Knowledge

Hanbury Brown and Twiss effect

Source šŸ“

1798: 1431: 112: 3014: 3038:
Hanbury Brown and Twiss result. But the quantum approach is more than just a fancy way to reproduce the classical result: if the photons are replaced by identical fermions such as electrons, the antisymmetry of wave functions under exchange of particles renders the interference destructive, leading to zero joint detection probability for small detector separations. This effect is referred to as antibunching of fermions. The above treatment also explains
1793:{\displaystyle {\begin{aligned}\langle \Delta i_{1}\Delta i_{2}\rangle &={\big \langle }(i_{1}-\langle i_{1}\rangle )(i_{2}-\langle i_{2}\rangle ){\big \rangle }=\langle i_{1}i_{2}\rangle -{\big \langle }i_{1}\langle i_{2}\rangle {\big \rangle }-{\big \langle }i_{2}\langle i_{1}\rangle {\big \rangle }+\langle i_{1}\rangle \langle i_{2}\rangle \\&=\langle i_{1}i_{2}\rangle -\langle i_{1}\rangle \langle i_{2}\rangle .\end{aligned}}} 2598: 1353: 2564: 1002: 2182: 1084: 2304: 652: 104:, separated by a few meters, were aimed at the star using crude telescopes, and a correlation was observed between the two fluctuating intensities. Just as in the radio studies, the correlation dropped away as they increased the separation (though over meters, instead of kilometers), and they used this information to determine the apparent 1906: 181:, tend to spread apart, leading to Fermiā€“Dirac (anti)correlations. Boseā€“Einstein correlations have been observed between pions, kaons and photons, and Fermiā€“Dirac (anti)correlations between protons, neutrons and electrons. For a general introduction in this field, see the textbook on Boseā€“Einstein correlations by 2609:
The above discussion makes it clear that the Hanbury Brown and Twiss (or photon bunching) effect can be entirely described by classical optics. The quantum description of the effect is less intuitive: if one supposes that a thermal or chaotic light source such as a star randomly emits photons, then
156:
below) that demonstrated, first, that wave transmission in quantum optics had exactly the same mathematical form as Maxwell's equations, albeit with an additional noise term due to quantisation at the detector, and second, that according to Maxwell's equations, intensity interferometry should work.
3037:
Fano's explanation nicely illustrates the necessity of considering two-particle amplitudes, which are not as intuitive as the more familiar single-particle amplitudes used to interpret most interference effects. This may help to explain why some physicists in the 1950s had difficulty accepting the
115:
An example of an intensity interferometer that would observe no correlation if the light source is a coherent laser beam, and positive correlation if the light source is a filtered one-mode thermal radiation. The theoretical explanation of the difference between the correlations of photon pairs in
168:
The original experiment used the fact that two bosons tend to arrive at two separate detectors at the same time. Morgan and Mandel used a thermal photon source to create a dim beam of photons and observed the tendency of the photons to arrive at the same time on a single detector. Both of these
1348:{\displaystyle {\begin{aligned}\langle i_{1}i_{2}\rangle (\tau )&=\lim _{T\to \infty }{\frac {1}{T}}\int \limits _{0}^{T}i_{1}(t)i_{2}(t)\,\mathrm {d} t\\&=\lim _{T\to \infty }{\frac {1}{T}}\int \limits _{0}^{T}{\tfrac {1}{4}}E(t)^{2}E(t-\tau )^{2}\,\mathrm {d} t.\end{aligned}}} 2559:{\displaystyle {\begin{aligned}\langle \Delta i_{1}\Delta i_{2}\rangle (\tau )&=\lim _{T\to \infty }{\frac {(E_{0}\delta E)^{2}}{T}}\int \limits _{0}^{T}\sin(\Omega t)\sin(\Omega t-\Phi )\,\mathrm {d} t\\&={\tfrac {1}{2}}(E_{0}\delta E)^{2}\cos(\Omega \tau ),\end{aligned}}} 997:{\displaystyle {\begin{aligned}i_{1}(t)&={\overline {E_{1}(t)^{2}}}={\overline {E(t)^{2}\sin ^{2}(\omega t)}}={\tfrac {1}{2}}E(t)^{2},\\i_{2}(t)&={\overline {E_{2}(t)^{2}}}={\overline {E(t-\tau )^{2}\sin ^{2}(\omega t-\phi )}}={\tfrac {1}{2}}E(t-\tau )^{2},\end{aligned}}} 169:
effects used the wave nature of light to create a correlation in arrival time ā€“ if a single photon beam is split into two beams, then the particle nature of light requires that each photon is only observed at a single detector, and so an anti-correlation was observed in 1977 by
2177:{\displaystyle {\begin{aligned}i_{1}(t)&={\tfrac {1}{2}}E_{0}^{2}+E_{0}\,\delta E\sin(\Omega t)+{\mathcal {O}}(\delta E^{2}),\\i_{2}(t)&={\tfrac {1}{2}}E_{0}^{2}+E_{0}\,\delta E\sin(\Omega t-\Phi )+{\mathcal {O}}(\delta E^{2}),\end{aligned}}} 3042:: if the source consists of a single atom, which can only emit one photon at a time, simultaneous detection in two closely spaced detectors is clearly impossible. Antibunching, whether of bosons or of fermions, has no classical wave analog. 91:
for measuring the tiny angular size of stars, suggesting that it might work with visible light as well. Soon after they successfully tested that suggestion: in 1956 they published an in-lab experimental mockup using blue light from a
2960:
respectively. If the photons are indistinguishable, the two amplitudes interfere constructively to give a joint detection probability greater than that for two independent events. The sum over all possible pairs
581: 1358:
Most modern schemes actually measure the correlation in intensity fluctuations at the two detectors, but it is not too difficult to see that if the intensities are correlated, then the fluctuations
2958: 2907: 2309: 1911: 1436: 1089: 657: 1076: 260: 2257: 1397: 494: 2601:
Photon detections as a function of time for a) antibunching (e.g. light emitted from a single atom), b) random (e.g. a coherent state, laser beam), and c) bunching (chaotic light). Ļ„
1898: 2214: 419: 266:
to determine the spaceā€“time dimensions of the particle emission source for heavy-ion collisions. For developments in this field up to 2005, see for example this review article.
3591:
R. Hanbury Brown; R. Q. Twiss (1957). "Interferometry of the intensity fluctuations in light. I. Basic theory: the correlation between photons in coherent beams of radiation".
1423: 2293: 615: 360: 300: 3763:
P. Grangier; G. Roger; A. Aspect (1986). "Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences".
3631:
R. Hanbury Brown; R. Q. Twiss (1958). "Interferometry of the intensity fluctuations in light. II. An experimental test of the theory for partially coherent light".
2587: 1857: 387: 1830: 644: 329: 3665: 3053:) to apply quantum electrodynamics to new situations, many of which had never been experimentally studied, and in which classical and quantum predictions differ. 2985: 3625: 3008: 2856: 2836: 2816: 2796: 2772: 2752: 2732: 2712: 2692: 2672: 2652: 2632: 136:, but there were concerns that the effect should break down at optical wavelengths, since the light would be quantised into a relatively small number of 3072: 586:
The intensity recorded by each detector is the square of the wave amplitude, averaged over a timescale that is long compared to the wave period
2610:
it is not obvious how the photons "know" that they should arrive at a detector in a correlated (bunched) way. A simple argument suggested by
161:
immediately supported the technique, pointing out that the clumping of bosons was simply a manifestation of an effect already known in
3759:ā€“ the cavity-QED equivalent for Kimble & Mandel's free-space demonstration of photon antibunching in resonance fluorescence 148:
worried that the correlation was inconsistent with the laws of thermodynamics. Some even claimed that the effect violated the
502: 3861: 3842: 3819: 2912: 2861: 3916: 3871:
Y. Bromberg; Y. Lahini; E. Small; Y. Silberberg (2010). "Hanbury Brown and Twiss Interferometry with Interacting Photons".
1029: 201: 3045:
From the point of view of the field of quantum optics, the HBT effect was important to lead physicists (among them
215: 2219: 1361: 427: 3353:
Fano, U. (1961). "Quantum theory of interference effects in the mixing of light from phase independent sources".
3062: 174: 132:
This result was met with much skepticism in the physics community. The radio astronomy result was justified by
3921: 3264:
Richard M. Weiner, Introduction to Boseā€“Einstein Correlations and Subatomic Interferometry, John Wiley, 2000.
1862: 186: 2858:(green arrows). The quantum mechanical probability amplitudes for these two possibilities are denoted by 263: 2190: 395: 165:. After a number of experiments, the whole physics community agreed that the observed effect was real. 3478:
E. Brannen; H. Ferguson (1956). "The question of correlation between photons in coherent light beams".
1402: 3926: 3133:
Hanbury Brown, R.; Twiss, R. Q. (1956). "Correlation between Photons in two Coherent Beams of Light".
275: 178: 44: 3906: 3785: 3693: 2262: 43:
received by two detectors from a beam of particles. HBT effects can generally be attributed to the
589: 334: 84: 56: 3516:
R. Hanbury Brown; R. Q. Twiss (1956). "A Test of a New Type of Stellar Interferometer on Sirius".
3286:
G. Goldhaber; W. B. Fowler; S. Goldhaber; T. F. Hoang; T. E. Kalogeropoulos; W. M. Powell (1959).
3096:
Hanbury Brown, R.; Twiss, R.Q. (1954). "A new type of interferometer for use in radio astronomy".
3942: 3780: 3688: 3098: 133: 121: 3812:
BOFFIN : A Personal Story of the Early Days of Radar, Radio Astronomy and Quantum Optics
369:
Since the detectors are separated, say the second detector gets the signal delayed by a time
285: 162: 149: 47:
of the beam, and the results of a given experiment depend on whether the beam is composed of
3711: 3880: 3772: 3726: 3680: 3640: 3600: 3563: 3525: 3487: 3454: 3404: 3362: 3299: 3239: 3189: 2572: 1835: 1020: 372: 158: 101: 76: 3671:
B. L. Morgan; L. Mandel (1966). "Measurement of Photon Bunching in a Thermal Light Beam".
3439: 3224: 1806: 620: 305: 8: 3554:
E. Purcell (1956). "The Question of Correlation Between Photons in Coherent Light Rays".
3067: 3039: 2964: 1008: 125: 40: 3917:
https://web.archive.org/web/20070609114114/http://www.du.edu/~jcalvert/astro/starsiz.htm
3884: 3776: 3730: 3710:
Dayan, B.; Parkins, A. S.; Aoki, T.; Ostby, E. P.; Vahala, K. J.; Kimble, H. J. (2008).
3684: 3644: 3604: 3567: 3529: 3512:ā€“ paper which (incorrectly) disputed the existence of the Hanbury Brown and Twiss effect 3491: 3458: 3408: 3366: 3303: 3243: 3193: 2990: 3831: 3798: 3750: 3656: 3616: 3579: 3541: 3503: 3389: 3315: 3205: 3158: 2841: 2821: 2801: 2781: 2757: 2737: 2717: 2697: 2677: 2657: 2637: 2617: 93: 3857: 3838: 3815: 3802: 3742: 3660: 3420: 3150: 3115: 182: 3794: 3754: 3620: 3545: 3319: 3209: 3888: 3790: 3734: 3698: 3648: 3608: 3583: 3571: 3533: 3507: 3495: 3462: 3412: 3370: 3307: 3247: 3197: 3162: 3142: 3107: 1007:
where the overline indicates this time averaging. For wave frequencies above a few
197: 193: 96:, and later in the same year, they applied this technique to measuring the size of 80: 3911: 3416: 152:. Hanbury Brown and Twiss resolved the dispute in a neat series of articles (see 88: 3702: 3466: 3287: 3285: 3251: 3050: 3046: 170: 117: 64: 3311: 3111: 3936: 3892: 3154: 3119: 2614:
in 1961 captures the essence of the quantum explanation. Consider two points
390: 141: 111: 3738: 3177: 2694:
as in the diagram. A joint detection takes place when the photon emitted by
3922:
http://www.2physics.com/2010/11/hanbury-brown-and-twiss-interferometry.html
3746: 3652: 3612: 3424: 2605:
is the coherence time (the time scale of photon or intensity fluctuations).
363: 105: 274:
The HBT effect can, in fact, be predicted solely by treating the incident
189:
in the "trap-and-free fall" analogy of the HBT effect affects comparison.
3870: 3273: 36: 3340: 3013: 1016: 1012: 145: 3575: 3537: 3374: 3201: 3499: 3146: 209: 173:. Finally, bosons have a tendency to clump together, giving rise to 60: 3274:
Comparison of the Hanbury Brown-Twiss effect for bosons and fermions
3033:. The two colors represent two different ways to detect two photons. 2611: 2597: 3907:
http://adsabs.harvard.edu//full/seri/JApA./0015//0000015.000.html
1023:
cannot produce photocurrents that vary on such short timescales.
1015:), such a time averaging is unavoidable, since detectors such as 262:
decay. From then on, the HBT technique started to be used by the
48: 20: 137: 97: 2987:
in the source washes out the interference unless the distance
52: 3762: 204:
and found an unexpected angular correlation among identical
3833:
More Than One Mystery: Explorations in Quantum Interference
3630: 3590: 3515: 279: 205: 3854:
The intensity interferometer; its application to astronomy
3288:"Pion-pion correlations in antiproton annihilation events" 3178:"A Test Of A New Type Of Stellar Interferometer On Sirius" 2298:
The correlation function of these two intensities is then
1078:
of these time-averaged intensities can then be computed:
2654:
in a source that emit photons detected by two detectors
1425:
is the average intensity, ought to be correlated, since
576:{\displaystyle E_{2}(t)=E(t-\tau )\sin(\omega t-\phi ).} 282:. Suppose we have a monochromatic wave with frequency 3712:"A Photon Turnstile Dynamically Regulated by One Atom" 2953:{\displaystyle \langle B|a\rangle \langle A|b\rangle } 2902:{\displaystyle \langle A|a\rangle \langle B|b\rangle } 2491: 2068: 1941: 1274: 951: 781: 331:
that varies on timescales slower than the wave period
63:, although they are also heavily used in the field of 3709: 3670: 3477: 2993: 2967: 2915: 2864: 2844: 2824: 2804: 2784: 2760: 2740: 2720: 2700: 2680: 2660: 2640: 2620: 2575: 2307: 2265: 2222: 2193: 1909: 1865: 1838: 1809: 1434: 1405: 1364: 1087: 1032: 655: 623: 592: 505: 430: 398: 375: 362:. (Such a wave might be produced from a very distant 337: 308: 288: 218: 16:
Quantum correlations related to wave-particle duality
3437: 3222: 55:. Devices which use the effect are commonly called 3830: 3390:"The Fermionic Hanbury Brown and Twiss Experiment" 3175: 3132: 3095: 3002: 2979: 2952: 2901: 2850: 2830: 2810: 2790: 2766: 2746: 2726: 2706: 2686: 2666: 2646: 2626: 2581: 2558: 2287: 2251: 2208: 2176: 1892: 1851: 1824: 1792: 1417: 1391: 1347: 1070: 996: 638: 609: 575: 488: 413: 381: 354: 323: 294: 254: 3828: 3073:Timeline of electromagnetism and classical optics 1071:{\displaystyle \langle i_{1}i_{2}\rangle (\tau )} 3934: 3438:Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). 3223:Kimble, H. J.; Dagenais, M.; Mandel, L. (1977). 2361: 1233: 1135: 3851: 3809: 3440:"Photon antibunching in resonance fluorescence" 3225:"Photon Antibunching in Resonance Fluorescence" 124:"for his contribution to the quantum theory of 3912:http://physicsweb.org/articles/world/15/10/6/1 116:thermal and in laser beams was first given by 3126: 3089: 2569:showing a sinusoidal dependence on the delay 1672: 1639: 1629: 1596: 1557: 1480: 255:{\displaystyle \rho ^{0}\to \pi ^{-}\pi ^{+}} 2947: 2933: 2930: 2916: 2896: 2882: 2879: 2865: 2341: 2312: 2252:{\displaystyle {\mathcal {O}}(\delta E^{2})} 1859:with a small sinusoidally varying component 1780: 1767: 1764: 1751: 1745: 1722: 1709: 1696: 1693: 1680: 1667: 1654: 1624: 1611: 1588: 1565: 1549: 1536: 1514: 1501: 1468: 1439: 1412: 1406: 1392:{\displaystyle \Delta i=i-\langle i\rangle } 1386: 1380: 1115: 1092: 1056: 1033: 489:{\displaystyle E_{1}(t)=E(t)\sin(\omega t),} 3553: 3550:ā€“ experimental demonstration of the effect 3176:Hanbury Brown, R.; Twiss, Dr R.Q. (1956). 617:but short compared to the fluctuations in 200:et al. performed an experiment in 1959 in 3784: 3692: 2592: 2471: 2107: 1980: 1329: 1213: 3387: 3012: 2596: 110: 3935: 2295:, which are small and may be ignored. 1893:{\displaystyle \delta E\sin(\Omega t)} 3352: 1900:, the time-averaged intensities are 302:on two detectors, with an amplitude 39:and anti-correlation effects in the 3929:(Becker & Hickl GmbH, web page) 3025:emit photons detected by detectors 13: 3633:Proceedings of the Royal Society A 3593:Proceedings of the Royal Society A 2540: 2473: 2465: 2456: 2438: 2371: 2328: 2315: 2225: 2209:{\displaystyle \Phi =\Omega \tau } 2200: 2194: 2143: 2132: 2123: 2010: 1996: 1881: 1832:consists mainly of a steady field 1455: 1442: 1365: 1331: 1243: 1215: 1145: 414:{\displaystyle \phi =\omega \tau } 14: 3954: 3900: 1418:{\displaystyle \langle i\rangle } 269: 2259:indicates terms proportional to 100:. In the latter experiment, two 3431: 3381: 366:with a fluctuating intensity.) 185:. A difference in repulsion of 153: 3927:Hanbury-Brown-Twiss Experiment 3388:M. Henny; et al. (1999). 3346: 3326: 3279: 3267: 3258: 3216: 3169: 2940: 2923: 2889: 2872: 2546: 2537: 2522: 2502: 2468: 2453: 2444: 2435: 2399: 2379: 2368: 2350: 2344: 2288:{\displaystyle (\delta E)^{2}} 2276: 2266: 2246: 2230: 2164: 2148: 2135: 2120: 2057: 2051: 2031: 2015: 2002: 1993: 1930: 1924: 1887: 1878: 1819: 1813: 1552: 1520: 1517: 1485: 1320: 1307: 1295: 1288: 1240: 1210: 1204: 1191: 1185: 1142: 1124: 1118: 1065: 1059: 978: 965: 938: 923: 901: 888: 864: 857: 834: 828: 802: 795: 768: 759: 737: 730: 706: 699: 676: 670: 633: 627: 567: 552: 543: 531: 522: 516: 480: 471: 462: 456: 447: 441: 318: 312: 229: 1: 3083: 610:{\displaystyle 2\pi /\omega } 355:{\displaystyle 2\pi /\omega } 3417:10.1126/science.284.5412.296 3078: 1803:In the particular case that 942: 874: 772: 716: 177:, while fermions due to the 59:and were originally used in 7: 3703:10.1103/PhysRevLett.16.1012 3355:American Journal of Physics 3334:Annu. Rev. Nucl. Part. Sci. 3056: 2589:between the two detectors. 120:, who was awarded the 2005 10: 3959: 3829:Mark P. Silverman (1995). 3467:10.1103/PhysRevLett.39.691 3252:10.1103/PhysRevLett.39.691 3063:Boseā€“Einstein correlations 2734:and the photon emitted by 1011:(wave periods less than a 175:Boseā€“Einstein correlations 70: 3795:10.1209/0295-5075/1/4/004 3312:10.1103/PhysRevLett.3.181 3112:10.1080/14786440708520475 3010:is sufficiently small. 2798:'s photon is detected by 1026:The correlation function 276:electromagnetic radiation 179:Pauli exclusion principle 57:intensity interferometers 3893:10.1038/nphoton.2010.195 3852:R Hanbury Brown (1974). 3810:R Hanbury Brown (1991). 187:Boseā€“Einstein condensate 85:intensity interferometer 3739:10.1126/Science.1152261 3447:Physical Review Letters 3232:Physical Review Letters 295:{\displaystyle \omega } 144:in the detectors. Many 35:is any of a variety of 25:Hanbury Brown and Twiss 3653:10.1098/rspa.1958.0001 3613:10.1098/rspa.1957.0177 3099:Philosophical Magazine 3034: 3004: 2981: 2954: 2903: 2852: 2832: 2812: 2792: 2768: 2748: 2728: 2708: 2688: 2668: 2648: 2628: 2606: 2593:Quantum interpretation 2583: 2560: 2428: 2289: 2253: 2210: 2178: 1894: 1853: 1826: 1794: 1419: 1393: 1349: 1272: 1174: 1072: 998: 640: 611: 577: 490: 415: 383: 356: 325: 296: 256: 192:Also, in the field of 129: 122:Nobel Prize in Physics 3016: 3005: 2982: 2955: 2904: 2853: 2833: 2813: 2793: 2769: 2749: 2729: 2709: 2689: 2669: 2649: 2629: 2600: 2584: 2582:{\displaystyle \tau } 2561: 2414: 2290: 2254: 2211: 2179: 1895: 1854: 1852:{\displaystyle E_{0}} 1827: 1795: 1420: 1394: 1350: 1258: 1160: 1073: 1021:photomultiplier tubes 999: 641: 612: 578: 491: 416: 389:, or equivalently, a 384: 382:{\displaystyle \tau } 357: 326: 297: 257: 163:statistical mechanics 150:uncertainty principle 140:that induce discrete 114: 102:photomultiplier tubes 45:waveā€“particle duality 2991: 2965: 2913: 2862: 2842: 2822: 2802: 2782: 2758: 2738: 2718: 2698: 2678: 2658: 2638: 2618: 2573: 2305: 2263: 2220: 2191: 1907: 1863: 1836: 1825:{\displaystyle E(t)} 1807: 1432: 1403: 1362: 1085: 1030: 653: 639:{\displaystyle E(t)} 621: 590: 503: 428: 396: 373: 335: 324:{\displaystyle E(t)} 306: 286: 216: 159:Edward Mills Purcell 77:Robert Hanbury Brown 3885:2010NaPho...4..721B 3777:1986EL......1..173G 3765:Europhysics Letters 3731:2008Sci...319.1062D 3725:(5866): 1062ā€“1065. 3685:1966PhRvL..16.1012M 3645:1958RSPSA.243..291B 3605:1957RSPSA.242..300B 3568:1956Natur.178.1449P 3562:(4548): 1449ā€“1450. 3530:1956Natur.178.1046H 3524:(4541): 1046ā€“1048. 3492:1956Natur.178..481B 3459:1977PhRvL..39..691K 3409:1999Sci...284..296H 3367:1961AmJPh..29..539F 3304:1959PhRvL...3..181G 3244:1977PhRvL..39..691K 3194:1956Natur.178.1046H 3188:(4541): 1046ā€“1048. 3068:Degree of coherence 3040:photon antibunching 2980:{\displaystyle a,b} 2093: 1966: 264:heavy-ion community 134:Maxwell's equations 3866:. ASIN B000LZQD3C. 3035: 3017:Two source points 3003:{\displaystyle AB} 3000: 2977: 2950: 2899: 2848: 2828: 2808: 2788: 2764: 2744: 2724: 2704: 2684: 2664: 2644: 2624: 2607: 2579: 2556: 2554: 2500: 2375: 2285: 2249: 2206: 2174: 2172: 2079: 2077: 1952: 1950: 1890: 1849: 1822: 1790: 1788: 1415: 1389: 1345: 1343: 1283: 1247: 1149: 1068: 994: 992: 960: 790: 636: 607: 573: 486: 411: 379: 352: 321: 292: 252: 208:, discovering the 130: 94:mercury-vapor lamp 3863:978-0-470-10797-3 3844:978-0-387-94376-3 3821:978-0-7503-0130-5 3679:(22): 1012ā€“1014. 3639:(1234): 291ā€“319. 3599:(1230): 300ā€“324. 3576:10.1038/1781449a0 3538:10.1038/1781046a0 3486:(4531): 481ā€“482. 3403:(5412): 296ā€“298. 3375:10.1119/1.1937827 3339:, p. 357 (2005), 3332:M. Lisa, et al., 3202:10.1038/1781046a0 2851:{\displaystyle A} 2831:{\displaystyle b} 2811:{\displaystyle B} 2791:{\displaystyle a} 2767:{\displaystyle B} 2747:{\displaystyle b} 2727:{\displaystyle A} 2707:{\displaystyle a} 2687:{\displaystyle B} 2667:{\displaystyle A} 2647:{\displaystyle b} 2627:{\displaystyle a} 2499: 2412: 2360: 2076: 1949: 1282: 1256: 1232: 1158: 1134: 959: 945: 877: 789: 775: 719: 183:Richard M. Weiner 126:optical coherence 3950: 3896: 3873:Nature Photonics 3867: 3848: 3836: 3825: 3806: 3788: 3758: 3716: 3706: 3696: 3664: 3624: 3587: 3549: 3511: 3500:10.1038/178481a0 3471: 3470: 3444: 3435: 3429: 3428: 3394: 3385: 3379: 3378: 3350: 3344: 3330: 3324: 3323: 3283: 3277: 3271: 3265: 3262: 3256: 3255: 3229: 3220: 3214: 3213: 3173: 3167: 3166: 3147:10.1038/177027a0 3130: 3124: 3123: 3106:(366): 663ā€“682. 3093: 3009: 3007: 3006: 3001: 2986: 2984: 2983: 2978: 2959: 2957: 2956: 2951: 2943: 2926: 2908: 2906: 2905: 2900: 2892: 2875: 2857: 2855: 2854: 2849: 2837: 2835: 2834: 2829: 2817: 2815: 2814: 2809: 2797: 2795: 2794: 2789: 2773: 2771: 2770: 2765: 2753: 2751: 2750: 2745: 2733: 2731: 2730: 2725: 2713: 2711: 2710: 2705: 2693: 2691: 2690: 2685: 2673: 2671: 2670: 2665: 2653: 2651: 2650: 2645: 2633: 2631: 2630: 2625: 2588: 2586: 2585: 2580: 2565: 2563: 2562: 2557: 2555: 2530: 2529: 2514: 2513: 2501: 2492: 2483: 2476: 2427: 2422: 2413: 2408: 2407: 2406: 2391: 2390: 2377: 2374: 2340: 2339: 2327: 2326: 2294: 2292: 2291: 2286: 2284: 2283: 2258: 2256: 2255: 2250: 2245: 2244: 2229: 2228: 2215: 2213: 2212: 2207: 2183: 2181: 2180: 2175: 2173: 2163: 2162: 2147: 2146: 2106: 2105: 2092: 2087: 2078: 2069: 2050: 2049: 2030: 2029: 2014: 2013: 1979: 1978: 1965: 1960: 1951: 1942: 1923: 1922: 1899: 1897: 1896: 1891: 1858: 1856: 1855: 1850: 1848: 1847: 1831: 1829: 1828: 1823: 1799: 1797: 1796: 1791: 1789: 1779: 1778: 1763: 1762: 1744: 1743: 1734: 1733: 1715: 1708: 1707: 1692: 1691: 1676: 1675: 1666: 1665: 1653: 1652: 1643: 1642: 1633: 1632: 1623: 1622: 1610: 1609: 1600: 1599: 1587: 1586: 1577: 1576: 1561: 1560: 1548: 1547: 1532: 1531: 1513: 1512: 1497: 1496: 1484: 1483: 1467: 1466: 1454: 1453: 1424: 1422: 1421: 1416: 1398: 1396: 1395: 1390: 1354: 1352: 1351: 1346: 1344: 1334: 1328: 1327: 1303: 1302: 1284: 1275: 1271: 1266: 1257: 1249: 1246: 1225: 1218: 1203: 1202: 1184: 1183: 1173: 1168: 1159: 1151: 1148: 1114: 1113: 1104: 1103: 1077: 1075: 1074: 1069: 1055: 1054: 1045: 1044: 1003: 1001: 1000: 995: 993: 986: 985: 961: 952: 946: 941: 919: 918: 909: 908: 883: 878: 873: 872: 871: 856: 855: 845: 827: 826: 810: 809: 791: 782: 776: 771: 755: 754: 745: 744: 725: 720: 715: 714: 713: 698: 697: 687: 669: 668: 645: 643: 642: 637: 616: 614: 613: 608: 603: 582: 580: 579: 574: 515: 514: 495: 493: 492: 487: 440: 439: 420: 418: 417: 412: 388: 386: 385: 380: 361: 359: 358: 353: 348: 330: 328: 327: 322: 301: 299: 298: 293: 261: 259: 258: 253: 251: 250: 241: 240: 228: 227: 198:Gerson Goldhaber 194:particle physics 157:Others, such as 81:Richard Q. Twiss 3958: 3957: 3953: 3952: 3951: 3949: 3948: 3947: 3933: 3932: 3903: 3879:(10): 721ā€“726. 3864: 3845: 3822: 3814:. Adam Hilger. 3786:10.1.1.178.4356 3714: 3694:10.1.1.713.7239 3673:Phys. Rev. Lett 3666:download as PDF 3626:download as PDF 3474: 3453:(11): 691ā€“695. 3442: 3436: 3432: 3392: 3386: 3382: 3351: 3347: 3331: 3327: 3292:Phys. Rev. Lett 3284: 3280: 3272: 3268: 3263: 3259: 3238:(11): 691ā€“695. 3227: 3221: 3217: 3174: 3170: 3141:(4497): 27ā€“29. 3131: 3127: 3094: 3090: 3086: 3081: 3059: 2992: 2989: 2988: 2966: 2963: 2962: 2939: 2922: 2914: 2911: 2910: 2888: 2871: 2863: 2860: 2859: 2843: 2840: 2839: 2823: 2820: 2819: 2803: 2800: 2799: 2783: 2780: 2779: 2759: 2756: 2755: 2754:is detected by 2739: 2736: 2735: 2719: 2716: 2715: 2714:is detected by 2699: 2696: 2695: 2679: 2676: 2675: 2659: 2656: 2655: 2639: 2636: 2635: 2619: 2616: 2615: 2604: 2595: 2574: 2571: 2570: 2553: 2552: 2525: 2521: 2509: 2505: 2490: 2481: 2480: 2472: 2423: 2418: 2402: 2398: 2386: 2382: 2378: 2376: 2364: 2353: 2335: 2331: 2322: 2318: 2308: 2306: 2303: 2302: 2279: 2275: 2264: 2261: 2260: 2240: 2236: 2224: 2223: 2221: 2218: 2217: 2192: 2189: 2188: 2171: 2170: 2158: 2154: 2142: 2141: 2101: 2097: 2088: 2083: 2067: 2060: 2045: 2041: 2038: 2037: 2025: 2021: 2009: 2008: 1974: 1970: 1961: 1956: 1940: 1933: 1918: 1914: 1910: 1908: 1905: 1904: 1864: 1861: 1860: 1843: 1839: 1837: 1834: 1833: 1808: 1805: 1804: 1787: 1786: 1774: 1770: 1758: 1754: 1739: 1735: 1729: 1725: 1713: 1712: 1703: 1699: 1687: 1683: 1671: 1670: 1661: 1657: 1648: 1644: 1638: 1637: 1628: 1627: 1618: 1614: 1605: 1601: 1595: 1594: 1582: 1578: 1572: 1568: 1556: 1555: 1543: 1539: 1527: 1523: 1508: 1504: 1492: 1488: 1479: 1478: 1471: 1462: 1458: 1449: 1445: 1435: 1433: 1430: 1429: 1404: 1401: 1400: 1363: 1360: 1359: 1342: 1341: 1330: 1323: 1319: 1298: 1294: 1273: 1267: 1262: 1248: 1236: 1223: 1222: 1214: 1198: 1194: 1179: 1175: 1169: 1164: 1150: 1138: 1127: 1109: 1105: 1099: 1095: 1088: 1086: 1083: 1082: 1050: 1046: 1040: 1036: 1031: 1028: 1027: 991: 990: 981: 977: 950: 914: 910: 904: 900: 884: 882: 867: 863: 851: 847: 846: 844: 837: 822: 818: 815: 814: 805: 801: 780: 750: 746: 740: 736: 726: 724: 709: 705: 693: 689: 688: 686: 679: 664: 660: 656: 654: 651: 650: 622: 619: 618: 599: 591: 588: 587: 510: 506: 504: 501: 500: 435: 431: 429: 426: 425: 397: 394: 393: 374: 371: 370: 344: 336: 333: 332: 307: 304: 303: 287: 284: 283: 278:as a classical 272: 246: 242: 236: 232: 223: 219: 217: 214: 213: 89:radio astronomy 83:introduced the 73: 17: 12: 11: 5: 3956: 3946: 3945: 3943:Quantum optics 3931: 3930: 3924: 3919: 3914: 3909: 3902: 3901:External links 3899: 3898: 3897: 3868: 3862: 3849: 3843: 3826: 3820: 3807: 3771:(4): 173ā€“179. 3760: 3707: 3668: 3628: 3588: 3551: 3513: 3473: 3472: 3430: 3380: 3361:(8): 539ā€“545. 3345: 3325: 3278: 3266: 3257: 3215: 3168: 3125: 3087: 3085: 3082: 3080: 3077: 3076: 3075: 3070: 3065: 3058: 3055: 3051:Leonard Mandel 3047:Roy J. Glauber 2999: 2996: 2976: 2973: 2970: 2949: 2946: 2942: 2938: 2935: 2932: 2929: 2925: 2921: 2918: 2898: 2895: 2891: 2887: 2884: 2881: 2878: 2874: 2870: 2867: 2847: 2827: 2807: 2787: 2763: 2743: 2723: 2703: 2683: 2663: 2643: 2623: 2602: 2594: 2591: 2578: 2567: 2566: 2551: 2548: 2545: 2542: 2539: 2536: 2533: 2528: 2524: 2520: 2517: 2512: 2508: 2504: 2498: 2495: 2489: 2486: 2484: 2482: 2479: 2475: 2470: 2467: 2464: 2461: 2458: 2455: 2452: 2449: 2446: 2443: 2440: 2437: 2434: 2431: 2426: 2421: 2417: 2411: 2405: 2401: 2397: 2394: 2389: 2385: 2381: 2373: 2370: 2367: 2363: 2359: 2356: 2354: 2352: 2349: 2346: 2343: 2338: 2334: 2330: 2325: 2321: 2317: 2314: 2311: 2310: 2282: 2278: 2274: 2271: 2268: 2248: 2243: 2239: 2235: 2232: 2227: 2205: 2202: 2199: 2196: 2185: 2184: 2169: 2166: 2161: 2157: 2153: 2150: 2145: 2140: 2137: 2134: 2131: 2128: 2125: 2122: 2119: 2116: 2113: 2110: 2104: 2100: 2096: 2091: 2086: 2082: 2075: 2072: 2066: 2063: 2061: 2059: 2056: 2053: 2048: 2044: 2040: 2039: 2036: 2033: 2028: 2024: 2020: 2017: 2012: 2007: 2004: 2001: 1998: 1995: 1992: 1989: 1986: 1983: 1977: 1973: 1969: 1964: 1959: 1955: 1948: 1945: 1939: 1936: 1934: 1932: 1929: 1926: 1921: 1917: 1913: 1912: 1889: 1886: 1883: 1880: 1877: 1874: 1871: 1868: 1846: 1842: 1821: 1818: 1815: 1812: 1801: 1800: 1785: 1782: 1777: 1773: 1769: 1766: 1761: 1757: 1753: 1750: 1747: 1742: 1738: 1732: 1728: 1724: 1721: 1718: 1716: 1714: 1711: 1706: 1702: 1698: 1695: 1690: 1686: 1682: 1679: 1674: 1669: 1664: 1660: 1656: 1651: 1647: 1641: 1636: 1631: 1626: 1621: 1617: 1613: 1608: 1604: 1598: 1593: 1590: 1585: 1581: 1575: 1571: 1567: 1564: 1559: 1554: 1551: 1546: 1542: 1538: 1535: 1530: 1526: 1522: 1519: 1516: 1511: 1507: 1503: 1500: 1495: 1491: 1487: 1482: 1477: 1474: 1472: 1470: 1465: 1461: 1457: 1452: 1448: 1444: 1441: 1438: 1437: 1414: 1411: 1408: 1388: 1385: 1382: 1379: 1376: 1373: 1370: 1367: 1356: 1355: 1340: 1337: 1333: 1326: 1322: 1318: 1315: 1312: 1309: 1306: 1301: 1297: 1293: 1290: 1287: 1281: 1278: 1270: 1265: 1261: 1255: 1252: 1245: 1242: 1239: 1235: 1231: 1228: 1226: 1224: 1221: 1217: 1212: 1209: 1206: 1201: 1197: 1193: 1190: 1187: 1182: 1178: 1172: 1167: 1163: 1157: 1154: 1147: 1144: 1141: 1137: 1133: 1130: 1128: 1126: 1123: 1120: 1117: 1112: 1108: 1102: 1098: 1094: 1091: 1090: 1067: 1064: 1061: 1058: 1053: 1049: 1043: 1039: 1035: 1005: 1004: 989: 984: 980: 976: 973: 970: 967: 964: 958: 955: 949: 944: 940: 937: 934: 931: 928: 925: 922: 917: 913: 907: 903: 899: 896: 893: 890: 887: 881: 876: 870: 866: 862: 859: 854: 850: 843: 840: 838: 836: 833: 830: 825: 821: 817: 816: 813: 808: 804: 800: 797: 794: 788: 785: 779: 774: 770: 767: 764: 761: 758: 753: 749: 743: 739: 735: 732: 729: 723: 718: 712: 708: 704: 701: 696: 692: 685: 682: 680: 678: 675: 672: 667: 663: 659: 658: 635: 632: 629: 626: 606: 602: 598: 595: 584: 583: 572: 569: 566: 563: 560: 557: 554: 551: 548: 545: 542: 539: 536: 533: 530: 527: 524: 521: 518: 513: 509: 497: 496: 485: 482: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 443: 438: 434: 410: 407: 404: 401: 378: 351: 347: 343: 340: 320: 317: 314: 311: 291: 271: 270:Wave mechanics 268: 249: 245: 239: 235: 231: 226: 222: 212:, by means of 171:H. Jeff Kimble 142:photoelectrons 118:Roy J. Glauber 72: 69: 65:quantum optics 15: 9: 6: 4: 3: 2: 3955: 3944: 3941: 3940: 3938: 3928: 3925: 3923: 3920: 3918: 3915: 3913: 3910: 3908: 3905: 3904: 3894: 3890: 3886: 3882: 3878: 3874: 3869: 3865: 3859: 3855: 3850: 3846: 3840: 3835: 3834: 3827: 3823: 3817: 3813: 3808: 3804: 3800: 3796: 3792: 3787: 3782: 3778: 3774: 3770: 3766: 3761: 3756: 3752: 3748: 3744: 3740: 3736: 3732: 3728: 3724: 3720: 3713: 3708: 3704: 3700: 3695: 3690: 3686: 3682: 3678: 3674: 3669: 3667: 3662: 3658: 3654: 3650: 3646: 3642: 3638: 3634: 3629: 3627: 3622: 3618: 3614: 3610: 3606: 3602: 3598: 3594: 3589: 3585: 3581: 3577: 3573: 3569: 3565: 3561: 3557: 3552: 3547: 3543: 3539: 3535: 3531: 3527: 3523: 3519: 3514: 3509: 3505: 3501: 3497: 3493: 3489: 3485: 3481: 3476: 3475: 3468: 3464: 3460: 3456: 3452: 3448: 3441: 3434: 3426: 3422: 3418: 3414: 3410: 3406: 3402: 3398: 3391: 3384: 3376: 3372: 3368: 3364: 3360: 3356: 3349: 3342: 3341:ArXiv 0505014 3338: 3335: 3329: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3293: 3289: 3282: 3275: 3270: 3261: 3253: 3249: 3245: 3241: 3237: 3233: 3226: 3219: 3211: 3207: 3203: 3199: 3195: 3191: 3187: 3183: 3179: 3172: 3164: 3160: 3156: 3152: 3148: 3144: 3140: 3136: 3129: 3121: 3117: 3113: 3109: 3105: 3101: 3100: 3092: 3088: 3074: 3071: 3069: 3066: 3064: 3061: 3060: 3054: 3052: 3048: 3043: 3041: 3032: 3028: 3024: 3020: 3015: 3011: 2997: 2994: 2974: 2971: 2968: 2944: 2936: 2927: 2919: 2893: 2885: 2876: 2868: 2845: 2825: 2805: 2785: 2777: 2774:(red arrows) 2761: 2741: 2721: 2701: 2681: 2661: 2641: 2621: 2613: 2599: 2590: 2576: 2549: 2543: 2534: 2531: 2526: 2518: 2515: 2510: 2506: 2496: 2493: 2487: 2485: 2477: 2462: 2459: 2450: 2447: 2441: 2432: 2429: 2424: 2419: 2415: 2409: 2403: 2395: 2392: 2387: 2383: 2365: 2357: 2355: 2347: 2336: 2332: 2323: 2319: 2301: 2300: 2299: 2296: 2280: 2272: 2269: 2241: 2237: 2233: 2203: 2197: 2167: 2159: 2155: 2151: 2138: 2129: 2126: 2117: 2114: 2111: 2108: 2102: 2098: 2094: 2089: 2084: 2080: 2073: 2070: 2064: 2062: 2054: 2046: 2042: 2034: 2026: 2022: 2018: 2005: 1999: 1990: 1987: 1984: 1981: 1975: 1971: 1967: 1962: 1957: 1953: 1946: 1943: 1937: 1935: 1927: 1919: 1915: 1903: 1902: 1901: 1884: 1875: 1872: 1869: 1866: 1844: 1840: 1816: 1810: 1783: 1775: 1771: 1759: 1755: 1748: 1740: 1736: 1730: 1726: 1719: 1717: 1704: 1700: 1688: 1684: 1677: 1662: 1658: 1649: 1645: 1634: 1619: 1615: 1606: 1602: 1591: 1583: 1579: 1573: 1569: 1562: 1544: 1540: 1533: 1528: 1524: 1509: 1505: 1498: 1493: 1489: 1475: 1473: 1463: 1459: 1450: 1446: 1428: 1427: 1426: 1409: 1383: 1377: 1374: 1371: 1368: 1338: 1335: 1324: 1316: 1313: 1310: 1304: 1299: 1291: 1285: 1279: 1276: 1268: 1263: 1259: 1253: 1250: 1237: 1229: 1227: 1219: 1207: 1199: 1195: 1188: 1180: 1176: 1170: 1165: 1161: 1155: 1152: 1139: 1131: 1129: 1121: 1110: 1106: 1100: 1096: 1081: 1080: 1079: 1062: 1051: 1047: 1041: 1037: 1024: 1022: 1018: 1014: 1010: 987: 982: 974: 971: 968: 962: 956: 953: 947: 935: 932: 929: 926: 920: 915: 911: 905: 897: 894: 891: 885: 879: 868: 860: 852: 848: 841: 839: 831: 823: 819: 811: 806: 798: 792: 786: 783: 777: 765: 762: 756: 751: 747: 741: 733: 727: 721: 710: 702: 694: 690: 683: 681: 673: 665: 661: 649: 648: 647: 630: 624: 604: 600: 596: 593: 570: 564: 561: 558: 555: 549: 546: 540: 537: 534: 528: 525: 519: 511: 507: 499: 498: 483: 477: 474: 468: 465: 459: 453: 450: 444: 436: 432: 424: 423: 422: 408: 405: 402: 399: 392: 376: 367: 365: 349: 345: 341: 338: 315: 309: 289: 281: 277: 267: 265: 247: 243: 237: 233: 224: 220: 211: 207: 203: 199: 195: 190: 188: 184: 180: 176: 172: 166: 164: 160: 155: 151: 147: 143: 139: 135: 127: 123: 119: 113: 109: 107: 103: 99: 95: 90: 86: 82: 78: 68: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 3876: 3872: 3853: 3837:. Springer. 3832: 3811: 3768: 3764: 3722: 3718: 3676: 3672: 3636: 3632: 3596: 3592: 3559: 3555: 3521: 3517: 3483: 3479: 3450: 3446: 3433: 3400: 3396: 3383: 3358: 3354: 3348: 3336: 3333: 3328: 3295: 3291: 3281: 3269: 3260: 3235: 3231: 3218: 3185: 3181: 3171: 3138: 3134: 3128: 3103: 3097: 3091: 3044: 3036: 3030: 3026: 3022: 3018: 2775: 2608: 2568: 2297: 2186: 1802: 1357: 1025: 1006: 585: 368: 364:point source 273: 191: 167: 131: 106:angular size 74: 32: 28: 24: 18: 1017:photodiodes 421:; that is, 210:Ļ resonance 108:of Sirius. 87:concept to 41:intensities 37:correlation 3298:(4): 181. 3084:References 1013:picosecond 154:References 146:physicists 3856:. Wiley. 3803:250837011 3781:CiteSeerX 3689:CiteSeerX 3661:121428610 3155:0028-0836 3120:1941-5982 3079:Footnotes 2948:⟩ 2934:⟨ 2931:⟩ 2917:⟨ 2897:⟩ 2883:⟨ 2880:⟩ 2866:⟨ 2577:τ 2544:τ 2541:Ω 2535:⁡ 2516:δ 2466:Φ 2463:− 2457:Ω 2451:⁡ 2439:Ω 2433:⁡ 2416:∫ 2393:δ 2372:∞ 2369:→ 2348:τ 2342:⟩ 2329:Δ 2316:Δ 2313:⟨ 2270:δ 2234:δ 2204:τ 2201:Ω 2195:Φ 2152:δ 2133:Φ 2130:− 2124:Ω 2118:⁡ 2109:δ 2019:δ 1997:Ω 1991:⁡ 1982:δ 1882:Ω 1876:⁡ 1867:δ 1781:⟩ 1768:⟨ 1765:⟩ 1752:⟨ 1749:− 1746:⟩ 1723:⟨ 1710:⟩ 1697:⟨ 1694:⟩ 1681:⟨ 1668:⟩ 1655:⟨ 1635:− 1625:⟩ 1612:⟨ 1592:− 1589:⟩ 1566:⟨ 1550:⟩ 1537:⟨ 1534:− 1515:⟩ 1502:⟨ 1499:− 1469:⟩ 1456:Δ 1443:Δ 1440:⟨ 1413:⟩ 1407:⟨ 1387:⟩ 1381:⟨ 1378:− 1366:Δ 1317:τ 1314:− 1260:∫ 1244:∞ 1241:→ 1162:∫ 1146:∞ 1143:→ 1122:τ 1116:⟩ 1093:⟨ 1063:τ 1057:⟩ 1034:⟨ 1009:terahertz 975:τ 972:− 943:¯ 936:ϕ 933:− 927:ω 921:⁡ 898:τ 895:− 875:¯ 773:¯ 763:ω 757:⁡ 717:¯ 605:ω 597:π 565:ϕ 562:− 556:ω 550:⁡ 541:τ 538:− 475:ω 469:⁡ 409:τ 406:ω 400:ϕ 377:τ 350:ω 342:π 290:ω 244:π 238:− 234:π 230:→ 221:ρ 75:In 1954, 61:astronomy 3937:Category 3755:20556331 3747:18292335 3621:16941860 3546:38235692 3425:10195890 3320:16160176 3210:38235692 3057:See also 2612:Ugo Fano 1673:⟩ 1640:⟨ 1630:⟩ 1597:⟨ 1558:⟩ 1481:⟨ 1399:, where 202:Berkeley 49:fermions 3881:Bibcode 3773:Bibcode 3727:Bibcode 3719:Science 3681:Bibcode 3641:Bibcode 3601:Bibcode 3584:4146082 3564:Bibcode 3526:Bibcode 3508:6255689 3488:Bibcode 3455:Bibcode 3405:Bibcode 3397:Science 3363:Bibcode 3300:Bibcode 3240:Bibcode 3190:Bibcode 3163:4224650 138:photons 71:History 21:physics 3860:  3841:  3818:  3801:  3783:  3753:  3745:  3691:  3659:  3619:  3582:  3556:Nature 3544:  3518:Nature 3506:  3480:Nature 3423:  3318:  3208:  3182:Nature 3161:  3153:  3135:Nature 3118:  2838:'s by 2216:, and 98:Sirius 53:bosons 33:effect 23:, the 3799:S2CID 3751:S2CID 3715:(PDF) 3657:S2CID 3617:S2CID 3580:S2CID 3542:S2CID 3504:S2CID 3443:(PDF) 3393:(PDF) 3316:S2CID 3228:(PDF) 3206:S2CID 3159:S2CID 2909:and 2778:when 2187:with 391:phase 206:pions 3858:ISBN 3839:ISBN 3816:ISBN 3743:PMID 3421:PMID 3151:ISSN 3116:ISSN 3049:and 3029:and 3021:and 2818:and 2674:and 2634:and 1019:and 280:wave 79:and 3889:doi 3791:doi 3735:doi 3723:319 3699:doi 3649:doi 3637:243 3609:doi 3597:242 3572:doi 3560:178 3534:doi 3522:178 3496:doi 3484:178 3463:doi 3413:doi 3401:284 3371:doi 3308:doi 3248:doi 3198:doi 3186:178 3143:doi 3139:177 3108:doi 2532:cos 2448:sin 2430:sin 2362:lim 2115:sin 1988:sin 1873:sin 1234:lim 1136:lim 912:sin 748:sin 547:sin 466:sin 51:or 29:HBT 19:In 3939:: 3887:. 3875:. 3797:. 3789:. 3779:. 3767:. 3749:. 3741:. 3733:. 3721:. 3717:. 3697:. 3687:. 3677:16 3675:. 3655:. 3647:. 3635:. 3615:. 3607:. 3595:. 3578:. 3570:. 3558:. 3540:. 3532:. 3520:. 3502:. 3494:. 3482:. 3461:. 3451:39 3449:. 3445:. 3419:. 3411:. 3399:. 3395:. 3369:. 3359:29 3357:. 3337:55 3314:. 3306:. 3294:. 3290:. 3246:. 3236:39 3234:. 3230:. 3204:. 3196:. 3184:. 3180:. 3157:. 3149:. 3137:. 3114:. 3104:45 3102:. 2776:or 646:: 196:, 128:". 67:. 31:) 3895:. 3891:: 3883:: 3877:4 3847:. 3824:. 3805:. 3793:: 3775:: 3769:1 3757:. 3737:: 3729:: 3705:. 3701:: 3683:: 3663:. 3651:: 3643:: 3623:. 3611:: 3603:: 3586:. 3574:: 3566:: 3548:. 3536:: 3528:: 3510:. 3498:: 3490:: 3469:. 3465:: 3457:: 3427:. 3415:: 3407:: 3377:. 3373:: 3365:: 3343:. 3322:. 3310:: 3302:: 3296:3 3276:. 3254:. 3250:: 3242:: 3212:. 3200:: 3192:: 3165:. 3145:: 3122:. 3110:: 3031:B 3027:A 3023:b 3019:a 2998:B 2995:A 2975:b 2972:, 2969:a 2945:b 2941:| 2937:A 2928:a 2924:| 2920:B 2894:b 2890:| 2886:B 2877:a 2873:| 2869:A 2846:A 2826:b 2806:B 2786:a 2762:B 2742:b 2722:A 2702:a 2682:B 2662:A 2642:b 2622:a 2603:c 2550:, 2547:) 2538:( 2527:2 2523:) 2519:E 2511:0 2507:E 2503:( 2497:2 2494:1 2488:= 2478:t 2474:d 2469:) 2460:t 2454:( 2445:) 2442:t 2436:( 2425:T 2420:0 2410:T 2404:2 2400:) 2396:E 2388:0 2384:E 2380:( 2366:T 2358:= 2351:) 2345:( 2337:2 2333:i 2324:1 2320:i 2281:2 2277:) 2273:E 2267:( 2247:) 2242:2 2238:E 2231:( 2226:O 2198:= 2168:, 2165:) 2160:2 2156:E 2149:( 2144:O 2139:+ 2136:) 2127:t 2121:( 2112:E 2103:0 2099:E 2095:+ 2090:2 2085:0 2081:E 2074:2 2071:1 2065:= 2058:) 2055:t 2052:( 2047:2 2043:i 2035:, 2032:) 2027:2 2023:E 2016:( 2011:O 2006:+ 2003:) 2000:t 1994:( 1985:E 1976:0 1972:E 1968:+ 1963:2 1958:0 1954:E 1947:2 1944:1 1938:= 1931:) 1928:t 1925:( 1920:1 1916:i 1888:) 1885:t 1879:( 1870:E 1845:0 1841:E 1820:) 1817:t 1814:( 1811:E 1784:. 1776:2 1772:i 1760:1 1756:i 1741:2 1737:i 1731:1 1727:i 1720:= 1705:2 1701:i 1689:1 1685:i 1678:+ 1663:1 1659:i 1650:2 1646:i 1620:2 1616:i 1607:1 1603:i 1584:2 1580:i 1574:1 1570:i 1563:= 1553:) 1545:2 1541:i 1529:2 1525:i 1521:( 1518:) 1510:1 1506:i 1494:1 1490:i 1486:( 1476:= 1464:2 1460:i 1451:1 1447:i 1410:i 1384:i 1375:i 1372:= 1369:i 1339:. 1336:t 1332:d 1325:2 1321:) 1311:t 1308:( 1305:E 1300:2 1296:) 1292:t 1289:( 1286:E 1280:4 1277:1 1269:T 1264:0 1254:T 1251:1 1238:T 1230:= 1220:t 1216:d 1211:) 1208:t 1205:( 1200:2 1196:i 1192:) 1189:t 1186:( 1181:1 1177:i 1171:T 1166:0 1156:T 1153:1 1140:T 1132:= 1125:) 1119:( 1111:2 1107:i 1101:1 1097:i 1066:) 1060:( 1052:2 1048:i 1042:1 1038:i 988:, 983:2 979:) 969:t 966:( 963:E 957:2 954:1 948:= 939:) 930:t 924:( 916:2 906:2 902:) 892:t 889:( 886:E 880:= 869:2 865:) 861:t 858:( 853:2 849:E 842:= 835:) 832:t 829:( 824:2 820:i 812:, 807:2 803:) 799:t 796:( 793:E 787:2 784:1 778:= 769:) 766:t 760:( 752:2 742:2 738:) 734:t 731:( 728:E 722:= 711:2 707:) 703:t 700:( 695:1 691:E 684:= 677:) 674:t 671:( 666:1 662:i 634:) 631:t 628:( 625:E 601:/ 594:2 571:. 568:) 559:t 553:( 544:) 535:t 532:( 529:E 526:= 523:) 520:t 517:( 512:2 508:E 484:, 481:) 478:t 472:( 463:) 460:t 457:( 454:E 451:= 448:) 445:t 442:( 437:1 433:E 403:= 346:/ 339:2 319:) 316:t 313:( 310:E 248:+ 225:0 27:(

Index

physics
correlation
intensities
waveā€“particle duality
fermions
bosons
intensity interferometers
astronomy
quantum optics
Robert Hanbury Brown
Richard Q. Twiss
intensity interferometer
radio astronomy
mercury-vapor lamp
Sirius
photomultiplier tubes
angular size

Roy J. Glauber
Nobel Prize in Physics
optical coherence
Maxwell's equations
photons
photoelectrons
physicists
uncertainty principle
References
Edward Mills Purcell
statistical mechanics
H. Jeff Kimble

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

ā†‘