover" over a region of the northern hemisphere for a long time, while spending very little time over the southern hemisphere. This phenomenon is known as "apogee dwell", and is desirable for communications for high latitude regions. 1025: 571:
effect to shift the orbit so the ground track coincides with that of a previous orbit, so that this essentially balances out the offset in the revolution of the orbited body. The longitudinal rotation after a certain period of time of a planet is given by:
489:
sites at lower latitudes are often preferred partly for the flexibility they allow in orbital inclination; the initial inclination of an orbit is constrained to be greater than or equal to the launch latitude. Vehicles launched from
833: 397:(in other words, as its average orbital speed slows towards the rotational speed of the Earth), its sinusoidal ground track will become compressed longitudinally, meaning that the "nodes" (the points at which it crosses the 474:
is the orbital inclination. In other words, the greater the inclination of a satellite's orbit, the further north and south its ground track will pass. A satellite with an inclination of exactly 90° is said to be in a
389:
of the orbit. If the period of the satellite is slightly longer than an integer fraction of a day, the ground track will shift west over time; if it is slightly shorter, the ground track will shift east.
1019:(sidereal) days. Hence, equating the elapsed time to the orbital period of the satellite and combining the above two equations yields an equation which holds for any orbit that is a repeat orbit: 632: 416:. Its ground track will have a "figure eight" shape over a fixed location on the Earth, crossing the equator twice each day. It will track eastward when it is on the part of its orbit closest to 366: 331:, meaning that it orbits in the same direction as the planet's rotation. A satellite with an orbital inclination between 90° and 180° (or, equivalently, between 0° and −90°) is said to be in a 1251:{\displaystyle j\left|\Delta L_{1}+\Delta L_{2}\right|=j\left|-2\pi {\frac {2\pi {\sqrt {\frac {a^{3}}{\mu }}}}{T_{E}}}-{\frac {3\pi J_{2}R_{e}^{2}cos(i)}{a^{2}(1-e^{2})^{2}}}\right|=k2\pi } 530:
is zero, meaning that perigee and apogee lie in the equatorial plane, then the ground track of the satellite will appear the same above and below the equator (i.e., it will exhibit 180°
502:
maneuver once on orbit, such maneuvers are typically among the most costly, in terms of fuel, of all orbital maneuvers, and are typically avoided or minimized to the extent possible.)
494:, for instance, will have an initial orbital inclination of at least 28°27′, the latitude of the launch site—and to achieve this minimum requires launching with a due east 381:
fraction of a day (e.g., 24 hours, 12 hours, 8 hours, etc.) will follow roughly the same ground track every day. This ground track is shifted east or west depending on the
344:
less than one day will tend to move from west to east along its ground track. This is called "apparent direct" motion. A satellite in a direct orbit with an orbital period
898: 866: 687: 1282: 1330: 1308: 1017: 997: 970: 945: 920: 658: 506:
desire for equatorial launch sites, coupled with geopolitical and logistical realities, has fostered the development of floating launch platforms, most notably
405:
than the Earth's rotational period, an increase in the orbital period corresponds to a longitudinal stretching out of the (apparent retrograde) ground track.
706: 211:, this being the shortest distance between two points on the Earth's surface. In order to follow a specified ground track, a pilot must adjust their 1420:
Direct orbits are by far the most common for artificial satellites, as the initial velocity imparted by the Earth's rotation at launch reduces the
1615: 562:
Plot of repeat ground track solutions at different mean altitudes from 300km to 1000km, for a circular orbit at inclination 97.44 degrees.
538:.) If the argument of perigee is non-zero, however, the satellite will behave differently in the northern and southern hemispheres. The 1474: 2303: 1483: 2363: 578: 1529:
Low, Samuel Y. W. (January 2022). "Designing a Reference Trajectory for Frozen Repeat Near-Equatorial Low Earth Orbits".
401:) will become closer together until at geosynchronous orbit they lie directly on top of each other. For orbital periods 1580: 1513: 300: 155: 542:, with an argument of perigee near −90°, is an example of such a case. In a Molniya orbit, apogee occurs at a high 282: 137: 2358: 2238: 1657: 1285: 2323: 2077: 382: 2396: 2035: 2026: 1763: 948: 278: 133: 274: 129: 1625: 31:. The light and dark regions represent the regions of the Earth in daylight and in the night, respectively. 2343: 1813: 2288: 1593: 439: 24: 458:
is the angle formed between the plane of an orbit and the equatorial plane of the Earth. The geographic
2268: 2095: 499: 2406: 1382:, the moving line that separates the illuminated day side and the dark night side of a planetary body 235:
The ground track of a satellite can take a number of different forms, depending on the values of the
2391: 1916: 1362: 386: 263: 184: 118: 2465: 2401: 1709: 1351: 267: 122: 2450: 2263: 1865: 1785: 1773: 1570: 2386: 2328: 2298: 2086: 1963: 1931: 1901: 1860: 1845: 1724: 1408: 567:
ground track orbit with stable (minimally time-varying) orbit elements. These orbits use the
527: 869: 2411: 2233: 2017: 1906: 1875: 1803: 1778: 1753: 1714: 1695: 1650: 1538: 1404: 1400: 973: 876: 844: 665: 432: 413: 353: 1267: 8: 2460: 2273: 2068: 1808: 1346: 923: 531: 428: 220: 212: 1542: 16:
Path on the surface of the Earth or another body directly below an aircraft or satellite
1946: 1835: 1733: 1554: 1379: 1368: 1356: 1315: 1293: 1002: 982: 955: 930: 905: 643: 91: 72: 558: 2313: 2211: 2141: 1896: 1850: 1768: 1576: 1558: 1509: 1479: 828:{\displaystyle \Delta L_{2}=-{\frac {3\pi J_{2}R_{e}^{2}cos(i)}{a^{2}(1-e^{2})^{2}}}} 480: 349:
east to west along its ground track, regardless of the length of its orbital period.
239:, parameters that define the size, shape, and orientation of the satellite's orbit. 2293: 2225: 1989: 1951: 1825: 1795: 1748: 1546: 697: 568: 333: 236: 2455: 2333: 1926: 1830: 1820: 1719: 1643: 1619: 1365:, the time elapsed between observations of the same point on Earth by a satellite 1310:
is the number of orbital revolutions after which the same ground track is covered
689:
is the time for a full revolution of the orbiting body, in the case of Earth one
1444: 365: 2429: 2381: 2373: 2368: 2253: 2248: 2179: 2159: 2150: 1743: 1729: 1705: 1700: 1675: 1374: 491: 443: 394: 341: 327: 204: 28: 2444: 2283: 2278: 2197: 1840: 1758: 1333: 690: 539: 486: 370: 75: 82:
onto the surface of the Earth (or whatever body the satellite is orbiting).
2258: 2132: 2115: 1973: 1870: 1738: 535: 435:
of zero (meaning the orbit is circular), and an inclination of zero in the
208: 2353: 2188: 1958: 1938: 1855: 476: 455: 318: 172: 1921: 1635: 507: 60: 2338: 1690: 1550: 1359:, the period in which a spacecraft is visible above the local horizon 314: 56: 252: 107: 543: 459: 52: 19: 321:
between zero and ninety degrees is said to be in what is called a
2243: 1421: 495: 417: 398: 378: 1604: 393:
As the orbital period of a satellite increases, approaching the
421: 224: 87: 2048: 1667: 79: 48: 44: 1622: (archived 2020-09-30) Small Satellites (software code) 436: 216: 1599: 518: 412:
to the rotational period of the Earth is said to be in a
1609: 1630: 1399:
This article discusses closed orbits, or orbits with
1318: 1296: 1270: 1028: 1005: 985: 958: 933: 908: 879: 847: 709: 668: 646: 627:{\displaystyle \Delta L_{1}=-2\pi {\frac {T}{T_{E}}}} 581: 479:, meaning it passes over the Earth's north and south 63:. In the case of satellites, it is also known as a 1324: 1302: 1276: 1250: 1011: 991: 964: 939: 914: 892: 860: 827: 681: 652: 626: 207:, ground tracks typically approximate an arc of a 223:and dangerous areas, and to pass near navigation 2442: 513: 427:A special case of the geosynchronous orbit, the 1503: 446:at the same rate as the satellite is orbiting. 242: 979:These two effects must cancel out after a set 1651: 1504:Montenbruck, Oliver; Gill, Eberhard (2000), 1336:after which the same ground track is covered 462:covered by the ground track will range from 1508:(1st ed.), The Netherlands: Springer, 360: 317:ground track. A satellite with an orbital 281:. Unsourced material may be challenged and 136:. Unsourced material may be challenged and 2425: 1658: 1644: 1478:(1st ed.), Amsterdam: Elsevier Ltd., 1475:Orbital Mechanics for Engineering Students 546:(63°), and the orbit is highly eccentric ( 373:orbit, as viewed from above the North Pole 230: 301:Learn how and when to remove this message 215:in order to compensate for the effect of 156:Learn how and when to remove this message 97: 1665: 1467: 1465: 557: 517: 449: 364: 18: 1499: 1497: 1495: 377:A satellite whose orbital period is an 219:. Aircraft routes are planned to avoid 2443: 2304:Transposition, docking, and extraction 1531:AIAA Journal of Spacecraft and Rockets 1471: 340:A satellite in a direct orbit with an 1639: 1569:Lyle, S. and Capderou, Michel (2006) 1462: 420:, and westward when it is closest to 313:Typically, satellites have a roughly 1492: 408:A satellite whose orbital period is 279:adding citations to reliable sources 246: 167: 134:adding citations to reliable sources 101: 1528: 1449:AMetSoc.org Glossary of Meteorology 522:The ground track of a Molniya orbit 13: 1616:Satellite Ground Track, GPS BII-10 1053: 1037: 710: 582: 385:, which can vary over time due to 14: 2477: 2364:Kepler's laws of planetary motion 1587: 1403:less than one, and thus excludes 2424: 2359:Interplanetary Transport Network 2239:Collision avoidance (spacecraft) 1286:standard gravitational parameter 553: 251: 171: 106: 2324:Astronomical coordinate systems 2078:Longitude of the ascending node 1572:Satellites: Orbits and Missions 383:longitude of the ascending node 2397:Retrograde and prograde motion 1522: 1437: 1414: 1393: 1219: 1199: 1184: 1178: 813: 793: 778: 772: 395:rotational period of the Earth 1: 1431: 514:Effect of argument of perigee 2344:Equatorial coordinate system 243:Direct and retrograde motion 7: 1340: 437:Earth-Centered, Earth-Fixed 47:on the surface of a planet 25:International Space Station 10: 2482: 2096:Longitude of the periapsis 1472:Curtis, Howard D. (2005), 1288:for the body being orbited 870:second dynamic form factor 500:orbital inclination change 352:Because a satellite in an 2420: 2407:Specific angular momentum 2312: 2224: 2168: 2104: 2057: 1997: 1988: 1884: 1794: 1683: 1674: 1424:needed to achieve orbit. 1386: 1363:Satellite revisit period 999:orbital revolutions and 361:Effect of orbital period 2402:Specific orbital energy 1352:Ground tracking station 231:Satellite ground tracks 1814:Geostationary transfer 1326: 1304: 1278: 1252: 1013: 993: 966: 941: 916: 894: 862: 829: 700:can be quantified as: 683: 654: 628: 563: 523: 374: 98:Aircraft ground tracks 94:of a ground observer. 32: 27:for approximately two 2387:Orbital state vectors 2329:Characteristic energy 2299:Trans-lunar injection 2087:Argument of periapsis 1764:Prograde / Retrograde 1725:Hyperbolic trajectory 1610:https://isstracker.pl 1327: 1305: 1279: 1253: 1014: 994: 967: 942: 917: 895: 893:{\displaystyle R_{e}} 863: 861:{\displaystyle J_{2}} 830: 684: 682:{\displaystyle T_{E}} 655: 629: 561: 521: 450:Effect of inclination 368: 22: 2234:Bi-elliptic transfer 1754:Parabolic trajectory 1316: 1294: 1277:{\displaystyle \mu } 1268: 1026: 1003: 983: 974:orbital eccentricity 956: 931: 906: 900:is the body's radius 877: 845: 707: 666: 644: 579: 414:geosynchronous orbit 275:improve this section 130:improve this section 23:Ground track of the 2274:Low-energy transfer 1543:2022JSpRo..59...84L 1347:Course (navigation) 1168: 924:orbital inclination 762: 660:is the time elapsed 532:rotational symmetry 528:argument of perigee 429:geostationary orbit 221:restricted airspace 78:of the satellite's 2269:Inclination change 1917:Distant retrograde 1626:infosatellites.com 1445:"suborbital track" 1380:Terminator (solar) 1369:Satellite watching 1357:Pass (spaceflight) 1322: 1300: 1274: 1248: 1154: 1009: 989: 962: 937: 912: 890: 858: 825: 748: 696:The effect of the 679: 650: 624: 564: 524: 375: 183:. You can help by 92:frame of reference 69:subsatellite track 33: 2438: 2437: 2412:Two-line elements 2220: 2219: 2142:Eccentric anomaly 1984: 1983: 1851:Orbit of the Moon 1710:Highly elliptical 1605:heavens-above.com 1594:Satellite Tracker 1485:978-0-7506-6169-0 1332:is the number of 1325:{\displaystyle k} 1303:{\displaystyle j} 1229: 1130: 1117: 1116: 1012:{\displaystyle k} 992:{\displaystyle j} 965:{\displaystyle e} 940:{\displaystyle a} 915:{\displaystyle i} 823: 653:{\displaystyle T} 622: 440:coordinate system 357:discussed below. 311: 310: 303: 201: 200: 166: 165: 158: 2473: 2428: 2427: 2369:Lagrangian point 2264:Hohmann transfer 2209: 2195: 2186: 2177: 2157: 2148: 2139: 2130: 2126: 2122: 2113: 2093: 2084: 2075: 2066: 2046: 2042: 2033: 2024: 2015: 1995: 1994: 1964:Heliosynchronous 1913:Lagrange points 1866:Transatmospheric 1681: 1680: 1660: 1653: 1646: 1637: 1636: 1563: 1562: 1551:10.2514/1.A34934 1526: 1520: 1518: 1506:Satellite Orbits 1501: 1490: 1488: 1469: 1460: 1459: 1457: 1455: 1441: 1425: 1418: 1412: 1397: 1331: 1329: 1328: 1323: 1309: 1307: 1306: 1301: 1283: 1281: 1280: 1275: 1257: 1255: 1254: 1249: 1235: 1231: 1230: 1228: 1227: 1226: 1217: 1216: 1198: 1197: 1187: 1167: 1162: 1153: 1152: 1136: 1131: 1129: 1128: 1119: 1118: 1112: 1111: 1102: 1101: 1092: 1070: 1066: 1065: 1064: 1049: 1048: 1018: 1016: 1015: 1010: 998: 996: 995: 990: 971: 969: 968: 963: 946: 944: 943: 938: 921: 919: 918: 913: 899: 897: 896: 891: 889: 888: 867: 865: 864: 859: 857: 856: 834: 832: 831: 826: 824: 822: 821: 820: 811: 810: 792: 791: 781: 761: 756: 747: 746: 730: 722: 721: 698:nodal precession 688: 686: 685: 680: 678: 677: 659: 657: 656: 651: 633: 631: 630: 625: 623: 621: 620: 608: 594: 593: 569:nodal precession 334:retrograde orbit 306: 299: 295: 292: 286: 255: 247: 237:orbital elements 196: 193: 175: 168: 161: 154: 150: 147: 141: 110: 102: 65:suborbital track 2481: 2480: 2476: 2475: 2474: 2472: 2471: 2470: 2441: 2440: 2439: 2434: 2416: 2334:Escape velocity 2315: 2308: 2289:Rocket equation 2216: 2208: 2202: 2193: 2184: 2175: 2164: 2155: 2146: 2137: 2128: 2124: 2120: 2111: 2100: 2091: 2082: 2073: 2064: 2053: 2044: 2040: 2036:Semi-minor axis 2031: 2027:Semi-major axis 2022: 2013: 2007: 1980: 1902:Areosynchronous 1886: 1880: 1861:Sun-synchronous 1846:Near-equatorial 1790: 1670: 1664: 1620:Wayback Machine 1596:at eoPortal.org 1590: 1566: 1527: 1523: 1516: 1502: 1493: 1486: 1470: 1463: 1453: 1451: 1443: 1442: 1438: 1434: 1429: 1428: 1419: 1415: 1398: 1394: 1389: 1343: 1317: 1314: 1313: 1295: 1292: 1291: 1269: 1266: 1265: 1222: 1218: 1212: 1208: 1193: 1189: 1188: 1163: 1158: 1148: 1144: 1137: 1135: 1124: 1120: 1107: 1103: 1100: 1093: 1091: 1081: 1077: 1060: 1056: 1044: 1040: 1036: 1032: 1027: 1024: 1023: 1004: 1001: 1000: 984: 981: 980: 957: 954: 953: 949:semi-major axis 947:is the orbit's 932: 929: 928: 907: 904: 903: 884: 880: 878: 875: 874: 852: 848: 846: 843: 842: 816: 812: 806: 802: 787: 783: 782: 757: 752: 742: 738: 731: 729: 717: 713: 708: 705: 704: 673: 669: 667: 664: 663: 645: 642: 641: 616: 612: 607: 589: 585: 580: 577: 576: 556: 516: 452: 363: 307: 296: 290: 287: 272: 256: 245: 233: 197: 191: 188: 181:needs expansion 162: 151: 145: 142: 127: 111: 100: 17: 12: 11: 5: 2479: 2469: 2468: 2466:Air navigation 2463: 2458: 2453: 2436: 2435: 2433: 2432: 2430:List of orbits 2421: 2418: 2417: 2415: 2414: 2409: 2404: 2399: 2394: 2389: 2384: 2382:Orbit equation 2379: 2371: 2366: 2361: 2356: 2351: 2346: 2341: 2336: 2331: 2326: 2320: 2318: 2310: 2309: 2307: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2261: 2256: 2254:Gravity assist 2251: 2249:Delta-v budget 2246: 2241: 2236: 2230: 2228: 2222: 2221: 2218: 2217: 2215: 2214: 2206: 2200: 2191: 2182: 2180:Orbital period 2172: 2170: 2166: 2165: 2163: 2162: 2160:True longitude 2153: 2151:Mean longitude 2144: 2135: 2118: 2108: 2106: 2102: 2101: 2099: 2098: 2089: 2080: 2071: 2061: 2059: 2055: 2054: 2052: 2051: 2038: 2029: 2020: 2010: 2008: 2006: 2005: 2002: 1998: 1992: 1986: 1985: 1982: 1981: 1979: 1978: 1977: 1976: 1968: 1967: 1966: 1961: 1956: 1955: 1954: 1941: 1936: 1935: 1934: 1929: 1924: 1919: 1911: 1910: 1909: 1907:Areostationary 1904: 1899: 1890: 1888: 1882: 1881: 1879: 1878: 1876:Very low Earth 1873: 1868: 1863: 1858: 1853: 1848: 1843: 1838: 1833: 1828: 1823: 1818: 1817: 1816: 1811: 1804:Geosynchronous 1800: 1798: 1792: 1791: 1789: 1788: 1786:Transfer orbit 1783: 1782: 1781: 1776: 1766: 1761: 1756: 1751: 1746: 1744:Lagrange point 1741: 1736: 1727: 1722: 1717: 1712: 1703: 1698: 1693: 1687: 1685: 1678: 1672: 1671: 1666:Gravitational 1663: 1662: 1655: 1648: 1640: 1634: 1633: 1628: 1623: 1613: 1607: 1602: 1597: 1589: 1588:External links 1586: 1585: 1584: 1565: 1564: 1521: 1514: 1491: 1484: 1461: 1435: 1433: 1430: 1427: 1426: 1413: 1391: 1390: 1388: 1385: 1384: 1383: 1377: 1375:Subsolar point 1372: 1366: 1360: 1354: 1349: 1342: 1339: 1338: 1337: 1321: 1311: 1299: 1289: 1273: 1259: 1258: 1247: 1244: 1241: 1238: 1234: 1225: 1221: 1215: 1211: 1207: 1204: 1201: 1196: 1192: 1186: 1183: 1180: 1177: 1174: 1171: 1166: 1161: 1157: 1151: 1147: 1143: 1140: 1134: 1127: 1123: 1115: 1110: 1106: 1099: 1096: 1090: 1087: 1084: 1080: 1076: 1073: 1069: 1063: 1059: 1055: 1052: 1047: 1043: 1039: 1035: 1031: 1008: 988: 977: 976: 961: 951: 936: 926: 911: 901: 887: 883: 872: 868:is the body's 855: 851: 836: 835: 819: 815: 809: 805: 801: 798: 795: 790: 786: 780: 777: 774: 771: 768: 765: 760: 755: 751: 745: 741: 737: 734: 728: 725: 720: 716: 712: 694: 693: 676: 672: 661: 649: 635: 634: 619: 615: 611: 606: 603: 600: 597: 592: 588: 584: 555: 552: 515: 512: 492:Cape Canaveral 451: 448: 444:center of mass 362: 359: 342:orbital period 328:prograde orbit 309: 308: 259: 257: 250: 244: 241: 232: 229: 205:air navigation 199: 198: 178: 176: 164: 163: 114: 112: 105: 99: 96: 49:directly below 15: 9: 6: 4: 3: 2: 2478: 2467: 2464: 2462: 2459: 2457: 2454: 2452: 2451:Astrodynamics 2449: 2448: 2446: 2431: 2423: 2422: 2419: 2413: 2410: 2408: 2405: 2403: 2400: 2398: 2395: 2393: 2390: 2388: 2385: 2383: 2380: 2378: 2377:-body problem 2376: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2345: 2342: 2340: 2337: 2335: 2332: 2330: 2327: 2325: 2322: 2321: 2319: 2317: 2311: 2305: 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2279:Oberth effect 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2260: 2257: 2255: 2252: 2250: 2247: 2245: 2242: 2240: 2237: 2235: 2232: 2231: 2229: 2227: 2223: 2213: 2205: 2201: 2199: 2198:Orbital speed 2192: 2190: 2183: 2181: 2174: 2173: 2171: 2167: 2161: 2154: 2152: 2145: 2143: 2136: 2134: 2119: 2117: 2110: 2109: 2107: 2103: 2097: 2090: 2088: 2081: 2079: 2072: 2070: 2063: 2062: 2060: 2056: 2050: 2039: 2037: 2030: 2028: 2021: 2019: 2012: 2011: 2009: 2003: 2000: 1999: 1996: 1993: 1991: 1987: 1975: 1972: 1971: 1969: 1965: 1962: 1960: 1957: 1953: 1952:Earth's orbit 1950: 1949: 1948: 1945: 1944: 1942: 1940: 1937: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1914: 1912: 1908: 1905: 1903: 1900: 1898: 1895: 1894: 1892: 1891: 1889: 1883: 1877: 1874: 1872: 1869: 1867: 1864: 1862: 1859: 1857: 1854: 1852: 1849: 1847: 1844: 1842: 1839: 1837: 1834: 1832: 1829: 1827: 1824: 1822: 1819: 1815: 1812: 1810: 1809:Geostationary 1807: 1806: 1805: 1802: 1801: 1799: 1797: 1793: 1787: 1784: 1780: 1777: 1775: 1772: 1771: 1770: 1767: 1765: 1762: 1760: 1757: 1755: 1752: 1750: 1747: 1745: 1742: 1740: 1737: 1735: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1707: 1704: 1702: 1699: 1697: 1694: 1692: 1689: 1688: 1686: 1682: 1679: 1677: 1673: 1669: 1661: 1656: 1654: 1649: 1647: 1642: 1641: 1638: 1632: 1629: 1627: 1624: 1621: 1617: 1614: 1611: 1608: 1606: 1603: 1601: 1598: 1595: 1592: 1591: 1582: 1581:9782287274695 1578: 1574: 1573: 1568: 1567: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1525: 1517: 1515:3-540-67280-X 1511: 1507: 1500: 1498: 1496: 1487: 1481: 1477: 1476: 1468: 1466: 1450: 1446: 1440: 1436: 1423: 1417: 1411:trajectories. 1410: 1406: 1402: 1396: 1392: 1381: 1378: 1376: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1353: 1350: 1348: 1345: 1344: 1335: 1334:sidereal days 1319: 1312: 1297: 1290: 1287: 1271: 1264: 1263: 1262: 1245: 1242: 1239: 1236: 1232: 1223: 1213: 1209: 1205: 1202: 1194: 1190: 1181: 1175: 1172: 1169: 1164: 1159: 1155: 1149: 1145: 1141: 1138: 1132: 1125: 1121: 1113: 1108: 1104: 1097: 1094: 1088: 1085: 1082: 1078: 1074: 1071: 1067: 1061: 1057: 1050: 1045: 1041: 1033: 1029: 1022: 1021: 1020: 1006: 986: 975: 959: 952: 950: 934: 927: 925: 909: 902: 885: 881: 873: 871: 853: 849: 841: 840: 839: 817: 807: 803: 799: 796: 788: 784: 775: 769: 766: 763: 758: 753: 749: 743: 739: 735: 732: 726: 723: 718: 714: 703: 702: 701: 699: 692: 674: 670: 662: 647: 640: 639: 638: 617: 613: 609: 604: 601: 598: 595: 590: 586: 575: 574: 573: 570: 560: 554:Repeat orbits 551: 549: 545: 541: 540:Molniya orbit 537: 536:orbital nodes 533: 529: 520: 511: 509: 503: 501: 497: 493: 488: 484: 482: 478: 473: 469: 465: 461: 457: 447: 445: 441: 438: 434: 430: 425: 423: 419: 415: 411: 406: 404: 400: 396: 391: 388: 387:perturbations 384: 380: 372: 371:geostationary 367: 358: 355: 350: 347: 343: 338: 336: 335: 330: 329: 324: 320: 316: 305: 302: 294: 284: 280: 276: 270: 269: 265: 260:This section 258: 254: 249: 248: 240: 238: 228: 226: 222: 218: 214: 210: 206: 195: 186: 182: 179:This section 177: 174: 170: 169: 160: 157: 149: 139: 135: 131: 125: 124: 120: 115:This section 113: 109: 104: 103: 95: 93: 89: 83: 81: 77: 74: 71:, and is the 70: 66: 62: 58: 54: 50: 46: 42: 38: 30: 26: 21: 2392:Perturbation 2374: 2349:Ground track 2348: 2259:Gravity turn 2210:   2203: 2196:   2187:   2178:   2158:   2149:   2140:   2133:True anomaly 2131:   2116:Mean anomaly 2114:   2094:   2085:   2076:   2067:   2047:   2034:   2025:   2018:Eccentricity 2016:   1974:Lunar cycler 1947:Heliocentric 1887:other points 1836:Medium Earth 1734:Non-inclined 1571: 1537:(1): 84–93. 1534: 1530: 1524: 1505: 1473: 1452:. Retrieved 1448: 1439: 1416: 1401:eccentricity 1395: 1371:, as a hobby 1260: 978: 837: 695: 691:sidereal day 636: 565: 547: 525: 504: 485: 471: 467: 463: 453: 433:eccentricity 426: 409: 407: 402: 392: 376: 351: 345: 339: 332: 326: 322: 312: 297: 288: 273:Please help 261: 234: 209:great circle 202: 189: 185:adding to it 180: 152: 143: 128:Please help 116: 84: 68: 64: 41:ground trace 40: 37:ground track 36: 34: 2354:Hill sphere 2189:Mean motion 2069:Inclination 2058:Orientation 1959:Mars cycler 1897:Areocentric 1769:Synchronous 1612:ISS Tracker 1600:satview.org 477:polar orbit 456:inclination 319:inclination 2461:Satellites 2445:Categories 2294:Rendezvous 1990:Parameters 1826:High Earth 1796:Geocentric 1749:Osculating 1706:Elliptical 1583:pp 175–264 1432:References 1409:hyperbolic 534:about the 508:Sea Launch 315:sinusoidal 291:April 2024 146:April 2024 76:projection 61:trajectory 2339:Ephemeris 2316:mechanics 2226:Maneuvers 2169:Variation 1932:Libration 1927:Lissajous 1831:Low Earth 1821:Graveyard 1720:Horseshoe 1575:Springer 1559:236275629 1405:parabolic 1272:μ 1246:π 1206:− 1142:π 1133:− 1114:μ 1098:π 1089:π 1083:− 1054:Δ 1038:Δ 800:− 736:π 727:− 711:Δ 605:π 599:− 583:Δ 460:latitudes 431:, has an 354:eccentric 262:does not 117:does not 90:, in the 57:satellite 2105:Position 1730:Inclined 1701:Circular 1631:n2yo.com 1454:15 March 1341:See also 544:latitude 470:, where 454:Orbital 192:May 2015 73:vertical 53:aircraft 2314:Orbital 2284:Phasing 2244:Delta-v 2049:Apsides 2043:,  1841:Molniya 1759:Parking 1696:Capture 1684:General 1618:at the 1539:Bibcode 1422:delta-v 1284:is the 972:is the 922:is the 526:If the 496:azimuth 418:perigee 399:equator 379:integer 346:greater 283:removed 268:sources 225:beacons 213:heading 138:removed 123:sources 43:is the 29:periods 2456:Curves 1970:Other 1871:Tundra 1739:Kepler 1715:Escape 1668:orbits 1579:  1557:  1512:  1482:  1261:where 838:where 637:where 487:Launch 422:apogee 403:longer 323:direct 88:zenith 55:'s or 2212:Epoch 2001:Shape 1939:Lunar 1893:Mars 1885:About 1856:Polar 1676:Types 1555:S2CID 1387:Notes 481:poles 410:equal 80:orbit 2004:Size 1943:Sun 1922:Halo 1774:semi 1577:ISBN 1510:ISBN 1480:ISBN 1456:2022 1407:and 266:any 264:cite 217:wind 121:any 119:cite 45:path 1779:sub 1691:Box 1547:doi 466:to 325:or 277:by 203:In 187:. 132:by 67:or 59:'s 51:an 39:or 2447:: 2127:, 2123:, 1732:/ 1708:/ 1553:. 1545:. 1535:59 1533:. 1494:^ 1464:^ 1447:. 510:. 483:. 464:–i 424:. 369:A 337:. 227:. 35:A 2375:n 2207:0 2204:t 2194:v 2185:n 2176:T 2156:l 2147:L 2138:E 2129:f 2125:θ 2121:ν 2112:M 2092:ϖ 2083:ω 2074:Ω 2065:i 2045:q 2041:Q 2032:b 2023:a 2014:e 1659:e 1652:t 1645:v 1561:. 1549:: 1541:: 1519:. 1489:. 1458:. 1320:k 1298:j 1243:2 1240:k 1237:= 1233:| 1224:2 1220:) 1214:2 1210:e 1203:1 1200:( 1195:2 1191:a 1185:) 1182:i 1179:( 1176:s 1173:o 1170:c 1165:2 1160:e 1156:R 1150:2 1146:J 1139:3 1126:E 1122:T 1109:3 1105:a 1095:2 1086:2 1079:| 1075:j 1072:= 1068:| 1062:2 1058:L 1051:+ 1046:1 1042:L 1034:| 1030:j 1007:k 987:j 960:e 935:a 910:i 886:e 882:R 854:2 850:J 818:2 814:) 808:2 804:e 797:1 794:( 789:2 785:a 779:) 776:i 773:( 770:s 767:o 764:c 759:2 754:e 750:R 744:2 740:J 733:3 724:= 719:2 715:L 675:E 671:T 648:T 618:E 614:T 610:T 602:2 596:= 591:1 587:L 548:e 472:i 468:i 304:) 298:( 293:) 289:( 285:. 271:. 194:) 190:( 159:) 153:( 148:) 144:( 140:. 126:.

Index


International Space Station
periods
path
directly below
aircraft
satellite
trajectory
vertical
projection
orbit
zenith
frame of reference

cite
sources
improve this section
adding citations to reliable sources
removed
Learn how and when to remove this message

adding to it
air navigation
great circle
heading
wind
restricted airspace
beacons
orbital elements

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.