Knowledge

H-space

Source 📝

205:
has the structure of an H-group, as equipped with the standard operations of concatenation and inversion. Furthermore a continuous basepoint preserving map of pointed topological space induces a H-homomorphism of the corresponding loop spaces; this reflects the group homomorphism on fundamental
213:
from a H-space to a pointed topological space, there is a natural H-space structure on the latter space. As such, the existence of an H-space structure on a given space is only dependent on pointed homotopy type.
439:
is not a group in this way because octonion multiplication is not associative, nor can it be given any other continuous multiplication for which it is a group.
643: 173:
is an H-space as in the above definition. Alternatively, an H-space may be defined without requiring homotopies to fix the basepoint
624: 604: 403:
that are H-spaces. Each of these spaces forms an H-space by viewing it as the subset of norm-one elements of the
64: 716: 697:. Die Grundlehren der mathematischen Wissenschaften. Vol. 212. New York-Heidelberg: Springer-Verlag. 202: 139: 711: 721: 495:(see J. R. Hubbuck. "A Short History of H-spaces", History of topology, 1999, pages 747–755). 672: 210: 8: 660: 463: 238: 453: 419:, respectively, and using the multiplication operations from these algebras. In fact, 620: 619:(Corrected reprint of the 1966 original ed.). New York-Berlin: Springer-Verlag. 600: 594: 488: 448: 245: 194: 49: 29: 652: 222: 143: 668: 269: 226: 197:, together with the fact that it is a group, can be rephrased as saying that the 181:
to be an exact identity, without any consideration of homotopy. In the case of a
37: 25: 687:, Lecture Notes in Mathematics, vol. 161, Berlin-New York: Springer-Verlag 408: 376: 230: 218: 705: 590: 249: 33: 680: 634: 458: 234: 404: 380: 17: 142:
together with a continuous multiplication for which the basepoint is an
664: 492: 412: 198: 182: 432: 127: 656: 468: 416: 400: 217:
The multiplicative structure of an H-space adds structure to its
233:
H-space with finitely generated and free cohomology groups is a
491:
in recognition of the influence exerted on the subject by
185:, all three of these definitions are in fact equivalent. 209:
It is straightforward to verify that, given a pointed
372:. It is clear how to define a homotopy from to . 644:Transactions of the American Mathematical Society 703: 28:version of a generalization of the notion of 188: 599:. Cambridge: Cambridge University Press. 130:to the identity map through maps sending 695:Algebraic topology—homotopy and homology 679: 633: 692: 614: 589: 704: 685:H-spaces from a homotopy point of view 241:on the homology groups of an H-space. 146:up to basepoint-preserving homotopy. 206:groups induced by a continuous map. 637:(1963), "Homotopy associativity of 13: 487:The H in H-space was suggested by 435:) with these multiplications. But 149:One says that a topological space 14: 733: 570: 193:The standard definition of the 561: 552: 543: 534: 525: 516: 507: 498: 481: 153:is an H-space if there exists 138:. This may be thought of as a 1: 583: 43: 256:be an H-space with identity 237:. Also, one can define the 7: 693:Switzer, Robert M. (1975). 442: 55:, together with an element 10: 738: 615:Spanier, Edwin H. (1981). 504:Spanier p.34; Switzer p.14 203:pointed topological space 140:pointed topological space 48:An H-space consists of a 32:, in which the axioms on 474: 651:(2): 275–292, 293–312, 189:Examples and properties 635:Stasheff, James Dillon 379:theorem, named after 161:such that the triple 522:Stasheff (1970), p.1 252:. To see this, let 225:. For example, the 211:homotopy equivalence 717:Algebraic topology 617:Algebraic topology 596:Algebraic topology 464:Topological monoid 377:Hopf invariant one 368:) is homotopic to 239:Pontryagin product 177:, or by requiring 26:homotopy-theoretic 641:-spaces. I, II", 489:Jean-Pierre Serre 449:Topological group 248:of an H-space is 246:fundamental group 223:cohomology groups 195:fundamental group 50:topological space 30:topological group 729: 698: 688: 675: 630: 610: 577: 574: 568: 565: 559: 558:Spanier pp.35-36 556: 550: 549:Spanier pp.37-39 547: 541: 540:Spanier pp.37-39 538: 532: 529: 523: 520: 514: 511: 505: 502: 496: 485: 340:is homotopic to 276:. Define a map 180: 176: 172: 160: 156: 152: 144:identity element 137: 133: 125: 110: 95: 80: 62: 58: 54: 737: 736: 732: 731: 730: 728: 727: 726: 712:Homotopy theory 702: 701: 681:Stasheff, James 657:10.2307/1993609 627: 607: 586: 581: 580: 575: 571: 566: 562: 557: 553: 548: 544: 539: 535: 530: 526: 521: 517: 512: 508: 503: 499: 486: 482: 477: 454:Čech cohomology 445: 227:cohomology ring 191: 178: 174: 162: 158: 154: 150: 135: 131: 112: 97: 82: 67: 60: 56: 52: 46: 12: 11: 5: 735: 725: 724: 719: 714: 700: 699: 690: 677: 631: 625: 612: 611:. Section 3.C 605: 591:Hatcher, Allen 585: 582: 579: 578: 569: 560: 551: 542: 533: 524: 515: 506: 497: 479: 478: 476: 473: 472: 471: 466: 461: 456: 451: 444: 441: 383:, states that 231:path-connected 190: 187: 65:continuous map 45: 42: 9: 6: 4: 3: 2: 734: 723: 722:Hopf algebras 720: 718: 715: 713: 710: 709: 707: 696: 691: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 646: 645: 640: 636: 632: 628: 626:0-387-90646-0 622: 618: 613: 608: 606:0-521-79540-0 602: 598: 597: 592: 588: 587: 576:Hatcher p.287 573: 567:Hatcher p.283 564: 555: 546: 537: 531:Hatcher p.291 528: 519: 513:Hatcher p.281 510: 501: 494: 490: 484: 480: 470: 467: 465: 462: 460: 457: 455: 452: 450: 447: 446: 440: 438: 434: 430: 426: 422: 418: 414: 410: 406: 402: 399:are the only 398: 394: 390: 386: 382: 378: 373: 371: 367: 363: 359: 355: 351: 347: 343: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 299: 295: 291: 287: 283: 279: 275: 271: 267: 263: 259: 255: 251: 247: 242: 240: 236: 232: 228: 224: 220: 215: 212: 207: 204: 200: 196: 186: 184: 170: 166: 147: 145: 141: 129: 123: 119: 115: 108: 104: 100: 96:and the maps 94: 90: 86: 79: 75: 71: 66: 51: 41: 40:are removed. 39: 35: 34:associativity 31: 27: 23: 19: 694: 684: 648: 642: 638: 616: 595: 572: 563: 554: 545: 536: 527: 518: 509: 500: 483: 459:Hopf algebra 436: 431:are groups ( 428: 424: 420: 396: 392: 388: 384: 374: 369: 365: 361: 357: 353: 349: 345: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 297: 293: 289: 285: 281: 277: 273: 265: 261: 257: 253: 243: 235:Hopf algebra 216: 208: 192: 168: 164: 148: 121: 117: 113: 106: 102: 98: 92: 88: 84: 81:, such that 77: 73: 69: 47: 21: 15: 413:quaternions 381:Frank Adams 18:mathematics 706:Categories 584:References 493:Heinz Hopf 433:Lie groups 199:loop space 183:CW complex 44:Definition 417:octonions 409:complexes 312:). Then 128:homotopic 126:are both 68:μ : 683:(1970), 593:(2002). 469:H-object 443:See also 280:: × → 260:and let 219:homology 38:inverses 673:0158400 665:1993609 401:spheres 375:Adams' 250:abelian 22:H-space 671:  663:  623:  603:  427:, and 415:, and 344:, and 328:,1) = 320:,0) = 63:and a 661:JSTOR 475:Notes 405:reals 270:loops 229:of a 201:of a 24:is a 20:, an 621:ISBN 601:ISBN 360:) = 352:) = 296:) = 264:and 244:The 221:and 171:, μ) 157:and 116:↦ μ( 111:and 101:↦ μ( 91:) = 36:and 653:doi 649:108 356:(1, 348:(0, 284:by 272:at 268:be 134:to 59:of 16:In 708:: 669:MR 667:, 659:, 647:, 423:, 411:, 407:, 395:, 391:, 387:, 362:eg 167:, 120:, 105:, 87:, 83:μ( 76:→ 72:× 689:. 676:. 655:: 639:H 629:. 609:. 437:S 429:S 425:S 421:S 397:S 393:S 389:S 385:S 370:g 366:b 364:( 358:b 354:F 350:b 346:F 342:f 338:e 336:) 334:a 332:( 330:f 326:a 324:( 322:F 318:a 316:( 314:F 310:b 308:( 306:g 304:) 302:a 300:( 298:f 294:b 292:, 290:a 288:( 286:F 282:X 278:F 274:e 266:g 262:f 258:e 254:X 179:e 175:e 169:e 165:X 163:( 159:μ 155:e 151:X 136:e 132:e 124:) 122:x 118:e 114:x 109:) 107:e 103:x 99:x 93:e 89:e 85:e 78:X 74:X 70:X 61:X 57:e 53:X

Index

mathematics
homotopy-theoretic
topological group
associativity
inverses
topological space
continuous map
homotopic
pointed topological space
identity element
CW complex
fundamental group
loop space
pointed topological space
homotopy equivalence
homology
cohomology groups
cohomology ring
path-connected
Hopf algebra
Pontryagin product
fundamental group
abelian
loops
Hopf invariant one
Frank Adams
spheres
reals
complexes
quaternions

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.